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Abstract. In a proportional contact representation of a planar grapbh vertex
is represented by a simple polygon with area proportionalgeven weight, and
edges are represented by adjacencies between the comé@spgpairs of poly-
gons. In this paper we study proportional contact repregients that use recti-
linear polygons without wasted areas (white space). Irsting, the best known
algorithm for proportional contact representation of a it planar graph uses
12-sided rectilinear polygons and tak@én log n) time. We describe a new al-
gorithm that guarantees 10-sided rectilinear polygongans inO(n) time. We
also describe a linear-time algorithm for proportional te@n representation of
planar 3-trees with 8-sided rectilinear polygons and shuat this optimal, as
there exist planar 3-trees that requires 8-sided polygéinglly, we show that
a maximal outer-planar graph admits a proportional corregmtesentation with
6-sided rectilinear polygons when the outer-boundary iscéangle and with 4
sides otherwise.

1 Introduction

Representing planar graphs esntact graphshas been a subject of study for many
decades. In such a representation, vertices corresporebtoajrical objects, such as
line-segments or polygons, while edges correspond to tvjectsbtouching in some
pre-specified fashion. In this paper, we consisiele contact representatiorts pla-
nar graphs, where vertices are simple polygons, and adj@seare non-trivial side-
contacts between the corresponding polygons. In the waiiglgrsion of the problem,
the goal is to find a contact representatioroivhere the area of the polygon for each
vertex is proportional to the weight of the vertex, which igem in advance. We call
such a representatiornpgoportional contact representatioof (. Such representations
often lead to a more compelling visualization of a planapgréhan usual node-link
representations [4] and have practical applications itogaaphy, VLSI Layout, and
floor-planning. Rectilinear polygons with small number afes (or corners) are of-
ten desirable due to esthetic, practical, and cognitiveirements. In VLSI design
and architectural floor-planning, it is also desirable toimize the unused area in the
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representation. Hence we address the problem of constguatproportional contact
representation of a planar graph with rectilinear polygeith few sides, so that the
representation contains no unused area.

1.1 Reated Work

Contact representations of planar graphs can be dated&8B6 when Koebe showed
that any planar graph has a representation by touchingsiréVhile touching circles
or touching triangles provide point-contact represeatet]j side-contact representations
have also been considered. For example, Gareradr[6] show that 6-sided polygons
are sometimes necessary and always sufficient for sidexcordgpresentation of any
planar graph with convex polygons.

Applications in VLSI or architectural layout design encage the use of rectilinear
polygons in a contact representation that fills a rectanglenis setting it is known that
8 sides are sometimes necessary and always sufficient [71]L1A 2haracterization of
the graphs admitting a more restricted rectangle-reptasen is given by Kozrmihski
and Kinnen [10] and in the dual setting by Ungar [19]. A simitharacterization of
graphs having representations with 6-sided rectilinedygmms is given by Sun and
Sarrafzadeh [17]. Buchsbausghal.[4] give an overview on the state of the art concern-
ing rectangle contact graphs.

In the results summarized above, the vertex weights andgpaBl areas are not
considered. The weighted version of the problem, thairoportional contact repre-
sentationdas applications igartograms or value-by-area maps. Here, the goal is to
redraw an existing geographic map so that a given weighttimmd¢e.g., population)
is represented by the area of each country. Algorithms byKaveld and Speck-
mann [20] and Heilmanmt al. [8] yield representations with rectangular polygons,
but the adjacencies may be disturbed. De Bsrgl. describe an adjacency-preserving
algorithm for proportional contact representation witmatst40 sides for an internally
triangulated plane graph [5]. This was later improved t84 sides [9].

The problem has also been studied in the dual settings, whereeights are as-
signed to the internal faces of a plane graph (instead of ¢htices). All planar cubic
graphs admit such a drawing [18] as do all planar partiak8g12], but not all planar
graphs [14]. Proportional rectilinear drawings with 8egidbolygons can be found for
special classes of planar graphs [13], but this approach mimteextend to general planar
graphs. In a recent paper, Biedl and Velazquez [3] desthniééest general result, with
anO(nlogn) algorithm for proportional representation of cubic tricected graphs
with 12-sided rectilinear polygons. Since the dual of a mmatiplanar graph is a cubic
triconnected graph, this result yields a proportional aohtepresentation of a maximal
planar graph with 12-sided rectilinear polygons.

1.2 Our Contribution

Our main contribution is an improvement from tfén log n) algorithm for 12-sided
rectilinear polygons [3], with a new algorithm based on Sater realizers that runs
in O(n) time and provides a proportional contact representatioa wiximal planar
graph with 10-sided polygons.



We also describe a linear-time algorithm for proportior@ahtecct representations
of planar 3-trees with 8-sided rectilinear polygons andastimt this optimal, as there
exist planar 3-trees that require 8-sided polygons. Rinale show that a maximal
outer-planar graph admits a proportional contact reptasen with 6-sided rectilinear
polygons when the outer-boundary is a rectangle and witbessitherwise.

2 Representationsfor Maximal Planar Graphs

Here we describe the algorithm for 10-sided rectilineaygohs. We construct the pro-
portional representation of a maximally planar graph ussiegnyder realizers [16],
which we review briefly. ASchnyder realizeof a fully triangulated graply’ is a parti-
tion of the interior edges @ into three setd, 7> and75 of edges that can be directed
such that for each interior vertex(1) » has out-degree exactly one in eachief 75
and73, and (2) the counterclockwise order of the edges incidentit entering/y,
leavingTs, enterindls, leavingTy, enteringls, leavingTs.

The first condition implies that eachi, ¢ = 1,2, 3 defines a tree spanning all the
interior vertices and rooted at exactly one exterior vestesh that the edges are directed
towards the root. Schnyder proved that any triangulatengplgraph has such a realizer
and it can be computed ifi(n) time [16].

Theorem 1. Let G = (V, F) be a maximal planar graph and let : V — R* be a
weight function. Then a proportional contact represergati’ with respect tow can
be constructed in linear time such that each vertexsaé represented by a 10-sided
rectilinear polygon in/’, and there is no wasted area.

We prove Theorem 1 by giving a linear-time algorithm to camstsuch a represen-
tation /" of (¢, where each vertex @¥ is represented by a 10-sided rectilinear polygon
with a fixed shape, illustrated in Figure 1. (Some sides ofpiblggon may be degen-
erate.) This polygon can be decomposed into four rectarmgliésd foot, leg, bridge
andbodyof the polygon. The region bound by the parallel horizoriteé$ containing
the top and the bottom of the bridge is thedge-strip and thefoot-stripis defined
analogously.

bridge of /1 ()
bridge | | bridge strip

childreninT;

body

leg

 leg of rightmost child
i in T2 (body of f1 (v)

if none)

children . _chlldren
in Ty

inTs

foot of f5(v)

(footand leg offy () if none)

body of left sibling inT

body of 7. (v) [ foot foot strip

foot of leftmost child inT,
(footof f5(v) if none)

Fig. 1. A 10-sided rectilinear polygon with decomposition into fideg, bridge and body.



Let ¢ = (V, F) be a maximal plane graph with the three outer vertiges, and
vs in counterclockwise order, and let: V — RT be a weight function. We first find
a Schnyder realizer a@f that partitions the interior edges into three rooted tfEed>
and 75 rooted atvy, v andvs, and with all their edges oriented towards the roots of
the trees. We add the external edges v3), (v1, v3) to Ty and(vq, vs) to T, so that
all the edges ofy are partitioned into the three trees. For each vertekG, let f;(v),

i = 1,2, 3 be the parent of in 7;.

Let R be a rectangle with area equal ¥g, .y w(v). We construct a proportional
contact representation ¢f inside R. We start by cutting a rectangle(v;) with area
w(vq) for v4 from the top ofR and cutting a rectangl®(v,) with areaw(v,) for v,
from the left side ofR — P(v1). In the remaining parR’ = R — P(v1) — P(v2) of the
rectangle, we draw the polygons for the other vertices.

The main idea of the algorithm is to draw the polygons suchftraeach vertex of
G, the edgesv, f;(v)) are realized as follows: The top of the bridgeR(fv) is adjacent
to the bottom of the bridge aP(f1(v)), the left of the foot ofP(v) is adjacent to the
right of the body ofP (f2(v)) and the bottom of the body d(v) is adjacent to the top
of the foot of P f5(v)). See also Figure 1. Note that if we ensure those adjacettioéss,
there cannot be any other adjacencies since gtajgmaximal planar, and correctness
follows.

The other crucial idea is that the bridge and foot have sn&djiit and the leg has
very small width, so that they together occupy less areatthamweight ofv. (Ensuring
that their width/heightis no more tham(v) /(W + H) if R’ isaW x H-rectangle will
do.) The bulk of the weight fos is hence in the body af.

Our algorithm visits vertices in depth-first order in theet?g and buildsP(v) par-
tially before and partially after visiting the childrenofin left-to-right order according
to the planar embedding.) Thus the visibdias the following steps:

1. Fix the bridge-strip, foot and leg ét(v);

2. For each child: of » in T} in left-to-right order, call the algorithm recursively for
u,

3. Fix the bridge and the body &%(v);

4. Set the foot strips for children efin 75.

Detailsof Step 4: We explain step 4 first, since it is vital for the other stepsy Aertex

u that is a child ofv in T5 can be shown to come afterin the left-to-right depth-first
search order of ;. To ensure that all these vertices can attach to the rightafidhe
body of P(v) without gaps, we reserve a horizontal strip of small heightlie foot of
P(u) at the right side of the body d?(v). These foot-strips are placed starting at the
bottom of the body ofP(v), all adjacent to each other, and assigned according to the
counter-clockwise order of edges aroundChoosing the strips small enough ensures
that they will all fit along the body. We presume that this @pien has also been applied
when we placeP (v;), so that for every vertex # vy, v2, the foot strip ofv is already
set when we visit.

Details of Step 1: When we visit vertex, the foot-strip of P(v) hence has been set.
The bridge-strip ofP( f1(v)) has also been fixed singg(v) is visited beforer. We fix

the bridge strip ofP(v) with small height just under the bridge-strip 8f f1(v)) so
that the two bridge strips touch each other.



To fix foot and leg ofy, we have two cases. f;(v) is not the left sibling ob in T3,
then the foot extends (in the foot strip ©f until the body of the leftmost child af in
T3, or until the leg off; (v) if there is no such child. The leg then extends upwards until
the bridge strip of. If f5(v) is the left sibling ofv in Ty, then the foot of: vanishes; we
extend the leg o from the bottom of the footstrip far until the bottom of the bridge
strip of v. Note that in either case all parts of neighbours requirethiis drawing have
been placed already.

Detailsof Step 3: To fix the bridge ofP(v), there are again two caseswlhas children
in Ty, then we complete the bridge &f(v) so that it extends from the leg &f(v) to
the rightmost side of any child efin 73 (they all have been drawn already.ylhas no
childrenin7t, then the bridge vanishes and the body ebntains the leg of. Then we
fix the body of P(v) so that it extends from the bottom of the bridge-stridff, (v)) to
the foot-strip of P( fs(v)). This is possible becaugg( f3(v)) always precedesin the
traversal off, and so the foot-strip oP ( f5(v)) has already been fixed. After knowing
exactly the area consumed by foot, leg and bridg® @f), as well as the height of the
body, we can choose the width so that the areB@f) is w(v). (Since the foot, leg and
bridge together consume little area, the width of the boghositive.)

Figure 2(b) illustrates a proportional contact repred@mteof the maximal planar
graph in Figure 2(a) computed with our algorithm. A more dethstep-by-step cor-
rection and details of the proof of correctness is given éappendix.

The linear-time implementation consists of computing anyder realizer of;
[16], and the traversal of treég, together with the local computations of the different

parts of the polygons. O

(b)

Fig. 2. (a) A maximal planar grap&, (b) a proportional contact representatiorCof

So we have now established that 10 sides are sufficient fpoptional contact rep-
resentation with rectilinear polygons. Yeap and Sarrafhd@1] gave an example of a
maximal planar graph, which is also a planar 3-tree, for Whideast 8-sided polygons
are necessary. In very recent work [1] we managed to proue3tealed polygons are
also sufficient. However, in contrast to the 10-gon consitbaa@iven above, the proof
of this result is not constructive, and the representationiae found only via numerical



approximation. So while the construction with 10-gons istheoretically best possi-
ble, it is probably of higher interest for practical setsng

3 Representationsof Planar 3-trees

Here we describe proportional contact representationkobp 3-trees with fewer sides
(8) in each polygon. A8-treeis either a 3-cycle or a graph with a vertexv of degree
three inGG such thaty — v is a 3-tree and the neighbors®ére adjacent. I is planar,
then it is called glanar 3-tree A plane 3-treeis a planar embedding of a planar 3-
tree. It is easy to see that starting with a 3-cycle, any pl&raee can be formed by
recursively inserting a vertex inside a face and adding ge éetween the newly added
vertex and each of the three vertices on the face [2,12].

Using this simple construction, we can create in linear tamepresentation tree
for (7, which is an ordered rooted ternary trée spanning all the internal vertices of
(. The root of T is the first vertex we have to insert into the face of the thneteo
vertices. Adding a new vertex in ¢ will introduce three new faces belonging o
The first vertexw we add in each of these faces will be a childvah T;. The correct
order of Iz can be obtained by adding new vertices according to the eatlotkwise
order of the introduced faces. For any vertegf T, we denote by/,, the set of the
descendants af in 7¢ includingv. Thepredecessorsf v are the neighbors af in G
that are not int/,. Clearly each vertex of ; has exactly three predecessors. We now
have the following lemma.

Lemmal. LetG = (V, E) be aplane 3-tree and let : V — R* be a weight function.
Then a proportional contact representation@fcan be obtained in linear time where
each vertex ofy is represented by an 8-sided rectilinear polygon.

Proof. Let T be the representation tree@f For any vertex of T, let W (v) denote

the summation of the weights assigned to each of the veriicé§. A linear-time

bottom-up traversal df; is sufficient to computé¥’ (v) for each vertex of G. In the

followings, we construct a proportional contact repreagan of - inside any rectangle
R with area equal to the summation of the weights for all théiees of.

Let «, b, ¢ be the three outer vertices 6f in the counterclockwise order. We first
draw the polygons fow, b andc. We cut a rectanglé («) with areaw(a) for a form
the top of R, cut a rectangle’(b) with areaw(b) from the left side ofR — P(a) and
cut an L-shaped stripP(c) of areaw(c) for ¢ from the right side and the bottom of
R — P(a) — P(b), as illustrated in Figure 3(a). We now draw the polygons fa t
vertices inTy inside the rectangl& — P(a) — P(b) — P(c) by a top-down traversal
of T¢;. While we traverse a vertex of T¢;, we recursively draw the polygons for the
vertices ofl, inside a rectangle?, with areaW (v) such thatR, shares two of its
sides with the polygon for one of the predecessorsarid the other two sides with the
polygons for the other two predecessors. Note that thisitondholds for the rectangle
R — P(a) — P(b) — P(c) representing the root &f;. Let v be a vertex off; with
predecessors:, pz, ps and letpgrs be the rectangle with ared (v) whereps, pq
andgrs are part of the boundary of the polygons far p, andps, respectively. From
pgrs, we then cut three rectangléy = t1tors, Ry = pistats and Rz = glgtrtg with
areasW (uq), W(uz) andW (us), respectively, as illustrated in Figure 3(b), where
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Fig. 3. (a)—(b) lllustration for the proof of Lemma 1, (c) a planatr8e (i, and (d) a proportional
contact representation 6.

ug andug are the three children af in T; (some of them might be empty). Then the
8-sided polygon obtained byyrs — Ry — Ry — Rs has areas(v) and has common
boundary with all of the polygons representing its predeces Finally, we recursively
fill out the rectangles?,, B2, Rs by polygons representing the verticesin, , U,,, and
U,,, respectively. Clearly the polygon representing eactexerpf (G can be computed
in constant time. Thus the time complexity for constructing representation @ is
linear. O

Figure 3(d) illustrates a proportional contact repreg@meof the planar 3-tree in
Figure 3(c) computed by the algorithm described above. Tgarishmic upper bound
of 8 sides per polygon is also matched with the correspontiiwgr bound with a
planar 3-tree for which at least 8-sided polygons are nacggs a proportional contact
representation with rectilinear polygons [21]. We thuséhtie following result.

Theorem 2. Polygons with 8 sides are always sufficient and sometimesseary for
proportional contact representations of planar 3-treeshwectilinear polygons.

4 Representationsfor Maximal Outer-planar Graphs

Here we describe proportional contact representationsasimmal outer-planar graphs
with even fewer sides (6 and 4) in each polygon.@uter-planar graphs a graph that
has arouter-planar embedding.e., a planar embedding with every vertex in the outer
face. An outer-planar graph to which no edges can be addéobwiit/iolating outer-
planarity is anaximal outer-planar grapHt is easy to see that each internal face in an
outer-planar embedding of a maximal outer-planar graphriamgle, and for > 3 the
outer-face is a simple cycle containing all vertices. We giile a linear-time algorithm

to construct a proportional contact representation of amabouter-planar graph with
rectangles. Before that, we need the following definitions.

Let I be a contact representation using rectangles for vertimésa(th the outside
not necessarily a rectangle). LBtbe the bounding box of'. We say that a vertex
occupies the topf a representatioi’ if there exists a horizontal liné such that the
rectangle representingis exactly the intersection @® with the upper half-space df
In other words, the rectangle ofcontains all of the top end of the bounding boxi/af
Similarly we define that a vertexoccupies the righof .

Lemma2. Let G be a maximal outer-planar graph, and Iét, ¢) be an edge on the
outer-face, witls beforet in clockwise order. Then a proportional contact-represeiun
1" of G with rectangles can be computed in linear time such thatcupies the top of
1" andt occupies the right of" — s.



Proof. We give an algorithm that recursively compufésConstructing™ is easy when

(i is a single edgés, t); see Fig. 4. We thus assume tlsahas at least 3 vertices. Let

be the (unique) third vertex on the inner face that is adjeie(s, ¢). Then grapi can

be splitinto two graphs at vertaxand edgés, ¢): G[s, #] consists of the graph induced
by all vertices betweer andx in counter-clockwise order around the outer-face, and
Gz, 1] consists of the graph induced by the vertices betwesrd .

Recursively draw/[s, ] and removes from it; call the result’;. Recursively draw
[z, ] and remove: andt from it; call the resultl’;. Then scale the width af; until the
bounding box of’; is less wide than the rectanglesin I's. To maintain a proportional
contact representation, scale the heighf'pby the inverse of the scale-factor for the
width. Now I; can be attached at the bottom right end of the representaitiom I';.
Add a rectangle fot on the right that spans the whole height (and extends belaw it
the bottom), and make its width such that its area is as pbestfort. Add a rectangle
for s such that it spans the whole width (and extends below it aletfie and make its
height such that its area is as prescribedsfarhis gives the desired representation.

We now show that the above algorithm can be implemented @atitime. In order
to do this, we make sure that all coordinates in the repraientare scaled at most
once. Let]" be the dual graph aff minus the vertex for the outer-face; it is easy to see
that7' is a tree with maximum degree three. Réoat the vertex that corresponds to the
inner face(s, x, ¢ }; then the subtrees @f correspond to the dual trees of the subgraphs.
Rather than re-scaling); at each recursive step, we only re-scale the bounding box of
I'; and store at the node @f that representé&/[¢, ] the scale-factors for the width and
height that must be applied to all nodedin At the end of the algorithm a linear-time
top-down traversal finds the scaling factor for each vettedf 1" by multiplying all
the scaling factors stored along the path fromto v. Then with another linear-time
top-down traversal of' we can compute the coordinates of all the pointg'irwhich
concludes the construction. O

Fig.4. Combining the drawings of two subgraphs.

Since a rectangle is a rectilinear polygon with the fewes¢sipossible, the repre-
sentation obtained by the above algorithmis also optimalvéter, the outer boundary
of the representation obtained by our construction, has3{z). It was already known
that the outer-face cannot be a rectangle if the verticesemtangles [15], but we im-
prove this to a stronger result:

Lemma 3. There exists a maximal outer-planar graph for which any achtepresen-
tation with rectangles require€(n) sides on the outer-face.



Proof. Consider any maximal outer-planar gra@tsuch that n/2| vertices have de-
gree two (any maximal outer-planar graph whose inner dualfigdl binary tree suf-
fices). Supposé’ is a proportional contact representation(ofwvith rectangles. Since
rectangles are convex, no two of them can share two sidesefbne any vertex of
degree 2 shares at most two of its sides with other verticessa at least two of its
sides with the outer boundary éf. Furthermore, these two sides must be consecutive
on P(v), since otherwise would be a cut vertex iii. The common endpoint of these
two sides is then a corner of the outer boundaryl ofso the outer-face has at least
[n/2] sides. O

Lemma 3 implies that there exists outer-planar graphs fachvany contact repre-
sentation with an the outer-boundary of constant size reguit least one of the poly-
gons to have at least six sides. With the following lemma vesstinat this lower bound
of six sides can also be matched with any given weights.

Lemma4. LetG = (V, E) be a maximal outer-planar graph and let: V' — R*
be a weight function. Then a proportional contact-repréaton /' of G with 6-sided
rectilinear polygons can be computed in linear time suclt tha outer-boundary of’
is a rectangle.

Proof. It is quite straightforward to prove this by analyzing theusture of an outer-
planar graph, but it also follows from both previous resinthis paper. We only sketch
this here.

First, if G is maximal outer-planar, then we can add one vertgeto it that is ad-
jacent to all others. Then create a Schnyder realizer swathghs the root of treer’ .
Then all its incident edges are labeled with 1, which meansdh other vertices are
leaves in tred’ . Apply our construction from Section 2. One can easily yatifat ver-
tices that are leaves ify are drawn with 6-gons in this construction. Omitting theextld
vertexvo (which is a rectangle that spans the top) yields the desgpksentation.

As a second proof, observe th@tu vg is also a 3-tree, and moreover, any vertex
v has at most two children ifi;. Apply the construction of Section 3 and split the
rectangle of weight¥(v) in such a way thaP(v) has at most 6 sides; one can verify
that this is always possible if has at most two children if. O

Summing up all the results in this section, we have the fahgwheorem.

Theorem 3. For a rectilinear proportional contact representation ofeaximal outer-
planar graph, rectangles are always sufficient and necessanrd six-sided polygons
are sometimes necessary (and always sufficient) when tee-lootindary has a con-
stant number of sides.

5 Representationsfor Maximal Series-Parallel Graphs

In this section, we prove that maximal series-parallel bsdpave proportional contact
representations with 6 sides and a rectangle as outer-tacedary. Aseries-parallel
graph is a grapld: that has two terminals and¢, and either; is an edgds, t), or it
has been obtained with one of the following two operatiohs(Parallel combination)
(+ consists of two or more series-parallel graphs that all hlaggerminalss andt. (2)



(Combination in series)s consists of two series-parallel graphs, one with termirals
and some other vertex, and the other with terminals and¢. As usual, a maximal
series-parallel graph is a series-parallel graph to whieltannot add any more edges
and maintain a simple series-parallel graph. It is wellskndhat any series-parallel
graph is planar and that these are the same as the parteg2-tr

One can easily show that a maximal series-parallel grapt2has 3 edges, and
hence it cannot be internally triangulated unless all gegtiare on the outer-face (in case
of which it is outer-planar.) So in order to create proparébcontact representations,
we must allow holes. However, we will show that these holeslmmade arbitrarily
small while using only 6-sided rectilinear polygons.

To state our result precisely, we use the following notatfor any vertex set”,
usew(V’) to denote the sum of weights of verticesli. Now we have:

Lemmab. Let G be a maximal series-parallel graph with terminalg and letw :

V — RT be a weight-function. Let > 0 be arbitrarily small. LetR be any rectangle
of areaw(V — {s,t}) + . ThenGG — {s,¢} has a proportional contact representation
insideR such that a vertex touches the top/right side & if and only ifv is adjacent
tos/t in GG,

Proof. We prove this by induction on the number of vertices. In theeb@ase(w con-
sists of edgd s, ¢) only, and the claim is vacuously true sinGe— {s, ¢} is empty. So
now assume that has at least 3 vertices. Sin€gis a maximal series-parallel graph,
edge(s, t) must exist. Thereforé&' must be obtained in a parallel combination of sub-
graphsG, G4, . . ., G, all with terminalss and¢. (We presume the naming is such
thatG is the edgds, t).) We makek as large as possible, i.e., each subgréplior

i > 0 was obtained in a combination in series of subgraghsandG?, whereG; has
terminalss andz; and Gt has terminals;; and¢. The idea is to assign rectangles to
each of these subgraphg* (for i = 1,...,k anda € {s,t}) and place the drawings
insideR suitably. LetV* = V(G¥) — {z;, o}. We proceed as follows:

1. First, remove a (very slim) rectangle adjacent that spamseft side ofR and has
areaz’ := ¢/(5k +2).°

2. From the rectangle that remains, remove a very slim rgtéaof area’ that spans
the bottom.

3. From the rectangle that remains, remove an L-shapedegtgidlygonP (z;) that
spans the bottom and the left side. Choose the side-lengtiisteat P(z;) has
areaw(xy).

4. From the rectangle that remains, remove a rectanglefghasghe left side. Choose
its width such that its area i®(V,}) + 2¢’. Then split it horizontally so that the
rectangle below has areawhile the rectanglé?; above has area(V;’) + <'.

5. From the rectangle that remains, remove a very slim rgtgaof area’ that spans
the left side.

6. From the rectangle that remains, remove a rectafijlehat spans the bottom.
Choose its width such that its aread$V;’) + '

5 Any distribution ofe area among the empty region and the rectangles is feasibleng as
they are all non-zero.
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7. Repeat steps 3-6 fér— 1,k — 2,k —3,..., 1.
8. By choice of’ and the areas for all rectangles and L-shapes, all that nsno&iR
after removing rectangl®&y is a slim rectangle (adjacent to the top&¥) of area

el

vertexs will be here

2184 8Q ||IM 7XSLBA

\ R 7L,
1

Fig. 5. The construction for a series-parallel graph= 3 in this example.

Figure 5 illustrates the construction. Note that for eadttargle B;', two sides
are adjacent to empty space, one side is adjacent, tand the other side is adjacent
to the boundary ofR where terminakx will be located. Furthermoref?* has weight
w(V;*) 4+ ¢’. Hence we can call the algorithm recursively f@f*, using rectangldzy*
ande’. The resulting contact representation(éff — {x;, o'} can then be placed (after
rotating/flipping as needed to make terminals match updesi. This yields the

desired proportional contact representationdor {s,t}. O

We have thus shown that 6 sides are sufficient for seriedkplageaphs. To see that
they are necessary, consideg 4, which is a series-parallel graph. No matter what em-
bedding we choose, there will always be a vertex that is eeddy a triangle i 4.
Since three rectangles cannot enclose a non-zero areahthis thati, 4 requires 6
sides in any contact representation. We hence have theviotjadheorem:

Theorem 4. 6 sides are always sufficient and sometimes necessary fapaional
contact representation of maximal series-parallel graplith arbitrarily small holes.

6 Conclusion

We gave an algorithm for a proportional contact represemtaif a maximal planar
graph with 10-sided rectilinear polygons, which improvestbe previously known
upper bound of 12.

We also described algorithms for special classes of plargghg with 8-sided rec-
tilinear polygons and a similar approach might be extendegeneral planar graphs.
Finally, we described algorithms for 6-sided and 4-sidetdilinear representation for
outer-planar graphs.
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All algorithms in this paper can be implemented in lineargjrand require nothing
more complicated than Schnyder realizers and other el@meplanar graph manipula-
tions. In contrast, the very recent improvement in the nurobsides to 8 [1], the proof
is non-constructive and requires numerical approximattoriind the contact represen-
tation. Finding a constructive proof (and preferably lingae algorithm) to construct
8-sided proportional contact representations of maxirt@aigr graphs remains open.
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Appendix

To prove correctness of the algorithm for proportional espntations with 10-gons for
maximal planar graphs, we need the following lemma:

Lemma6. Let G be a maximal plane graph and |ét be the representation @f ob-
tained by the algorithm of Section 2. Then for any two vesticandv in 7, the poly-
gons representing andv do not cross each other ifi.

Proof. Let v¢, va, v3 be the three outer vertices 6f and letTy, Ty, T3 be the three
Schnyder trees rooted af, v, andws, respectively. For each vertexof ¢, Let P(v)
be the polygon representingn I'. By the choice ofA(v), the bottommost bridge-strip
is above the topmost foot-strip in. Then by the construction, one can see that the only
possible crossing might occur between a foot and a leg ordsstva foot and a body.
Let v andv be two vertices of¥. We first assume that the foot ¢f(u) crosses
the leg of P(v), as illustrated in Figure 6(a). Thencomes befores in the pre-order
traversal of7y; bothw andv comes before botlfi;(«) and f2(v) in both the pre-order
and the post-order traversals Bf; and eitherf;(u) = f2(v) or f2(u) comes before
f2(v) in the post-order traversals @f. Let p; be the unique path fromto v1, p, the
leftmost path fromw to one of its descendant leaf apgl the unique path fronf;(v)
to p1 in T1. Thenw is to the right of the patlp; U p; and f2(u) is inside the region
enclosed by, ps and the edgév, f2(v)), not on the patip,. Then by the properties of
Schnyder trees and by planarity, there cannot be any eddé(«)), a contradiction.

A

S

v
fiw)
v

Fig. 6. lllustrations for the proof of Lemma 6.

We now assume that the foot &f(«) crosses the body aP(v). Thenu precedes
v in both the pre-order and the post-order traversalf,aindv precedesf;(u) in the
post-order traversal dfy, as illustrated in Figure 6(b). Hadbeen beforg;s(v) in the
pre-order traversal dfy, the the foot ofu would cross the leg ofs(v), which is not
possible according to the previous paragraph. We thus a@&ssuetw follows f53(v) in
the pre-order traversal df;. Let p; be the unique path from to v, p, the rightmost
path fromw to one of its descendant leaf apgl the unique path fronfs(v) to py in
Ty. Thenfy(u) is to the left of the patlp; U p; and f3(w) is inside the region enclosed
by p1, ps and the edgév, f5(v)), not on the pattp; and the edgév, f3(v)). Then by
planarity, there cannot be any edge f(u)), a contradiction. O
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[lustration of the Algorithm for Maximal Planar Graphs

-2 )

@ &) ()

Fig. 7. lllustration of the algorithm for proportional contact repentation of maximal planar
graphs.
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[llustration of the Algorithm for Planar 3-Trees

Fig. 8. lllustration of the algorithm for proportional contact repentation of planar 3-trees.

15



