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ABSTRACT. Link buffering is a key element in packet-switched networks to absorb tem-
porary traffic bursts without excessive dropping. The resulting queuing delay is a critical
performance factor. Research on buffer management typically studies differentiated buffer
allocation to control forwarding rates or buffer size management to control the overall
queuing delay. On the other hand, delay differentiation is typically accomplished by packet
scheduling and thus implies rate differentiation. In this paper a radically simpler approach
to delay differentiation through buffer management is studied. Instead of actively manag-
ing throughput, Delay Differentiated FIFO (DDF) uses a simple drop-based mechanism to
offer multiple delay classes, but closely tracks the per-class throughput of the correspond-
ing single-class FIFO queuing system. End systems choose which delay class best balances
their loss and delay requirements. Architecturally, DDF does not interfere with manage-
ment and policy decisions at end and edge systems and does not add another control loop to
the existing mix of traffic management techniques. The forwarding characteristics of DDF
are analyzed using stochastic models. Refinements to the basic algorithm are presented and
it is shown how DDF can be implemented with very little execution overhead compared to
FIFO. Packet-level simulation results are presented to complement the analytical findings.

1. INTRODUCTION

The management of link buffers is a key challenge in packet-switched networks. If
the effective buffer size is too large, traffic suffers from unnecessary queuing delay. This
problem has very recently garnered a lot of renewed attention due the so-called bufferbloat
phenomenon [1]. However, insufficient buffers can also cause problems, because traffic
bursts might then result in high packet loss. Furthermore, feedback-controlled sources,
such as TCP senders, face an inherent feedback delay in proportion to the propagation de-
lay and a corresponding lag of responsiveness. It is expected that intermediate buffers at
the bottleneck keep utilizing the link during the lag period of TCP. While there is consid-
erable research on using significantly smaller buffers when a large number of TCP flows
is multiplexed [2], the exact nature of favorable conditions and the full impact of such a
change are not yet understood. Ideally, a network router should support low-latency appli-
cations as well as traffic flows that benefit from a larger amount of buffering. In the past,
research proposals have tried to address this requirement by introducing service differenti-
ation, however, with the side effect that service differentiation treats some traffic as more
important than other and thus requires some form of admission policy.

In this paper we investigate a low-complexity, but most importantly future-proof, ap-
proach to link buffering. Single-class FIFO queuing is extremely simple and treats all
incoming traffic identically. Almost any existing alternative to FIFO queuing implements
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some form of hard-coded policy that is imposed on other networking components, such
as explicit mechanisms (signaling) or implicit requirements (edge admission control), or
adds a local control loop to an already complicated stack of traffic control functionality
(active queue management). In contrast, Delay Differentiated FIFO (DDF) adds delay dif-
ferentiation to FIFO queuing, but with little side effects. It is flexible and future-proof,
because it does not inherently tie delay differentiation to any other policy. The basic idea
for DDF has been proposed in previous work [3] and studied with simple simulation exper-
iments. In this paper, we present analytical models along with further in-depth simulations
to investigate two critical conjectures for DDF:

• A single-class FIFO queue with finite buffers forwards multi-class traffic roughly
in proportion to class arrival rates, i.e., FIFO is essentially rate-neutral, and

• DDF closely tracks the throughput behavior of the corresponding single-class
FIFO queue.

The remainder of the paper is organized as follows. Section 2 contains a discussion of re-
lated work. In Section 3, novel analytical and simulation results are presented that illustrate
the forwarding behavior of a regular single-class FIFO queue with finite buffers. The basic
design of DDF is presented in Section 4 and analyzed in Section 5. Based on those results,
a refinement of the DDF algorithm is given in Section 6, which is used for investigating
additional specific scenarios using packet-level simulations. The paper is wrapped up with
a brief summary and conclusions in Section 7.

2. RELATED WORK

The original proposal [3] contains a fairly detailed discussion of high-level related work,
such as differentiated services [4], edge-based load control [5], and small router buffers [2].
To avoid duplication, we limit the discussion here to very recent or very closely related lit-
erature and such work that relates to our FIFO analysis. To the best of our knowledge,
there is no directly comparable system to the delay differentiation approach that we inves-
tigate. Both the ABE [6] as well as the RD Service [7] proposal for delay differentiation
through buffer management are computationally complex when applied more than two ser-
vice classes. Furthermore, they entrench a specific forwarding policy in core routers, which
would contribute to the ossification of the Internet architecture. For example, Mathis [8]
has questioned the traditional and narrow focus on “TCP friendly” congestion control.

The so-called bufferbloat phenomenon [1] has received a lot of attention recently, which
has resulted in a novel active queue management proposal termed CoDel (Controlled De-
lay) [9]. The CoDel proposal represents another attempt at finding a one-size-fits-all solu-
tion for buffer management. While CoDel is very promising, it is unclear whether such a
uniform approach to buffer management adequately considers the diverse service require-
ments from a multitude of different applications. However, our multi-class queuing scheme
is orthogonal to and can be combined with any non-preemptive active queue management
scheme.

Somewhat surprisingly, while FIFO’s rate-neutrality appears intuitive (and has been
validated in measurements for CBR traffic [10]), there is only little analytical knowledge
about it. Ghiassi and Liebeherr [11] show FIFO’s rate-neutrality for CBR traffic, and Ciucu
et al. [12] extend this to a wide range of traffic models using the framework of the stochastic
network calculus. However, both of these results critically rely on the assumption of an
infinite buffer. Another recent paper [13] derives a probabilistic bound on the instantaneous
loss rate under FIFO with a finite buffer, but this cannot be directly applied to determine
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the long-term loss rate. In Section 3, we present a novel result on FIFO’s rate-neutrality
for a finite buffer and stochastic arrivals with i.i.d. inter-arrival times.

3. FIFO’S RATE NEUTRALITY

We investigate the intuitive, but to our knowledge unproven conjecture that a finite FIFO
buffer is rate-neutral, i.e., it outputs flows proportionally to their arrival rates. To that end,
we first establish an analytical result about FIFO’s rate neutrality under fairly general as-
sumptions on traffic characteristics, yet neglecting traffic correlations, which is why we
next investigate through simulation how that result may extend to traffic sources with com-
plex correlation structures.

3.1. Analytical Result. Without loss of generality, we assume there are two traffic flows
accessing the FIFO buffer. Let A1(t), A2(t) be the cumulative arrivals up to time t from
flow 1 and 2, respectively; further, we denote with A+

i (t) and A−i (t) the cumulative arrivals
of flow i up to time t that were and were not able to enter the buffer, with Ai(t) = A+

i (t)+
A−i (t). We define the following (long-term) rates

λ
•
i = lim

t→∞

A•i (t)
t

• ∈ {+,−, }, i ∈ {1,2} .

The following generic proposition provides a criterion for the rate-neutrality of a finite
FIFO buffer:

Proposition 1. Let λ1 and λ2 be given. If K ∈ [0,1) exists for which P
(
λ
−
i = Kλi

)
= 1 for

i = 1,2, then it applies that

P
(

λ
+
1

λ
+
2

=
λ1

λ2

)
= 1 .

In other words, the FIFO buffer is rate-neutral almost surely.

Proof. At first, let us assume that ∃K ∈ [0,1) : λ
−
i = Kλi, i ∈ {1,2}, then it follows that

λ
+
1

λ
+
2

=
limt→∞

A+
1 (t)
t

limt→∞

A+
2 (t)
t

=
limt→∞

A1(t)−A−1 (t)
t

limt→∞

A1(t)−A−1 (t)
t

=
λ1−Kλ1

λ2−Kλ2
=

λ1

λ2
.

Hence it applies that

P
(

λ
+
1

λ
+
2

=
λ1

λ2

)
≥ P

({
λ
−
1 = Kλ1

}
∩
{
P
(
λ
−
2 = Kλ2

)})
≥ 1−P

(
λ
−
1 6= Kλ1

)
−P

(
λ
−
2 6= Kλ2

)
= 1 ,

according to Boole’s inequality and the given condition. �

The proposition essentially just provides a sufficient condition for traffic flows to be
treated rate-neutrally at a finite FIFO buffer: that the loss of packets is proportionally equal
to their respective input rates. That means the mathematical argument can be made via
their loss processes, which essentially decouples it from the FIFO scheduling order. Next,
after some preparatory lemmata we provide a result for sources with i.i.d. inter-arrival
times that satisfy the condition of Proposition 1.

The following rather general lemma will be of some help:
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Lemma 2. Let x,y ∈ R {A = x} be an almost sure event, i.e. P(A = x) = 1, as well as
P(B = A+ y) = 1. Then it applies that

P(B = x+ y) = 1 .

If P(C = A · y) = 1, then it also applies that

P(C = x · y) = 1 .

Proof. It holds

P(B = A+ y) = P(B = A+ y |A = x)P(A = x)+P(B = A+ y |A 6= x)P(A 6= x)

=P(B = x+ y |A = x) =
P({B = x+ y}∩{A = x})

P(A = x)
=P(B = x+ y)

The second statement follows as an immediate variation. �

Before we can give the desired result, we first need a second lemma which provides a
necessary statement about the distribution of loss periods. Here loss periods are defined as
the periods in time when the buffer is completely full and arriving packets are lost. For the
rest of this section we assume, that the server needs exactly s time units to process a packet
and thus loss periods are always of length s.

Lemma 3. Let A1 and A2 be two stochastically independent flows with i.i.d. interarrival
times. Further assume the second moments of the interarrival times exist. If we denote by
m(t) the number of loss periods up to time t we have for some k ∈ R+

lim
t→∞

m(t)
t

= k a.s.

Proof. Since a loss period is of length s, we know already that

1
s
≥ m(t)

t
≥ 0 .

We assume now that m(t)
t does not converge and lead this to a contradiction. Under this

assumption it must hold that

0≤ liminf
t→∞

m(t)
t

< limsup
t→∞

m(t)
t
≤ 1

s
.

We abbreviate these two quantities by

liminf
t→∞

m(t)
t

= k ,

limsup
t→∞

m(t)
t

= k̄ .

Now we define sequences (tl)l∈N
l→∞−−→ ∞, such that m(tl)

tl

l→∞−−→ k, and (tl̄)l̄∈N
l̄→∞−−→ ∞, such

that m(tl̄)
tl̄

l̄→∞−−→ k̄. For an arbitrary element tl of the first sequence let us define

tl̄(l) := min{tl̄ : tl̄ > tl} .
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Then we have that tl̄(l)− tl
l→∞−−→∞. To see this, assume it would not be the case, then there

would exist a constant C ∈ R+ such that tl̄(l)− tl ≤C. Thus, we could find for each l∗ ∈ N
an ε(l∗)≥ 0 with

(3.1)
m(tl)

tl
< k+ ε(l∗) ,

(3.2)
m(tl̄)

tl̄
> k̄− ε(l̄∗) ,

for all tl , tl̄ > tl∗ and further ε(l∗)→ 0 for increasing l∗. Hence we could choose l large
enough to fulfill tl > (k̄− k−2ε)−1 · C

s . By adding and rearranging 3.1 and 3.2 we would
obtain

m(tl̄(l))−m(tl)> tl̄(l)(k̄− ε)− tl(k− ε)

= tl(k̄− k−2ε)+(tl̄(l)− tl)(k̄− ε)

> tl(k̄− k−2ε)

>
C
s
.

On the other hand, we would also have that

C
s
≥

tl̄(l)− tl
s

≥ m(tl̄(l))−m(tl) ,

and together
C
s
≥ m(tl̄(l))−m(tl)>

C
s
,

which is, of course, a contradiction. Hence we must have that tl̄(l)− tl
l→∞−−→ ∞. Similarly,

one can show that tl(l̄)− tl̄
l̄→∞−−→ ∞. Denote now by Lm the duration from the beginning

of the m-th loss period until the beginning of the m + 1-th loss period. Since the ar-
rivals are i.i.d., we also have that the Lm are i.i.d. and either 1

n ∑
n
m=1 Lm

n→∞−−−→ E(Lm) or
1
n ∑

n
m=1 Lm

n→∞−−−→ ∞ holds almost surely. We only consider the first case, since the second
can be handled in the same way by setting “E(Lm) = ∞”.

We choose successively increasing intervals tl̄(l j)
− tl j (respectively tl(l̄ j)

− tl̄ j
). In these

intervals an increasing number of loss periods appears. We also know from Equ. 3.1 and
3.2 that

m(tl̄(l j)
)−m(tl j)

tl̄(l j)
− tl j

> k̄− ε

m(tl(l̄ j)
)−m(tl̄ j

)

tl(l̄ j)
− tl̄ j

< k+ ε

for all l (respectively l̄) large enough. From this we obtain that

(E(Lm))
−1 =

(
lim
n→∞

∑
n
m=1 Lm

n

)−1

= lim
j→∞

m(tl̄(l j)
)−m(tl j)

tl̄(l j)
− tl j

> k̄− ε ,

(E(Lm))
−1 =

(
lim
n→∞

∑
n
m=1 Lm

n

)−1

= lim
j→∞

m(tl(l̄ j)
)−m(tl̄ j

)

tl(l̄ j)
− tl̄ j

< k+ ε
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and for ε < k̄−k
2 this leads us to a contradiction. Hence

liminf
t→∞

m(t)
t

< limsup
t→∞

m(t)
t

cannot hold. Since m(t)
t is bounded from below and above it must hold:

liminf
t→∞

m(t)
t

= limsup
t→∞

m(t)
t

hence the limit of m(t)
t exists. �

We are now ready to prove that the conditions of Proposition 1 hold for i.i.d. interarrival
times.

Proposition 4. Let A1,A2 be two stochastically independent flows each with i.i.d. inter-
arrival times with finite expectations and variances (i.e., independent renewal processes).
For a server that requires s time units to serve a packet it is true that

∃K(s) ∈ [0,1) : P
(
λ
−
i = K(s)λi

)
= 1 i ∈ {1,2} ,

i.e., the condition of Proposition 1 is fulfilled and a finite FIFO buffer is rate-neutral for
such sources.

Proof. We only prove that P(λ−1 = K(s)λ1) = 1, since the case i = 2 is shown in the same
fashion (note that K(s) is the same in both cases, i.e., it does not depend on i). First we
develop the following:

lim
t→∞

1
t ∑

k≤A−1 (t)

a(1)k ∈L

I(1)k = K a.s.(3.3)

lim
t→∞

1
t ∑

k≤A−2 (t)

a(2)k ∈L

I(2)k = K a.s.(3.4)

Here, L denotes the set of all lost packets and a(i)k the arrival time of the k-th packet of the

i-th flow (we also use the latter as identities for the packets). I(i)k denotes the length of the

interval [a(i)k ,a(i)k+1]. Since 3.4 can be shown in the same way as 3.3 we only derive the first
equation.

Consider the m-th loss period (m arbitrary) and denote by Lm the set of packets, which
are lost in that period and with Ik the length of the k-th interarrival time (independent of
the packets belonging to one or the other flow!)

Ik = ak+1−ak ,

with ak being the arrival time of the k-th packet (again it does not matter to which flow
it belongs). Further denote by am∗ the last time a packet arrived before the loss period
Lm started (i.e. am∗ is the packet, which filled the last free slot in the queue, marking the
beginning of this loss period). Then we have

∑
k

ak∈Lm

Ik = s+Mm−Nm

with
Mm := min{ak : ak > am∗ +b}
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Nm := min{ak : ak > am∗}

Since the I(i)k are i.i.d., the random variables Mm and Nm are also i.i.d for differing m ∈ N.
In addition, we have by using Mm,Nm ≤ Ik, that E(Mm), E(Nm), V(Mm), V(Nm) < ∞.
Considering all loss periods L =

⋃
∞
m=1 Lm we have that

lim
t→∞

1
t ∑

k≤A−1 (t)
ak∈L

Ik = lim
t→∞

1
t

m(t)

∑
m=1

∑
k≤A−1 (t)
ak∈Lm

Ik = lim
t→∞

1
t

m(t)

∑
m=1

s+Mm−Nm

= lim
t→∞

m(t)
t

s+
m(t)

∑
m=1

Mm

m(t)
· m(t)

t
−

m(t)

∑
m=1

Nm

m(t)
· m(t)

t

= lim
t→∞

m(t)
t

(
s+

m(t)

∑
m=1

Mm

m(t)
−

m(t)

∑
m=1

Nm

m(t)

)
= k · (s+E(Mm)−E(Nm)) =: K(s)

almost surely. Here, we have used the strong law of large numbers in the last line. Hence,
we almost reached3.3. Next, we analyze the difference between ∑k :ak∈Lm Ik and ∑k :a(1)k ∈Lm

I(1)k :

∑
k

ak∈Lm

Ik = M′m−N′m + ∑
k

a(1)k ∈Lm

I(1)k

with
M′m := [min{a(1)k : a(1)k > am∗}−min{a(2)k : a(2)k > am∗}]+

and
N′m := [min{a(1)k : a(1)k > am′}−min{a(2)k : a(2)k > am′}]+

where am′ is the last lost packet in the m-th loss period. Note that M′m and N′m have the
same distribution, thus

lim
t→∞

1
t ∑

k≤A−1 (t)

a(1)k ∈L

I(1)k = lim
t→∞

1
t

m(t)

∑
m=1

∑
k≤A−1 (t)

a(1)k ∈Lm

I(1)k

= lim
t→∞

1
t

m(t)

∑
m=1

N′m−M′m + ∑
k≤A−1 (t)

a(1)k ∈Lm

Ik

= lim
t→∞

1
t

m(t)

∑
m=1

∑
k≤A−1 (t)

a(1)k ∈Lm

Ik

= lim
t→∞

1
t ∑

k≤A−1 (t)

a(1)k ∈L

Ik

= K(s) ,

if we can show that limt→∞
1
t ∑

m(t)
m=1 N′m−M′m = 0 almost surely. For this define the random

variables Xm := N′m−M′m, which have expectation zero and finite variance (since N′m as
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well as M′m are bounded by interarrival times, which have finite variance). Hence we can
use the strong law of large numbers and get:

lim
t→∞

1
t

m(t)

∑
m=1

Xm = lim
t→∞

m(t)
t

m(t)

∑
m=1

Xm

m(t)
= 0 a.s.

Next, we consider the following two equations:

(3.5) P

(
lim
t→∞

A1(t)
t

=
1

E(I(1)1 )

)
= 1 ,

(3.6) P

(
lim
t→∞

A−1 (t)
t

=
K(s)

E(I(1)1 )

)
= 1 .

If they are fulfilled we can conclude this proof by (using Lemma 2)

1 = P

(
lim
t→∞

A−1 (t)
t

=
K(s)

E(I(1)1 )

)
= P

(
lim
t→∞

λ l
1(t)
t

= λ1K(s)
)
.

Equ. 3.5 is well known from renewal theory.
All left to prove is Equ. 3.6. Again, we start by the strong law of large numbers:

1 = P

(
E(I(1)1 ) = lim

n→∞

∑
n
k=1 I(1)k

n

)
= P

E(I(1)1 ) = lim
A−1 (t)→∞

∑
A−1 (t)
k=1 I(1)k

A−1 (t)


= P

E(I(1)1 ) = lim
A−1 (t)→∞

∑
A−1 (t)
k=1 I(1)k

t
· t

A−1 (t)


= P

(
E(I(1)1 ) = lim

A−1 (t)→∞

K(s) · t
A−1 (t)

)
= P(E(I(1)1 ) = K(s) · (λ−1 )−1)

= P

(
λ
−
1 =

K(s)

E(I(1)1 )

)
This concludes the proof. �

Note that the i.i.d. assumption in Proposition ?? is per-flow, which means that the
two flows may behave very differently (even in distribution); for example, one of them
could be a CBR flow while the other could be from a Poisson source, so the proposition
is quite flexible. On the other hand, it relies critically on the i.i.d. assumption, so we use
simulations to investigate rate-neutrality under correlated sources.

3.2. Simulation Study. We study FIFO’s rate-neutrality for pairs of competing flows us-
ing ns-2 packet-level simulations [14]. Experiments are carried out in a simulated dumb-
bell topology with a dedicated pair of sender and receiver nodes for each traffic flow. The
bottleneck link’s transmission rate is set to 50 Mbps. Access links are configured with
100 Mbps. Link propagation delays are set to 10 ms, i.e., the one-way end-to-end prop-
agation delay is 30 ms. Each simulated traffic flow is comprised of a mix of 50, 100,
300, and 500 byte packets. Each experiment runs for 50 seconds of simulated time and
is repeated 50 times with different seeds. The average results are reported, along with the
95% confidence interval, if visible in the graph. The source models used are Poisson and
Pareto On-Off (with Hurst parameter 0.8). In both cases, the flows are an aggregate of 32
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sources. The long-term input rates of both flows are configured to add up to 1. To assess
the rate-neutrality, we compute the throughput skew between both flows as

λ
+
1 λ2

λ1λ
+
2
,

where, with some abuse of notation, the rates are the empirically observed long-term rates
of each flow. Under perfect rate-neutrality the throughput skew should be 1. If it is greater
than 1, then Flow 1 is preferred, otherwise Flow 2. In Fig. 3.1, the simulation results for
the rate-neutrality of different flow type combinations for different rate combinations (from
the perspective of Flow 1) are displayed.

The following observations can be made: the case Poisson vs. Poisson is close to
perfect, which is no surprise as Poisson arrivals are a renewal process with i.i.d. exponential
inter-arrival times, thus validating the analytical result on FIFO’s rate-neutrality from the
previous section. Pareto vs. Pareto is not quite as perfect, although still within 3% of
the ideal rate-neutrality. This is evidence that rate neutrality might not hold for a highly
correlated, and thus non-renewal process like a Pareto On-Off source. In particular, there
is a trend for the higher rate flow to be off a little worse.

While Poisson vs. Pareto is not far away from ideal rate-neutrality, it is interesting to ob-
serve that Poisson is consistently preferred over Pareto. The conjecture here is that a better
matching between the server process (basically CBR) and the arrival process is beneficial
for the FIFO rate allocation of the respective flow. From another perspective, in periods
of high load where the buffer is almost full, bursty traffic loses more than smoother traffic
which can cope better with the remaining space in the buffer. In a certain sense, under
high load, FIFO has a burst-filtering characteristic. This bias for smoother traffic (and the
corresponding small deviation from rate-neutrality) could rather be seen as a feature than
a bug as it provides incentives for flows to be less bursty.

A final issue is the detailed convergence behavior of throughput rates, which determines
the short-term vs. long-term rate neutrality. FIFO is instrumental in transforming the long-
term rate-neutrality into a short-term equivalent, because it guarantees an optimal worst-
case delay for all packets [15]. We have calculated the throughput rates for each flow over
different interval sizes (from 1s to 50s). For Poisson traffic, even for 1s interval lengths the
standard deviation from rate-neutrality is less than 3.5%, exhibiting a high convergence
speed towards the asymptotic result. On the other hand, for Pareto we have observed a
deviation of about 50% only in the extreme case of 1s intervals and very unbalanced input
rate combinations.

4. DELAY DIFFERENTIATED FIFO

We give a high-level description of DDF. For maximum clarity, this description omits
a few details, which are subsequently discussed in Section 6. A discussion of additional
aspects that are not in the focus of this paper can be found in the original proposal [3].
DDF is a multi-class queuing system. Each service class is assigned a fixed queuing delay
target and it is assumed that packets carry a service class identifier in their packet header.

The key concept of DDF is to decouple buffer admission control from a per-class delay
admission control. When a packet arrives and the buffer has sufficient space, a service
slot is inserted into a service queue and the buffer counter is increased. This is equivalent
to the admission procedure for a typical finite FIFO queue, except that the service queue
stores service slots rather than packets. The service slot is tagged with the class number
and the time at which the packet would receive service in the corresponding FIFO queue.
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FIGURE 3.1. FIFO’s rate-neutrality for different traffic combinations (simulated).

The service time can be trivially computed from the current time and the current buffer
occupancy. The second admission step considers the service time of the oldest unused
service slot for the packet’s service class. If the service time compared to the current time
is soon enough to meet the delay target of the service class, the slot is marked used for the
current packet and the packet is admitted into the per-class packet queue.

When the link becomes idle, the next class to receive service is chosen according to the
first slot in the service queue and the first packet from the class packet queue is transmitted.
Both the service slot and the packet are removed from their respective queues. Because the
buffer admission test is independent of the packet delay admission test, it is possible that
a service slot in the service queue remains unused and that the corresponding class packet
queue is empty at service time. We denote this event as expired slot.

Because DDF creates service slots using the same pattern as a regular FIFO queue for
accepting packets, the slot queue tracks the corresponding FIFO queue closely. In fact,
while a packet might be reordered with respect to packets from other classes, DDF main-
tains the exact FIFO service order at the level of service classes – a key property that is
different from other schedulers that differentiate delay. However, DDF service occasion-
ally deviates from FIFO service by not sending a packet corresponding to an expired slot.

It has been shown previously [3] that delay differentiation with DDF works very well,
so the following analysis is focused on the attainable throughput rates compared to regular
FIFO service. To assess the efficiency of DDF, it is necessary to fully understand the
throughput loss caused by expired slots compared to FIFO service. To keep the problem
tractable, the following analysis is based on the assumption that DDF service is not work-
conserving, i.e., an expired slot leads to a short period during which the link is not utilized.

5. ANALYTICAL EVALUATION

The goal of the DDF analysis is to determine the probability of slot expiration. Further-
more, we gain valuable analytical insight that is fed back into the design of a prototype
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implementation. To keep the system analytically tractable we make a number of simpli-
fying assumptions: a discrete time model with one time slot being the service time of a
unit packet is used; sources are fully described by their arrival rate (i.e, no correlations
are assumed); no single source has more than one packet arriving in a single time slot,
which essentially means geometrically distributed packet inter-arrival times (the discrete-
time analogue of Poisson arrivals); arrivals in a time slot are assumed to happen before
service takes place. Without loss of generality, we consider only two different classes of
traffic, 1 and 2. We focus the analysis on Class 1 for which we assume a delay target of N1
time slots. The total buffer capacity is N ≥ N1 slots. The arrival rates for Class 1 and 2 are
denoted as r1 and r2, respectively. Note that the delay target of Class 2 is irrelevant for the
analysis.

In the following, we first discuss the problems with modeling the overall system in a
single (global) Markov chain, before we present an approach to find a closed-form solu-
tion using a decoupling between different system aspects to arrive at analytically tractable
Markov chain models. Because some system aspects are not captured precisely by the
decoupling approach, the system model is validated against simulations.

5.1. Global Markov Chain for DDF. Under the above assumptions, a global Markov
chain could be created, which closely tracks the dynamics of the overall system. The state
of the system would be captured by a vector whose entries could take three values: (1)
slot filled (by a packet of Class 1 or reserved for Class 2), (2) slot reserved for Class 1,
but not yet filled, (3) slot empty. We have experimented with this Markov chain model,
but conclude that it is intractable for analysis and infeasible for a numerical solution. The
analytical intractability is due to the complex structure of the Markov chain as well as a
dramatic state space explosion; the latter also prohibits a numerical solution. For brevity,
we omit a detailed discussion of the structure of the global Markov chain, but give a deter-
mination of the size of the state space. In particular, taking into account that empty slots
always have to be trailing in the state vector and that the number of slots reserved for Class
1 is bounded by N−N1, the size of the state space of the Markov chain is given by

N

∑
i=0

min{N−N1,N−i}

∑
j=0

(
N− i

j

)
.

Example: N = 1000, N1 = 100 yields ∼ 2.143×10302 states.

5.2. Decoupling Approach. Since the global Markov chain is not a good choice for the
analysis of DDF, we use an approximative approach that assumes a decoupling of the
arrival and slot generation processes. With this decoupling, the system can be modeled
as two Markov chains that interact with each other in a simple way. In particular, we
use one Markov chain to model the slot generation process by looking at the total buffer
dynamics to derive the drop rate due to a full slot queue. In addition, this Markov chain is
used to determine overload, i.e., the probability that the number of service slots in the slot
queue exceeds N1, the delay target of Class 1. Following the argument made in Section 3
about the rate-proportionality of drops, the overall drop rate computed from this Markov
chain can be used to drive another Markov chain, which keeps track of the position of the
first empty slot in the relevant buffer spaces ranging from 1, . . . ,N1. This Markov chain
is conditioned on the system being in overload, which provides another link between the
two Markov chains. More details about the two chains and their interaction are given in
Sections 5.2.1 and 5.2.2.
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Based on the two Markov chains, we can calculate the steady-state probability for an
expired slot of Class 1 as

pE1 = lim
t→∞

P(E1(t))

= lim
t→∞

[P(E1(t) | O1(t−N1 +1)) ·P(O1(t−N1−1))]

= pE1|O1 · pO1 ,

where E1(t) denotes the event that a service slot of Class 1 expires at time t, and O1(t−
N1 + 1) denotes the event that the system was in overload at time t −N1− 1. Note that
we apply the law of total probability correctly (in the second line) as O1(t −N1 + 1) is
necessary for E1(t), i.e., E1(t) ⊂ O1(t−N1 + 1). The steady-state probabilities pE1|O1 =
limt→∞P(E1(t) | O1(t−N1 +1)) and pO1 = limt→∞P(O1(t−N1−1)) are calculated from
the Markov chain for the empty slot position and from the Markov chain for the total buffer
dynamics, respectively.

5.2.1. Markov Chain for Total Buffer Dynamics. We begin with the Markov chain that
models the total buffer dynamics oblivious to traffic classes. Under the given assumptions,
this is very similar to a Geo/D/1/N queue [16] with the slight difference that the arrivals
are a superposition of two different flows with independent geometric inter-arrival times.
Therefore, the overall arrivals are no longer a simple Bernoulli process (for example there
can be more than one arrival per time slot). Still, the Markov chain is time-homogeneous,
irreducible, finite, and aperiodic (→steady-state probability distribution exists) and has a
simple structure. The state variable i counts the number of slots in the queue and the
transition probabilities are:

for State i = 1, . . . ,N: pii = r1(1− r2)+ r2(1− r1) ,

p = r1r2, pi(i−1) = (1− r1)(1− r2) ;

for State 0: p00 = (1− r1)(1− r2)+ r1(1− r2)+ r2(1− r1) ,

p01 = r1r2 ;

for State N: pNN = r1r2 + r1(1− r2)+ r2(1− r1) ,

pN(N−1) = (1− r1)(1− r2) .

Without going through the details, the regular structure of the Markov chain enables
the calculation of its steady-state probability distribution by using the so-called detailed
balance equations [17] between neighboring states:

q 6= 1 : π0 =
1−q

1−qN+1 ∀i : 1≤ i≤ N : πi = qi
π0 ,

q = 1 : π0 =
1

N +1
∀i : 1≤ i≤ N : πi = π0 ,

where q = r1r2
(1−r1)(1−r2)

.
The steady-state probability of a packet drop due to a full buffer is denoted as D(t) if it

happens at time t and be can calculated as

(5.1) pD = lim
t→∞

P(D(t)) = πNr1r2 .

Also, the steady-state probability of being in overload can be calculated as

q 6= 1 : pO1 =
N

∑
i=N1+1

πi = qN1+1 1−qN−N1

1−qN+1 ,
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... ...

FIGURE 5.1. Markov chain keeping track of first empty slot in the slots 1, . . . ,N1.

q = 1 : pO1 =
N

∑
i=N1+1

πi =
N−N1

N +1
.

5.2.2. Markov Chain for Empty Slot Dynamics. The second Markov chain models the
position of the first empty slot of Class 1 in the buffer spaces numbered 1 to N1. If an empty
slot reaches the head of the buffer and no packet arrives, this slot expires; this is accounted
for by State 0 and thus we are interested in the the steady-state probability of State 0,
denoted as πo. Another peculiarity of this Markov chain is the State G, which accounts for
the situation that no empty slot is in the buffer spaces from 1 to N1. Remember that the
Markov chain is conditioned on the system being in overload. Therefore, from State G new
empty slots are generated with rate s. This is where the two Markov chains interact and
the slot generation rate is set to s = r(1− pD), with pD calculated from the Markov chain
for the total buffer dynamics (see Eq. 5.1). For ease of presentation, we use s to denote the
slot generation rate and r to denote the packet arrival rate of Class 1.

The Markov chain state diagram is shown in Fig. 5.1. It has a considerably more com-
plex structure than the first Markov chain. The transition probabilities are as follows:

for State i = 1, . . . ,N1: pi(i−1) = 1− r ,

∀ j : i≤ j ≤ N1 : pi j = rs(1− s) j−i, piG = r(1− s)N1−i+1 ;

for State 0:

p00 = (1− r)s, p0i = (1− s)i−1 (irs2 +(1− r)(1− s)s
)
,

p0G = 1− r
(
N1(1− s)N1+1− (N1 +1)(1− s)N1 −1

)
+(1− s)N1(1− r)s;

for State G: pGG = 1− s, pGN1 = s .
While this Markov chain is also time-homogeneous, finite, aperiodic and irreducible

(→steady-state probability distribution exists), it is no longer reversible and thus not amenable
to detailed balance equations. Instead, the global balance equations have to be solved. The
following proposition provides the steady-state probability distribution of the empty slot
Markov chain by solving the global balance equations in generality.
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Proposition 5. The steady-state probability distribution for the empty slot Markov chain
is given as

π0 =
1

1+∑
N1
i=1

πi
π0

+ πG
π0

=
1

r( 1−s
1−r )

N1

s(r−s) −
1

r−s + r(1− s)N1

,

πi =
(1− s)i−1

(1− r)i

(
1− s(1− r)i

)
πo , i = 1, . . . ,N1,

πG =
1
s

(
1− s
1− r

)N1 (
1− s(1− r)N1+1

)
πo .

Proof. The global balance equations are used for an induction over state i = 1, . . . ,N1. The
induction hypothesis is the statement of the proposition regarding the πi, i = 1, . . . ,N1:

πi =
(1− s)i−1

(1− r)i

(
1− s(1− r)i

)
πo , i = 1, . . . ,N1.

Basis: We start with the global balance equation for state 0

1− (1− r)sπ0 = (1− r)π1⇒ π1 =
1− s(1− r)

1− r
π0 =

(1− s)0

(1− r)1

(
1− s(1− r)1

)

which provides the induction hypothesis for i = 1.
Inductive step: Now we use the global balance equation for state i > 1, in particular:

(5.2)

(1− r)πi+1 +
i−1

∑
j=1

rs(1− s)i− j
π j +

(
irs2 (1− s)i−1 +(1− r)s(1− s)i

)
π0 = (1− rs)πi
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Using the induction hypothesis for all π j with j ≤ i and some rearranging we obtain

πi+1 =
π0

1− r

[
(1− rs)

(1− s)i−1

(1− r)i

(
1− s(1− r)i

)
−

i−1

∑
j=1

rs(1− s)i− j (1− s) j−1

(1− r) j

(
1− s(1− r) j

)
−
(

irs2 (1− s)i−1 +(1− r)s(1− s)i
)]

=
(1− s)i−1

(1− r)i+1 π0

[
(1− rs)

(
1− s(1− r)i

)
−

i−1

∑
j=1

rs(1− r)i− j
(

1− s(1− r) j
)

−(1− r)i irs2− (1− r)i+1 s(1− s)
]

=
(1− s)i−1

(1− r)i+1 π0

[
1− s(1− r)i−

i

∑
j=1

rs(1− r)i− j
(

1− s(1− r) j
)

−(1− r)i irs2− (1− r)i+1 s(1− s)
]

=
(1− s)i−1

(1− r)i+1

[
π01− s(1− r)i−

i

∑
j=1

rs(1− r)i− j−
i

∑
j=1

rs2 (1− r)i− j

−(1− r)i irs2− (1− r)i+1 s(1− s)
]

=
(1− s)i−1

(1− r)i+1 π0

[
1− s(1− r)i−

i

∑
j=1

rs(1− r)i− j− (1− r)i+1 s(1− s)

]

=
(1− s)i−1

(1− r)i+1 π0

[
1− s(1− r)i− s

(
1− (1− r)i

)
− (1− r)i+1 s(1− s)

]
=

(1− s)i

(1− r)i+1

(
1− s(1− r)i+1

)
π0 ,

thereby showing that the rule in the proposition indeed holds for πi+1.
πG has to be solved separately using the global balance equation for state N1, in partic-

ular

sπg +
N1−1

∑
j=1

rs(1− s)N1− j
π j +

(
N1rs2 (1− s)N1−1 +(1− r)s(1− s)N1

)
π0 = (1− rs)πN1 .

This has the same form as Equ. 5.2, apart from the factor s in the first term (instead of 1−r).
Thus, essentially the same derivation as in the inductive step above can be performed to
obtain

πG =
(1− s)N1

s(1− r)N1

(
1− s(1− r)N1+1

)
π0 =

1
s

(
1− s
1− r

)N1 (
1− s(1− r)N1+1

)
π0 .
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FIGURE 5.2. Slot-level simulation results of DDF.

π0 is obtained from the normalization condition as

π0 =
1

1+∑
N1
i=1

πi
π0

+ πG
π0

=
1

1+∑
N1
i=1

(1−s)i−1

(1−r)i

(
1− s(1− r)i

)
+ 1

s

( 1−s
1−r

)N1
(

1− s(1− r)N1+1
)

=
1

1+∑
N1
i=1

(1−s)i−1

(1−r)i

(
1− s(1− r)i

)
+ 1

s

( 1−s
1−r

)N1 − (1− r)(1− s)N1

=
1

1+ ( 1−s
1−r )

N1−1
r−s −1+(1− s)N1 + 1

s

( 1−s
1−r

)N1 − (1− r)(1− s)N1

=
1

( 1−s
1−r )

N1−1
r−s + r (1− s)N1 + 1

s

( 1−s
1−r

)N1

=
1

r( 1−s
1−r )

N1

s(r−s) −
1

r−s + r(1− s)N1

.

Note that in the third line we assumed s 6= r, which however is always true for a finite
queue (in fact, we have s < r). This concludes the proof. �

This provides us with the steady-state probability for an expired slot of Class 1 (under
the condition of overload):

pE1|O1 = π0 .

5.2.3. Bringing It All Together. Now, the probability of an expired slot for Class 1 can
be calculated and we can assess its throughput loss under DDF. We (re)set r1 = r and
s = (1− pD)r1, as well as q = r1r2

(1−r1)(1−r2)
, and calculate the (steady-state) fraction of
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FIGURE 5.3. Markov chain model results for full load (ρ = 1.0).

expired slots for Class 1 as

q 6= 1 :
pE1|O1 · pO1

r1
=

1

r2
1

(
1−s

1−r1

)N1

s(r1−s) −
r1

r1−s + r2
1(1− s)N1

·qN1+1 1−qN−N1

1−qN+1 ;(5.3)

q = 1 :
pE1|O1 · pO1

r1
=

1

r2
1

(
1−s

1−r1

)N1

s(r1−s) −
r1

r1−s + r2
1(1− s)N1

· N−N1

N +1
.

5.3. Model Validation and Insights. The decoupling approach provides us with a closed-
form solution for the probability of expiration. However, it is neither completely clear how
good the approximation of the decoupling is nor what the formulas tell us exactly. In this
section we describe a validation of the model against simulations and attempt to extract
insights from the model.

5.3.1. Validation. The model is first compared to an abstract slot-level simulation of DDF
as described in Section 4, using the traffic assumptions stated for the Markov chain model
(i.e., geometric inter-arrival times). The simulation is configured with a total queue length
of N = 10000, which, for example, corresponds to a 200ms buffer of 125 byte packets at a
50 Mbps link. The delay target N1 ranges from 1 to N. Fig. 5.2 shows the resulting expi-
ration probabilities for different rates r1 of the traffic flow studied. The rate of background
traffic r2 is set to 1− r1, so the system is fully loaded. The simulation result is compared
to the expiration probabilities computed from the Markov model using the same configu-
ration parameters, shown in Fig. 5.3. Note the logarithmic scale on the x-axis to highlight
the low delay targets better as for higher delays the expiration probability is negligible.
The two graphs exhibit a strong similarity, which confirms the validity of the decoupling
approximation and provides a sanity-check of its closed form.
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FIGURE 5.4. Packet-level simulation result of DDF.

In a second step, the model is compared to an ns-2 packet-level simulation of DDF,
which is set up to correspond to an average arrival rate of r1 = 0.1. The results in Fig. 5.4
show one run with Poisson and one with Pareto arrivals and a noticeable buckle and devia-
tion for small delay targets. We have not yet been able track down the exact cause for this
behavior, but strongly assume that it is an artifact of ns-2. For larger delay targets, it can
be seen that the Markov model only slightly over-estimates the expiration probability for
Poisson traffic, but clearly underestimates the expirations for Pareto arrivals as it does not
capture its correlations. However, it is important to note that the shape of the curve is well
captured for both traffic types. Thus, we conclude that the model is a useful representation
of the real system.

5.3.2. Insights. To gain some insights from the Markov chain model, we show a number of
numerical experiments. We evaluate the influence of different total loads ρ = r1 + r2: high
load (ρ = 0.95) and full load (ρ = 1.0). Note that lower loads present no challenge to the
system, since expiration probabilities become negligible. The results of these experiments
are shown in Fig. 5.3 (again) and 5.5. The number of additionally dropped packets (from
expired slots) due to DDF are small in most cases and quickly converge to zero as the delay
target approaches the buffer capacity. In particular, for high load the probability of slot
expiration is negligible for realistic delay targets, regardless of the rate combination. Only
under full load and if the class of interest has a very stringent delay target the expiration
probability becomes non-negligible. Intuitively, the class of interest is often not able to
fill empty slots, because its rate is too low for a an arriving packet to find a slot from a
previous packet within the time frame of the delay target. Asymptotically, this can also be
seen directly in the analytical model, if we let r1 → 0, and for ease of exposition assume
that we have an infinite queue (s = r1), then we obtain for the fraction of expired class 1
slots under full load (⇒ pO1 = 1)

pE1|O1 · pO1

r1
=

1

N1
r1

1−r1
+ r2

1 (1− r1)
N1 +1

r1→0−−−→ 1 .
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FIGURE 5.5. Markov chain model results for high load (ρ = 0.95).

Name Explanation
qS main slot queue: class, size, time
qP main packet queue: time, packet (sorted by time)
b main queue backlog including unused slots

mc meta slot queue of class ’c’: pointers to elements in qS
Dc delay target of class ’c’
xc next allowable admission exception time for class ’c’
pc number of packets queued for service for class ’c’

NWC non-work-conserving configuration
TABLE 1. DDF Variables and Routines

However, for a finite queue, if N1→ N then pO1 → 0 and thus the fraction of expired slots
goes to zero. However, in some cases this happens slower than may be desirable for small
r1.

There are two options to deal with this problem: (1) avoid such a configuration, (2)
modify DDF in such situations to “help” low-rate, low-delay classes. In both cases, the
analytical model helps to detect such a situation. In particular, for option (1), given a target
expiration probability and a target delay we can solve Eq. 5.3 for r1 and thus compute the
rate threshold below which we run into this problem. The second option is discussed in
Section 6, where implementation issues of DDF are presented in more detail.

6. IMPLEMENTATION

6.1. Algorithm Details. The analysis in Section 5 demonstrates that the DDF queuing
algorithm has very promising properties, but there are also three caveats:

• The analysis only applies to uncorrelated traffic sources. Therefore, we comple-
ment the analysis by a simulation study that also includes correlated traffic sources.
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Algorithm 1 DDF Arrival Routine

1: p← received packet
2: lp ← size of received packet
3: c← service class of p
4: if not NWC then EXPIRY(t +b−B)
5: if b < B then
6: tail(qS)← {c, lp), t +b)}
7: tail(mc)← tail(qS)
8: acSuccess← true
9: if xc < t−B then xc← t−B

10: if size(mc) ≥ lp and head(mc).time ≤ t +Dc then
11: qP[t +b]← p
12: b← b+ lp
13: pc← pc +1
14: while lp > 0 do
15: if lp <head(mc).size then
16: head(mc).size← head(mc).size - lp
17: lp← 0
18: else
19: lp← lp−head(mc).size
20: remove_head(mc)
21: else if pc = 0 and t > xc and acSuccess then
22: xc← xc +Dc
23: qP[t]← p
24: b← b+ lp
25: pc← pc +1
26: else drop(p)

• The basic algorithm described in Section 4, as well as the analytical model, does
not account for variable packet lengths. This is addressed in the implementation.

• The analysis reveals that a low-delay service class might suffer a large number of
expirations, if the arrival rate is too low, i.e., if packet inter-arrival times are not
sufficiently small compared to the class delay target. This is addressed by a small
extension to the basic algorithm.

In previous work [3] an algorithm is given, which provides work-conserving service in
spite of expiring slots, by keeping packets in a separate sorted packet queue and managing
slot expiration in the arrival routine. Thereby, the original algorithm proposed has constant
algorithmic complexity (using cost amortization over the length of one arriving packet),
but relies on a priority queue with constant search complexity. While such a priority queue
can be implemented under certain assumptions, it is still more complex and costly than a
simple FIFO queue, especially in the harsh low-level execution environment of a network
router.

We have implemented a non-work-conserving version of DDF to show an alternative
implementation strategy that does not rely on a constant-search priority queue. This im-
plementation is conceptually closer to the analytical model and more clearly exposes the
differences compared to FIFO queuing. It handles variable packet lengths and contains an
extension to address low-rate traffic in low-delay classes. With this type of implementation
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Algorithm 2 DDF Service Routine

1: if qP not empty then
2: if NWC then
3: while head(qP) not accessible do idle()
4: p← remove_head(qP)
5: b← b− lp
6: pc← pc−1
7: transmit(p)
8: if NWC then EXPIRY(t)

Algorithm 3 DDF Expiry Routine

1: function EXPIRY(t)
2: while head(qS).time < t do
3: d← head(qS).class
4: if head(qS) = head(md) then
5: b← b−head(md).size
6: remove_head(md)
7: remove_head(qS)

a small amount of link utilization is sacrificed to keep the implementation complexity low.
While the evaluation is focused on the non-work-conserving version, the implementation
is general enough to support both work-conserving and non-work-conserving operation.
The implementation somewhat deviates from the description in Section 4 to achieve this
flexibility. In particular, packets are stored in a central packet queue qP, which is sorted
by service time stamps. For non-work-conserving service, qP can be a array-based timer
wheel that is scanned for packets as real time progresses. For work-conserving service,
qP has to be a constant-search priority queue, as in previous work [3]. Note that the non-
work-conserving variant can also be implemented using only FIFO queues as described in
Section 4, because there is no inherent requirement for a sorted packet queue. We present
the arrival and service routines in Algorithms 1 and 2. A third routine ’expiry’ is shown in
Algorithm 3. Variables are summarized in Table 1.

In the arrival routine, Lines 6-10 show the basic admission test, which adds a slot to
the main slot queue qS, if there is sufficient space. Line 13 is the delay admission test,
which determines whether the oldest unused slot meets the class delay target and whether
enough slots are available for the packet (since a slot might represent a previous, smaller
packet). If yes, the packet is added to the packet queue in Line 14. Lines 17-25 show the
reconciliation of different packet lengths. The loop iterates over as many slots as are need
to cover the size of the packet. Used slot are removed from the per-class slot queue (Lines
22, 23). If the last slot that is used for this packet is too big, its size is adjusted (Lines
18-20).

The expiry routine removes all old slots from the main slot queue and checks whether
any of these slots has not been used by comparing with the corresponding per-class slot
queue. If an unused slot is removed, this results in a reduction of the backlog counter (Line
5), which effectively expires this slot. In the work-conserving variant, the expiry routine
is called during arrival and executes in proportion to the size of arriving packets. A side
effect is that unused slots are not expired immediately, which might be beneficial for bursty
traffic.
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The service routine chooses the next packet from packet queue and transmits it (Lines
6-9). In the non-work-conserving variant, the system might idle while scanning the timer
wheel for the next packet available for transmission. Slot expiry is performed in proportion
to the idle time and next packet. In this variant, slot expiration is aggressive, i.e., unused
slots are expired immediately when their service time has been reached.

Lines 11, and 26-30 in the arrival routine show an extension to the basic algorithm,
which handles low-delay classes with low-rate traffic. Following the discussion in Sec-
tion 5.3.2, a service class needs to have at least one packet arrival per delay target interval
to have any reasonable chance that a slot traveling through the delay target region of the
main slot queue is picked up by an arriving packet. This is equivalent to a per-class rate
allocation of B/Dc packets. The given code emulates such a rate allocation by permitting
as many packets to bypass the delay admission test, if the class is otherwise empty and the
basic admission test has been successful. Those packets are then forwarded immediately.
During times of low-rate arrivals, all packets of a class might be forwarded this way. If the
arrival rate for a service class increases, slots will eventually enter the delay target region
and be picked up by arriving packets, in which case the bypassing mechanism will cease
to forward packets according to the first condition in Line 26. While bypassing the delay
admission test in this way distorts the delay targets of existing packets, the effect of this
distortion is limited, since it is restricted to low-rate classes or short start-up periods and
the rate is limited to B/Dc packets by keeping track of the next allowable exception time
xc.

6.2. Simulation. The DDF algorithm has been implemented in the ns-2 simulation en-
vironment [14], following the pseudo-code given in the previous section. The simulated
environment is identical to the one described in Section 3.2. The DDF queue is config-
ured with two service classes for 10ms and 100ms respectively. The behavior of DDF is
investigated in various interesting scenarios and compared to a benchmark FIFO queue
that is configured with a buffer size equivalent to 100 ms. In all DDF experiments, two
traffic flows are created. One foreground flow uses the 10ms service class, while the other
background flow uses the 100ms class. We show the overall loss compared to the bench-
mark FIFO queue, as well as the throughput skew from the point of view of the foreground
flow. The relative arrival rate of the foreground flow is varied and the background rate is
adjusted, so that the total average arrival rate is always set to 1.

In the first experiment (Fig. 6.1) both the foreground and the background flow are com-
prised of Poisson traffic. DDF forwards this traffic almost perfectly with practically no
extra loss. The non-work-conserving version slightly disadvantages the foreground traffic
at a low-rate, i.e., the low-rate extension to the algorithm is not yet fully sufficient for this
version of DDF. Still, the following experiments study the non-work-conserving version,
since it ultimately has lower implementation complexity – comparable to FIFO queuing.

In a second experiment (Fig 6.2) the background flow is comprised of bursty Pareto
traffic. In this scenario, DDF causes extra losses compared to the benchmark and the
low-rate effect is visible. The extra losses caused by DDF are the trade-off for delay
differentiation. To put these losses in perspective, it is instructive to study the behavior
of a 10ms FIFO buffer, which would be needed guarantee the low delay. Results for a
10ms FIFO buffer are shown in Fig. 7.1, benchmarked against the 100ms FIFO queue.
The results show a smaller FIFO queue causes considerably more losses than DDF.

The last experiment reported here illustrates the incentive structure of DDF by assuming
that the background Pareto traffic enters the 10ms service class due to misconfiguration or
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FIGURE 6.1. DDF - Poisson 10 / Poisson 100
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FIGURE 6.2. DDF - Poisson 10 / Pareto 100

ill will. The results are shown in Fig. 7.2 and show that DDF essentially falls back to
providing the same service as the 10ms FIFO queue shown previously.

The delay differentiation capabilities of DDF have been illustrated before [3] and are not
repeated here. However, all measurements generated during the simulation experiments are
verified and the expected queuing delays are met at all times.
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FIGURE 7.1. FIFO 10 - Poisson / Pareto

7. CONCLUSIONS

This paper presents an in-depth study of Delay Differentiated FIFO (DDF) Queuing
and investigates its feasibility. The objectives stated in the introduction are largely met.
We establish that a shared FIFO buffer is in fact rate-neutral, at least for i.i.d. traffic
sources. Additional simulations indicate that FIFO does not deviate much from long-term
rate neutrality for non-i.i.d. sources. Markov modeling is used to determine the probability
of slot expirations, which is the key performance measure to assess the deviation of DDF
from FIFO. The Markov model is validated by simulation experiments and the analytical
results are complemented with additional simulations to study traffic sources that are not
covered by the model. It turns out that the basic DDF algorithm too aggressively discards
packets from low-delay service classes that have low-rate traffic arrivals. This problem is
somewhat inherent to DDF, but represents a corner case. We suggest a simple extension
of the DDF algorithm, which is promising while not yet perfect, and will be the subject
of future work. In fact, any existing proposal to control and differentiate queuing delay
in a packet-switched network comes with undesirable side effects – there is no free lunch!
DDF is a promising approach to manage queuing delays in a truly decoupled fashion from
other aspects of network service.
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