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Abstract—Transformers and storage batteries in the electrical
grid must be provisioned or sized just as routers and buffers
must be sized in the Internet. We prove the formal equivalence
between these two systems and use this insight to apply teletraffic
theory to sizing the electrical grid, obtaining the capacity region
corresponding to a given transformer and storage size. To validate
our analysis, we conduct a fine-grained measurement study of
household electrical load. We compare numerical simulations us-
ing traces from this study with results from teletraffic theory. We
show not only that teletraffic theory agrees well with numerical
simulations but also that it closely matches with the heuristics
used in current practice. Moreover, our analysis permits us to
develop sizing rules for battery storage electrical grid, advancing
the state of the art.

I. INTRODUCTION

JUST as Internet Service Providers size links and routers
in the Internet, electric utilities size line and transformer

capacities in the electrical grid to be large enough to meet
expected peak loads, but not so large as to be too expensive [1].
In both networks, operators use rules of thumb to roughly
estimate resource sizing, upgrading capacity piecemeal as
dictated by demand growth.

Two trends motivate us to re-examine current design rules
for sizing the electrical grid. First, there is expected to be a
worldwide surge in grid deployment in the next decade. In the
developed world, infrastructure put into place during the rapid
postwar growth phase of the 1950’s and 1960’s is reaching
the end of its operational life and must be replaced in the next
10 to 20 years. This is a good time, therefore, to re-examine
sizing guidelines.

Second, with the incorporation of renewable energy sources
and battery-operated electric vehicles, it is expected that the
future grid would have non-trivial amounts of storage [2]. The
classical grid has had little storage and provisioning storage is
poorly understood. As a result, there is a need to understand
how to provision storage in the future grid.

An obvious question is the relevance of these developments
to researchers in the computer networking community. The
answer to this question is twofold. First, the theory of large
deviations, which is the basis of the teletraffic analysis, enables
us to study the asymptotic behaviour of a tail probability of the
sum of independent random variables. These random variables
could represent work brought to a queue in a computer
network or the amount of energy brought to a storage battery
in the electrical grid. In this paper, we investigate the power of
this theory by applying it to the electrical grid and show that
the results are consistent with our observations in computer
networks. Second, as discussed in [3], both the Internet and the
electrical grid are designed to meet fundamental needs by con-
necting geographically dispersed suppliers with geographically

dispersed consumers. Therefore, there are many areas where
we can apply the concepts and techniques that are commonly
used in the Internet to the electrical grid and vice versa. The
key insight of this paper is that mathematical techniques from
teletraffic theory can be used to size the electrical grid. We
make three specific contributions:

• We prove a formal equivalence between transformers and
storage in the grid and routers and buffers in a network,
allowing us to use teletraffic theory to analyse the grid

• We provide design rules for provisioning storage in the
grid and study the insights gained from these rules

• We show that sizing decisions made using our design
rules compares well with the ‘ground truth’ sizing ob-
tained by directly measuring loads and, moreover, can
lead to gains over existing sizing techniques

The rest of the paper is organized as follows. We present an
overview of the electrical grid in Section II. The equivalence
between a distribution branch in the grid and a network
is shown in Section III. We use this equivalence to obtain
grid design rules using teletraffic theory in Section IV. We
present a measurement study and discuss how we can use
our measurements to validate our analysis in Section V. The
results of this work are presented in Section VI. We survey
related work in Section VII. We discuss our contributions in
more detail in Section VIII and conclude in Section IX.

II. BACKGROUND

The electrical grid consists of three subsystems: generation,
transmission, and distribution [4]. Electrical power generators
use energy from sources such as coal, natural gas, or falling
water to generate alternating currents. These currents flow into
a transmission system that moves electric power to distribution
networks. The transmission network, like the Internet core, has
a mesh structure to meet reliability requirements of the grid.
To minimize resistive losses, it operates at very high volt-
ages of 150-500kV. Power from the transmission network is
stepped down using transformers before entering the tree-like
distribution network, which delivers power from distribution
substations to end customers. This structure is analogous to the
delivery of video content from content servers in centralized
data centres over the Internet core and access networks to end-
systems.

Step-down transformers are necessary for distribution net-
works to interface with the long-distance transmission system.
A transformer’s capacity or ‘size’ is the sustained power that it
can deliver, measured in kilo Volt Amperes or kVA. Although
this rating can be exceeded on rare occasions, grid design
rules require that no transformer exceed its rating for more
than short time intervals.
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Transformers can be expensive. A small pole-top 167kVA
single-phase distribution transformer that serves about 10
homes in North America costs around $3,000 [5]. A typi-
cal small utility serving a customer base of 30,000 homes
would therefore need to spend $9,000,000 on poletop distri-
bution transformers alone. High-voltage transformers at sub-
stations, which serve thousands of customers, can cost up to
$1,500,000.

Sizing a transformer is a critical design decision. A utility
could potentially save millions of dollars by choosing smaller
transformer sizes when replacing ageing equipment. On the
other hand, underestimating the size of a transformer might
lead to overloading that would shorten its life, and in the worst
case, lead to transformer failure and power outage.

Several issues make transformer-sizing non-trivial. First,
like MPEG-encoded video, electrical loads (i.e., the power
requested by a home as a function of time, measured in Watts)
are highly variable, making it unrepresentative to describe
them by their mean values alone. On the other hand, sizing
a transformer for peak load may be both overly conservative
and expensive. Second, transformers are deployed for twenty
to fifty years with only periodic maintenance. Because the
load may change over this time, accurate load forecasting
must be done. Third, the electrical grid has strict reliability
criteria, which, if not met, can lead to dangerous overheating
of transformers. To deal with these constraints, utilities use
a conservative approach to size transformers. This approach
typically results in oversized transformers and lightly used,
expensive infrastructure. Our work is the first step in coming
up with better sizing guidelines that can help utilities to
optimize their infrastructural expenditure without reducing
system reliability.

The transformer sizing problem is exacerbated by the immi-
nent widespread availability of energy storage, particularly in
the form of battery-electric vehicles. By storing energy during
non-peak hours and releasing it to meet peak load, which is
known as peak shaving, it will be possible to use a smaller
transformer in the presence of energy storage. However, the re-
lationship between storage and transformer sizing is currently
an open problem. There is, therefore, an urgent need for design
rules for distribution systems that incorporate storage.

A. System Description

We study sizing a transformer shared by a set of homes.
These transformers, in the North American context, could be
either ‘poletop’ transformers that are shared by 10-25 homes,
or larger pad-mounted transformers that are shared by up to
several thousand homes [4]. Going beyond current practice, we
assume that the poletop or substation may also contain storage
to offset peak loads. Our goal is to jointly size the transformer
and the storage to make sure that system reliability constraints
are met1.

In choosing transformer size, it is important to ensure
system reliability. Reliability is measured by the loss-of-load
probability (LOLP) [4], which is the probability that the

1Note that we do not study systems with electric vehicles in the home,
although our analysis can be extended to cover this scenario.

system-wide generation resources fall short of demand. The
“one-day-in-ten-years” criterion (LOLP = 2.74× 10−4) is a
benchmark value widely used among utilities in the United
States.

This existing definition of reliability has one shortfall: it
accounts for generation resources but not storage. The intro-
duction of storage into the grid changes the classical picture
of grid reliability because even if the transformer cannot
meet the instantaneous aggregated demand, it is possible that
the residual demand (i.e., the demand minus the transformer
rating) can be met by storage. Therefore, in our work, we say
that the reliability criterion is not met when demand cannot be
met by a transformer even in the presence of storage because
the store is currently empty, so that the demand results in
a store underflow. Then, given a transformer rating and a
storage size, we use the probability of storage underflow for
a particular set of demands as a measure of the loss-of-load
probability.

B. Model and Notation

In the rest of the paper, we study a single distribution branch
of the electrical grid associated with a transformer with rating
C Volt Amperes and a battery or store with capacity B Watt-
hours (Figure 1a). These are shared by a set of n homes,
indexed by i. Each home places a load of Li(t) watts on
the system at time t. We call the sum of the home loads at
any time as the aggregated load at that time. We assume
that each home’s load can be categorized as belonging to one
of N load classes, with nj homes in the jth load class. We
assume conservatively that the generator produces energy at
constant rate that exceeds C so that it is not a bottlenecked
resource. We also assume the presence of a power conversion
system, marked ‘PCS’, that charges the store whenever the
aggregate load is smaller than C and meets demand from the
store whenever the aggregate load exceeds C.

III. A QUEUEING MODEL FOR THE GRID

To achieve our top level goal of determining sizing rules
for storage in the electrical grid, we begin by constructing a
queueing system to model a distribution branch in the grid.
We proceed in two steps. First, we develop an intuitively
appealing equivalence between a branch of the distribution
grid and a simple computer network in Section III-A. Then,
in Section III-B, we formalize our intuition by showing that
an electrical grid with storage can be modelled as a non-
traditional D/G/1/B queueing system that can, nevertheless,
be analysed as a standard G/D/1/B queue.

A. State Evolution Equivalence

We compare the branch of the electrical grid shown in
Figure 1a with a shared buffer of size B bytes accessed by a
communication channel of capacity C bits/second shared by
a set of sources, indexed by i, and with a transmission rate of
Li(t) bits/second in Figure 1b.

We first consider the evolution of the shared store in the
grid. If the sum of demands is less than C, then the store
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(a) A branch of the electrical grid with n loads Li where the capacity
of the battery is B Watt-hours and the base rating of the transformer
is C Volt Amperes. The Power Conversion System (PCS) drains and
fill the store depending on load conditions.
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(b) A G/D/1/B fluid queue with n sources Li. The capacity of the
buffer is B bytes and the service rate of the server is C bytes/second.

Fig. 1: The storage system and a small network.

charges at the rate C −
∑
i Li(t), unless it is full. Denoting

the amount of energy in the store (i.e., its workload) at time
t by W (t), we write this as:

dW (t)/dt =

{
C −

∑
i Li(t) if (W (t) < B),

0 otherwise

Symmetrically, if the sum of loads exceeds C, then the store
can be used to supply energy to the homes, unless the store is
empty, in which case the voltage supply received by the homes
will drop, which can be viewed as a failure of reliability. We
write this as:

dW (t)/dt =

{
C −

∑
i Li(t) if (W (t) > 0),

0 otherwise

Combining the two, we write

dW (t)/dt =

{
C −

∑
i Li(t) if (0 < W (t) < B),

0 otherwise
(1)

Now, consider the rate at which the network buffer changes
over time. Denote the amount of information in the buffer at
time t by W (t). If the sum of the arrival rates from the sources
exceeds C, then the excess arrivals are stored in the buffer if
space permits. Therefore, we can write:

dW (t)/dt =

{∑
i Li(t)− C if (W (t) < B),

0 otherwise

On the other hand, if the sum of arrivals is less than C, then
the buffer drains out at the rate C −

∑
i Li(t) unless it is

empty, in which case its drain rate is 0. We write this as

dW (t)/dt =

{∑
i Li(t)− C if (W (t) > 0),

0 otherwise

Combining the two, we can write:

dW (t)/dt =

{∑
i Li(t)− C if (0 < W (t) < B),

0 otherwise
(2)

Comparing equations 2 and 1, we see that they are sym-
metrical. This suggests that it should be possible to model the
two queueing systems analogously. We formalize this intuition
next.

B. Equivalent Queueing Models

Observe that the queueing model corresponding to our
electrical storage system is a D/G/1/B fluid queue. This
is because electrical power generated at a constant rate C is
precisely a fluid arrival bringing work to the system at the
deterministic rate C. Moreover, the load from home i can
be viewed as a fluid service rate, so that the service rate
corresponding to the aggregate load

∑n
i=1 Li(t) that drains the

buffer can be modelled as a G (general) service-rate process2

The critical aspect of this queueing system that we want to
quantify is its underflow probability, i.e., the probability that a
service finds the store empty. Unfortunately, standard queueing
models do not deal with this question.

However, teletraffic analysis can be used to analyse the stan-
dard G/D/1/B queueing system [6]. Based on the intuition
from the previous section, our plan of attack is to show that we
can model a D/G/1/B system with an equivalent G/D/1/B
system, permitting use of teletraffic analysis.

Let the workload trajectory of a queue denote a specific
instance of the function W (t), i.e., the store size at time t.
Let W (∞) denote the stationary workload process [7]. Our
main theoretical result is the Equivalence Theorem:

Equivalence Theorem Every workload trajectory in the
D/G/1/B queuing system corresponds to an equivalent tra-
jectory in the G/D/1/B queuing system such that ∀t,W (t)+
W (t) = B.
Proof can be found in the Appendix �.

One consequence of the Equivalence Theorem is that the
probability of storage underflow in the storage system is
precisely the probability of buffer overflow in the network

2Note that, if λ = E(
∑

i Li) is the average service rate then typically, for
this queueing system, C > λ, i.e., we have a finite queue with a utilization
factor ρ > 1.
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system (Corollary 1 in the Appendix). The latter probability
has been thoroughly investigated in teletraffic theory, to which
we turn to next.

IV. SIZING THE GRID

This section briefly states standard results from teletraffic
theory to compute approximations for the overflow probability
in a G/D/1/B system in both bufferless and buffered systems
under the assumption that the arrivals are Markovian. We
validate our use of teletraffic theory in Section V

We make the technical assumptions that each individual load
Li(t) is stationary and Markovian. Let Yi be this stationary
distribution. Let Y be the stationary distribution of the aggre-
gate load. Without storage, C has to be dimensioned so as to
allow for large variations in the aggregate load (i.e., peaks).
By introducing finite storage, we will be able to dimension
C less conservatively. If B = ∞, then there is no overflow
and the system is stable as long as λ < C. Typically, our
requirement is that the overflow probability in the original
system is less than a desired small value ε, which corresponds
to LOLP target, typically 2.7× 10−4.

A. Bufferless Case

We can write our requirement as:

logP (Y ≥ C) ≤ −β = log ε (3)

Following Kelly [6], we use Chernoff’s bound to obtain:

logP (Y ≥ C) ≤ logE[esY ]− sC
≤ inf

s
{logE[esY ]− sC}

Where logE[esY ] is the logarithm of the moment-generating
function of Y . Then, the effective bandwidth of a source with
the stationary fluid generation rate Y is given by

α(s) =
1

s
logE[esY ] (4)

An improved approximation for the loss probability can be
derived using the approach of El Walid et al [8]:

P (Y ≥ C) ∼ es
∗(α(s∗)−C)

s∗(2πσ2(s∗))
1
2

as C →∞ (5)

where s∗ is a point where s(α(s) − C) attains its infimum,
and σ2(s) is defined as follows:

σ2(s) =
∂2

∂s2
(sα(s))

Hence, given the aggregate load Y , C can be computed so
that the overflow probability is less than ε.

We are also interested in understanding how a mix of loads
can impact the sizing of the transformer. Assume that loads
belong to N classes where all loads in a class are i.i.d. and
loads from different classes are mutually independent. Then,
if αj(s) is the effective bandwidth of a home in class j, the
aggregate effective bandwidth is

α(s) =

N∑
j=1

αj(s)

Therefore, if we approximate logP (Y ≥ C) by
infs{s(α(s)− C)}, the capacity region; i.e., the values
of C that satisfy (3), will be:

Capacity region = {C| inf
s
{s(

N∑
i=1

niαi(s)− C)} ≤ −β}

(6)
This is an asymptotic formula, i.e., the formula is valid under
the assumption that the total number of sources is large and
we are interested in the tail of the distribution.

B. Buffered Case

Here, our first goal is to compute the overflow probability
in a system given C and B. For this we compute

log p(W (∞) ≥ B) (7)

where W (∞) is the stationary distribution of the workload.
Whitt [7] states several different asymptotic forms for the
steady state distribution of the workload of stable queues. Of
these, we focus on the exponential tail approximation of the
workload for large buffers originally studied by ElWalid et
al [8], i.e.,

p(W (∞) ≥ B) ∼ e−nc1e−c2B as B →∞ (8)

where e−nc1 is the loss probability in the bufferless case (see
Equation 5). To find the loss probability of the buffered case
(i.e., the overflow probability), we only need to compute c2. It
can be shown that −c2 is the dominant eigenvalue of a buffered
multiplexing system which determines the tail behaviour of the
workload, and for Markovian sources, we can compute it by
finding the solution of the following problem [9] [8]:

f(z) =

N∑
j=1

njMRE(Rjd −
1

z
Qj)− C = 0 (9)

Where MRE gives the maximal real eigenvalue of a matrix,
nj is the number of sources in class j, and Rjd and Qj are
the diagonal traffic generation rate matrix and intensity matrix
of sources in class j respectively.

Now, we are interested in the capacity region so that

log p(W (∞) ≥ B) ≤ −β = logε (10)

we have:

Capacity region = {C| log( es
∗(α(s∗)−C)

s∗(2πσ2(s∗))
1
2

) + zB ≤ −β}

(11)
This is an asymptotic formula, i.e., the formula is valid under

the assumption that the number of sources is large, the buffer
is large, and we are interested in the tail of the distribution.

To sum up, teletraffic analysis allows us to associate an
overflow probability (or LOLP) with a particular choice of
B and C as n → ∞ and for a given Markovian aggregate
workload

∑
i Li(t). We view these as our ‘design rules’ that

allow us to size transformer and storage capacities, i.e., a (C,
B) tuple, to meet the demands of a given workload with a
certain reliability constraint.
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V. VALIDATION OF OUR APPROACH

Our modelling and analysis of storage systems in the
electrical grid allows us to use teletraffic theory to determine
transformer and storage sizing rules. Teletraffic theory makes
a number of strong assumptions about the nature of the work-
load. Are the results of teletraffic analysis really applicable
to the electrical grid? This section describes our approach to
answering this critical question.

Our overall approach is to use real measurements of electri-
cal load to empirically determine the storage and transformer
sizes needed to serve them. We then compare the sizes so
determined with those determined from teletraffic analysis. We
show that the results obtained in these two ways are compa-
rable. An overview of our approach is shown in Figure 2. We
explain the details of this approach in the remainder of this
section.

A. Obtaining Real Demand Workloads

Our first step is to obtain real measurements of electrical
load. In this paper, we focus on residential loads rather than
commercial or industrial loads.

Detailed models for residential loads have been presented
in the power engineering, environmental studies, and civil
engineering literature [10]–[13]. However, these models suffer
from two problems. First, the data sets on which these models
are based are not publicly available. Second, to the best
of our knowledge, existing models group all homes into a
single class. Our measurements show significant differences
in demand behaviour at different homes. Therefore, it would
be better to model each class of home differently, which is
the approach that we follow in our analysis. This is also the
approach followed by electric utilities.

To obtain our own load data set, we built a testbed to
measure aggregate loads at 20 homes. We deployed measure-
ment nodes at 19 houses and one home-based small business
covering a range of living area sizes, occupants, appliances,
and energy consumption patterns. For the purpose of our small
pilot study, we used a convenience sample rather than a strati-
fied random sample. Our methodology generalizes to samples
chosen using standard population sampling techniques [14].

Each measurement node consists of a Current Cost Envi
device [15] and a netbook. The Envi device measures the
power consumption of a house every six seconds and stores it
locally in flash memory3. A script on the netbook queries the
device every six seconds to obtain an XML file that it stores
on disk. This is uploaded using a secure SSL connection to
a server in our lab once a day. To preserve privacy of the
participants in our study, logs files are anonymized before
being stored in a secure directory on the file server.

Typical loads from three of four types of houses for one
week are shown in Figure 3, with the busy hours marked with
vertical lines.

3Consequently, the device does not capture load transients that last shorter
than this time.

B. Assumptions for Empirical Sizing

We now turn our attention to using our load measurements
to sizing transformers and storage in the grid. Suppose we
had fine-grained load measurements from all the homes in one
neighbourhood for a period of several years. Then, we could
simply add these to create the true aggregate load. Given the
aggregate load, a trivial numerical simulation suffices to deter-
mine the aggregate duration of service disruption correspond-
ing to a particular transformer sizing and a particular storage
size. This simulation uses the discretized version of Equation 2
to update the state of the store given a particular demand and
transformer size, recording the durations of underflow.

However, it is impractical to measure all the loads from
a neighbourhood for several years before making a sizing
decision. Moreover, even if such a trace were to be obtained,
it would be difficult to determine the degree to which the
trace would be representative of other neighbourhoods or of
the same neighbourhood two decades hence. Therefore, we
have to make the following assumptions even when doing an
empirical sizing of transformers and storage:

1) Household energy demands can be categorized into a
few distinct classes corresponding to sampling strata,
where demands within a class are homogeneous and the
classes are mutually exclusive.

2) The homes selected for measurement in our study are a
representative random sample of their assigned class.

3) The proportion of homes selected for measurement is
representative of the true proportion of homes in each
class.

These assumptions are rather strong, but can be removed if
homes chosen for measurement were chosen from a stratified
random sample, which we would advocate in a real-world
application of our design rules. In this case, the aggregate
load in Figure 2 would be a reasonably good representative of
the true aggregate load.

C. Empirical Sizing

Given the assumptions in Section V-B, we now consider the
problem of empirically determining the size of a transformer
and storage pair for a residential neighbourhood.

We use the following methodology. First, we sum the load
traces of different homes over a period of time to find the ag-
gregate power consumption. A typical aggregate load is shown
in Figure 4. Second, we use this aggregate power consumption
in a numerical simulation to obtain the aggregate duration of
load disruption corresponding to a particular transformer and
storage sizing. We note that a similar approach can be used by
an electric utility to empirically size storage without needing
to use teletraffic analysis. The results from this numerical
simulation are presented in Section VI.

D. Teletraffic-based Sizing

As discussed earlier, using teletraffic theory to size trans-
formers and storage has several advantages over an empirical
approach. Indeed, applying the theory allows us to readily
compute the effect of varying the number of homes, the buffer
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Fig. 3: Load measurements from houses in three classes for one week with busy hours marked by vertical lines.
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Fig. 4: An example of the aggregate workload over a period of
two days. The shaded areas above the horizontal line represent
the times when demand is met from the store for a transformer
size of 32.4 kiloWatts.

size, or the proportion of the homes in each class without
having to recompute or re-measure the aggregate load and run
onerous numerical simulations.

To gain these advantages, however, we need to make some
additional assumptions about the nature of electrical demands.
These are:

4) The electrical demand during the busy hour (defined
below) at each home is a conservative upper bound on
its demand.

5) The cumulative busy hour trace (CBHT) of a home
represents the typical busy hour demand of a home.

6) CBHTs from different homes in the same class can be
concatenated to represent the aggregate demand from the
class. We call the concatenated cumulative busy hour
traces the CCBHTs.

7) CCBHTs are independent.
8) CCBHTs are adequately represented by a k-state

continuous-time Markov model. This implicitly assumes
that busy hour behaviour is stationary and ergodic.

9) Asymptotic limits can be used even for the fairly small
number of homes and CCBHTs in our study.

We note that using the busy hour to size the system is the
standard approach used in telecommunication systems. This is
the one-hour period during which a home uses the most energy
(it may or may not include the daily peak power point). It is
generally accepted that a sizing that is based on the busy hour
alone is more conservative than that using the entire day and
therefore provides a sufficient cushion against measurement
bias and lack of complete measurement data.

Our methodology for the teletraffic-based sizing is as fol-
lows. First, based on Assumption 4, we find the busy hour
for each home for each day. This is the one-hour period
with the maximum area under the power consumption profile
(see Figure 2). Usually, the busy hour happens during the
peak hours, i.e., 7am-11am and 5pm-9pm during the winter4.

4All our measurements have been obtained during the winter.

We call the load during the busy hour for a home as its
‘Busy Hour Trace’ or BHT. Second, we concatenate the BHTs
of each home for a specific number of days to obtain the
cumulative busy hour trace (CBHT) for that period5. This
represents the typical peak demand of the home according to
Assumption 5. Third, based on Assumption 6, we concatenate
CBHTs of homes in the same class to get the concatenated
CBHT (CCBHT) of that class, which represents its busy hour
behavior. Figure 5 shows the typical CCBHT of three of four
classes in our measurement study. Fourth, we use Assumption
8 to extract a Markov model for each class. These Markov
models are building blocks of the teletraffic sizing algorithm
described in Section V-D1.

We jointly validate assumptions 5-9 by comparing the loss
duration predicted by teletraffic analysis to those computed by
numerical simulation in Section VI. Note that the last three
assumptions are technical assumptions needed for teletraffic
analysis.

1) Creating a Markov Model for a Class: Home loads are
due to the superposition of loads from different electrical ap-
pliances [10]. Both the literature and our observations suggest
that each appliance can be modeled as an ON-OFF source with
exponentially distributed ON and OFF periods. An appliance i
consumes PONi watts when it is ON, and POFF i watts when
it is OFF (usually, POFF i is zero). Therefore, it is plausible
that the power consumption of a class can be modelled as a
k-state continuous-time Markov process. However, this still
leaves the assignment of power levels to Markov states open.

To address this issue, we use the k-means clustering algo-
rithm to cluster the CCBHT for each class into k levels. Using
these levels, we construct a modified CCBHT by substituting
a measured power consumption value with the value of the
center point of the cluster that it belongs to. Since k is an
unknown, to determine the appropriate value of k for each
class, we run the clustering algorithm with different values of
k. Then we use the goodness-of-fit metric introduced in [16] to
find the minimum number of states necessary for representing
the home load of a class in a period.

2) The Teletraffic-based Sizing Algorithm: Given the set of
Markov models, one for each class, using teletraffic theory
to compute sizing requires four additional steps. First, we
compute the power consumption rate matrix, R, and the
intensity matrix, Q, of each class from its modified CCBHT
as follows. The rate matrix represents the amount of power
consumed by houses in each state. Values of the center points
of the clusters (in the clustered CCBHTs) that are found for a
given value of k are elements of the power consumption rate
matrix, R. The intensity matrix specifies how fast the amount
of power consumption is changed. We construct the intensity
matrix of the Markov models by finding the average time that
it takes to transition from the state i to the state j, which gives
us 1/qij (qijs are elements of the intensity matrix, Q).

Second, from the Q matrix we compute the stationary prob-
ability distribution of the continuous-time Markov process.
Suppose that πi is the stationary probability of being in state

5Note that the length of this period is not necessarily equal to the length
of load traces used in numerical simulation
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Fig. 5: CCBHTs for three classes for one week.

i, we write the moment generating function of the stationary
power consumption of a Markovian source

M(s) =
∑
i

πie
sri (12)

where ri is the power consumption in state i.
Third, using the moment generating function of a Markovian

source we can derive a formula for the effective bandwidth (see
Equation 4). El Walid et al prove that the effective bandwidth
of a Markovian source is the maximal real eigenvalue of the
matrix Rd − 1

zQ, where Rd = diag(R) [17].
Finally, in the fourth step, we use the approximations in

Equations (5) and (8), to find (C,B) tuples such that for a
given number of houses from each class, the loss probability
is less than a specific value. To allow us to study distribution
branches with different numbers of houses than in our study,
we assume that the proportion of houses in class i, say ρi,
is constant and known. Therefore, if we have n houses, the
number of houses in class i is nρi, which we can then use in
our teletraffic-based design rules.

VI. RESULTS

We present our results in four parts. First, we describe the
methodology by which we placed home loads into one of
four classes. Second, we validate our use of teletraffic theory
by comparing the aggregate duration of load outage, for a
particular sizing, obtained using numerical simulations and
teletraffic analysis. Third, we compare the sizing obtained from
our model with those used by a major electricity utility in our
geographical area. Finally, we use teletraffic models to study
the behaviour of the electrical grid in response to changes in
transformer and storage sizing. This allows us to gain insights
into the operation of this complex system.

A. Classifying Home Loads

Home electricity loads are highly variable and depend
on factors such as the number of occupants, the time of
day, the season, mean household income, and the types of
appliances commonly in use in the geographical area. Given
this variability, choosing a classification for home loads is a
challenging task. Fortunately, standard rules based on decades
of field experience allow an electric utility to both predict
and classify a home load based on a few simple parameters.

Type of Heating House Size
100m2 200m2 300m2 400m2

Baseboard electric
heat

3.0 4.0 5.0 6.0

Central electric heat 4.0 5.0 6.0 7.0
Gas/oil heat, no cen-
tral A/C

1.0 1.5 2.0 2.5

Gas/oil heat, central
A/C

1.5 2.5 3.5 4.5

For town or row houses, multiply the unit value by 0.8.

TABLE I: ‘Unit values’ assigned to customer homes by a
major utility.

Class Unit value Number of houses
1 1.2 8
2 2.5 7
3 3.5 3
4 4.5 2

TABLE II: Number of homes in our experiment within each
class.

We obtained such a parametrization, specifically used for
transformer sizing, from a major utility in our area (Table I).
The key sizing parameters are the house size and the nature of
the heating and cooling systems, which constitute the major
loads in our geographical area. These are used to compute a
‘unit value’ that represents the load expected from that home.

To minimally impact participant privacy, we asked each
participant to tell us their home’s unit value computed using
this table. We then placed homes with the same unit value in
the same class. Table II shows the four classes so obtained.
We computed the CCBHTs for the homes in each class as
discussed in Section V to carry out teletraffic analysis, and
these are shown in Figure 5.

B. Comparing Results from Numerical Simulation and Tele-
traffic Theory

We used both teletraffic theory and numerical simulations
to compare the expected aggregate duration of load disruption
for the set of 20 homes in our measurement study keeping the
LOLP fixed at 2.74×10−4. Our teletraffic-based sizing results
are from the concatenation of the busy hour traces extracted
from a week of measurement.

For a particular LOLP, we computed equivalent pairs of (B,
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LOLP (B,C) tuples Teletraffic
theory

Numerical
simulation

(Watt-TimeUnits, kVA) (TimeUnits) (TimeUnits)

2.74× 10−4

(B=0 , C= 107.27) 55.24 0
(B=104 , C= 97.83) 55.24 0
(B=105 , C= 79.27) 55.24 0
(B=106 , C= 70.07) 55.24 0
(B=107 , C= 68.55) 55.24 0
(B=108 , C= 68.36) 55.24 0
(B=109 , C= 68.34) 55.24 0

TABLE III: Loss duration for 14 days of measurements
conducted in 20 houses. The time unit is six seconds.

LOLP (B,C) tuples Teletraffic
theory

Numerical
simulation

(Watt-TimeUnits, kVA) (TimeUnits) (TimeUnits)

2.74× 10−4

(B=0 , C= 636.35) 39.46 0
(B=104 , C= 629.43) 39.46 0
(B=105 , C= 590.72) 39.46 0
(B=106 , C= 551.00) 39.46 0
(B=107 , C= 544.06) 39.46 0
(B=108 , C= 543.19) 39.46 0
(B=109 , C= 543.08) 39.46 0

TABLE IV: Loss duration for 100 days for synthetic data for
100 statistically identical houses. The time unit is one minute.

C) values, as shown in Table III. We chose a wide range of B
values and computed the corresponding C values. Note that
B values are in Watt-TimeUnits, where one TimeUnit is the
granularity of our measurement, i.e., six seconds. Therefore, a
B value of 104 Watt-TimeUnits, for example, is 104/10 Watt-
minutes or 16.7 Watt-hours. Also note that we converted the
transformer size obtained from teletraffic analysis from Watt
to Volt-Ampere (VA) by dividing it by the power factor; we
set the power factor to 0.9.

Given a (B, C) pair, we used numerical simulation to
compute the actual duration of load disruption. The length
of load traces used in the numerical simulation is 14 days.
Table III compares the duration of load outage predicted using
the two techniques. We see that the predictions from theory
closely match simulation results.

To compensate for the limited duration of our trace and
to additionally validate our approach, we also synthetically
generated the electricity demand for 100 homes for 100 days
using a 1-minute-grain simulator developed at the University
of Loughborough [10]. This workload generator has been
shown to closely approximate real domestic demands. To gen-
erate this synthetic trace, we chose all the homes to have four
occupants and with a randomly selected mix of appliances. All
other values were those set by default including the occupancy
pattern. The subsequent modelling and analysis of this data set
was identical to that used for our own data set. However, it
represents both a homogeneous load population as well as a
much longer CCBHT for load modelling. Table IV shows the
results of this comparison. We again see that predictions from
teletraffic analysis are consistent with ground truth.

To further validate our results, we computed load models
from the entire 24-hour trace, rather than just the busy hour
both for our data set and the synthetic data set. We compared
predictions from this load model with numerical simulations

Total unit value Transformer size (kVA)
1-3 10
4-9 25

10-24 50
25-36 75
37-50 100
51-88 167

TABLE V: Transformer sizing rules used by a major utility.

over the entire 24-hour trace. Using load traces from our
measurement study, we found that for all LOLPs and for all
values of B, the predictions were a tight upper bound on
the simulation results. However, using the synthetic data set,
our predictions were not consistent with results of numerical
simulation. We attribute this to the fact that the entire day
traces from this data set are highly correlated whereas if we
confine our study to a short window of time, like the busy hour,
the correlation of load traces decreases drastically. Therefore,
we advocate the use of busy hours in the teletraffic-based
sizing algorithm. Due to lack of space, we do not present
the sizing results obtained using the entire 24-hour trace.

C. Comparing Our Sizing with Industry Practice

The transformer sizing rules used by a major utility in our
geographical area are shown in Table V. We now compare the
sizing obtained by using our analysis and these rules.

The total unit value of the 20 homes in our study was 46.6.
Thus, for the industry standard LOLP of 2.74 × 10−4 the
transformer size is 100 kVA. From Table III, we predict that for
the same LOLP with no storage, the transformer size should be
107.27 kVA. This is in excellent agreement with the heuristics
used by the utility. This indicates that a careful load modelling
based on measurements matches heuristics developed over
decades of field experience, validating our analysis.

Note that had the sum of unit values been even slightly
larger (greater than 50), the heuristic would have advocated a
size of 167 kVA, which would have been 56% greater than
strictly necessary to meet the LOLP. Even greater savings
can be achieved by adding storage. For example, our analysis
indicates that, for the same set of homes, by adding 106

Watt-time units, or 1.67 kWh of storage, keeping LOLP at
2.74×10−4, it is possible to reduce the transformer size from
107.27 kVA to 70.07 kVA, a reduction of 35%. This does not
mean that installing this amount of storage is cost-efficient.
It has been discussed in [18] that most of the applications of
energy storage are cost-prohibitive with current technologies
and prices. However, energy storage brings a mix of benefits to
both end-user customers and the grid. Therefore, if we quantify
all its benefits, we might conclude that it is economical; this
is clearly beyond the scope of this paper.

D. The Effect of Storage on the Electrical Grid

We now use teletraffic analysis to study the insights embod-
ied by our design rules, that is, the inter-relationship between
transformer size C, the storage size B, the number of homes
n and the loss probability p.

We first study the effect of storage size and loss probability
on transformer size for 20 homes (Figure 6). Here, we find that
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Fig. 6: The effect of storage size and loss probability on
transformer capacity for 20 homes.

the addition of storage has a perceptible impact on transformer
sizing. For 20 homes, as we go from no storage to 1.67
kWh of storage, the required transformer size, for a fixed
loss probability, goes down by about 40%. Interestingly, we
find that the transformer size increases fairly sharply as the
loss probability measure becomes more stringent. However,
by adding storage, we can gain the same level of reliability
without increasing the transformer size. Moreover, we observe
than the effect of adding storage on transformer capacity for
20 homes diminishes for storage sizes greater than 1.67 kWh.

We next keep the loss probability fixed and vary both
the number of homes n and the storage size (Figures 7,
and 8). For both small and large n the required transformer
size increases linearly with the number of houses. This is a
straightforward consequence of representing a house by its
‘effective bandwidth.’ We also see that for small values of
n, as the storage size increases, the transformer size required
decreases significantly, demonstrating that the addition of
storage allows us to reduce transformer capacity. However,
for large values of n, storage appears to have only moderate
effect, a well-known phenomenon in the Internet [19].

VII. RELATED WORK

Transformer sizing in the electrical grid is usually studied
in the context of overall distribution system planning. The
standard approach to solve the problem is to use linear
optimization [1], [20]. However, this approach necessarily
models loads using only their peak values, ignoring temporal
variations. These models also do not take storage into account.

Storage can be used both to even out variations in demand,
as we study, as well as variations in supply, especially in the
context of variable-rate generation by wind turbines and pho-
tovoltaic cells: see Divya and Ostergaard [21] and Deshmukh
et al [22] for further details and a survey of current work in
this area. To the best of our knowledge, most prior work on
the effect of storage in the power grid has been on the supply
side, and has not used concepts from teletraffic theory. For
example, Lee and Gushee [2] compute the amount of storage
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Fig. 7: The effect of number of homes and storage size on
transformer capacity for a fixed loss probability of 2.74 ×
10−4(10-100 houses).

0
1e4

1e5
1e6

1e7
1e8

1e9

100
200

300
400

500
600

700
800

900
1000

0

500

1000

1500

2000

2500

3000

3500

4000

Storage capacity (W-Timeunit)Number of houses

Tr
an

sf
or

m
er

 s
iz

e 
(k

V
A

)

Fig. 8: The effect of number of homes and storage size on
transformer capacity for a fixed loss probability of 2.74 ×
10−4(100-1000 houses).

needed across the entire United States to smooth out variations
in wind energy generation. Similarly, Roy et al have studied
the optimal sizing of batteries to even out variations in a single
wind turbine [23]. Although they use the same equations to
model the evolution of battery state as we do, their analysis is
based on numerical simulations or the simplifying assumption
that the generation process follows a Weibull distribution.

The use of storage to deal with variations on the demand
side was proposed by Lachs as early as 1995 [24]. However,
the lines of work closest to ours are by Ponnambalam et al
and Kempton et al. Ponnambalam, et al use a novel moment-
based method to study the battery storage process [25]. This
approach is complex and relies on stochastic programming
rather than teletraffic models. Kempton et al have studied the
use of electrical vehicles for supplying energy to the grid,
which they term “Vehicle-to-Grid” [26]. Their analysis focuses
more on the details of vehicle usage and charging rates than
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the battery storage process.

VIII. DISCUSSION AND FUTURE WORK

Our work has made several simplifying assumptions. First,
we have already noted that teletraffic design rules are meant
to be used in the asymptotic regimes for the number of
houses, storage capacity, and transformer capacity. Although
these asymptotes are arguably achieved for storage capacity
(107 Watt-TimeUnits) and transformer size (104 VA) in our
measurement study, they are certainly not achieved for the
number of houses. Therefore, we caution the use of these rules
for small distribution networks: they are far more applicable
deeper in the distribution tree. Unfortunately, lacking data from
a sufficiently large number of houses, we were forced to apply
our techniques to the small-n regime.

Second, network buffers can be filled and drained with no
perceptible degradation. In contrast, the lifetime of a battery
may depend on the depth of discharge, especially for Lithium-
ion cells [27]. This is due to the buildup of electrolytic deposits
in the battery, and degradation of the anode [28]. In addition,
the lifetime also may depend on the temperature of use and the
exact charging voltage. These effects are difficult to quantify,
making the use of teletraffic analysis only one piece of a
complex puzzle. Incorporation of battery dynamics into the
system model without overly complicating the analysis is an
exciting area for future work.

Third, although our work was motivated by the need to re-
examine design rules for time-varying generation from renew-
able energy sources, this paper does not deal with this issue.
We believe, however, that G/G/1/B teletraffic analysis can
be used to study time-varying Markovian generation systems.

Despite these limitations, we believe that the use of tele-
traffic analysis to model and size electrical grids represents an
exciting area of multi-disciplinary work. We hope to use our
approach in the future to answer questions such as:

• If home-owners also own electric vehicles so that there is
storage at each home, is shared storage in the distribution
system necessary or cost effective?

• If a home generates electricity according to a stochastic
process that models wind or photovoltaic generation, how
does this affect the sizing and operations of the in-home
and shared store?

IX. CONCLUSION

We revisit the rules for sizing elements of the electrical
grid motivated by the replacement of ageing infrastructure
and the anticipated increase in storage deployment. Instead
of modelling loads by their peak values and using linear
optimization, the standard approach in power systems, our
work presents a new approach to define design rules for
distribution systems. The basis of our work is the Equivalence
Theorem, which states that a battery in the electrical grid can
be modelled as a buffer in a network. This permits us to
apply teletraffic analysis to size the electrical grid. We validate
our approach by using our own measurement data as well
as synthetic data. Our results show that our approach is in
good agreement both with numerical simulations and industry
practice.
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APPENDIX: PROOF OF EQUIVALENCE THEOREM

Let the initial workload state in the storage system, that is,
the D/G/1/B system be W (t0). Then, in the G/D/1/B/
model, we set W (t0) = B −W (t0).

Lemma 1 If at any time t, W (t)+W (t) = B then W (t∗)+
W (t∗) = B ∀ t∗ > t.

Proof: Let t2i−1, i = 1, 2, · · · , be the ith time in the interval
[t t∗] that the storage system becomes either full or empty
and persistently in this state until t2i (Figure 9). Similarly,
we define t2i−1 to be the ith time that the buffer in the model
becomes either full or empty and persistently in this state until
t2i.

We prove the lemma in two parts. First, we use induction
to prove that ti = ti for all values of i and that if W (ti−1) +
W (ti−1) = B then W (ti) +W (ti) = B. In the second part,
we show that these results hold in the last interval prior to t∗.
Part 1
Base case: Without loss of generality, we assume that t1 ≤ t1.
Since W (t) and W (t) are differentiable on the interval [t t1],
the Fundamental Theorem of Calculus allows us to write:

W (t1)−W (t) =

∫ t1

t

dW (s)

W (t1)−W (t) =

∫ t1

t

dW (s)

From Section III-A, in this interval we have
dW (t)/dt = −dW (t)/dt. Thus, it can be readily seen
that W (t1) − W (t) = −(W (t1) − W (t)). Since we have
W (t) + W (t) = B, then W (t1) = 0 (or B), implies that
W (t1) = B (or 0), and it implies that t1 = t1.

Inductive step: Given W (tk) + W (tk) = B, we prove
that tk+1 = tk+1, and W (tk+1) + W (tk+1) = B. Again
without loss of generality, assume that tk+1 ≤ tk+1. Since
W (t) and W (t) are differentiable on the interval [tk tk+1],

the Fundamental Theorem of Calculus allows us to write:

W (tk+1)−W (tk) =

∫ tk+1

tk

dW (s)

W (tk+1)−W (tk) =

∫ tk+1

tk

dW (s)

Since dW (t)/dt = −dW (t)/dt in this interval, we have
W (tk+1) −W (tk) = −(W (tk+1) −W (tk)). Therefore, we
conclude that W (tk+1)+W (tk+1) = B. Clearly, W (tk+1) =
0 (or B) implies that W (tk+1) = B (or 0), which in turn,
results in tk+1 = tk+1.
Part 2
Now assuming that tn ≤ t∗ ≤ tn+1, the last part of the proof is
to show that W (t∗)+W (t∗) = B given that W (tn)+W (tn) =
B. Again, W (t) and W (t) are differentiable on the interval
[tn t∗], and we can write:

W (t∗)−W (t) =

∫ t∗

tn

dW (s)

W (t∗)−W (t) =

∫ t∗

tn

dW (s)

Using the fact that dW (t)/dt = −dW (t)/dt, we can write
W (t∗) − W (tn) = −(W (t∗) − W (tn). By induction, we
previously showed W (tn) +W (tn) = B; thus, we conclude
that W (t∗) +W (t∗) = B and the proof is complete. �

Proof of the Equivalence Theorem
It follows from Lemma 1 that there is a one-to-one map-
ping from trajectories of the D/G/1/B queuing system
to trajectories of the G/D/1/B queuing system and that
∀t,W (t) +W (t) = B. �
Corollary 1 It follows from the above theorem that:

P(W (∞) > B) = P(W (∞) < 0)

P(W (∞) < 0) = P(W (∞) > B)

Where W (∞) is the stationary workload process.


