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ABSTRACT 

Designers of motion gestures for mobile devices face the 
difficult challenge of building a recognizer that can separate 
gestural input from motion noise. A threshold value is often 
used to classify motion and effectively balances the rates of 
false positives and false negatives. We present a bi-level 
threshold recognizer that is built to lower the rate of 
recognition failures by accepting either a tightly 
thresholded gesture or two consecutive possible gestures 
recognized by a looser model. We evaluate bi-level 
thresholding with a pilot study in order to gauge its 
effectiveness as a recognition safety net for users who have 
difficulty activating a motion gesture. Lastly, we suggest 
the use of bi-level thresholding to scaffold learning of 
motion gestures. 
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INTRODUCTION 

Modern sensors such as accelerometers can be leveraged to 
expand a mobile device’s input space by detecting motion 
gestures – gestures that require a user to move the entire 
smartphone device in three dimensions. A unique challenge 
in mobile interaction design around motion gestures is the 
need to develop recognition algorithms that are sufficiently 
powerful to both recognize a large set of motion gestures 
and to discriminate intentional motion gestures from 
everyday device movement. The focus of this paper is 
specifically in discriminating intentional motion gestures 
from everyday motion. Because smartphones are frequently 
carried in a purse or pocket, they move with the user, the 
accelerometers and gyroscopes that measure device 
movement and acceleration are frequently receiving data. 

Without careful tuning, unintended commands (i.e. false 
positives) can be invoked. 

There are two possible techniques for segmenting a motion 
gesture from a smartphone’s input stream. The first, and 
most common, approach is to make use of an explicit 
delimiter to discriminate a motion gesture from everyday 
device movement [3]. Researchers have used hardware 
buttons, on-screen buttons, and specific, easy-to-
discriminate motion gestures as delimiters. However, there 
are many situations where it may be undesirable to use a 
delimiter. For example, consider uses a motion gesture 
repeatedly to step through a set of objects. Performing an 
explicit delimiter for each motion gesture may annoy end-
users, particularly if they must repeat a large number of 
motion gestures within a restricted time. Furthermore, even 
if delimiters support reliable discrimination from an input 
stream, it is also interesting to determine exactly how 
necessary delimiters are to the design of usable motion-
gesture input. 

The second technique for discriminating motion gestures 
from random device movement is to create a threshold, i.e. 
a criterion value, that best trades-off between false positives 
(accidental activations) and false negatives (failed attempts 
to perform a gesture).If the criterion value is too 
permissive, many false positives will occur. However, if the 
criterion value is too restrictive, it may become very 
difficult for the system to reliably identify intentional user 
gestures from its input stream. The designers of systems 
frequently use visualization techniques like receiver 
operating characteristic (roc) curves to identify the best 
criterion value for a recognizer (e.g. [1]).  Despite this, 
almost all current research into motion gestures uses 
delimiters, not criterion values, presumably because of the 
difficulty of selecting a criterion value that appropriately 
balances false positives and false negatives [3] 

In this paper, we address the challenge of non-activations 
by creating a novel, bi-level thresholding technique for 
selecting a criterion value that is both appropriately 
restrictive and yet does not result in a prohibitively high 
number of false negatives. Our bi-level thresholding 
technique works as follows: If a user-performed gesture 
does not meet a strict threshold, we then consider the 
gesture using a looser threshold – a more permissive 
criterion value – and wait to see if a similar motion follows 
it. Figure 1 displays a Venn diagram that represents our 
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input space. The system will recognize a gesture either i
the end-user performs a tightly thresholded motion gesture 
(i.e. success in the first instance), or if the user performs 
two loosely thresholded gestures within a timeout. 

RATIONALE FORBI-LEVEL THRESHOLD RECO

Our bi-level thresholding technique is based on 
of typical participant behaviour during controlled studies of 
motion gesture interaction.  Participants frequently begin an 
experiment successfully performing motion gestures. Over 
time, however, due to the noise within our 
neurophysiological system, the participant’s action may 
drift from ideal. If a participant does not
activate a gesture on the first attempt, his or her
frequent response is to attempt the gesture again 
immediately upon recognizing failure. 
succeeds on the second attempt, the cost of missed 
activation seems quite small. However, if repeated atte
to activate a gesture or button fail, the participants
frustrated. They begin to alter their input patterns, seeking 
to change the kinematics of their input until they find a 
gesture profile that succeeds. They frequently land in states 
where failures are highly common until they diagnose 
they are failing to activate the gesture and correct.

Many times we find that a failure to activate is a result of 
sensor input falling just outside of the threshold for 
recognition specified by the criterion value. 
these motion gestures would boost our false positive rate to 
prohibitively high levels.  

Our goal in introducing bi-level thresholding
a “soft-landing” for users who attempt a gesture and 
succeed at exceeding the criterion value
requiring the user to repeatedly attempt to match a tight 
threshold, we noted that the likelihood of observing two 
sequential gestures at a lower criterion value within a 
period is the square of the likelihood of observing
instance of that loose-criterion gesture within the 
period (e.g. if the odds are 1 in 10 of one loose threshold 
within a time period, the odds of observing two loose 
thresholds within that same time period are 1 in 100)

We hypothesized that bi-level thresholding may support 
successful gesture-from-noise discrimination in situations 

Figure 1. An illustration of the bi-level thresholding 

model in the allowable input space.
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is the square of the likelihood of observing one 
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(e.g. if the odds are 1 in 10 of one loose threshold 
within a time period, the odds of observing two loose 
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level thresholding may support 
noise discrimination in situations 

where a tighter threshold would not.  
more likely to succeed at attempting gestures, b
thresholding may also provide a mechanism for gradual 
online learning of the gesture set. Users will be more 
to accomplish their gesture within two attempts with the bi
level threshold enabled than without
to experiment with motion gestures

IMPLEMENTING BI-LEVEL THRESHOLDING

Conceptually, our recognition algorithm can be visualized 
as a simple three-state finite state automaton, as shown in
Figure 2. From an initial state, S0, if the recognizer 
observes a high-threshold gesture, the system moves to S2 
and the gesture is recognized. If, in contrast, we observe a 
lower-threshold gesture, the system moves to state S1. In 
this state, if the system receives either a high
low-threshold input, the system moves to state S2 and the 
gesture fires. If, instead, a timeout occurs, the 
moves back to state S0. 

We implemented our bi-level threshold technique using a 
hidden markov model (HMM) approach 
input’s inherently stochastic nature. Though full detail of 
HMM recognizers is outside the current scope, we provide 
an overview of our recognizer for replication. 

A smartphone senses a motion gesture as a series of time
ordered acceleration (in 3 dimensions) and orientation 
features (3 degrees of freedom). An HMM is a probabilistic 
finite state automaton that models the gesture by 
transitioning from one state to the next.  Each state 
represents a distribution across parameters (acceleration and 
orientation), and the probabilistic transitions between states 
represent the likelihood of that state transition. An HMM
based recognizer is comprised of a set of models (one per 
gesture), each a subset of the states and transitions in the 
HMM. We use the Viterbi algorithm (see 
detail on the algorithm) to label a candidate gesture with the 
most likely model that best explains the motion. 

We create tight-threshold gesture models by having 
expert users perform each of the 
gesture set 50 times. Though it scales 
HMM recognizers, as a proof of concept, 
contains three gestures taken from Ruiz et

 

level thresholding 

space. 
Figure 2. Bi-level thresholding described as a state machine
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detail on the algorithm) to label a candidate gesture with the 
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threshold gesture models by having six 
expert users perform each of the three gestures in our 

Though it scales as well as other 
proof of concept, our gesture set 

gestures taken from Ruiz et. al’s consensus 
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gesture set: Double Flip, Next, and Previous (see [4]). 
Expert users pre-segment the gestures from input noise 
using an on-screen button. The expert user presses the 
button and then performs the gesture. We train the HMM 
on the acceleration and orientation feature set of these pre-
segmented gestures using the Baum-Welch algorithm [2]. 

The loose threshold is built by copying the tight-threshold 
gesture models learned from our experts and loosening the 
observation distributions for each state. We do this by 
applying a linear Gaussian blur to all features in each 
observation distribution. This produces three additional 
HMM models that are more permissive, i.e. that allow a 
greater range of values. We tune the blur to create an 
acceptable false positive rate for the gestures. For example, 
if R є (0, 1) is an acceptable false positive rate for the 
single-threshold models, then R1/2 is an acceptable false 
positive rate for the loose-threshold models. This ensures 
that the false positive rate for all gestures is at most R. 

Finally, we add a model that represents random device 
motion, or noise. This model was created by repeatedly 
performing a random walk of the above six models and 
using the random state transitions to saturate the entire 
space of allowable inputs with a random motion recognizer.  

To guide the reader’s intuition of how this recognizer 
works, consider Figure 1 showing the space of input for 
acceleration and orientation for three gestures. The noise 
model dominates the background region of the Venn 
Diagram. However, if the observations from the 
smartphone sensors lie inside the loose threshold, then the 
loose-threshold models have higher probability. Likewise, 
if the observations from the sensors lie inside the tight 
threshold models, then these models dominate. As noted 
above, Figure 2 shows how recognition using our low-
threshold, high-threshold, and noise signals is performed 
for each individual gesture.  

STUDY 

We evaluated bi-level thresholding to gauge its feasibility 
as a safety net for participants who have trouble performing 
gestures. The study used a within participants design asking 
8 participants to perform each of three motion gestures, 
Double-flip, Right Flick, and Left Flick 42 times each. A 
software glitch resulted in the elimination of the first 
gesture in each set, yielding 125 gestures attempted by eight 
participants, or 1000 motion gestures in total. A Nexus One 
smartphone was used to perform and recognize gestures. 
The order of Double-Flip, Right Flick and Left Flick were 
random, with the software simply ensuring that each 
gesture was performed the same number of times. 

The application presents the user with a black screen. In the 
centre of the screen the word “Double-Flip”, “Next”, or 
“Previous” is presented to the user, where “Next” 
corresponds to Flick Right and “Previous” corresponds to 
Flick Left. Once the system detects the given gesture, the 
screen will flash green, vibrate for 200ms and move on to 

the next gesture. If a gesture other than the given gesture is 
recognized (i.e. a Recognition Error occurs), the screen 
vibrates for 200ms, but does not move on to the next 
gesture. Instead, it logs the misrecognized attempt and 
presents the gesture again. If the participant fails to activate 
the appropriate gesture within 15 seconds, the screen will 
flash red for 200ms, vibrate, and move on to the next 
gesture after logging the instance as a Skipped Gesture.  

There are two open questions which we aim to address with 
our experiment. First, is the bi-level threshold useful in 
supporting recognition? To analyze this question, we look 
at the proportion of gestures recognized using the double 
loose threshold versus the number of gestures recognized 
using a tight threshold. If you consider the FSA in Figure 2, 
the tight threshold could successfully recognize gestures 
from either of states S0 or S1. In either of these cases, the 
bi-level threshold provides limited benefit as it does not 
eliminate gesture attempts. It is unclear how common the 
bi-level technique will be during recognition. It may be the 
case that it increases recognition reliability significantly 
(i.e. it frequently performs the recognition of gestures). On 
the other hand, it may also be the case that the bi-level 
threshold is never activated. Participants may hit the tight 
threshold or fail to hit a double loose threshold so 
frequently that the bi-level technique is insignificant in 
improving recognition.  

Second, we wish to determine whether the rate of skipped 
gestures can tell us anything about the potential of the bi-
level thresholding technique as a mechanism for 
scaffolding. For example, do users who struggle with 
motion gestures make increased use of the bi-level 
thresholding technique? 

RESULTS 

During our experiment, 93% of gestures were recognized 
successfully for all users within the timeout period. The 
other 7% were skipped gestures, i.e. gestures which were 
not recognized before the 15 second timeout. 

We analyze the behaviour of our recognizer by analyzing 
the various recognition paths taken through the FSA 
pictured in Figure 2. When considering correctly 
recognized gestures, we separate, for each user, the 
proportion of recognized gestures that were recognized with 
the double loose threshold versus the single tight threshold 
versus the loose then tight threshold (i.e. tight from S1). We 
show the various fractions in Figure 3.  

We note, first, that 65% of recognized gestures were 
recognized using the double loose gesture model. Another 
9% of successful recognitions were flagged by the single 
tight threshold model while already in state S1, i.e. after an 
initial loose threshold event. The remaining 26% of 
gestures were recognized using the single tight thresholded, 
from state S0. The large proportion of successes caught 
using our double loose threshold gives some promise that 
the technique acts to improve overall efficiency. 
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While an average rate of 7% of total gestures attempted 
using the bi-level threshold recognizer (SD=10.0) were 
skipped gestures, there is some variability among our 
participants. In particular, Figure 4 shows that P2 is an 
outlier, failing to successfully perform the gesture within 
the timeout window 30%of the time.P2 provides an 
interesting case study for our bi-level thresholding 
technique. P2 only successfully completed 70% of the 
gestures, as compared to over 90% for all other participants. 
Of P2’s successfully recognized gestures, 94% were 
recognized using our double-loose model (Figure 3), 
versus, typically, between half and two-thirds for other 
participants. P2 was an outlier in both the failure rate 
experienced performing motion gestures and in how 
frequently the gestures that were recognized were 
recognized with the bi-level thresholding technique. 
Though care must be taken to generalize from the 
behaviour of this one participant, this participants’ case 
study may indicate the potential use of the lower threshold 
for users who have trouble completing motion gestures. 

 

Figure 3.(Top) Breakdown of gestures successfully recognized 

by whether recognition occurred using the double loose model 

(blue), the single tight model (red) or the loose-then-tight 

model. (Btm) Rate of skipped gestures, per participant 

DISCUSSION  

The results of our experiment indicate that the bi-level 
thresholding technique for motion gesture recognition can 
aid in recognition of motion gestures. Two-thirds of all 
gestures recognized during our experiment were recognized 
as a result of the double-loose threshold recognition model 
of the bi-level thresholding technique. These gestures 
would need at least another attempt by the participant to be 

recognized successfully if using a single-tight threshold 
recognizer. 

We note that, in our experiment, we do not consider 
delimiters. It is true that, if an effective delimiter is chosen, 
then the system can use a more permissive criterion 
function -- one less likely to label movement as noise. 
However, even with delimiters, criterion functions are still 
required. To understand why this is the case, consider what 
happens when a delimiter is activated. If, after delimiter 
activation, the end-user is performing any action at all – 
walking, driving, looking at the phone, turning in a desk 
chair, holding the phone – then the accelerometer and 
gyroscope in the smartphone will receive data. If the system 
assumes that all received data constitutes a motion gesture, 
then a gesture may fire accidentally before the user has any 
chance to execute their deliberate gesture, solely based on 
random input. Regardless of whether or not delimiters are 
used, it is still necessary to create a noise model and to 
select a criterion value to separate deliberate movement 
from noise. 

Finally, while we focus on motion gestures as the 
application space for bi-level thresholds, we believe that 
they are applicable to other gestural domains, including 
surface gestures and stylus interfaces. As a simple example 
of another domain where a bi-level threshold might aid 
recognition, consider using a scratch-out gesture within a 
stylus program like Windows Journal. If the scratch-out 
gesture fails initially (something that frequently occurs), a 
bi-level recognition model could be designed that handles 
two poorly performed scratch-out gestures, thus aiding 
reliable recognition of always-available gestures like 
scratch-out. 

CONCLUSION 

We present a bi-level thresholding technique to support the 
recognition of motion gestures for smartphone input. Our 
results show that, when available, the bi-level thresholding 
technique frequently catches input gestures that an 
optimized criterion function misses. The end result is that 
end-users need fewer attempts to successfully activate 
motion gestures using bi-level thresholding.  
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