
1

A Recognition Safety Net: Bi-Level Threshold Recognition
for Mobile Motion Gestures

Matei Negulescu
University of Waterloo

mnegules@cs.uwaterloo.ca

Jaime Ruiz
University of Waterloo
jgruiz@cs.uwaterloo.ca

Edward Lank
University of Waterloo
lank@cs.uwaterloo.ca

 Technical Report CS-2011-25

ABSTRACT

Designers of motion gestures for mobile devices face the
difficult challenge of building a recognizer that can separate
gestural input from motion noise. A threshold value is often
used to classify motion and effectively balances the rates of
false positives and false negatives. We present a bi-level
threshold recognizer that is built to lower the rate of
recognition failures by accepting either a tightly
thresholded gesture or two consecutive possible gestures
recognized by a looser model. We evaluate bi-level
thresholding with a pilot study in order to gauge its
effectiveness as a recognition safety net for users who have
difficulty activating a motion gesture. Lastly, we suggest
the use of bi-level thresholding to scaffold learning of
motion gestures.

KEYWORDS

Bi-level thresholding, motion gestures, safety net

ACM CLASSIFICATION KEYWORDS

H5.2. Information interfaces and presentation: User
Interfaces (Interaction styles).

GENERAL TERMS

Human Factors

INTRODUCTION

Modern sensors such as accelerometers can be leveraged to
expand a mobile device’s input space by detecting motion
gestures – gestures that require a user to move the entire
smartphone device in three dimensions. A unique challenge
in mobile interaction design around motion gestures is the
need to develop recognition algorithms that are sufficiently
powerful to both recognize a large set of motion gestures
and to discriminate intentional motion gestures from
everyday device movement. The focus of this paper is
specifically in discriminating intentional motion gestures
from everyday motion. Because smartphones are frequently
carried in a purse or pocket, they move with the user, the
accelerometers and gyroscopes that measure device
movement and acceleration are frequently receiving data.

Without careful tuning, unintended commands (i.e. false
positives) can be invoked.

There are two possible techniques for segmenting a motion
gesture from a smartphone’s input stream. The first, and
most common, approach is to make use of an explicit
delimiter to discriminate a motion gesture from everyday
device movement [3]. Researchers have used hardware
buttons, on-screen buttons, and specific, easy-to-
discriminate motion gestures as delimiters. However, there
are many situations where it may be undesirable to use a
delimiter. For example, consider uses a motion gesture
repeatedly to step through a set of objects. Performing an
explicit delimiter for each motion gesture may annoy end-
users, particularly if they must repeat a large number of
motion gestures within a restricted time. Furthermore, even
if delimiters support reliable discrimination from an input
stream, it is also interesting to determine exactly how
necessary delimiters are to the design of usable motion-
gesture input.

The second technique for discriminating motion gestures
from random device movement is to create a threshold, i.e.
a criterion value, that best trades-off between false positives
(accidental activations) and false negatives (failed attempts
to perform a gesture).If the criterion value is too
permissive, many false positives will occur. However, if the
criterion value is too restrictive, it may become very
difficult for the system to reliably identify intentional user
gestures from its input stream. The designers of systems
frequently use visualization techniques like receiver
operating characteristic (roc) curves to identify the best
criterion value for a recognizer (e.g. [1]). Despite this,
almost all current research into motion gestures uses
delimiters, not criterion values, presumably because of the
difficulty of selecting a criterion value that appropriately
balances false positives and false negatives [3]

In this paper, we address the challenge of non-activations
by creating a novel, bi-level thresholding technique for
selecting a criterion value that is both appropriately
restrictive and yet does not result in a prohibitively high
number of false negatives. Our bi-level thresholding
technique works as follows: If a user-performed gesture
does not meet a strict threshold, we then consider the
gesture using a looser threshold – a more permissive
criterion value – and wait to see if a similar motion follows
it. Figure 1 displays a Venn diagram that represents our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2012, May 5-10, 2012, Austin, TX, USA.

Copyright 2012ACM xxx-x-xxxx-xxxx-x/xx/xx...$10.00.

input space. The system will recognize a gesture either i
the end-user performs a tightly thresholded motion gesture
(i.e. success in the first instance), or if the user performs
two loosely thresholded gestures within a timeout.

RATIONALE FORBI-LEVEL THRESHOLD RECO

Our bi-level thresholding technique is based on
of typical participant behaviour during controlled studies of
motion gesture interaction. Participants frequently begin an
experiment successfully performing motion gestures. Over
time, however, due to the noise within our
neurophysiological system, the participant’s action may
drift from ideal. If a participant does not
activate a gesture on the first attempt, his or her
frequent response is to attempt the gesture again
immediately upon recognizing failure.
succeeds on the second attempt, the cost of missed
activation seems quite small. However, if repeated atte
to activate a gesture or button fail, the participants
frustrated. They begin to alter their input patterns, seeking
to change the kinematics of their input until they find a
gesture profile that succeeds. They frequently land in states
where failures are highly common until they diagnose
they are failing to activate the gesture and correct.

Many times we find that a failure to activate is a result of
sensor input falling just outside of the threshold for
recognition specified by the criterion value.
these motion gestures would boost our false positive rate to
prohibitively high levels.

Our goal in introducing bi-level thresholding
a “soft-landing” for users who attempt a gesture and
succeed at exceeding the criterion value
requiring the user to repeatedly attempt to match a tight
threshold, we noted that the likelihood of observing two
sequential gestures at a lower criterion value within a
period is the square of the likelihood of observing
instance of that loose-criterion gesture within the
period (e.g. if the odds are 1 in 10 of one loose threshold
within a time period, the odds of observing two loose
thresholds within that same time period are 1 in 100)

We hypothesized that bi-level thresholding may support
successful gesture-from-noise discrimination in situations

Figure 1. An illustration of the bi-level thresholding

model in the allowable input space.

2

recognize a gesture either if
user performs a tightly thresholded motion gesture

or if the user performs
ded gestures within a timeout.

LEVEL THRESHOLD RECOGNITION

technique is based on field notes
during controlled studies of

Participants frequently begin an
experiment successfully performing motion gestures. Over
time, however, due to the noise within our
neurophysiological system, the participant’s action may

participant does not successfully
his or her most

frequent response is to attempt the gesture again
immediately upon recognizing failure. If the gesture
succeeds on the second attempt, the cost of missed
activation seems quite small. However, if repeated attempts

participants become
frustrated. They begin to alter their input patterns, seeking
to change the kinematics of their input until they find a
gesture profile that succeeds. They frequently land in states

ailures are highly common until they diagnose why
they are failing to activate the gesture and correct.

a failure to activate is a result of
the threshold for

on value. Recognizing
would boost our false positive rate to

level thresholding was to create
for users who attempt a gesture and almost

criterion value. Rather than
requiring the user to repeatedly attempt to match a tight
threshold, we noted that the likelihood of observing two
sequential gestures at a lower criterion value within a time

is the square of the likelihood of observing one
criterion gesture within the time

(e.g. if the odds are 1 in 10 of one loose threshold
within a time period, the odds of observing two loose

time period are 1 in 100).

level thresholding may support
noise discrimination in situations

where a tighter threshold would not.
more likely to succeed at attempting gestures, b
thresholding may also provide a mechanism for gradual
online learning of the gesture set. Users will be more
to accomplish their gesture within two attempts with the bi
level threshold enabled than without
to experiment with motion gestures

IMPLEMENTING BI-LEVEL THRESHOLDING

Conceptually, our recognition algorithm can be visualized
as a simple three-state finite state automaton, as shown in
Figure 2. From an initial state, S0, if the recognizer
observes a high-threshold gesture, the system moves to S2
and the gesture is recognized. If, in contrast, we observe a
lower-threshold gesture, the system moves to state S1. In
this state, if the system receives either a high
low-threshold input, the system moves to state S2 and the
gesture fires. If, instead, a timeout occurs, the
moves back to state S0.

We implemented our bi-level threshold technique using a
hidden markov model (HMM) approach
input’s inherently stochastic nature. Though full detail of
HMM recognizers is outside the current scope, we provide
an overview of our recognizer for replication.

A smartphone senses a motion gesture as a series of time
ordered acceleration (in 3 dimensions) and orientation
features (3 degrees of freedom). An HMM is a probabilistic
finite state automaton that models the gesture by
transitioning from one state to the next. Each state
represents a distribution across parameters (acceleration and
orientation), and the probabilistic transitions between states
represent the likelihood of that state transition. An HMM
based recognizer is comprised of a set of models (one per
gesture), each a subset of the states and transitions in the
HMM. We use the Viterbi algorithm (see
detail on the algorithm) to label a candidate gesture with the
most likely model that best explains the motion.

We create tight-threshold gesture models by having
expert users perform each of the
gesture set 50 times. Though it scales
HMM recognizers, as a proof of concept,
contains three gestures taken from Ruiz et

level thresholding

space.
Figure 2. Bi-level thresholding described as a state machine

where a tighter threshold would not. Because users are
ely to succeed at attempting gestures, bi-level

may also provide a mechanism for gradual
Users will be more likely

to accomplish their gesture within two attempts with the bi-
hout, so they will continue

to experiment with motion gestures.

LEVEL THRESHOLDING

Conceptually, our recognition algorithm can be visualized
state finite state automaton, as shown in

From an initial state, S0, if the recognizer
threshold gesture, the system moves to S2

, in contrast, we observe a
threshold gesture, the system moves to state S1. In

this state, if the system receives either a high-threshold or
threshold input, the system moves to state S2 and the

gesture fires. If, instead, a timeout occurs, the system

level threshold technique using a
hidden markov model (HMM) approach [2] due to the
input’s inherently stochastic nature. Though full detail of
HMM recognizers is outside the current scope, we provide
an overview of our recognizer for replication.

A smartphone senses a motion gesture as a series of time-
dimensions) and orientation

features (3 degrees of freedom). An HMM is a probabilistic
finite state automaton that models the gesture by
transitioning from one state to the next. Each state
represents a distribution across parameters (acceleration and

entation), and the probabilistic transitions between states
represent the likelihood of that state transition. An HMM-
based recognizer is comprised of a set of models (one per
gesture), each a subset of the states and transitions in the

erbi algorithm (see [2] for more
detail on the algorithm) to label a candidate gesture with the

s the motion.

threshold gesture models by having six
expert users perform each of the three gestures in our

Though it scales as well as other
proof of concept, our gesture set

gestures taken from Ruiz et. al’s consensus

level thresholding described as a state machine.

3

gesture set: Double Flip, Next, and Previous (see [4]).
Expert users pre-segment the gestures from input noise
using an on-screen button. The expert user presses the
button and then performs the gesture. We train the HMM
on the acceleration and orientation feature set of these pre-
segmented gestures using the Baum-Welch algorithm [2].

The loose threshold is built by copying the tight-threshold
gesture models learned from our experts and loosening the
observation distributions for each state. We do this by
applying a linear Gaussian blur to all features in each
observation distribution. This produces three additional
HMM models that are more permissive, i.e. that allow a
greater range of values. We tune the blur to create an
acceptable false positive rate for the gestures. For example,
if R є (0, 1) is an acceptable false positive rate for the
single-threshold models, then R1/2 is an acceptable false
positive rate for the loose-threshold models. This ensures
that the false positive rate for all gestures is at most R.

Finally, we add a model that represents random device
motion, or noise. This model was created by repeatedly
performing a random walk of the above six models and
using the random state transitions to saturate the entire
space of allowable inputs with a random motion recognizer.

To guide the reader’s intuition of how this recognizer
works, consider Figure 1 showing the space of input for
acceleration and orientation for three gestures. The noise
model dominates the background region of the Venn
Diagram. However, if the observations from the
smartphone sensors lie inside the loose threshold, then the
loose-threshold models have higher probability. Likewise,
if the observations from the sensors lie inside the tight
threshold models, then these models dominate. As noted
above, Figure 2 shows how recognition using our low-
threshold, high-threshold, and noise signals is performed
for each individual gesture.

STUDY

We evaluated bi-level thresholding to gauge its feasibility
as a safety net for participants who have trouble performing
gestures. The study used a within participants design asking
8 participants to perform each of three motion gestures,
Double-flip, Right Flick, and Left Flick 42 times each. A
software glitch resulted in the elimination of the first
gesture in each set, yielding 125 gestures attempted by eight
participants, or 1000 motion gestures in total. A Nexus One
smartphone was used to perform and recognize gestures.
The order of Double-Flip, Right Flick and Left Flick were
random, with the software simply ensuring that each
gesture was performed the same number of times.

The application presents the user with a black screen. In the
centre of the screen the word “Double-Flip”, “Next”, or
“Previous” is presented to the user, where “Next”
corresponds to Flick Right and “Previous” corresponds to
Flick Left. Once the system detects the given gesture, the
screen will flash green, vibrate for 200ms and move on to

the next gesture. If a gesture other than the given gesture is
recognized (i.e. a Recognition Error occurs), the screen
vibrates for 200ms, but does not move on to the next
gesture. Instead, it logs the misrecognized attempt and
presents the gesture again. If the participant fails to activate
the appropriate gesture within 15 seconds, the screen will
flash red for 200ms, vibrate, and move on to the next
gesture after logging the instance as a Skipped Gesture.

There are two open questions which we aim to address with
our experiment. First, is the bi-level threshold useful in
supporting recognition? To analyze this question, we look
at the proportion of gestures recognized using the double
loose threshold versus the number of gestures recognized
using a tight threshold. If you consider the FSA in Figure 2,
the tight threshold could successfully recognize gestures
from either of states S0 or S1. In either of these cases, the
bi-level threshold provides limited benefit as it does not
eliminate gesture attempts. It is unclear how common the
bi-level technique will be during recognition. It may be the
case that it increases recognition reliability significantly
(i.e. it frequently performs the recognition of gestures). On
the other hand, it may also be the case that the bi-level
threshold is never activated. Participants may hit the tight
threshold or fail to hit a double loose threshold so
frequently that the bi-level technique is insignificant in
improving recognition.

Second, we wish to determine whether the rate of skipped
gestures can tell us anything about the potential of the bi-
level thresholding technique as a mechanism for
scaffolding. For example, do users who struggle with
motion gestures make increased use of the bi-level
thresholding technique?

RESULTS

During our experiment, 93% of gestures were recognized
successfully for all users within the timeout period. The
other 7% were skipped gestures, i.e. gestures which were
not recognized before the 15 second timeout.

We analyze the behaviour of our recognizer by analyzing
the various recognition paths taken through the FSA
pictured in Figure 2. When considering correctly
recognized gestures, we separate, for each user, the
proportion of recognized gestures that were recognized with
the double loose threshold versus the single tight threshold
versus the loose then tight threshold (i.e. tight from S1). We
show the various fractions in Figure 3.

We note, first, that 65% of recognized gestures were
recognized using the double loose gesture model. Another
9% of successful recognitions were flagged by the single
tight threshold model while already in state S1, i.e. after an
initial loose threshold event. The remaining 26% of
gestures were recognized using the single tight thresholded,
from state S0. The large proportion of successes caught
using our double loose threshold gives some promise that
the technique acts to improve overall efficiency.

4

While an average rate of 7% of total gestures attempted
using the bi-level threshold recognizer (SD=10.0) were
skipped gestures, there is some variability among our
participants. In particular, Figure 4 shows that P2 is an
outlier, failing to successfully perform the gesture within
the timeout window 30%of the time.P2 provides an
interesting case study for our bi-level thresholding
technique. P2 only successfully completed 70% of the
gestures, as compared to over 90% for all other participants.
Of P2’s successfully recognized gestures, 94% were
recognized using our double-loose model (Figure 3),
versus, typically, between half and two-thirds for other
participants. P2 was an outlier in both the failure rate
experienced performing motion gestures and in how
frequently the gestures that were recognized were
recognized with the bi-level thresholding technique.
Though care must be taken to generalize from the
behaviour of this one participant, this participants’ case
study may indicate the potential use of the lower threshold
for users who have trouble completing motion gestures.

Figure 3.(Top) Breakdown of gestures successfully recognized

by whether recognition occurred using the double loose model

(blue), the single tight model (red) or the loose-then-tight

model. (Btm) Rate of skipped gestures, per participant

DISCUSSION

The results of our experiment indicate that the bi-level
thresholding technique for motion gesture recognition can
aid in recognition of motion gestures. Two-thirds of all
gestures recognized during our experiment were recognized
as a result of the double-loose threshold recognition model
of the bi-level thresholding technique. These gestures
would need at least another attempt by the participant to be

recognized successfully if using a single-tight threshold
recognizer.

We note that, in our experiment, we do not consider
delimiters. It is true that, if an effective delimiter is chosen,
then the system can use a more permissive criterion
function -- one less likely to label movement as noise.
However, even with delimiters, criterion functions are still
required. To understand why this is the case, consider what
happens when a delimiter is activated. If, after delimiter
activation, the end-user is performing any action at all –
walking, driving, looking at the phone, turning in a desk
chair, holding the phone – then the accelerometer and
gyroscope in the smartphone will receive data. If the system
assumes that all received data constitutes a motion gesture,
then a gesture may fire accidentally before the user has any
chance to execute their deliberate gesture, solely based on
random input. Regardless of whether or not delimiters are
used, it is still necessary to create a noise model and to
select a criterion value to separate deliberate movement
from noise.

Finally, while we focus on motion gestures as the
application space for bi-level thresholds, we believe that
they are applicable to other gestural domains, including
surface gestures and stylus interfaces. As a simple example
of another domain where a bi-level threshold might aid
recognition, consider using a scratch-out gesture within a
stylus program like Windows Journal. If the scratch-out
gesture fails initially (something that frequently occurs), a
bi-level recognition model could be designed that handles
two poorly performed scratch-out gestures, thus aiding
reliable recognition of always-available gestures like
scratch-out.

CONCLUSION

We present a bi-level thresholding technique to support the
recognition of motion gestures for smartphone input. Our
results show that, when available, the bi-level thresholding
technique frequently catches input gestures that an
optimized criterion function misses. The end result is that
end-users need fewer attempts to successfully activate
motion gestures using bi-level thresholding.

REFERENCES
1. Fogarty, J., Baker, R.S., and Hudson, S.E. Case studies in the

use of ROC curve analysis for sensor-based estimates in
human computer interaction. In Proc of Graphics Interface

2005. 129–136.
2. Rabiner, L.R. A tutorial on hidden Markov models and

selected applications inspeech recognition. Proceedings of the

IEEE 77, 2 (1989), 257-286.
3. Ruiz, J. and Li, Y. DoubleFlip: a motion gesture delimiter for

mobile interaction. In Pro cof CHI 2011, 2717–2720.
4. Ruiz, J., Li, Y., and Lank, E. User-defined motion gestures for

mobile interaction. In Proc.CHI 2011, 197–206.

0%
5%

10%
15%
20%
25%
30%
35%

P1 P2 P3 P4 P5 P6 P7 P8

Rate of Skipped Gestures per Participant

0

0.5

1

P1 P2 P3 P4 P5 P6 P7 P8

Successful Gesture Recognition Breakdown

Double Loose Threshold Activation

Single Tight Threshold Outside Relaxed State

Single Tight Threshold in Relaxed State

