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Abstract. In a proportional contact representation of a planar graph,each vertex
is represented by a simple polygon with area proportional toa given weight, and
edges are represented by adjacencies between the corresponding pairs of poly-
gons. In this paper we study proportional contact representations that use recti-
linear polygons without wasted areas (white space). In thissetting, the best known
algorithm for proportional contact representation of a maximal planar graph uses
12-sided rectilinear polygons and takesO(n log n) time. We describe a new al-
gorithm that guarantees 10-sided rectilinear polygons andruns inO(n) time. We
also describe a linear-time algorithm for proportional contact representation of
planar 3-trees with 8-sided rectilinear polygons and show that this optimal, as
there exist planar 3-trees that requires 8-sided polygons.Finally, we show that
a maximal outer-planar graph admits a proportional contactrepresentation with
6-sided rectilinear polygons when the outer-boundary is a rectangle and with 4
sides otherwise.

1 Introduction

Representing planar graphs ascontact graphshas been a subject of study for many
decades. In such a representation, vertices correspond to geometrical objects, such as
line-segments or polygons, while edges correspond to two objects touching in some
pre-specified fashion. In this paper, we considerside contact representationsof pla-
nar graphs, where vertices are simple polygons, and adjacencies are non-trivial side-
contacts between the corresponding polygons. In the weighted version of the problem,
the goal is to find a contact representation ofG where the area of the polygon for each
vertex is proportional to the weight of the vertex, which is given in advance. We call
such a representation aproportional contact representationof G. Such representations
often lead to a more compelling visualization of a planar graph than usual node-link
representations [4] and have practical applications in cartography, VLSI Layout, and
floor-planning. Rectilinear polygons with small number of sides (or corners) are of-
ten desirable due to esthetic, practical, and cognitive requirements. In VLSI design
and architectural floor-planning, it is also desirable to minimize the unused area in the? This research was initiated at the Dagstuhl Seminar 10461 onSchematization. Research of the

2nd author supported by NSERC.



representation. Hence we address the problem of constructing a proportional contact
representation of a planar graph with rectilinear polygonswith few sides, so that the
representation contains no unused area.

1.1 Related Work

Contact representations of planar graphs can be dated back to 1936 when Koebe showed
that any planar graph has a representation by touching circles. While touching circles
or touching triangles provide point-contact representations, side-contact representations
have also been considered. For example, Gansneret al. [6] show that 6-sided polygons
are sometimes necessary and always sufficient for side-contact representation of any
planar graph with convex polygons.

Applications in VLSI or architectural layout design encourage the use of rectilinear
polygons in a contact representation that fills a rectangle.In this setting it is known that8 sides are sometimes necessary and always sufficient [7, 11, 21]. A characterization of
the graphs admitting a more restricted rectangle-representation is given by Kozḿiński
and Kinnen [10] and in the dual setting by Ungar [19]. A similar characterization of
graphs having representations with 6-sided rectilinear polygons is given by Sun and
Sarrafzadeh [17]. Buchsbaumet al.[4] give an overview on the state of the art concern-
ing rectangle contact graphs.

In the results summarized above, the vertex weights and polygonal areas are not
considered. The weighted version of the problem, that ofproportional contact repre-
sentationshas applications incartograms, or value-by-area maps. Here, the goal is to
redraw an existing geographic map so that a given weight function (e.g., population)
is represented by the area of each country. Algorithms by vanKreveld and Speck-
mann [20] and Heilmannet al. [8] yield representations with rectangular polygons,
but the adjacencies may be disturbed. De Berget al. describe an adjacency-preserving
algorithm for proportional contact representation with atmost40 sides for an internally
triangulated plane graphG [5]. This was later improved to34 sides [9].

The problem has also been studied in the dual settings, wherethe weights are as-
signed to the internal faces of a plane graph (instead of the vertices). All planar cubic
graphs admit such a drawing [18] as do all planar partial 3-trees [2], but not all planar
graphs [14]. Proportional rectilinear drawings with 8-sided polygons can be found for
special classes of planar graphs [13], but this approach does not extend to general planar
graphs. In a recent paper, Biedl and Velázquez [3] describethe best general result, with
anO(n logn) algorithm for proportional representation of cubic triconnected graphs
with 12-sided rectilinear polygons. Since the dual of a maximal planar graph is a cubic
triconnected graph, this result yields a proportional contact representation of a maximal
planar graph with 12-sided rectilinear polygons.

1.2 Our Contribution

Our main contribution is an improvement from theO(n logn) algorithm for 12-sided
rectilinear polygons [3], with a new algorithm based on Schnyder realizers that runs
in O(n) time and provides a proportional contact representation ofa maximal planar
graph with 10-sided polygons.
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We also describe a linear-time algorithm for proportional contact representations
of planar 3-trees with 8-sided rectilinear polygons and show that this optimal, as there
exist planar 3-trees that require 8-sided polygons. Finally, we show that a maximal
outer-planar graph admits a proportional contact representation with 6-sided rectilinear
polygons when the outer-boundary is a rectangle and with 4 sides otherwise.

2 Representations for Maximal Planar Graphs

Here we describe the algorithm for 10-sided rectilinear polygons. We construct the pro-
portional representation of a maximally planar graph usingSchnyder realizers [16],
which we review briefly. ASchnyder realizerof a fully triangulated graphG is a parti-
tion of the interior edges ofG into three setsT1, T2 andT3 of edges that can be directed
such that for each interior vertexv (1) v has out-degree exactly one in each ofT1, T2
andT3, and (2) the counterclockwise order of the edges incident tov is: enteringT1,
leavingT2, enteringT3, leavingT1, enteringT2, leavingT3.

The first condition implies that eachTi, i = 1; 2; 3 defines a tree spanning all the
interior vertices and rooted at exactly one exterior vertexsuch that the edges are directed
towards the root. Schnyder proved that any triangulated planar graph has such a realizer
and it can be computed inO(n) time [16].

Theorem 1. LetG = (V;E) be a maximal planar graph and letw : V ! R+ be a
weight function. Then a proportional contact representation � with respect tow can
be constructed in linear time such that each vertex ofG is represented by a 10-sided
rectilinear polygon in� , and there is no wasted area.

We prove Theorem 1 by giving a linear-time algorithm to construct such a represen-
tation� of G, where each vertex ofG is represented by a 10-sided rectilinear polygon
with a fixed shape, illustrated in Figure 1. (Some sides of thepolygon may be degen-
erate.) This polygon can be decomposed into four rectanglescalled foot, leg, bridge
andbodyof the polygon. The region bound by the parallel horizontal lines containing
the top and the bottom of the bridge is thebridge-strip, and thefoot-strip is defined
analogously.
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Fig. 1. A 10-sided rectilinear polygon with decomposition into foot, leg, bridge and body.
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Let G = (V;E) be a maximal plane graph with the three outer verticesv1, v2 andv3 in counterclockwise order, and letw : V ! R+ be a weight function. We first find
a Schnyder realizer ofG that partitions the interior edges into three rooted treesT1, T2
andT3 rooted atv1, v2 andv3, and with all their edges oriented towards the roots of
the trees. We add the external edges(v1; v2), (v1; v3) to T1 and(v2; v3) to T2, so that
all the edges ofG are partitioned into the three trees. For each vertexv of G, let fi(v),i = 1; 2; 3 be the parent ofv in Ti.

Let R be a rectangle with area equal to
Pv2V w(v). We construct a proportional

contact representation ofG insideR. We start by cutting a rectangleP (v1) with areaw(v1) for v1 from the top ofR and cutting a rectangleP (v2) with areaw(v2) for v2
from the left side ofR�P (v1). In the remaining partR0 = R� P (v1)� P (v2) of the
rectangle, we draw the polygons for the other vertices.

The main idea of the algorithm is to draw the polygons such that for each vertexv ofG, the edges(v; fi(v)) are realized as follows: The top of the bridge ofP (v) is adjacent
to the bottom of the bridge ofP (f1(v)), the left of the foot ofP (v) is adjacent to the
right of the body ofP (f2(v)) and the bottom of the body ofP (v) is adjacent to the top
of the foot ofP (f3(v)). See also Figure 1. Note that if we ensure those adjacencies,then
there cannot be any other adjacencies since graphG is maximal planar, and correctness
follows.

The other crucial idea is that the bridge and foot have small height and the leg has
very small width, so that they together occupy less area thanthe weight ofv. (Ensuring
that their width/height is no more thanw(v)=(W +H) if R0 is aW �H-rectangle will
do.) The bulk of the weight forv is hence in the body ofv.

Our algorithm visits vertices in depth-first order in the treeT1 and buildsP (v) par-
tially before and partially after visiting the children ofv (in left-to-rightorder according
to the planar embedding.) Thus the visit atv has the following steps:

1. Fix the bridge-strip, foot and leg ofP (v);
2. For each childu of v in T1 in left-to-right order, call the algorithm recursively foru;
3. Fix the bridge and the body ofP (v);
4. Set the foot strips for children ofv in T2.

Details of Step 4: We explain step 4 first, since it is vital for the other steps. Any vertexu that is a child ofv in T2 can be shown to come afterv in the left-to-right depth-first
search order ofT1. To ensure that all these vertices can attach to the right side of the
body ofP (v) without gaps, we reserve a horizontal strip of small height for the foot ofP (u) at the right side of the body ofP (v). These foot-strips are placed starting at the
bottom of the body ofP (v), all adjacent to each other, and assigned according to the
counter-clockwise order of edges aroundv. Choosing the strips small enough ensures
that they will all fit along the body. We presume that this operation has also been applied
when we placeP (v2), so that for every vertexv 6= v1; v2, the foot strip ofv is already
set when we visitv.
Details of Step 1: When we visit vertexv, the foot-strip ofP (v) hence has been set.
The bridge-strip ofP (f1(v)) has also been fixed sincef1(v) is visited beforev. We fix
the bridge strip ofP (v) with small height just under the bridge-strip ofP (f1(v)) so
that the two bridge strips touch each other.
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To fix foot and leg ofv, we have two cases. Iff2(v) is not the left sibling ofv in T1,
then the foot extends (in the foot strip ofv) until the body of the leftmost child ofv inT3, or until the leg off1(v) if there is no such child. The leg then extends upwards until
the bridge strip ofv. If f2(v) is the left sibling ofv in T1, then the foot ofv vanishes; we
extend the leg ofv from the bottom of the footstrip forv until the bottom of the bridge
strip ofv. Note that in either case all parts of neighbours required for this drawing have
been placed already.
Details of Step 3: To fix the bridge ofP (v), there are again two cases. Ifv has children
in T1, then we complete the bridge ofP (v) so that it extends from the leg ofP (v) to
the rightmost side of any child ofv in T1 (they all have been drawn already.) Ifv has no
children inT1, then the bridge vanishes and the body ofv contains the leg ofv. Then we
fix the body ofP (v) so that it extends from the bottom of the bridge-strip ofP (f1(v)) to
the foot-strip ofP (f3(v)). This is possible becausef2(f3(v)) always precedesv in the
traversal ofT1, and so the foot-strip ofP (f3(v)) has already been fixed. After knowing
exactly the area consumed by foot, leg and bridge ofP (v), as well as the height of the
body, we can choose the width so that the area ofP (v) isw(v). (Since the foot, leg and
bridge together consume little area, the width of the body ispositive.)

Figure 2(b) illustrates a proportional contact representation of the maximal planar
graph in Figure 2(a) computed with our algorithm. A more detailed step-by-step cor-
rection and details of the proof of correctness is given in the appendix.

The linear-time implementation consists of computing a Schnyder realizer ofG
[16], and the traversal of treeT1 together with the local computations of the different
parts of the polygons. ut

Fig. 2. (a) A maximal planar graphG, (b) a proportional contact representation ofG.

So we have now established that 10 sides are sufficient for proportional contact rep-
resentation with rectilinear polygons. Yeap and Sarrafzadeh [21] gave an example of a
maximal planar graph, which is also a planar 3-tree, for which at least 8-sided polygons
are necessary. In very recent work [1] we managed to prove that 8-sided polygons are
also sufficient. However, in contrast to the 10-gon construction given above, the proof
of this result is not constructive, and the representation can be found only via numerical
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approximation. So while the construction with 10-gons is not theoretically best possi-
ble, it is probably of higher interest for practical settings.

3 Representations of Planar 3-trees
Here we describe proportional contact representations of planar 3-trees with fewer sides
(8) in each polygon. A3-treeis either a 3-cycle or a graphG with a vertexv of degree
three inG such thatG�v is a 3-tree and the neighbors ofv are adjacent. IfG is planar,
then it is called aplanar 3-tree. A plane 3-treeis a planar embedding of a planar 3-
tree. It is easy to see that starting with a 3-cycle, any planar 3-tree can be formed by
recursively inserting a vertex inside a face and adding an edge between the newly added
vertex and each of the three vertices on the face [2, 12].

Using this simple construction, we can create in linear timea representation tree
for G, which is an ordered rooted ternary treeTG spanning all the internal vertices ofG. The root ofTG is the first vertex we have to insert into the face of the three outer
vertices. Adding a new vertexv in G will introduce three new faces belonging tov.
The first vertexw we add in each of these faces will be a child ofv in TG. The correct
order ofTG can be obtained by adding new vertices according to the counterclockwise
order of the introduced faces. For any vertexv of TG, we denote byUv, the set of the
descendants ofv in TG includingv. Thepredecessorsof v are the neighbors ofv in G
that are not inUv. Clearly each vertex ofTG has exactly three predecessors. We now
have the following lemma.

Lemma 1. LetG = (V;E) be a plane 3-tree and letw : V ! R+ be a weight function.
Then a proportional contact representation ofG can be obtained in linear time where
each vertex ofG is represented by an 8-sided rectilinear polygon.

Proof. Let TG be the representation tree ofG. For any vertexv of TG, letW (v) denote
the summation of the weights assigned to each of the verticesin Uv. A linear-time
bottom-up traversal ofTG is sufficient to computeW (v) for each vertexv of G. In the
followings,we construct a proportional contact representation ofG inside any rectangleR with area equal to the summation of the weights for all the vertices ofG.

Let a, b,  be the three outer vertices ofG in the counterclockwise order. We first
draw the polygons fora, b and. We cut a rectangleP (a) with areaw(a) for a form
the top ofR, cut a rectangleP (b) with areaw(b) from the left side ofR � P (a) and
cut anL-shaped stripP () of areaw() for  from the right side and the bottom ofR � P (a) � P (b), as illustrated in Figure 3(a). We now draw the polygons for the
vertices inTG inside the rectangleR � P (a) � P (b) � P () by a top-down traversal
of TG. While we traverse a vertexv of TG, we recursively draw the polygons for the
vertices ofUv inside a rectangleRv with areaW (v) such thatRv shares two of its
sides with the polygon for one of the predecessors ofv and the other two sides with the
polygons for the other two predecessors. Note that this condition holds for the rectangleR � P (a) � P (b) � P () representing the root ofTG. Let v be a vertex ofTG with
predecessorsp1, p2, p3 and letpqrs be the rectangle with areaW (v) whereps, pq
andqrs are part of the boundary of the polygons forp1, p2 andp3, respectively. Frompqrs, we then cut three rectanglesR1 = t1t2rs, R2 = pt3t4t5 andR3 = qt6t7t8 with
areasW (u1), W (u2) andW (u3), respectively, as illustrated in Figure 3(b), whereu1,
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Fig. 3. (a)–(b) Illustration for the proof of Lemma 1, (c) a planar 3-treeG, and (d) a proportional
contact representation ofG.u2 andu3 are the three children ofv in TG (some of them might be empty). Then the
8-sided polygon obtained bypqrs � R1 � R2 � R3 has areaw(v) and has common
boundary with all of the polygons representing its predecessors. Finally, we recursively
fill out the rectanglesR1,R2,R3 by polygons representing the vertices inUu1 , Uu2 andUu3 , respectively. Clearly the polygon representing each vertexv of G can be computed
in constant time. Thus the time complexity for constructingthe representation ofG is
linear. ut

Figure 3(d) illustrates a proportional contact representation of the planar 3-tree in
Figure 3(c) computed by the algorithm described above. The algorithmic upper bound
of 8 sides per polygon is also matched with the correspondinglower bound with a
planar 3-tree for which at least 8-sided polygons are necessary in a proportional contact
representation with rectilinear polygons [21]. We thus have the following result.

Theorem 2. Polygons with 8 sides are always sufficient and sometimes necessary for
proportional contact representations of planar 3-trees with rectilinear polygons.

4 Representations for Maximal Outer-planar Graphs

Here we describe proportional contact representations of maximal outer-planar graphs
with even fewer sides (6 and 4) in each polygon. Anouter-planar graphis a graph that
has anouter-planar embedding, i.e., a planar embedding with every vertex in the outer
face. An outer-planar graph to which no edges can be added without violating outer-
planarity is amaximal outer-planar graph. It is easy to see that each internal face in an
outer-planar embedding of a maximal outer-planar graph is atriangle, and forn � 3 the
outer-face is a simple cycle containing all vertices. We will give a linear-time algorithm
to construct a proportional contact representation of a maximal outer-planar graph with
rectangles. Before that, we need the following definitions.

Let � be a contact representation using rectangles for vertices (but with the outside
not necessarily a rectangle). LetB be the bounding box of� . We say that a vertexv
occupies the topof a representation� if there exists a horizontal linè such that the
rectangle representingv is exactly the intersection ofB with the upper half-space of`.
In other words, the rectangle ofv contains all of the top end of the bounding box of� .
Similarly we define that a vertexv occupies the rightof � .

Lemma 2. Let G be a maximal outer-planar graph, and let(s; t) be an edge on the
outer-face, withs beforet in clockwise order. Then a proportional contact-representation� of G with rectangles can be computed in linear time such thats occupies the top of� andt occupies the right of� � s.
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Proof. We give an algorithm that recursively computes� . Constructing� is easy whenG is a single edge(s; t); see Fig. 4. We thus assume thatG has at least 3 vertices. Letx
be the (unique) third vertex on the inner face that is adjacent to (s; t). Then graphG can
be split into two graphs at vertexx and edge(s; t): G[s; x℄ consists of the graph induced
by all vertices betweens andx in counter-clockwise order around the outer-face, andG[x; t℄ consists of the graph induced by the vertices betweent andx.

Recursively drawG[s; x℄ and removes from it; call the result�s. Recursively drawG[x; t℄and removex andt from it; call the result�t. Then scale the width of�t until the
bounding box of�t is less wide than the rectangle ofx in �s. To maintain a proportional
contact representation, scale the height of�t by the inverse of the scale-factor for the
width. Now�t can be attached at the bottom right end of the representationof x in �s.
Add a rectangle fort on the right that spans the whole height (and extends below itat
the bottom), and make its width such that its area is as prescribed fort. Add a rectangle
for s such that it spans the whole width (and extends below it at theleft), and make its
height such that its area is as prescribed fors. This gives the desired representation.

We now show that the above algorithm can be implemented in linear time. In order
to do this, we make sure that all coordinates in the representation are scaled at most
once. LetT be the dual graph ofG minus the vertex for the outer-face; it is easy to see
thatT is a tree with maximum degree three. RootT at the vertex that corresponds to the
inner facefs; x; tg; then the subtrees ofT correspond to the dual trees of the subgraphs.
Rather than re-scaling�t at each recursive step, we only re-scale the bounding box of�t and store at the node ofT that representsG[t; x℄ the scale-factors for the width and
height that must be applied to all nodes in�t. At the end of the algorithm a linear-time
top-down traversal finds the scaling factor for each vertexv of T by multiplying all
the scaling factors stored along the path fromvx to v. Then with another linear-time
top-down traversal ofT we can compute the coordinates of all the points in� , which
concludes the construction. utG[s; x℄ G[x; t℄sx t xs�s x t�t s�s x �t tx

Fig. 4. Combining the drawings of two subgraphs.

Since a rectangle is a rectilinear polygon with the fewest sides possible, the repre-
sentation obtained by the above algorithm is also optimal. However, the outer boundary
of the representation obtained by our construction, has size�(n). It was already known
that the outer-face cannot be a rectangle if the vertices arerectangles [15], but we im-
prove this to a stronger result:

Lemma 3. There exists a maximal outer-planar graph for which any contact represen-
tation with rectangles requires
(n) sides on the outer-face.
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Proof. Consider any maximal outer-planar graphG such thatbn=2 vertices have de-
gree two (any maximal outer-planar graph whose inner dual isa full binary tree suf-
fices). Suppose� is a proportional contact representation ofG with rectangles. Since
rectangles are convex, no two of them can share two sides. Therefore any vertexv of
degree 2 shares at most two of its sides with other vertices, and so at least two of its
sides with the outer boundary of� . Furthermore, these two sides must be consecutive
onP (v), since otherwisev would be a cut vertex inG. The common endpoint of these
two sides is then a corner of the outer boundary of� , so the outer-face has at leastbn=2 sides. ut

Lemma 3 implies that there exists outer-planar graphs for which any contact repre-
sentation with an the outer-boundary of constant size requires at least one of the poly-
gons to have at least six sides. With the following lemma we show that this lower bound
of six sides can also be matched with any given weights.

Lemma 4. LetG = (V;E) be a maximal outer-planar graph and letw : V ! R+
be a weight function. Then a proportional contact-representation� of G with 6-sided
rectilinear polygons can be computed in linear time such that the outer-boundary of�
is a rectangle.

Proof. It is quite straightforward to prove this by analyzing the structure of an outer-
planar graph, but it also follows from both previous resultsin this paper. We only sketch
this here.

First, if G is maximal outer-planar, then we can add one vertexv0 to it that is ad-
jacent to all others. Then create a Schnyder realizer such that v0 is the root of treeT1.
Then all its incident edges are labeled with 1, which means that all other vertices are
leaves in treeT1. Apply our construction from Section 2. One can easily verify that ver-
tices that are leaves inT1 are drawn with 6-gons in this construction. Omitting the added
vertexv0 (which is a rectangle that spans the top) yields the desired representation.

As a second proof, observe thatG [ v0 is also a 3-tree, and moreover, any vertexv has at most two children inTG. Apply the construction of Section 3 and split the
rectangle of weightW (v) in such a way thatP (v) has at most 6 sides; one can verify
that this is always possible ifv has at most two children inTG. ut

Summing up all the results in this section, we have the following theorem.

Theorem 3. For a rectilinear proportional contact representation of amaximal outer-
planar graph, rectangles are always sufficient and necessary, and six-sided polygons
are sometimes necessary (and always sufficient) when the outer-boundary has a con-
stant number of sides.

5 Representations for Maximal Series-Parallel Graphs
In this section, we prove that maximal series-parallel graphs have proportional contact
representations with 6 sides and a rectangle as outer-face boundary. Aseries-parallel
graph is a graphG that has two terminalss andt, and eitherG is an edge(s; t), or it
has been obtained with one of the following two operations: (1) (Parallel combination)G consists of two or more series-parallel graphs that all havethe terminalss andt. (2)
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(Combination in series)G consists of two series-parallel graphs, one with terminalss
and some other vertexx, and the other with terminalsx and t. As usual, a maximal
series-parallel graph is a series-parallel graph to which we cannot add any more edges
and maintain a simple series-parallel graph. It is well-known that any series-parallel
graph is planar and that these are the same as the partial 2-trees.

One can easily show that a maximal series-parallel graph has2n � 3 edges, and
hence it cannot be internally triangulated unless all vertices are on the outer-face (in case
of which it is outer-planar.) So in order to create proportional contact representations,
we must allow holes. However, we will show that these holes can be made arbitrarily
small while using only 6-sided rectilinear polygons.

To state our result precisely, we use the following notation. For any vertex setV 0,
usew(V 0) to denote the sum of weights of vertices inV 0. Now we have:

Lemma 5. Let G be a maximal series-parallel graph with terminalss; t and letw :V ! R+ be a weight-function. Let" > 0 be arbitrarily small. LetR be any rectangle
of areaw(V � fs; tg) + ". ThenG� fs; tg has a proportional contact representation
insideR such that a vertexv touches the top/right side ofR if and only ifv is adjacent
to s/t in G.

Proof. We prove this by induction on the number of vertices. In the base case,G con-
sists of edge(s; t) only, and the claim is vacuously true sinceG � fs; tg is empty. So
now assume thatG has at least 3 vertices. SinceG is a maximal series-parallel graph,
edge(s; t) must exist. ThereforeG must be obtained in a parallel combination of sub-
graphsG0; G1; : : : ; Gk, all with terminalss and t. (We presume the naming is such
thatG0 is the edge(s; t).) We makek as large as possible, i.e., each subgraphGi fori > 0 was obtained in a combination in series of subgraphsGsi andGti, whereGsi has
terminalss andxi andGti has terminalsxi and t. The idea is to assign rectangles to
each of these subgraphsG�i (for i = 1; : : : ; k and� 2 fs; tg) and place the drawings
insideR suitably. LetV �i = V (G�i ) � fxi; �g. We proceed as follows:
1. First, remove a (very slim) rectangle adjacent that spansthe left side ofR and has

area"0 := "=(5k + 2).5
2. From the rectangle that remains, remove a very slim rectangle of area"0 that spans

the bottom.
3. From the rectangle that remains, remove an L-shaped 6-sided polygonP (xk) that

spans the bottom and the left side. Choose the side-lengths such thatP (xk) has
areaw(xk).

4. From the rectangle that remains, remove a rectangle that spans the left side. Choose
its width such that its area isw(V sk ) + 2"0. Then split it horizontally so that the
rectangle below has area"0 while the rectangleRsk above has areaw(V sk ) + "0.

5. From the rectangle that remains, remove a very slim rectangle of area"0 that spans
the left side.

6. From the rectangle that remains, remove a rectangleRtk that spans the bottom.
Choose its width such that its area isw(V tk ) + "0.

5 Any distribution of" area among the empty region and the rectangles is feasible, as long as
they are all non-zero.
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7. Repeat steps 3-6 fork � 1; k � 2; k� 3; : : : ; 1.
8. By choice of"0 and the areas for all rectangles and L-shapes, all that remains ofR

after removing rectangleRt1 is a slim rectangle (adjacent to the top ofRt1) of area"0.
vertexs will be here RGt1Gtk Gtk�1Gsk Gsk�1Gs1 vertext

w
illb

e
h

erexk xk�1xk x1Rsk RtkRsk�1 Rtk�1Rs1 Rt1s
tx1xk�1

Fig. 5. The construction for a series-parallel graph.k = 3 in this example.

Figure 5 illustrates the construction. Note that for each rectangleR�i , two sides
are adjacent to empty space, one side is adjacent toxi, and the other side is adjacent
to the boundary ofR where terminal� will be located. Furthermore,R�i has weightw(V �i ) + "0. Hence we can call the algorithm recursively forG�i , using rectangleR�i
and"0. The resulting contact representation ofG�i � fxi; �g can then be placed (after
rotating/flipping as needed to make terminals match up) insideR�i . This yields the
desired proportional contact representation forG� fs; tg. ut

We have thus shown that 6 sides are sufficient for series-parallel graphs. To see that
they are necessary, considerK2;4, which is a series-parallel graph. No matter what em-
bedding we choose, there will always be a vertex that is enclosed by a triangle inK2;4.
Since three rectangles cannot enclose a non-zero area, thisshows thatK2;4 requires 6
sides in any contact representation. We hence have the following theorem:

Theorem 4. 6 sides are always sufficient and sometimes necessary for a proportional
contact representation of maximal series-parallel graphswith arbitrarily small holes.

6 Conclusion

We gave an algorithm for a proportional contact representation of a maximal planar
graph with 10-sided rectilinear polygons, which improves on the previously known
upper bound of 12.

We also described algorithms for special classes of planar graphs with 8-sided rec-
tilinear polygons and a similar approach might be extended to general planar graphs.
Finally, we described algorithms for 6-sided and 4-sided rectilinear representation for
outer-planar graphs.
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All algorithms in this paper can be implemented in linear time, and require nothing
more complicated than Schnyder realizers and other elementary planar graph manipula-
tions. In contrast, the very recent improvement in the number of sides to 8 [1], the proof
is non-constructive and requires numerical approximations to find the contact represen-
tation. Finding a constructive proof (and preferably linear-time algorithm) to construct
8-sided proportional contact representations of maximal planar graphs remains open.
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Appendix
To prove correctness of the algorithm for proportional representations with 10-gons for
maximal planar graphs, we need the following lemma:

Lemma 6. LetG be a maximal plane graph and let� be the representation ofG ob-
tained by the algorithm of Section 2. Then for any two vertices u andv in G, the poly-
gons representingu andv do not cross each other in� .

Proof. Let v1, v2, v3 be the three outer vertices ofG and letT1, T2, T3 be the three
Schnyder trees rooted atv1, v2 andv3, respectively. For each vertexv of G, Let P (v)
be the polygon representingv in � . By the choice of�(v), the bottommost bridge-strip
is above the topmost foot-strip in� . Then by the construction, one can see that the only
possible crossing might occur between a foot and a leg or between a foot and a body.

Let u andv be two vertices ofG. We first assume that the foot ofP (u) crosses
the leg ofP (v), as illustrated in Figure 6(a). Thenu comes beforev in the pre-order
traversal ofT1; bothu andv comes before bothf2(u) andf2(v) in both the pre-order
and the post-order traversals ofT1; and eitherf2(u) = f2(v) or f2(u) comes beforef2(v) in the post-order traversals ofT1. Let p1 be the unique path fromv to v1, p2 the
leftmost path fromv to one of its descendant leaf andp3 the unique path fromf2(v)
to p1 in T1. Thenu is to the right of the pathp1 [ p2 andf2(u) is inside the region
enclosed byp1, p3 and the edge(v; f2(v)), not on the pathp1. Then by the properties of
Schnyder trees and by planarity, there cannot be any edge(u; f2(u)), a contradiction.

Fig. 6. Illustrations for the proof of Lemma 6.

We now assume that the foot ofP (u) crosses the body ofP (v). Thenu precedesv in both the pre-order and the post-order traversals ofT1 andv precedesf2(u) in the
post-order traversal ofT1, as illustrated in Figure 6(b). Hadu been beforef3(v) in the
pre-order traversal ofT1, the the foot ofu would cross the leg off3(v), which is not
possible according to the previous paragraph. We thus assume thatu follows f3(v) in
the pre-order traversal ofT1. Let p1 be the unique path fromv to v1, p2 the rightmost
path fromv to one of its descendant leaf andp3 the unique path fromf3(v) to p1 inT1. Thenf2(u) is to the left of the pathp1 [ p2 andf2(u) is inside the region enclosed
by p1, p3 and the edge(v; f3(v)), not on the pathp1 and the edge(v; f3(v)). Then by
planarity, there cannot be any edge(u; f2(u)), a contradiction. ut
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Illustration of the Algorithm for Maximal Planar Graphs

Fig. 7. Illustration of the algorithm for proportional contact representation of maximal planar
graphs.
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Illustration of the Algorithm for Planar 3-Trees

Fig. 8. Illustration of the algorithm for proportional contact representation of planar 3-trees.
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