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Abstract—Despite the many proposals for data center network
(DCN) architectures, designing a DCN remains challenging. DCN
design is especially difficult when expanding an existing network,
because traditional DCN design places strict constraints on the
topology (e.g., a fat-tree). Recent advances in routing protocols
allow data center servers to fully utilize arbitrary networks,
so there is no need to require restricted, regular topologies in
the data center. Therefore, we propose a data center network
design framework, REWIRE, that designs networks using a local
search-based algorithm. Our algorithm finds a network with
maximal bisection bandwidth and minimal end-to-end latency
while meeting user-defined constraints and accurately modeling
the predicted cost of the network. We evaluate REWIRE on a
wide range of inputs and find that it significantly outperforms
previous solutions—its network designs have up to 100–500%
more bisection bandwidth and less end-to-end network latency
than best-practice data center networks.

I. INTRODUCTION

Organizations have deployed a considerable amount of data
center infrastructure in recent years, and much of this has
been from the expansion and upgrading of existing facilities.
For example, a recent survey found that nearly 2/3s of data
center operators in the U.S. have added data center capacity
in the past 12–24 months and 36% plan on adding capacity
in 2011 [17]. Most existing DCNs are small- to medium-
sized1 and use a vendor-defined network architecture. These
architectures, such as Cisco’s [11], arrange the topology as
a 1+1 redundant tree. Doing so results in underprovisioned
networks, for example, Microsoft researchers [20] found links
as much as 1:240 oversubscribed in their data centers. Such
heavily oversubscribed networks constrain server utilization
because they limit agility—the ability to assign any server to
any service—and they lack sufficient bisection bandwidth for
modern distributed applications such as MapReduce, Dryad
[30], partition-aggregate applications [3], and scientific com-
puting.

Despite this, operators have little guidance when planning
and executing a data center expansion or upgrade. Designing a
new or updated network is a challenging optimization problem
that needs to optimize multiple objectives while meeting many

175% of survey respondents in the US have data centers with
power load of less than 2.0 MW [17], which implies they run fewer
than 4000 servers if each server draws 500 W (including the power
to cool it).

constraints. Most physical data centers designs are unique,
so expansions and upgrades must be custom designed for
each data center (see, e.g., industry white papers [51]). The
optimization challenge is to maximize network performance
(which includes bisection bandwidth, end-to-end latency and
reliability) while minimizing costs and satisfying a large
number of constraints.

We propose REWIRE, an algorithm to design new, upgraded
and expanded DCNs. Unlike previous solutions, REWIRE
does not place strict restrictions on the space of topologies
considered. Instead, it maximizes bisection bandwidth and
minimizes end-to-end latency of its network designs by search-
ing the space of all networks that are feasible under a user-
specified data center model.

In particular, our main contributions are:

1) We propose a model to characterize the data center
network design problem.

2) We introduce a data center design algorithm REWIRE
that designs greenfield, upgraded or expanded networks
for a user-specified data center model using local search.

3) We evaluate REWIRE by comparing it to several other
methods of constructing data center networks.

To find an optimized network, REWIRE uses a local search,
so it evaluates many candidate network designs. However,
computing the performance of a network involves determining
its bisection bandwidth. We are not aware of any previous
polynomial-time algorithm to compute the bisection band-
width of an arbitrary network; however, we show that it can
be found by solving a linear program (LP) given by Lakshman
et al. to find an optimal oblivious, or static, routing. Unfortu-
nately, this LP has O(n4) variables and constraints, where n
is the number of switches in the network, so it is expensive
to find even for small networks. To speed this process, we
implement an (1+ε)-approximation algorithm to compute this
LP [36]. We further speed the run-time of this approxima-
tion algorithm implementing its bottleneck operation—an all-
pairs shortest-path computation—on the GPU using NVIDIA’s
CUDA framework [42]. Our implementation is 2–23x faster
than a high-performance CPU implementation. Additionally,
we utilize a heuristic based on the spectral gap of a graph,
which is the difference between the smallest two eigenvalues
of a graph’s adjacency matrix. We find that the spectral gap of
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a graph is a useful heuristic for candidate selection, especially
when designing greenfield (newly constructed) DCNs.

The closest related work to REWIRE is LEGUP [14],
another framework to design DCN upgrades and expansions.
However, their approach imposes a heterogeneous Clos topol-
ogy on the updated network, and also requires a Clos network
as input. We seek a general solution—one that accepts any
network as input and returns arbitrary topologies.

We find that moving to an arbitrary DCN topology has
significant performance benefits. When designing greenfield
(i.e., new) data center networks, REWIRE’s networks have
at least 500% bisection bandwidth than a fat-tree constructed
with the same budget. When upgrading or expanding an exist-
ing network, REWIRE achieves similar performance gains and
beats a greedy algorithm as well. Moving to an arbitrary DCN
topology does create operational and management concerns
since most DCN architectures are topology-dependant. We
address these issues in Sec. V.

II. DEFINING THE PROBLEM

Designing a data center network is a major undertaking.
The solution space is massive due to the huge number of
variables and an ideal network maximizes many objectives
simultaneously. Our goal is to automate the task of designing
the best network possible given a user’s budget and a model
of their data center. We primarily target small- to mid-
sized data centers because (1) it is expensive for small data
center operators to hire consultants to re-design their network
(whereas large data center operators may be able to perform
this task in-house) and (2) most data centers have fewer than
4000 servers [17]. Ideally, a user of our system need only hire
staff to re-wire the DCN according to the system’s output.
In the remainder of this section, we describe the data center
environment and state our assumptions.

A. Network design and assumptions

We now describe DCN workloads and their impact on
topology design.

Workload assumptions: from available DCN measurement
studies [5], [31], we know that DCN workloads exhibit a
high degree of variance, and therefore must be provisioned
accordingly. In a 24 hour time period, there can be an order of
magnitude difference between the peak and minimum load in
the DCN [27]. The network needs enough capacity to account
for this daily fluctuation, and it should account for future
demand. DCN traffic is also unpredictable over short periods.
Studies indicate that DCNs exhibit highly variable traffic [31],
[6], [20], [5], that is, the traffic matrix (TM) in a DCN shifts
frequently and its overall volume (i.e., the sum of its entries)
changes dramatically in short periods.

Because of the variability in DCN traffic, we assume that an
ideal DCN can feasibly route all hose traffic matrices, which
are the traffic matrices where a node i sends or receives at
most r(i) traffic at once. Typically r(i) is equal to the sum of
NIC uplinks at i. We denote the polyhedron of hose TMs valid
for nodes 1, . . . , n by T (r(1), . . . , r(n)). The switching fabric

is never a bottleneck in a network that can feasibly route all
hose TMs—instead, flows are limited only by contention for
bandwidth at end-host NICs.

Topology design: greenfield data centers are typically built
with a highly regular topology. Most DCNs, especially small-
to medium-sized DCNs, are built following vendor guidelines,
which generally arrange the network as a 3-level, 1+1 redun-
dant tree topology. In this topology, each rack contains 20–80
servers that connect to a top-of-rack (ToR) switch. A typical
ToR switch has 48 1Gbps and up to four 10Gbps ports. These
ToR switches are the leaves of the multi-rooted switching tree.
This tree usually has three levels: the ToR switches connect to
a level of aggregation switches, which connect to a core level
made up of either switches or routers. The core switches are
typically connected to a pair of edge routers which connect
the data center to the internet.

Theoretical topology constructions date back to telephone
switching networks, when the goal was to interconnect cir-
cuits. A variety of topology constructions have been proposed
over the years to interconnect hundreds of thousands of
servers, for example, [12], [14], [4], [47], [34], [1], [52], [23],
[22]. The general theme of work in this area is to scale-out,
that is, these topologies use multiple commodity switches in
place of a single high-end switch.

Cost-effective topology design is important to data center
operation, because providing enough bisection bandwidth is
crucial to reducing the overall cost of operating a data center
because it allows for higher server utilization. Servers account
for over 45–60% of the cost of building a large-scale data
center [21] and server utilization is generally 10–20% with an
average utilization of 30% being very good [24]. Networks
with too little bisection bandwidth cannot allocate servers to
jobs timely enough to improve utilization further [20].

B. Switches, links and end-hosts

Most data centers today run on commodity off the shelf
(COTS) servers and switches. Using COTS equipment reduces
costs, so we assume the network will be composed of COTS
switches. There are many such switches to choose from, each
with different features. As such, we allow users to define the
specifications of switches available to add to their data center.
For example, we enable the user to input details about line
cards available for a particular switch type. Also, users can
specify a processing delay for each switch, which indicates
the amount of time it takes the switch to forward a packet
when it has no other load.

Links can be optical or copper and can use incompatible
connector types. Currently, we do not model the difference in
link medium or connectors; instead, we assume that all 1Gb
ports use the same connector and all 10Gb ports use the same
connector. Copper links also pose a problem because they are
limited to runs of less than 5–10m when operating at 10Gbps
[39]. It would not be difficult to check for link medium and
connector types; however, we do not do so currently.

We assume that the data center operator has full control over
end-hosts. That is, they can install custom multipath routing
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protocols, like Multipath TCP [46] and SPAIN [38], on all
end-hosts. This assumption does not hold in cloud settings,
where customers can run their own OS installations. Here, the
cloud provider could release a set of OS images that have the
required end-host modifications installed.

C. Physical design and constraints

There are many physical restrictions placed on the design
of a DCN. We now discuss the constraints that make adding
equipment to a data center challenging.

Most data centers house equipment in large metal racks,
and a standard rack is 0.6 m wide, 2 m tall by 1 m deep
and is partitioned into 42 rack units (denoted by U). A typical
server occupies 1–2U and switches occupy 1U for a top-of-
rack switch up to 21U for large aggregation and core switches.
We assume that all equipment must be placed in a rack, and
that the racks are positioned alongside each other so they form
rows.

Data center power delivery systems are complex and expen-
sive. Power to servers is deliverd by power distribution units
(PDUs), which then power servers and network equipment. A
typical PDU handles 75–225 kW of load [27]. We model a
data center’s power system by its PDUs, that is, if any PDU
has enough capacity to power a device, then it can be added
to the data center floor.

Data center equipment creates a significant amount of heat,
which must be dissipated by a cooling system. For every watt
spent powering IT gear, it takes 1 watt to cool it in the average
data center [19]. Therefore, cooling is a constrained resource,
so we assume that each rack has a limit on the amount of heat
its contents may generate.

Cabling also has physical limitations because cables adds
weight to and take up space in plenums, which are trays
that carry cables between rows. Modeling these limitations
is challenging as Mudigonda et al. describe [39]. At this
point, we do not model physical layout of cabling; however,
REWIRE’s design supports adding these constraints in the
future.

D. DCN performance: what’s important to applications?

The two most important characteristics of DCN perfor-
mance are high bisection bandwidth and low latency. Bisection
bandwidth is especially important, because when the network
has enough bisection bandwidth, all servers can fully utilize
their NICs no matter where they are sending data to or
what other servers on the network are doing. This is ideal—
end-hosts are the limiting factor in such a network, not the
switching fabric. Spare bisection bandwidth also keeps end-
to-end latencies across the network low, because links will
be lightly loaded, and hence queuing delays will be minimal.
Minimal latency is important for interactive data center jobs,
such as search and other partition-aggregate jobs, where up
to hundreds of worker servers perform jobs for a service.
The results of these jobs are aggregated by a master server.
Latency is critical for this type of service because responses

from workers that do not respond by a deadline (usually 10–
100ms) are not included in the final results, lowering result
quality and potentially reducing revenue [3].

E. Cost model

Estimating the cost of building a DCN design is very
difficult. There are two major obstacles to accurately pricing
a DCN design: (1) it is hard to get prices of switches—
street prices are often a fraction of retail prices and can be
difficult to obtain. Vendors offer discounts for bulk purchases,
so the price of a switch often decreases as more of its type
are purchased. And, (2) it is difficult to estimate the cost of
cabling a DCN. Cables that are too long incur installation
costs because the contractor has to hide cabling. Bundling
cables together in long runs also reduces the cost of wiring
long-distance links [45], [39], though we are not aware of any
algorithms to compute the cost of such a wiring. Finally, it
may be more expensive to wire irregular topologies compared
to regular topologies; however, we do not have any data on
this, so we bill per link, regardless of the topology structure.

For tractability reasons, we assume fixed prices for switches.
That is, the switch prices specified by the user should be an
estimate of how much the switch will cost even if just a single
switch of its type is purchased. For cabling, we divide cable
lengths into different categories (e.g., short, medium and long)
and charge for a cable based on its length category.

III. REWIRE ALGORITHM

We now describe the operation of REWIRE, starting by
formally stating the problem it solves. It performs local search,
so it starts with a candidate solution, which is a network
design that does not violate any constraints. It explores the
search space of all candidate solutions by moving from one
candidate to another by modifying local properties of the
solution until a near-optimal solution is found. This local
search only optimizes the network’s wiring—it does not add
switches to the network. Therefore, we end this section by
describing how to extend our approach to add new switches
to the network as well.

A. Optimization problem formulation

REWIRE’s goal is to find a network with maximal perfor-
mance, subject to numerous user-specified constraints.

1) Optimization objective: REWIRE designs networks to
jointly maximize bisection bandwidth while minimizing the
worst-case latency between ToR switches, that is, given the
fixed scalars α and β, our objective function is:

maximize : α · bw(G)− β · latency(G)

where bw(G) and latency(G) are defined as follows:
• Bisection bandwidth: denoted bw(G), depends on the

rate, r(i), of a node i, which we define as the peak
amount of traffic v can initiate or receive at once. For
example, a server v with a 1Gbps NIC has r(v) =1Gbps.
For simplification, we aggregate the bandwidth from all
servers attached to a ToR switch s at that switch, that is,
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we let the rate r(i) of a ToR switch i be the sum of the
rates of servers directly connected to the switch (e.g., a
ToR switch connected to 40 servers, each with a 1Gbps
NIC, has a rate of 40Gbps). The bisection bandwidth of
a network G is then:

bw(G) = min
S⊆V

∑
e∈δ(S) w(e)

min{
∑
i∈S r(v),

∑
i∈S r(v)}

where δ(S) is the set of edges with one endpoint in S
and another in S = V − S.

• Worst-case latency: is defined as the worst-case shortest-
path latency between any pair of ToR switches in the
network, where the latency of a path is the sum of
queuing, processing, and transmission delays of switches
on the path. We assume that the queuing delay at any port
in the network is constant because we have no knowledge
of network congestion while designing the network.

Both of these metrics have been considered in the design of
DCN topologies, e.g., [20], [39]. However, as far as we know,
no previous algorithms could compute the bisection bandwidth
of an arbitrary network in polynomial-time. Therefore, we
propose such an algorithm by combining previous theoretical
results in Sec. III-B1.

Previous work has modeled latency by the worst-case hop-
count in the network—this is the network’s diameter. Our
definition of latency takes into account the speed of links
on the path and the processing time at switches. Taking
into account processing time at switches is important because
unoptimized switches can impose an order of magnitude more
processing delay than switches optimized to minimize latency.
Our definition of network latency is more difficult to compute
than a definition based on hop-count, because the worst-
case hop-count can be found in linear-time using breadth-
first search, whereas our definition requires computing the full
shortest-path tree of a network.

2) User-specified constraints: REWIRE incorporates a
wide range of constraints into its optimization procedure.
These are provided by the user, and are:
• Budget constraint. This is the maximum amount of cash

the user is willing to spend on the network.
• Existing network topology and specifications. To perform

an upgrade or expansion, we need the existing topology.
If designing a greenfield network, then REWIRE needs
a set of ToR switches given as the existing network
because our current design does not attach servers to
ToR switches. This input needs to include specifications
for all network devices. For switches this includes their
neighbors in the network and relevant details such as the
number of free ports of each link rate. Our implemen-
tation does not support different link types (e.g., copper
vs. optical links); however, it would be easy to extend it
so that links include the type of connectors on the ends.

• Available switch prices and specifications (optional). If
one would like to add new switches to the network,
REWIRE needs as input the prices and specifications of
a few switches available on the market. Specifications

include number and speeds of ports, peak power con-
sumption, thermal output and the number of rack slots
the switch occupies.

• Link prices and specifications. We need a price estimate
for labor and parts for each link length category.

• Data center model (optional). Consists of the following:
– Physical layout of racks;
– Description of each rack’s contents (e.g. switches,

servers, PDUs, number of free slots);
– Per rack heat constraints; and/or
– Per rack power constraints.

The data center model places constraints on individual
racks. REWIRE uses these constraints to, for example,
restrict the placement of new switches to racks with
enough free slots.

• Reliability requirements (optional). This places a con-
straint on the number of links in the min-cut of the
network. That is, this is the minimum number of link
removals necessary to partition the network into two
connected components.

B. Local Search Approach

REWIRE uses simulated annealing (SA) [35] to search
through candidate solutions. Our algorithm contains:

1) A finite space S of all network configurations that obey
the hose, port, and budget constraints.

2) A constant I representing the number of inner Metropo-
lis iterations to be preformed (explained below). As
I → ∞, SA finds a guaranteed optimal solution, but
the algorithm runtime is unfeasible for very large values
of I [7]. We set I to 1000.

3) A real valued energy function E(s) defined ∀s ∈ S;
E(s) = −α ∗ bw(s) + β ∗ latency(s).

4) A set N(s) defined ∀s ∈ S—the set of all connected
graphs with one link added or removed from s.

5) An initial temperature TSTART found using [35].
6) A decreasing function T (k) : Z+ → R called the

cooling schedule, where T (k) is the temperature dur-
ing the kth set of I Metropolis iterations. We chose
T (k) = TSTART ∗ 0.93k, but note there is extensive
theory behind choosing cooling schedules [41], [53].

7) An initial state s0 ∈ S—the input network.
We first note if s′ is a permutation of s found by adding a

link to s, E(s′) ≤ E(s), but if s′ is a permutation found by
subtracting a link, E(s′) ≥ E(s).

The goal of SA is to find the network that minimizes
E. We perform I Metropolis iterations K times as follows,
starting at TSTART . At each iteration, we choose random
i, j ∈ N , R ∈ {0, 1} to generate a state s′ ∈ N(s). If
R = 1, we attempt to generate s′ by adding a 10Gbps link
between i, j in s subject to the port and budget constraints. If
this addition fails, we attempt to add a 1Gbps link. If either
addition is successful, the move is accepted and otherwise
rejected. If R = 0, we generate s′ by attempting to subtract
a link of random speed between i, j (if one exists), subject
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to the connectivity constraint. If the subtract fails we reject
the move. Otherwise, if E(s′) = E(s), the move is accepted
unconditionally. If E(s′) > E(s) the move is accepted with
probability e

−(E(s′)−E(s)
T , known as the Metropolis criterion.

SA avoids getting caught in local maxima by sometimes taking
suboptimal moves. The Metropolis criterion controls this risk
as a function of temperature: the limit of the criterion is 1 as
t → ∞ and 0 as T → 0. When T is high bad moves are
likely to be accepted, but when T is close to 0, bad moves are
accepted with very low probability.

After I Metropolis iterations are preformed, the temperature
is decreased according to the cooling schedule. The process is
repeated K times, where K is the smallest integer such that
T (k) < .05.

1) Evaluating a candidate solution: To compute the per-
formance of a candidate solution, we must compute bisection
bandwidth and the diameter of the network.

Bisection bandwidth: recall that bisection bandwidth is
defined on the minimal cut of all cuts of a graph. This is too
expensive to compute directly on arbitrary graphs because a
graph can have exponentially many cuts. However, we can
compute the bisection bandwidth of an arbitrary graph by
computing a two-phase routing for the network.

Two-phase routing, proposed by Lakshman et al. [36], is
oblivious, meaning that it finds a static routing that minimizes
the max link utilization for any traffic matrix in a polyhedron
of traffic matrices. Two-phase routing divides routing into two
phases. During phase one, each node forwards an αi fraction
of its ingress traffic to node i. During stage two, nodes forward
traffic they received during phase one on to its final destination.
We say that α1, . . . , αn are the load-balancing parameters of
a graph G = (V,E). The optimal values of the αi values
depends on G and the set of hose TMs T (r(1), . . . , r(n)) for
V = 1, . . . , n.

Before describing how to compute a two-phase routing, we
show that finding the load-balancing parameters of a network
gives use the network’s bisection bandwidth. We denote a cut
of G by (S, S), where S and S are connected components of
G and S = V − S. Let c(S, S) be the capacity of all edges
with one endpoint in S and the other in S. The following
theorem shows the desired result—that we can compute the
bisection bandwidth of a graph from α1, . . . , αn.

Theorem 1 ( [16] ): A network G = (V,E) with node
rates r(1), . . . , r(n) and load balancing parameters α1, . . . , αn
can feasibly route all hose TMs T (r(1), . . . , r(n)) using multi-
path VLB routing if and only if, for all cuts (S, S) of G,

c(S, S) ≥
∑
i∈S

αi ·
∑
i∈S

r(i) +
∑
i∈S

αi ·
∑
i∈S

r(i)

where S = V − S.
This theorem shows that a multi-commodity flow version

of the famous max-flow, min-cut theorem holds for networks
using two-phase routing under the hose model.

We now show how compute α1, . . . , αn using the results of
Lakshman et al., who proved that the αi values can be found

with linear programming (LP) [36]. Before presenting their
LP, we need to introduce some notation. Let f be a network
flow in the optimization sense. We use fk to denote flow k
where s(k) and is the origin and t(k) is the destination of the
flow. Then let fk(i, j) be the amount of flow placed on edge
(i, j) by flow fk. We denote the outgoing edges from node
i by δ+(i) its incoming edges by δ−(i). The capacity of an
edge (i, j) is denoted by c(i, j).
Optimal two-phase routing LP:

min µ

Subject to:∑
w∈δ−(y)

fk(w, y) =
∑

z∈δ+(y)

fk(y, z) ∀y 6= s(k), t(k) ∀k

(1)
K∑
k=1

fk(i, j) ≤ µ · c(i, j) (2)∑
j∈δ+(i)

fk(i, j) = αs(k)r(i) + αt(k)r(i) (3)

i = s(k),∀k∑
i

αi = 1 (4)

This LP can be computed in polynomial-time using an LP
solver; however, it is computationally expensive because it has
O(n4) constraints and O(n4) variables. In our initial testing,
we found that computing this LP for a network with 200 nodes
and 400 (directed) edges needs more than 22GB of memory
using IBM’s CPLEX solver [29]. Even with only 50 node
networks, this LP takes up to several seconds to compute.
REWIRE’s local search approach needs to evaluate thousands
of candidate solutions; therefore, this LP is not fast enough
for our purposes.

To solve these issues, we implemented an approximation
algorithm by Lakshman et al. [36] to compute α1, . . . , αn in
polynomial-time. This algorithm finds a solution guaranteed
to be within an (1+ε) factor of optimal. The algorithm works
by augmenting a node i’s value of αi iteratively. At each
iteration, the algorithm computes a weight w(e) for each edge
e ∈ E and then pushes flow to i along the shortest-paths
to i based on these weights. The bottleneck operation in this
algorithm is computing the shortest-path from each node to
each other node given the weights w(e). This operation needs
to perform an all-pairs shortest-path (APSP) computation. The
best running time we are aware of for an APSP algorithm
is O(n3) (deterministic) [13] and O(n2) (probabilistic) [44].
Because this operation is the bottleneck, we implemented an
APSP solver on a graphics processing unit (GPU). Used this
way, the GPU is a powerful, inexpensive co-processor with
hundreds of cores. Details of our GPU implementation of
APSP are found in Appendix A.

Latency: we find latency(G) by computing APSP on the
network, where each edge weight represents the expected
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time to forward packets on that link. To estimate this, we
set the weight w(i, j) of an edge (i, j) to be the sum of
queuing delays, forwarding time and processing delay at
(i, j)’s endpoints. The processing delay of each switch is
specified by the user. We assume that the forwarding time is
1500 Bytes divided by the link rate (1 or 10Gbps) and that the
queuing delays are constant for all ports. Our assumption of
uniform queuing delays is not realistic but necessary; since
we assume no knowledge of the network load, we cannot
accurately determine queuing delays.

Therefore, we compute the diameter of a candidate solution
by solving APSPs with these link weights. As discussed above,
this is a computationally expensive process, so we use our
GPU-based APSP solver (described in Appendix A) for this
computation.

2) Candidate selection: Our simulated annealing approach
is guaranteed to find a globally optimal solution, if let run
for long enough. However, given the huge search space we
explore, this could take too long, especially when many links
need to be added to a network. Therefore, we added the
ability to seed REWIRE’s simulated annealing procedure with
a candidate solution. To find a seed candidate, we use a
heuristic based on the spectral cap of a graph.

Before we define the spectral gap of a graph, we need to
introduce a few terms. The Laplacian of G = (V,E) is the
matrix:

L(i, j) =


1 if i = j and d(i) 6= 0,
− 1√

d(i)d(j)
if i and j are adjacent,

0 otherwise.
The eigenvalues of L are said to the be spectrum of G, and

we denote them by λ0 ≤ · · · ≤ λn−1. It can be shown that
λ0 = 0 (see, e.g., [10] for a proof). We say that λ1 is the
spectral gap of G.

Intuitively, a graph with a “large” spectral gap will be
regular (we omit a precise definition of large here—see any
text book for details [10]), and the lengths of all shortest-paths
betweeen node pairs are expected to be similar. Spectral gap
has been used as a metric in network design before (e.g., [18],
[49]) due to the nice properties of graphs with large spectral
gaps. As an example, the following lemma shows that the
spectral gap correlates with the diameter of a graph.

Lemma 1: Let G be a graph with diamter D ≥ 4, and let
K denote the maximum degree of any vertex of G. Then

λ1 ≤ 1− 2
√
k − 1
k

(1− 2
D

) +
2
D

That is, a graph with a large spectral gap has a low diameter.
Therefore, we modified REWIRE so that it optionally

performs a two stage simulated annealing procedure. In stage
1, its objective function is to maximize the spectral gap. The
result from stage 1 is used to seed stage 2, where its objective
function is to maximize bisection bandwidth and minimize
latency. This way, stage 2 starts with a good solution and can
converge quicker. When this two stage procedure is used, we
say REWIRE is in hotstart mode.

ToR switches
Hose uplink rate Uplinks (1, 10 Gbps) No. switches

28 8, 2 5
40 8, 4 8
8 8, 0 4
2 2, 0 2

Aggregation switches
Line cards Line card slots No. switches

3x 24 1Gbps, 1x 2 10Gbps 6 1
4x 4 10Gbps 6 5

TABLE I: Existing switches in the SCS data center.

Note that a network with a maximal spectral gap of all
candidate solutions does not necessarily mean that the network
will also have high bisection bandwidth. The spectral gap
metric does not take the hose constraints into account, so it
is not directly optimizing for bisection bandwidth. Instead,
it creates networks that are well-connected, which tend to
have high bisection bandwidth (see, e.g., [16] for details), but
that is not necessarily the case, especially for heterogeneous
networks.

C. Adding switches to the network

REWIRE’s simulated annealing procedure does not consider
adding new switches to the network—it only optimizes the
wiring of a given set of switches. To find network designs with
new switches, we run REWIRE on the input network plus a
set of new switches that are not attached to any other switch.
REWIRE attaches the new switches to the existing network
randomly, and then begins its simulated annealing procedure.

While simple, this approach does not scale well. If a user
has input specifications for k new switch types, then we need
to run REWIRE k! times to consider all possible combinations
of switch types. We believe this could be improved by applying
heuristics to select a set of new switches; however, we leave
investigation of such heuristics to future work.

IV. EVALUATION

We now present our evaluation of REWIRE. First, we
describe the inputs we use in our experiments, and then we
the approaches we compare REWIRE to. Finally, we present
our results using REWIRE to design greenfield, upgraded and
expanded networks.

A. Inputs

1) Existing networks: To evaluate REWIRE’s ability to
design upgrades and expansions of existing networks, we use
the following network as inputs to REWIRE:
• The University of Waterloo’s School of Computer Sci-

ence machine room network (denoted by SCS network),
which has 19 ToR, 2 aggregation and 2 core routers. Each
ToR connects to a single aggregation switch with a 1 or
10Gbps link and both aggregation switches connect to
both core switches with 10Gbps links. The network is
composed of a heterogeneous set of switches described
in Table I.
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To predict the cost of a network design, REWIRE needs the
distance between each ToR switch pair. We do not have this
data for the SCS network. Therefore, we label each switch with
a unique label from 1, . . . , n. The distance between switches
i and j is then |i − j|. The distance from i to the nearest
25% of switches is categorized as “short”, the distance to the
next 50% is “medium” and then distance to the final 25% is
“long”. We use these distance categories to estimate the price
of adding a link between two switches.

2) Switches and cabling: We separate the costs of adding a
cable into the cost of the cable itself and the cost to install it.
Mudigonda et al. report [39] that list prices for 10Gb cables
are between $45–95 for 1m cables and $100–400 for 10m
cables depending on the type of cable (copper or optical and
its connector types). Optical cables are more expensive than
copper cables, but they are available in longer lengths. To
obtain a reasonable estimate of cabling costs without creating
too much complexity, we divide cable runs into three groups:
short, medium and long lengths. The costs we use are shown
in Table II. We also charge an installation fee for each length
group (also shown in the table). Whenever an existing cable
is moved, we charge the appropriate installation fee given the
cable’s length.

Rate Short ($) Medium ($) Long ($)
Cable costs

1 Gbps 5 10 20
10 Gbps 50 100 200

Installation and re-wiring costs
10 20 50

TABLE II: Prices of cables and the cost to install or move cables.

Table III shows the costs we assume to buy various switches.

Ports Watts Price ($)
24 1Gbps 100 250
48 1Gbps 150 1,500

48 1Gbps, 4 10Gbps 235 5,000
24 10Gbps 300 6,000
48 10Gbps 600 10,000

TABLE III: Switches used as input in our evaluation. Prices are
representative of street prices and power draw estimates are based
on a typical switch of the type according to manufacturers’ estimates.

B. Comparison approaches

We compare REWIRE against the following DCN design
solutions.

Fat-tree: was proposed by Leiserson [37] and is a k-
ary multi-rooted tree. We assume a 3-level fat-tree topology
and that all switches in the network must be homogeneous.
Building an optimal fat-tree for a set of servers given switch
specifications is NP-hard [39], so we upper bound the perfor-
mance that a fat-tree network with a specified budget could
achieve. To do this, compute the number of ports the fat-tree
needs, and bound the cost of switches by the min-cost port of
a given rate (e.g., a 1Gb port costs at least $250/24 and a 10Gb
port costs at least $10K/48). To estimate the cost of cabling,
we assume that server to ToR links are free, and that ToR to

aggregation switches are medium length and aggregation to
core links are long length.

Greedy algorithm: we implemented a greedy heuristic to
determine if REWIRE’s more sophisticated local search ap-
proach is necessary. The algorithm iterates over all pairs of
switches as follows. First, it computes the change in agility
and latency that would result from adding a 1Gbps and 10Gbps
between every pair of switches and stores the result. At the end
of each iteration, the algorithm adds the link that increases the
network’s performance the most. If no link changes the agility
or latency during an iteration then a random link is added. This
iteration continues until the budget is exhausted or no links can
be added because all ports are full. Note that this algorithm
does not rewire the initial input—it only adds links to the
network until the budget is exhausted. This algorithm performs
O(n2) bisection bandwidth computations at each iteration, and
hence does not scale to graphs with more than ∼40 nodes.
Therefore, we do not compare against the greedy algorithm
for any network with more than 40 nodes.

Random graph: Singla et al. proposed a DCN architecture
based on random graph topologies [48]. Random graphs have
nice connectivity properties, and they showed that it’s less
expensive to build a random graph than a fat-tree much of the
time. To estimate the performance a random graph can achieve
with a specified budget, we determine the expect radix of each
ToR switch given number of links one can install with the
budget. Then, we compute the expected bisection bandwidth
and diameter of the network following Singla et al.’s approach.

REWIRE can operate in several different modes. These are:

• Spectral gap mode: sets REWIRE to maximize the spec-
tral gap of the solution as described in Sec. III-B2.

• CPLEX or approximation: sets the method REWIRE uses
to compute the bisection bandwidth of a network. In
CPLEX mode, REWIRE uses IBM’s CPLEX solver [29]
to compute the bisection bandwidth exactly; whereas in
approximation mode, REWIRE finds the bisection band-
width of a candidate solution using the FPTAS described
in Sec. III-B1.

• Hotstart: this mode finds a candidate solution in spectral
gap mode, which is used as a seed solution to stage 2,
where the objective function is changed to our normal
definition of performance. See Sec. III-B2 for full details.

C. Greenfield networks

We begin by evaluating the effectiveness of REWIRE at
designing greenfield, i.e., new, DCNs. For this experiment,
the input to REWIRE is a set of ToR switches and we use
REWIRE in approximation mode. Initially, ToR switches are
each attached to servers, but no other switches. The total cost
of the network is the cost of these ToR switches plus the wiring
budget. We experimented with two types of ToR switches.
First, we set all ToR switches have 48 1Gbps ports, where 24
ports attach to servers and the other 24 are left open. Then, we
set all ToR switches to have 48 1Gbps ports and 4 10Gbps;
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Fig. 1: Results of designing greenfield networks using a fat-tree,
random graph and REWIRE for two ToR switch types. The results on
the left used ToR switches with 48 1Gbps ports and the results on the
right used ToR switches with 48 1Gbps ports and 4 10Gbps. Missing
bars for the random graph indicate that the network is expected to be
disconnected. A network with bisection bandwidth 1 has full bisection
bandwidth, and a network with latency zero is fully connected.

each ToR switch attaches to 40 servers with 1Gbps ports. For
both experiments, we built networks to connect 3200 servers.

We compare against a fat-tree and a random topology,
each constructed with the same total budget. The results are
shown in Figure 1. In the chart, the bar above zero shows the
bisection bisection bandwidth (higher is better) and the bar
below zero shows the normalized latency (smaller is better).
When latency(G) = 0 for a network G, each node is one hop
away from each other node, and when latency(G) = 1, we
have that G is a path. We do not compare against the greedy
heuristic for these experiments because it is not fast enough
for networks with more than 40 nodes.

We observe that the random network has more bisec-
tion bandwidth than REWIRE’s network when the budget is
$5,000; however, REWIRE’s solution has less latency (this
network has a diameter one hop less than the expected random
network’s). This illustrates the need for REWIRE to output
several solutions, which can then be evaluated by the data
center operators manually.

We also re-ran the REWIRE experiments using its spectral
gap mode. We found that the solutions with a maximal
spectral gap had the same performance as the solutions found
by REWIRE in approximation mode. This implies that the
spectral gap is good metric when designing greenfield data
centers because it seems to maximize bisection bandwidth and
it finds networks with very regular topologies, which would
possibly reduce the cost of wiring the network.

D. Upgrading

We now evaluate REWIRE’s ability to find upgrades to
existing DCNs. To begin, we compared REWIRE to a fat-
tree and our greedy algorithm on the SCS network for several
budgets. The results are shown in Figure 2.

REWIRE significantly outperforms the fat-tree—its net-
works have 120–530% more bisection bandwidth than a fat-
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Fig. 2: Results of upgrading the SCS topology with different budgets
and algorithms.
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Fig. 3: Results of upgrading the SCS topology with different REWIRE
modes and two budgets.

tree constructed with the same budget, and with budgets over
$5K, REWIRE’s network also has a shorter diameter (by 1
hop) than a fat-tree. REWIRE also outperforms the greedy
algorithm for all budgets, though it does perform nearly as
well as REWIRE when the budget is $5K or more. This
indicates that a greedy approach performs very well in some
settings; however, we have generally observed that the greedy
algorithm does not perform well when it has a small budget
or a very constrained input where few ports are open. As an
example, when the budget is $2,500, REWIRE’s network has
350% more bisection bandwidth than the network found by
the greedy algorithm.

Next, we compared the various modes of REWIRE for two
budgets as shown in Figure 3. We observe that the spectral gap
and hotstart modes performs poorly when the budget is $2,500.
This is likely due to the properties of the spectral gap, which
tries to make the network more regular. Because the budget is
not large enough to re-wire the network in this regular fasion,
optimizing the network’s spectral gap creates a candidate
solution with poor bisection bandwidth. This problem does not
arise when the budget is large enough (as in the case when
the budget is $10K), because there is enough money to re-wire
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Fig. 4: Results of iteratively expanding the SCS data center.
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Fig. 5: Results of iteratively expanding a greenfield network.

the network into this regular structure.

E. Expanding

We now examine the performance of the algorithms as we
expand the data center over time by incrementally adding new
servers. We tested two expansion scenarios here.

First, we expanded the SCS data center by adding 160
servers at a time, until we have added a total of 640 servers
to the data center. The results are shown in Figure 4. For
REWIRE and the greedy algorithm, we used ToR switches
with 48 1Gbps and 4 10Gbps ports, so each ToR attaches to
40 servers. For the 1Gb fat-tree, we used ToR switches with 24
1Gbps ports. The budgets shown in the figure are the cabling
budgets given to REWIRE; not the total budget that includes
switches.

We found that REWIRE outperforms the fat-tree and the
greedy algorithm in this scenario. The fat-tree is not able to
improve the bisection bandwidth of the expanded network
beyond the bisection bandwidth of the initial SCS DCN,
whereas both the greedy algorithm and REWIRE do, while
also decreasing the network latency. This scenario shows the
limitations of the greedy algorithm. After four expansion iter-
ations, REWIRE’s network has nearly twice as much bisection
bandwidth as the greedy algorithm’s network.

Next, we expanded a greenfield data center using the two
approaches. In these experiments, we built the initial DCN
with a budget of $40K using REWIRE or a fat-tree with 1
or 10Gb links. This initial data center contained 1600 servers.

Then, we iteratively expanded this data center by adding 4000
servers at a time. For each expansion, the algorithms were
given a total budget of $60K (this includes the cost of ToR
switches). The results are shown in Figure 5.

Again, REWIRE performed better than either fat-tree con-
figuration.

F. Quantitative results

We now evaluate the speedup we gain by utilizing the GPU
to for our all-pairs shortest-path (APSP) solver implementa-
tion. Our approximation algorithm to compute a network’s
bisection bandwidth needs to solve hundreds of APSP prob-
lems, and this computation is the bottleneck in its operation.
Therefore, if we can solve APSP twice as fast, then it will
take nearly half as much time to run REWIRE.

The following table shows the speedup achieved by our
GPU implementation of APSP versus a high-performance
CPU implementation [25] and the naive implementation de-
scribed in [13].

n GPU runtime SPIRAL speedup CLRS speedup
64 0.092 0.211 2 2.66 28

128 0.274 1.5 5 20.31 74
256 0.733 9.83 13 112.8 153
512 3.435 51.6 15 839.63 244
1024 17.988 419 23 6020 334

TABLE IV: Comparison of our GPU implementation on NVIDIA Tesla
C2050 with the CPU running times reported in [25] using the SPIRAL
program generator and our implementation of APSP following the
description in [13]. The reported times for SPIRAL use an auto-tuned
4-way vectorization of the Floyd-Warshall algorithm on Pentium 4.

V. OPERATING AN ARBITRARY DCN

In this paper, we have advocated for the adoption of
non-regular topologies in the data center. Doing so raises
architecture issues. In particular, we need to be able to
provide addressing, routing, load-balancing and cost-effective
management on arbitrary DCN topologies if they are to be of
practical use. We now show how previous work can perform
these functions.

Addressing and routing: have been the focus of much
recent work due to the difficulty of scaling traditional, dis-
tributed control-plane protocols to connect more than a couple
thousand servers. VL2 [20] and PortLand [40] are scalable
L2 networking architectures designed specifically for data
center environments. Both proposals can scale to hundreds of
thousands of end-hosts; however, they only work on networks
with a Clos topology. Protocols such as SEATTLE [33] and
TRILL [50] provide scalable L2 functionality on arbitrary
topologies, but do not provide multipath routing, which is
needed to fully utilize dense networks.

However, we can get scalable L2 networking and multipath
routing by using SPAIN [38]. SPAIN uses commodity switches
and servers. It modifies end-hosts and uses VLANs to partition
the network into path-disjoint subgraphs.

Load-balancing: we assume that a network’s bandwidth
can be fully exploited by the load-balancing mechanism. This
assumption is not valid when using single-path protocols like
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spanning tree; however, near-optimal load-balancing can be
achieved on arbitrary topologies by using Multipath TCP [46]
or SPAIN [38]. Centralized flow controllers like Hedera [2]
and Mahout [15] could also be modified to provide near-
optimal load-balancing.

Multipath TCP exposes multiple end-to-end paths to end-
hosts, and they independently attempt to maximize their
bandwidth by performing adaptive load balancing across these
paths. This approach can achieve 100% utilization on a fat-tree
[46]. Multipath TCP has not yet been evaluated on arbitrary
topologies; however, its performance on regular topologies
indicates it will be able to fully utilize arbitrary topologies
as well.

SPAIN [38] performs reactive load balancing at the end-
hosts over the various VLANs exposed to each end-host. It
has been shown that SPAIN can fully utilize HyperX, FatTree
and BCube topologies. Because it performs well on this range
of regular topologies, we believe it will also perform well on
the topologies REWIRE designs.

Management and configuration: managing an DCN with
an irregular topology may be more costly and require more
expertise than a vendor-specified DCN architecture. In par-
ticular, addressing is more difficult to configure an irregular
topology, because we cannot encode topologic locality in
the logical ID of a switch (typically a switch’s logical ID
is its topology-imposed address or label). However, such a
network can be configured using Chen et al.’s generic and
automatic data center address configuration system (DAC)
[9]. DAC automates the assignment of logical IDs (e.g., IP
addresses or node labels) to network devices. DAC begins with
a network blueprint which specifies the logical ID, and then
automatically learns devices IDs (e.g., MAC addresses). An
interesting benefit of DAC’s design is that it can automatically
identify mis-wirings. This operation is especially useful for us
because wiring an arbitrary topology may be more difficult
than a regular, tree-like topology. We believe DAC can solve
many of the management problems that may arise from the
introduction of irregular topologies in the data center, and we
leave further investigation to future work.

VI. DISCUSSION

The (1 + ε)-approximation algorithm we implemented to
compute the bisection bandwidth of a network is numerically
unstable. At each iteration of its operation, it performs an all-
pairs shortest-path computation. To do this, it needs to com-
pare increasingly minute numbers at each successive iteration.
We found it returns incorrect shortest-paths trees after enough
iterations because these comparisons are made on numbers less
than 10−40. Because of this numerical instability, we could
not run the approximation algorithm on inputs larger than 200
nodes and 200 edges. Nor could we run it with very small
values of ε because the algorithm performs more iterations as
ε decreases.

We believe it would be interesting to incorporate output
topology constraints into REWIRE’s algorithm. This would
allow users to constrain REWIRE’s output to a family of

topology constructions (e.g., Clos, fat-tree, BCube or HyperX).
Doing so would generalize algorithms of Mudigonda et al.
[39], who proposed algorithms to find min-cost constructions
for fat-trees and HyperX networks.

We did not explicitly consider designing upgrades or ex-
pansions that can be executed with minimal disruption to an
existing DCN. However, it is possible to disable REWIRE’s
support for moving existing network links. The greedy algo-
rithm we compared REWIRE against never moves existing
links, so we believe its results are indicative of the results such
a modification to REWIRE would have. Another approach is
to modify the cost constraints (e.g., moving a link costs five
times more than adding a new one) so that rare, significantly
beneficial re-wirings are permissible.

VII. CONCLUSIONS

In this paper, we proposed REWIRE, a framework to design
data center networks. REWIRE uses local search to find a
network that maximizes bisection bandwidth while minimizing
latency and satisfying a large number of user-defined con-
straints. REWIRE’s network design algorithm finds networks
that significantly outperform networks found by other pro-
posals. This optimization-based approach is flexible—it can
design greenfield networks and upgrades or expansions of
existing networks—and effective. For example, REWIRE finds
greenfield networks with over 500% more bisection bandwidth
and less worst-case end-to-end latency than a fat-tree built with
the same budget.

To achieve these results, REWIRE builds arbitrary net-
works, rather than the topology-constrained networks most
existing data center use. REWIRE demonstrates that arbitrary
topologies can boost DCN performance while reducing net-
work equipment expenditure. Traditionally DCN design has
restricted the topology to only a few classes of topologies,
because it is difficult to operate an arbitrary topology in a
high-performance environment. These difficulties have been
mitagated by recent work [38], [9], so it may be time to
move away from highly regular DCN topologies because of
the performance benefits arbitrary topologies offer.

APPENDIX A

In this appendix, we sketch our GPU-based implementation
of a all-pairs shortest-path (APSP) solver. GPUs are powerful
and affordable, though have been traditionally difficult to
program. However, new general purpose GPU (GPGPU) pro-
gramming frameworks such as CUDA and OpenCL [42], [32]
allow programmers to easily use the computational power of
GPUs. Modern GPUs are equipped with hundreds of cores and
are inexpensive; for example, NVIDIA introduced GeForce
GTX 560 Ti in 2011 which has 384 cores offering 1.2 teraflops
of computing power for $250 [43].

CUDA [42] extends the C++ language with parallel primi-
tives and an extensive API for exposing the parallel features
of the GPU. CUDA allows the programmer to group a large
number of threads into thread blocks. A blocks is a group of
single instruction multiple data (SIMD) threads. GPUs exhibit
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a high memory bandwidth, and a high latency per memory
access, though this can usually be compensated by clever
scheduling of memory access requests, and careful reordering
of the program logic so that memory access can be hidden.

We implemented a recursive version of the Floyd-Warshall
algorithm for our APSP function using CUDA [8]. The
algorithm uses generalized matrix multiplication (GEMM) as
an underlying primitive. GEMM exhibits a high degree of
data parallelism and we can significant speedups by exploiting
this attribute. Finally, we perform a parallel reduction to find
the maximal path in the distance matrix. Parallel reduction
is an efficient algorithm for computing associative operators
in parallel. It uses Θ(n) threads to compute a tree of partial
results in parallel. The number of steps is bounded by the
depth of the tree which is Θ(log n) [28], [26].
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