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Abstract

Over the last fifteen years, web searching has seen tremendous improvements. Starting from a nearly
random collection of matching pages in 1995, today, search engines tend to satisfy the user’s informational
need on well-formulated queries. One of the main remaining challenges is to satisfy the users’ needs when
they provide a poorly formulated query. When the pages matching the user’s original keywords are judged
to be unsatisfactory, query expansion techniques are used to alter the result set. These techniques find
keywords that are similar to the keywords given by the user, which are then appended to the original
query leading to a perturbation of the result set. However, when the original query is sufficiently ill-posed,
the user’s informational need is best met using entirely different keywords, and a small perturbation of
the original result set is bound to fail.

We propose a novel approach that is not based on the keywords of the original query. We intentionally
seek out orthogonal queries, which are related queries that have low similarity to the user’s query. The
result sets of orthogonal queries intersect with the result set of the original query on a small number of
pages. An orthogonal query can access the user’s informational need while consisting of entirely different
terms than the original query. We illustrate the effectiveness of our approach by proposing a query
expansion method derived from these observations that improves upon results obtained using the Yahoo
BOSS infrastructure.

1 Introduction

Over the last fifteen years there has been enormous progress on web searches. Starting from a more or less
random collection of matching pages in 1995, today, search engines tend to satisfy the user’s informational
need on well-formulated queries. Among the main remaining challenges is to satisfy the users’ informational
need when they provide a vague or otherwise poorly formulated query. When the pages matching the user’s
original keywords are judged to be unsatisfactory, query expansion techniques are used to alter the result set,
traditionally via stemming, synonym expansion and other natural language processing on the keyword set.
The goal is to find keywords that, while syntactically different to varying degrees, have the same semantics
as the keywords in the original query. These keywords are then appended to the original query. As a result,
the new query is similar to the user’s original query.

Using these approaches, the new result set is a perturbation of the original result set. When the query is
sufficiently well composed a small perturbation would be sufficient; in those cases, there is a highly ranked
page relevant to the user’s needs that appears in the result set of the new query, whereas the result set of
the original query did not contain such results. Traditional approaches to query expansion method play an
important and necessary role, helping correct queries that require minor adjustment. However, when the
query is sufficiently ill-posed, the user’s informational need is best met using entirely different keywords, and
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Figure 1: A graphical illustration of the difference between traditional query expansion and orthogonal
query expansion. The dots represent webpages. The oval represents the set of pages that are relevant to the
user’s needs. The pages containing the user’s keywords are represented in the green, nearly-horizontal stab.
Results sets using traditional query expansion are shown using the dashed stabs. An orthogonal result set
is represented using the orange stab, appearing perpendicular to the original result set.

a small perturbation of the original result set is bound to fail. Interestingly, in this case the higher query
similarity in the perturbation, the less likely the query expansion is to succeed.

Users cannot always pick the most appropriate keywords. This is not surprising, because some queries
are launched precisely because users wish to learn a subject with which they have little familiarity. In this
case, it is reasonable to expect a large gap between the optimal keywords and those that the user is able to
provide. Consider the following simple example. A user is interested in information on the actress Catherine
Bach, and while he may not recall her name, he remembers that the actress had played the character of
Daisy Duke. His informational needs are better represented by the query “Catherine Bach” than the query
that he provides. The challenge is that the queries “Daisy Duke” and “Catherine Bach” consist of entirely
different keywords.

We propose a new approach that does not directly rely on the original keyword set. We intentionally seek
out orthogonal queries, which are related queries that have low similarity to the user’s query. Orthogonal
queries provide insightful alternative interpretations that are not reachable by using small variations on the
keyword set. An orthogonal query contains keywords that are semantically different from the keywords in
the original query. An orthogonal query can access the user’s informational need while consisting of entirely
different terms than the original query.

Orthogonal query expansion is complementary to traditional query expansion and each technique may
succeed when the other fails. Traditional approaches explore adjacent meanings of the user’s query, whereas
orthogonal query expansion considers relevant interpretations that are more distant. While standard ap-
proaches to query expansion perturb the original result set, orthogonal query expansion has low intersection
with the original result set. See Figure 1 for an illustration. Orthogonal queries tap into the space of relevant
pages in a radically different way than is possible through traditional query expansion techniques, allowing
them to detect high quality pages that cannot be found by using previous techniques. Observe that if the
original query is sufficiently ill posed, no small perturbation will succeed in capturing high value pages. In
addition, an orthogonal query can access the user’s informational need while consisting of keywords that are
mostly distinct from those in the original query.

The challenge is to find orthogonal results in a computationally efficient manner that prove useful in
practice. We take advantage of the complex features already present in search engines today. Search engines’
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usage traffic has grown to the extent that even the query cache has significant size. We find orthogonal queries
by taking advantage of the vast amounts of data that search engines collect, finding queries with low similarity
in the query cache. We illustrate the effectiveness of this approach by proposing a query expansion method
derived from these observations which improves upon results obtained using the Yahoo BOSS infrastructure.

The use of the query cache benefits the less proficient query composers by allowing them to benefit from
the query terms chosen by others. The query cache also enables us to take advantage of temporal locality.
By making use of a query cache for finding orthogonal results, these results automatically reflect current
events and trends, thus increasing the likelihood that the user’s informational need is met. For example, in
January 2010, orthogonal query expansion on the query “Haiti” led to a page on the American Red Cross
Haiti earthquakes relief effort, a result which was absent from the original result set.

2 Previous Work

There is a lot of research on query expansion ([15], [17], [14], [9], [12], [2], [8]). We offer a new approach to
query expansion that is complementary to previous techniques. Previous methods look for adjacent meanings
of the user’s query, whereas we intentionally seek out relevant queries that capture orthogonal meanings and
do not directly rely on the keyword set.

Our work also relates to query recommendation ([3], [19], [20], [7], [11], [5]). Baeza-Yates et al. [3] propose
a query recommendation method that is similar to our approach in that it utilizes a query log. However,
unlike our approach, they use the query log to identify clusters of similar queries. As with traditional query
expansion techniques, the main distinction between our approach and previous work on query suggestion is
that we intentionally search for relevant queries with low similarity, whereas previously the emphasis was on
identifying highly similar queries.

3 A Model for Search Engine Evaluation

Consider the two main search scenarios in Information Retrieval: (i) a search for a legal opinion in a database
such as Lexis or Westlaw and (ii) a query against a web search engine. These two settings share various
aspects and as such often advances in one lead to improvements in the other. Indeed often research focuses
on the shared aspects of those two different search needs. In this section, we highlight some of the main
differences between these two models.

As it has been observed before in the literature [10], in the legal database case (as well as in searches
over other subject-oriented corpora), the dominant model that best reflects the user needs is to consider
the query a disjunction of terms. The document set matching the query terms is often perturbed using
traditional query expansion techiniques. Then, the obtained result set is relevance ranked over a large subset
of the corpus, if not even its entirety. The depth at which the user examines the result set is also highly
variable (think of a lawyer searching for related judicial decisions) and as such the precision and recall of the
result set are key statistics in the evaluation of the performance of the search engine. That is, the goal is to
devise a filtering process which identifies the set of pages matching the user query as faithfully as possible by
means of minimizing both the number of false positives (precision) and false negatives (recall) in the filtering
process.

In contrast, in a typical web search engine the average user has an information need which can be satisfied
with any one of a subset of web pages. So long as the information need is satisfied, it is not important if
some other equally good or perhaps even better page (in the IR sense) exists out there. The search engine
then is searching for a page among the set of those that fully satisfy the user needs. The goal in this case is
to design a filtering process which produces as a result a single web page that answers the query. 1

Observe then that under this light, the final outcome of these two filtering processes stand in stark
contrast to each other. In one the goal is to produce a large, linearly ranked set while in the other is to

1The “I’m feeling lucky” button in Google aims to serve this purpose, though its effectiveness seems to be limited: anecdotal
statistics peg its usage at 1% of all searches [6].

3



Figure 2: An orthogonal result set within our model of search result evaluation. The dots represent webpages
and the stars represent highly ranked pages. Our goal is to detect a high quality page that satisfies the user’s
informational needs.

provide a desirable page within the first few results, indeed ideally in the very first result. This key difference
allows for a fundamentally different approach to query expansion as discussed in the next section.

Observe that this is related to the Probabilistic Ranking Principle (PRP) in that it interprets searches as a
probabilistic phenomenon [16]. However the PRP approach aims to produce a linear ranking by independent
probabilities of satisfaction, while our model aims to maximize the probability of satisfaction by at least one
result listed above the fold. This distinction has been the subject of recent work by Zhu and Wang in which
they propose an increase in the probability of satisfaction by using portfolio theory [18].

4 Orthogonal Results

In our model, the objective of a search engine is to retrieve at least one highly ranked page that is relevant
to the user’s needs. The purpose of an orthogonal result is to satisfy the user’s information need when they
are not met by the original results.

Formally, let R denote the set of web-pages that are relevant to the user’s needs. Let K denote the set of
pages that contain the keywords comprising the user’s query. Search engines rely on the existence of some
highly ranked pages in R∩K, since these would be the top results returned to the user.

As such, the main limitation of the current approach to searching is its restricted capacity to access pages
in R. What if there was a method of accessing R that was not as dependent on the particular keyword
choices of the user?

We refer to K as a stab of R. An orthogonal stab is a set O such that O ∩ K is small. In particular, we
are interested in orthogonal stubs so that R ∩ O contains some highly ranked pages. See Figure 2 for an
illustration. Orthogonal results denote pages in O that do no occur in K.

Orthogonal results may be useful when R∩K is unsatisfactory, for instance when R∩K does not contain
enough highly ranked pages. Orthogonal query expansion is also useful when the top results in R∩K address
the same interpretation of the user’s query, allowing orthogonal results to capture alternative interpretations.
Orthogonal results may satisfy the user information needs on poorly formulated queries, by going beyond the
scope of the provided keywords. These results are also able to provide relevant information that is entirely
new to the user, where the user could not have searched for it directly.

The challenge is to find orthogonal results in a computationally efficient manner that prove useful in
practice. In the following two sections we present our approach for finding orthogonal results.
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5 Finding orthogonal queries

Our orthogonal query expansion technique relies on a measure of similarity that goes beyond keyword
comparisons, and is at the same time computationally efficient so that the similarity score can be computed
in real-time.

Let resultSet(p) denote the set of URLs returned by a search engine on query p. The result overlap
between queries p and q is,

resultOverlap(p, q) =
|resultSet(p) ∩ resultSet(q)|
|resultSet(p) ∪ resultSet(q)|

.

See, for example, Balfe et. al. [4].
We found that queries with a larger result overlap score yield results that are similar to the original

query’s results, and thus do not address an alternative interpretation. In the next section, we identify a
precise range of result overlap, which we then use to find orthogonal queries.

5.1 Identifying a range of result overlap

In order to find a range of result overlap that leads to orthogonal queries, we compare result overlap with a
simple measure of query similarity, used, for example, by Balfe el al.[4].

Let the term overlap between queries p and q be

termOverlap(p, q) =
|terms(p) ∩ terms(q)|
|terms(p) ∪ terms(q)|

.

We first provide a high level description of the relationship between term overlap and result overlap, and
discuss how this relationship enables us to identify a range of result overlap that leads to orthogonal results.
We then proceed with a more in-depth comparison of term overlap and result overlap and show how we
obtain the desired range.

Very high values of result overlap tend to indicate that the queries are composed of similar terms.
The most similar queries are slight syntactic variants composed of the same terms. This is not surprising
given that Yahoo, the underlying search engine that we used, is keyword based. For instance, the queries
european+rabbit and European rabbit have result overlap 0.575. As our algorithm compares the top 100
results from both queries, a result overlap score of 0.575 indicates that 73 of the top 100 results match.
Queries that are word permutations of each other, as in lyrics office space and office space lyrics also have a
high result overlap score, in this case 0.4084. Many other queries with high result overlap score often have
significant overlap in their term bags.

When both the result overlap and term overlap scores are high, incorporating highly ranked results from
such a query into the original result set does not significantly alter the original result set. In particular, the
added pages will address the same interpretation of the query as the results for the original query. In our
effort to find pages that satisfy the needs of users when their informational needs are not met by the original
highly ranked results, we look for similar queries (according to the result overlap score) that includes entirely
different keywords.

Indeed, the most interesting results occur at a low range of result overlap. Surprisingly, we did not find
an instance where two queries have result overlap beyond score 0.01 and yet are semantically dissimilar.

The result overlap measure of query similarity can detect semantic similarity when there are no common
terms, without the use of complicated natural language processing techniques. For example, the queries
students with reading difficulties and dyslexia help have result overlap 0.0102, and car-price and bluebook
cars have a 0.06 result overlap. A surprising relationship was caught in the comparison of the queries Daisy
Duke and “Catherine Bach” with a result overlap value of 0.02. Further investigation revealed that Catherine
Bach played character Daisy Duke in The Dukes of Hazzard.

Next, we perform a more formal comparison of result overlap with term overlap in order to identify the
most appropriate range of result overlap for finding orthogonal results.
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Query 1 Query 2 T.O. R.O.

european+rabbit European rabbit 1 0.575
lyrics office space office space lyrics 1 0.4084

car-price bluebook cars 0 0.06
DISCOUNT TRAVEL cheap airfaires 0 0.105

Daisy Duke “catherine Bach” 0 0.02

Figure 3: Examples of query pairs and their Term Overlap (T.O.) and Result Overlap (R.O.) scores.

Figure 4: Result overlap versus average term overlap in a query log of 5000 queries. The graph illustrates a
positive correlation between result overlap and average term overlap.

5.1.1 A comparison with term overlap

We compute the result overlap and term overlap scores for each distinct pair of queries in a query log of
5000 entries. We computed term overlap while ignoring very common stop words (such as “a” and “the”),
otherwise many dissimilar pairs of queries would have high term overlap. In addition, we reduce all letters
to lower case, and treat words as sequences of alpha-numeric characters (thus the queries european+rabbit
and European rabbit have term overlap 1.)

The Pearson correlation coefficient between result overlap and average term overlap is 0.567, indicating
significant positive correlation. We graph the data, as shown in Figure 4, where for every result overlap
value in the range (0, 1], we show the average term overlap value. The black line in all the graphs represents
a moving average with a period of two. Since we were using a real query log, it is not surprising that the
number of queries decreases as result overlap increases.

We obtain further evidence of the positive correlation between the two measures of similarity by looking
at term overlap versus average result overlap. The Pearson correlation coefficient between term overlap and
average result overlap reveals a strong positive correlation of 0.686. We present the data visually in Figure
5.

We would like to identify a range of result overlap where term overlap is low. Most queries have very
few terms. In a study of 100 million internet users, it was found that over 82% of search queries consist of
4 or fewer terms [1]. A term overlap score below 0.333, on two queries of length at most 4, indicates that
the queries overlap on at most one term. With the goal of introducing as little noise as possible, and only
presenting those results that are most likely to be orthogonal to, and not similar to, the results of the original
query we want to avoid having large term overlap. To this end, we set a threshold so that we expect to have
at most one overlapping term.

As our algorithm compares only the first 100 results from each query, a result overlap of at least 0.01
indicates that the results sets overlap on at least two pages (assuming that both result sets have at least 100
pages). Taking into account the size of the web, and thus the number of possibilities of the first 100 results,
this modest overlap is actually very meaningful. Indeed, the probability of a false match can be estimated
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Figure 5: Term overlap versus result overlap. The graph illustrates a positive correlation between term
overlap and average result overlap.

Figure 6: Result overlap versus result overlap, with result overlap range [0.005, 0.2].

in the range of 10−5 to 10−9. We found that in practice a result overlap score of 0.01 or above represents
semantic similarity.

For the above reasons, we have chosen to look at queries with result overlap at least 0.01. We would
also like the queries to have little term overlap, so that the corresponding result set be orthogonal. Thus,
we would like the term overlap to be below 0.333. Figure 6 (the same data as in Figure 4 but with term
overlap in the range (0, 0.2)) shows that until result overlap of 0.06, the running average is dominantly below
0.333. As such, we have chosen to use queries with result overlap in the range [0.01, 0.06] in our search for
orthogonal results.

6 Algorithm for Finding Orthogonal Results

We present an algorithm that finds up to three orthogonal results for a given query. To accomplish our
goal, we find all moderately similar queries and present the user with highly ranked orthogonal results from
these queries. We compute query similarity between an incoming query and all those queries currently in
the cache. After computing similarity scores, we extract the top result from every moderately similar query
that is not contained in the result set for the incoming query, which we denote as orthogonal. This set of
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orthogonal results is then ranked, and up to three top orthogonal results are presented to the user.
As discussed in Section 5.1.1, we have determined that a result overlap similarity score of between 0.01

and 0.06 is most beneficial for finding orthogonal results. Thus, we say that query A is moderately similar
to query B if its result overlap similarity score is within this range. Therefore, we only need to find results
from moderately similar queries that are not contained within the first 12 results of the incomming query
(see below for details). Finally, we only considered the first 100 results of each query when computing the
result overlap similarity score.

Algorithm 1 (Find orthogonal results) Input: a query q

1. Find orthogonal queries in the cache,

S = {p : 0.01 ≤ resultOverlap(p, q) ≤ 0.06}

2. Select a highly ranked page for every query in S,

O = {first page in result(p) that is not in contained

in the first 12 results from q | p ∈ S}

3. Rank the pages in O and display the top 3 results

To calculate the similarity score of an incomming query with those in the cache, we need to find the
intersection of two result sets. As the result sets are not sorted, this can be done by sorting and then
running a linear intersection algorithm. In our case, since we are interested in the first 100 results, this gives
us a 100 log 100 constant. To find the top orthogonal result from a query in S, above, we need to check at
most the first 13 results, each of which would require O(log 12) to determine if it was in the top 12 results of
the incomming query. Thus, excluding the ranking portion of the algorithm, the running time of Algorithm 1
is O(100n log 100 + 13n log 12) where n is the number of queries in cache. We will discuss the ranking step
in Section 6.0.2.

By using the cache, our algorithm is only looking at queries that have been run within the recent past.
This gives our algorithm two desirable properties. First, it can be computed online and efficiently while
queries are being executed. We would not be able to compute similarity scores and present results for
incomming queries if we had to run our algorithm over all previously seen queries. Second, and perhaps
more importantly, our algorithm reacts to temporal changes in users’ query habits. If users are currently
interested in searching for “Michael Jackson died”, instead of “Michael Jackson thriller”, then the orthogonal
results will reflect this fact.

6.0.2 Implementation

We implemented Algorithm 1 in Yahoo BOSS, using the result sets and ranking of the Yahoo search engine.
We then cached the results to avoid the need for rerunning the query, and these cached results were used to
calculate similarity scores.

The final step in Algorithm 1 ranks the orthogonal results. To accomplish this goal, we used the following
query:

site:url1 OR site:url2 OR · · · OR site:urln.

6.0.3 User interface

We propose a user interface that displays orthogonal results on the right hand-side of the page, to complement
the results for the original query that are on the left panel. See Figure 7 and Figure 8 for illustrations. The
positioning assumes that the user will first examine the results on the left panel, turning to the orthogonal
results on the right whenever the highest ranked pages in the original result set are unsatisfactory. In
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addition, below every orthogonal result we include the query from which the result was obtained, with a
link to the result set of that query. This lets the user find additional results similar to a relevant orthogonal
result. One of the main benefits of this interface is that it does not take away from the original search
engine’s interface. The original results of the query are presented on the left, unchanged. Only when there
are orthogonal results to present is anything displayed on the right.

Alternative methods can be developed for presenting orthogonal results. The optimal positioning of
orthogonal results depends on other user interface choices, and can be found through experimentation. The
position of a specific orthogonal result may also depend on its quality. For instance, if an orthogonal result
has higher rank than the first few original results, then it may desirable to seamlessly integrate it into the
results above the fold.

7 Experimental results

We present two types of tests to evaluate orthogonal query expansion. In the first, we aim to gain insight
into orthogonal query expansion by analyzing specific instances.

In the second part of our experiment, we analyze a large query log to gauge the advantage that could
have been gained from the inclusions of orthogonal results. We find that more than a quarter of users whose
needs were not satisfied by the original results would have been satisfied by an orthogonal result.

7.1 Case studies

To evaluate the user experience resulting from the inclusion of orthogonal results, we consider the first page
that the user sees. In particular, we analyze the top three orthogonal results as compared with the first 10
results of the underlying search engine. While this section of our experiments is to a large extent subjective,
since we are positing that the sought after result set is not best described by the chosen query terms, we use
examples to highlight the types of signals that are discovered by our result expansion technique.

We perform case study analysis in two different settings, in the first, we use queries from a query log,
and in the second queries are obtained from Google trends.

7.1.1 Case studies on queries from a query log

We apply Algorithm 1 using a query log of 5000 queries as a cache. Specifically, we compute the pairwise
result overlap similarities between the queries in the log. The orthogonal results are useful if they satisfy
users whose informational need is not satisfied by the original results above the fold.

Our query log yielded many interesting examples of useful orthogonal results. We present a few of them
below to illustrate how orthogonal results can be useful.

• Query: diet supplement . The most popular interpretation of diet, and the one addressed by the top
10 Yahoo results, is that of diet for weight loss. However, our orthogonal result, bodybuilding.com,
discusses dietary supplements for a wider range of needs, focusing on body building. Such a result is
usually occluded by the more common interpretation of the term “diet”. If a user’s needs are not met
by the common interpretation, he or she may benefit from the orthogonal result. Moreover, users may
also click on bodybuilding supplements to see more results that address the alternative interpretation.
We include a screenshot of this query in Figure 7.

• Query: credit card debt . Ambiguity often occurs even in what may appear to be well formed queries.
Yahoo’s results for this query begin with a list of state statute limitations for credit card debt, followed
by a Wikipedia article on credit card debt, and then by pages that give advice on how to consolidate
the debt. Yet another reasonable response to the query, and distinct from Yahoo’s results, are statistics
on credit card debt. A user searching for this query who is unsatisfied with Yahoo’s top results, may
have been looking for an answer to a question such as “how many people have credit card debt” or
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Figure 7: A screenshot of the query “diet”.

“what is the average credit card debt of an American?” The orthogonal result is a page on facts and
statistics related to the credit card industry.

• Query: Daisy Duke . Valuable orthogonal results can also be presented when a query has little
ambiguity. This query yields the Wikipedia article on Daisy Duke, a biography of the character, in
addition to other results on the character. Our orthogonal result is the official page of Catherine Bach,
who played Daisy Duke in the Dukes of Hazzard. While a page on the actress appears as the third
result of the original answer set, it is the IMDB page, a much weaker result than her official page.
This orthogonal result is valuable since a user searching for Daisy Duke may indeed be looking for the
actress, and simply does not know or does not recall her name. The orthogonal result saves the user
from having to re-launch the query.

• Query: child safety education . This query yields multiple orthogonal results. The top 10 original
results consist of high level advice on child safety education, and various organizations devoted to
the subject. The orthogonal results include a page on firearm safety and a page on child passenger
statistics, both of which are important issues for the safety of young children.

7.2 Case studies using Google Trends

To gauge the behavior of orthogonal results on a large-scale search engine, we made use of the top twenty
Google “hot searches,” as found on http://www.google.com/trends. We ran these queries on our search
engine, effectively using them as a small cache. The examples below are based on data from the USA on
January 19th, 2010.

• Query: haiti . Due to the high informational need on the then recent earthquakes in haiti, two of the
top ten results for this query are news articles on these then recent events. The orthogonal results
provide additional relevant pages, which are likely to satisfy the informational needs of a user who
launches this query around the time of the earthquake but is not interested in a news article on
the subject. The first orthogonal result is a link to the American Red Cross (from the query “haiti
redcross”), where many have made a donation to help in the relief efforts. Another orthogonal result is
on making a donation through a text message, from the query haiti text message. The last orthogonal
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Figure 8: A screenshot of the query “haiti”, illustrating temporal locality.

result comes from earthquake.usgs.gov, a government page providing short factual informational on
the earthquake. We include a screenshot of this query in Figure 8.

• Query: cayman islands. The top 10 results for this query discuss tourism, politics, and facts on
the cayman islands. None discuss the then recent earthquake on the islands. The orthogonal results,
coming from earthquake.usgs.gov, discuss the then recent earthquake on the cayman islands, and
provide a link to the popular query cayman islands earthquake.

• Query: massachusetts election . The top results for this query provide useful pages on the then
recent Massachusetts election. One of the orthogonal results shows the latest election poles, while
another orthogonal result discusses the senate race.

Our method for finding orthogonal results makes use of temporal locality in search patterns. Queries
that are orthogonal today may not have been orthogonal two weeks ago. By making use of a query cache
for finding orthogonal results, these results automatically reflect current events and trends, thus increasing
the likelihood that the user’s informational need is met.

7.3 Query Log Analysis

To gain further insight into the effectiveness of orthogonal results, we ran an experiment using a query log of
125000 entries. Our approach aims to improve user satisfaction when the user’s are not met by the original
results. In this study, we aim to identify how many times users would have been satisfied by an orthogonal
result when their needs were not met by the results to their original query.

We used a query log where users were not presented with orthogonal results. To gauge the affect that
orthogonal results would have had on user satisfaction, we identify users who were not satisfied by the results
on their original query. Of these users, we then identify the ones that later launched a similar query, and
were satisfied by some result. We then checked how often the results that eventually satisfied the user were
orthogonal results that our approach would have detected on the original query launch.

7.3.1 Methodology:

The first 25000 entries were loaded into a cache, and the next 100000 entries were used to gather various
statistics. The cache was used for obtaining orthogonal queries and orthogonal URLs.
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We say queries are related when their result overlap is non-zero. To identify users who were unsatisfied
with the results to their original query, we looked at sequences of related queries, where subsequent queries
in a sequence took place within 10 minutes of one another. For each such maximal sequence, if the last query
did not end with a click by the user, we flagged this sequence as given up.

Of the 100000 query log entries, 44005 sequences were given up on, while 52092 sequences were not. To
determine how many users of the 44005 sequences for which the user gave up would have been satisfied by
an orthogonal result we would have suggested on the original query, we use the click information provided
in the query log, which tells us when a user clicks on a result from a query. Since the users gave up on their
original query sequence (and so did not click on a result), we needed to narrow our search to those who
ended up rerunning a similar query.

Of the 44005 sequences for which the user gave up, 30842 of them eventually ran a related query. Of
those 30842, only 17092 succeeded on a future attempt. This number of successful attempts is found by
looking at all of the user’s future queries related to the original sequence, and determining if the user clicked
on something from that related query.

If the user clicked on a related query later on, we say that they left satisfied on one of their subsequent
attempts. However, of those 17092 that left satisfied on one their subsequent attempts, 3703 clicked on a
result that was already available earlier. That is, either one of the queries in the original sequence was rerun
and one of its results was clicked, or the clicked result appeared in the top 10 results of one of the queries in
the original sequence.

This leaves a count of 13389 out of 44005 sequences where the user returned to search for something
similar, and ended up clicking on a URL from a query that was not part of the original sequence. Now
that we have narrowed our results down to those we can compare against, we compare this number against
how many query clicks could have come from our orthogonal result suggestions. The reason that we do not
compare against all 44005 is that we do not have data on what pages would have satisfied their informational
need.

Note that we could not use the exact URLs from the query log, as they were truncated to only include
the website, and not the exact URL that was clicked. This means that we could rely only on clicks coming
from a particular query, and not on the exact URL clicked since this information was incomplete.

7.3.2 Results:

We identified 13389 sequences of related searches that were given up, and then followed by a successful
related query (a result was clicked that wasn’t available earlier). 3683 of those sequences were satisfied using
a query that we calculated to be an orthogonal query to the original query made in the sequence.

Thus, for 3683 sequences, or 27.51% of the time, we would have made the appropriate query suggestion
having only seen the first query in the sequence.

Finally, of the remaining 9706 sequences where an originally unsatisfied user was eventually satisfied, but
by some query that we would not have suggested, we found that 24.3% of the top five results of these queries
were covered using orthogonal URLs of some calculated orthogonal queries (where we limit the result sets of
orthogonal queries to the top five results). We also found that 19.24% of the top ten results of these queries
were covered by orthogonal URLs from calculated orthogonal queries.

8 Orthogonal Query Expansion in the Search Infrastructure

Today’s search engines consist of a complex multi-step infrastructure. We describe how orthogonal query
expansion fits into the framework of current web search.

In Figure 8, we present a flow chart mapping some of the major steps involved. After the user launches a
query, a query classifier is applied to identify queries that can be handled more quickly. For example, at this
step, navigational queries, which aim to find a specific well-known page (such as “youtube”) are identified.
A significant number of queries are navigational, accounting for 20 to 24.5% of queries [13].
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Figure 9: A flow chart of some of the major steps in a search-engine’s infrastructure, showing how orthogonal
query expansion fits within this infrastructure.

The remaining queries require further processing. To determine whether the result set of the original
query will be satisfactory, techniques such as priming are applied, which samples the result set searching for
highly-ranked pages. At this point, other criteria could be used, such as determining whether the result set
addresses multiple interpretations of the given query. If the results are judged to be satisfactory, they are
displayed to the user.

When the results are judged to be unsatisfactory, some mechanism for improving the result set is applied.
In principle, this step can be used to choose among a variety of techniques. Traditional query expansion
techniques can be applied for slight alterations of the result set. When this is judged to be insufficient,
orthogonal query expansion can be used to obtain a more radical change of the result set. Selecting among
methods can be reduced to trying all potential options, or more sophisticated machine learning techniques
can be developed to predict which method is likely to yield better results.

Note that today’s search engines are often able to satisfy a user’s information need. While only minor
improvements remain, they are nevertheless necessary to help satisfy users, and decrease the likelihood that
they will have a disappointing search experience. Orthogonal query expansion is introduced to help reach
this goal.

Once orthogonal queries are obtained, orthogonal results should be integrated with the original result set.
How orthogonal results are integrated also depends on the user interface choices. As discussed in Section 6.0.3,
orthogonal results may be presented on a different panel, or, alternatively, they can be combined with the
original result set. In the latter situation, the new result set can then once again be evaluated, until a
satisfactory set is obtained.

Our emphasis here is on introducing the notion of orthogonal queries, and showing their potential for
improving search. To fully utilize orthogonal query expansion, the technique would need to be integrated
into the infrastructure of a real search engine, and engineering optimization applied for optimal performance
within the specific infrastructure.

9 Conclusions

A search engine’s ability to satisfy a user’s informational need depends on the quality of the user’s query.
Of course, given a query that is sufficiently poorly formulated, it becomes impossible to satisfy the user’s
informational need. At the other extreme are well formulated queries that require no expansion. Traditional
query expansion applies when a query requires minor modification, namely, the user provides a reasonable
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query, but the specific keywords chosen require some adjustment. Orthogonal query expansion enlarges the
range of queries that can be handled by a search engine, applying when the original query relates to the
user’s need, but accessing a desirable page requires radically different keywords.

By providing relevant information that relies on entirely different keywords, we potentially enable users to
reach information that was unavailable to them with their previous state of knowledge. The unexpected yet
relevant nature of some of the suggested orthogonal expansions gives the impression of intelligence without
requiring the complex understanding that many such systems entail.

We have introduced the notion of orthogonal results and have shown how they can be used to improve
user satisfaction. Integrating orthogonal results into a real search engine’s infrastructure would allow for
further investigation of the potential of orthogonal query expansion.
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