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Abstract. A straight line drawing of a graph is an open weak rectangle-
of-influence (RI) drawing, if there is no vertex in the relative interior
of the axis parallel rectangle induced by the end points of each edge.
No algorithm is known to test whether a graph has a planar open weak
RI-drawing, not even for inner triangulated graphs.

In this paper, we study Rl-drawings that must have a non-aligned frame,
i.e., the graph obtained from removing the interior of every filled triangle
is drawn such that no two vertices have the same coordinate. We give a
polynomial algorithm to test whether an inner triangulated graph has a
planar open weak RI-drawing with non-aligned frame.

1 Background

The rectangle-of-influence (RI for short) drawability problem was introduced by
Liotta et al. [T]. In a strong RI drawing of a graph, there is an edge between
two vertices of the graph if and only if there is no other vertex in the axis-
parallel rectangle defined by the two ends of every edge. There are two variants
of RI-drawings: In a closed RI-drawing, the rectangle required to be empty is
closed, whereas in an open RI-drawing, only the relative interior of the rectangle
is required to be empty.

Biedl et al. [2] introduced the concept of weak RI drawings in which graphs
are drawn such that for any edge the rectangle is empty, but not for all empty
rectangles the edge is necessarily present. They proved that a plane graph has a
planar weak closed RI drawing if and only if it has no filled triangle (i.e., a triangle
that has vertices in its interior.) Furthermore, they presented an algorithm to
find such a drawing in an (n — 1) x (n — 1) grid in linear time. The grid size can
be improved to (n — 3) x (n — 3) [11].

For open RI drawings, better bounds are known. Miura and Nishizeki [10]
presented an algorithm to find a small weak open RI drawing of a given 4-
connected graph. Their grid size is W x H where W + H < n. Zhang and
Vaidya [14] also provided small weak open RI drawings for inner triangulated
4-connected graphs with quadrangular outer face. They do this by proving that
the drawing presented by Fusy [3] is a weak open RI drawing.

However, as opposed to (weak planar) closed RI-drawings of planar graphs,
no necessary and sufficient conditions or testing algorithms are known for the
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existence of (weak planar) open RI-drawings, even for inner triangulated graphs.
This study was initiated by Miura, Matsuno and Nishizeki [9]. They first gave
necessary and sufficient conditions for planar weak open Rl-drawability of tri-
angulated planar graphs. Here all faces including the outer-face are triangles, so
the outer-face is a filled triangle, which severely restricts the placement of the
vertices not on the outer-face and hence makes testing existence of a weak open
RI-drawing easy.

Miura et al. [9] also aimed to develop necessary and sufficient condition for
all inner triangulated graphs, but did not succeed. It is clear that such a drawing
imposes conditions on how filled triangles are drawn; a natural first step is hence
to remove the interior of all filled triangles and try to draw the resulting frame
graph while satisfying these conditions. Miura et al. then changed their model
a bit and only considered what they called oblique drawings where no edges of
the frame graph are drawn horizontally or vertically. They still could not give
necessary and sufficient conditions for oblique drawings, but they gave one set
of conditions that are clearly necessary, and showed that adding one condition
made them sufficient. (See later for more details.)

In this paper, we use a slight variant of oblique drawings that we call drawings
with non-aligned frame, which means that no two vertices of the frame graph
have the same z-coordinate or the same y-coordinate. We give necessary and
sufficient conditions for a graph to have a planar weak open Rl-drawing with
non-aligned frames.

Our proof is algorithmic and yields a test whether a graph has a planar weak
open Rl-drawing with non-aligned frame; it also constructs such a drawing if
one exists. Also, the algorithm works via a detour into rectangular drawings and
proves a correspondence between RI-drawings and rectangular drawings that
may be of independent interest.

2 Preliminaries

Let GG = (V, E) be a graph with n vertices V and m edges E. The graph G is
called simple if it has no loops or multiple edge. It is called planar if it can be
drawn in the plane without crossing. A planar drawing of ¢ can be specified
by giving for each vertex the cyclic order of edges around it. A planar drawing
divides the plane into regions called faces. The unbounded region is called the
outer face, all other faces are called inner faces. Any vertex not on the outer
face is called an inner vertex. A plane graph is a planar graph with a planar
embedding and the outer face specified. An inner triangulated graph is a plane
graph in which every inner face is a triangle; it is called ¢riangulated if the outer
face is also a triangle. In this paper, all graphs are assumed to be simple, plane
and inner triangulated, and we occasionally omit these quantifiers.

In a plane graph, a triangle is called filled if there is at least one vertex
inside the triangle. Crucial for our study is the frame graph, which is the graph
obtained by removing the inside of every filled triangle (see Fig. 2). Also crucial
is the concept of angles of a plane graph. Each instance of a vertex appearing in
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a face is called an angle. The angles on the outer face are outer angles and the
angles on the inner faces are called inner angles.

Given a plane graph, the dual graph is obtained by creating a vertex v; for
every face f, and adding an edge (vy, v,) whenever faces f and g share an edge.
The angles in the dual graph are in natural 1-1 correspondence with the angles
of the original graph: The angle at vertex v in face f corresponds in the dual
graph to the angle at vertex v; in the face formed where v used to be.

A planar straight-line drawing of a planar graph is a drawing without crossing
where all edges are straight line segments. Such a drawing is called a planar weak
open rectangle-of-influence (RI for short) drawing if for every edge (v, w), the
relative interior of the axis-parallel rectangle defined by the v and w contains
no other vertex. The drawing in Fig. 1(a) is a planar weak open RI drawing.
Since we do not consider any other type of RI-drawing, we omit the classifiers
“planar”, “weak” and “open” occasionally.
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Fig. 1. An oblique Rl-drawing with Rl-labels (left) and a rectangular drawing with
corresponding RD-labels in the interior (right).

A straight-line drawing of a graph is oblique if no edge in the drawing is axis
parallel. It is non-aligned if no axis parallel line intersects two or more vertices
of the graph. Every non-aligned drawing is oblique, but not vice versa. An inner
triangulated graph has a non-aligned RI-drawing if and only if it has no filled
triangle, since a non-aligned RI-drawing has no vertices on the boundaries of
rectangles and hence is a closed RI-drawing.

An oblique drawing of a graph G naturally induces a labeling of the angles
with {0,1,2,3,4} by assigning to each angle the number of coordinate axes
contained in the angle. Since we use this concept only for RI-drawings, we call
it an RI-labeling. The following is known.

Lemma 1. [9] In an oblique RI-drawing of an inner triangulated graph, the
RlI-labels of any inner face consists of two 1s and one 0.

An inner triangulated graph G is said to have a inner rectangular dual draw-
ing if GG can be represented as the touching graph of a set of interior-disjoint axis-
aligned rectangles such that their union is simply connected (i.e., has no holes.)
Fig. 1(b) shows an inner rectangular dual drawing of the graph in Fig. 1(a) (ig-
nore the circles on the lines.) A rectangular dual drawing is an inner rectangular
dual drawing where the union of the rectangles is also a rectangle.
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A graph has an inner rectangular dual drawing if and only if it does not have
a filled triangle [13,6,5]. Recall that a graph has a non-aligned RI-drawing if
and only if it doesn’t have a filled triangle, so a graph has an inner rectangular
dual drawing if and only if it has a non-aligned RI-drawing. In this paper, we go
one step further and show that there is a direct correspondence between these
two types of drawings.

It is easier to show this by arguing about a third, closely related, type of
drawing. A drawing of a plane graph is called an inner rectangular drawing if
every edge is drawn as a horizontal or vertical line segment so that every inner
face boundary is a rectangle. A rectangular drawing is an inner rectangular
drawing in which the outer face is a rectangle too. See Fig. 1(b) and 5 for
examples. Note that any (inner) rectangular dual drawing of a graph G is an
(inner) rectangular drawing of a graph that is the dual graph of G except for
some changes near the outer-face.

An inner rectangular drawing of a graph G induces a labeling of the (graph-
theoretic) angles that we call an RD-labeling: If the angle is drawn with (geo-
metric) angle i7/2, then assign it label ¢ € {1,2,3,4}. Such a labeling can be
used to characterize graphs that have a rectangular drawing:

Lemma 2. [8] A plane graph has an inner rectangular drawing if and only if it
has an RD-labeling with labels in {1,2,3,4} that satisfies

(a) Each inner angle is labeled 1 or 2.

(b) Fach inner face has exactly 4 angles of label 1,

(¢) For each vertex, the labels of incident angles sum to 4,

(d) The sum of the labels on the outer-face is 2k + 4, where k is the number of
angles on the outer-face.

3 Results

Let G be an inner triangulated graph. Let F' be the frame graph of G. In this
section we give a constructive algorithm to decide whether G admits an open RI
drawing such that F' is non-aligned.

Overview: Like the result by Miura et al. [9], our algorithm is based on testing
whether the frame-graph F of G has an Rl-labeling that satisfies certain restric-
tions, and if so, compute an RI-drawing from it. We hence review their approach
first and explain the changes with our algorithm.

Miura et al. first test for every filled triangle T" whether the graph inside T
has an RI-drawing. If this fails for any T then clearly G has no RI-drawing either.
So in the following we always assume that all interiors of all filled triangles of T'
have an RI-drawing, at least under some restrictions on the drawing of T'. Next,
Miura et al. compute the restrictions made by a filled triangle T'.

Lemma 3. [9] If T = {a,b,c} is a triangle of the frame graph that is a filled
triangle in G, and if a is not adjacent to all vertices inside T, then in any open
RI-drawing of G' with oblique frame, the induced oblique RI-drawing of the frame
has Rl-label 1 at a.
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So there is a set A of inner angles of the frame graph F' that must be labeled
1 in any non-aligned (hence oblique) RI-drawing of F' induced by an RI-drawing
of G. Moreover, if we can find a non-aligned RI-drawing of F' that has these
RI-labels, then it can be expanded into an open RI-drawing of graph G

e K

Fig. 2. Graph (7 (left) and its frame graph F with forced Rl-labels (right).

Definition 1. (based on [9]) A labeling of the angles of the frame graph F with
{0,1,2,3,4} is a decent Rl-labeling if (a) the labels at every vertex sum to {,
and (b) every inner triangle has labels {0,1,1}, and every angle in A is labeled
1, where A is the set of restriction implied from the filled triangles. It is called
good if (¢) the outer angles have labels {2,3,4}.

Miura et al. showed that if G has an open Rl-drawing with oblique frame,
then F' has a decent Rl-labeling. However, they also showed a graph where this
is not sufficient. Hence they added condition (c¢) which forces the outer-face
to consist of four chains that are monotone in x and y. This condition is not
necessary, but they show that adding it gives sufficient conditions: any graph
that has a good Rl-labeling has an oblique RI-drawing.

We show here that using a different restriction (c’) gives conditions that are
both necessary and sufficient, at least for the closely related concept of drawings
with non-aligned frame.

Theorem 1. An inner triangulated graph G has a planar weak open RI-drawing
with non-aligned frame if and only the frame graph F has a decent Rl-labelling
such that (¢’) the sequence of labels on the outer angles does not contain 01%0
as a subsequence.

The necessity of condition (¢’) is a fairly simple exercise; we give a formal
proof in the appendix. We do not prove sufficiency directly; instead we give an
algorithm that tests whether an inner triangulated G' has a planar weak open
RI-drawing with non-aligned frame, and the steps of the algorithm will imply
sufficiency of the conditions on the RI-labeling. We outline here our algorithm:

(i) Compute the frame graph F (see Fig. 2).

(ii) For every triangle T of F' that was filled in G, compute whether the interior
of T is realizable in an open RI-drawing [9]. If this fails for any triangle,
then G has no open Rl-drawing. Else, let A be the set of inner angles of F'
that must have RI-label 1 (Lemma 3.) See Fig. 2.

(iii) Construct D (see Fig. 3), which is roughly the dual graph of I after adding
one vertex in the outer-face.
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(iv) Find an inner rectangular drawing I'p of D that respects A in some sense.
See Fig. 5. If there is none, stop: F' does not have a non-aligned RI-drawing.
(v) Expand the inner rectangular drawing I'p into a rectangular drawing I'ps
of a super-graph D', by adding more rectangular faces in the outside. I'p:
also respect A (see Fig. 5).
(vi) Construct the dual graph of D" and then remove the outer face vertex. The
resulting graph F’ is a super-graph of the frame-graph F (see Fig. 6).
(vii) From the RD-labeling of D', extract an RI-labeling of F’. This RI-labeling
is decent, but in fact, it is good. See Fig. 6.
(viii) Using this good RI-labeling, create a non-aligned RI-drawing of F’ using
a variant of the algorithm presented in [9]. See Fig. 7.
(ix) Then insert the filled triangles (which is possible by choice of A4) to obtain
an open RI-drawing with non-aligned frame of a super-graph G’ of G.
(x) Remove the vertices of Vg\Vi from the drawing (see Fig. 7).

Steps (i), (ii), (ix) and (x) are either taken from [9] or are straightforward.
We give definitions and details for the other steps below.

Definition of D: We first clarify how graph D is defined. Let F' be the frame-
graph, i.e., F' is an inner triangulated graph without any filled triangle. Let F'T
be the graph obtained from F by adding one vertex v, in its outer-face. For
every outer angle « at a vertex v, we add three edges from v to v, in F'T at the
place (in the cyclic order around v) where o was. Thus, a vertex that appears
on the outer-face of F' twice would have 6 edges to v,, though not all of them
would be consecutive. Now let D be the dual graph of FT. See Fig. 3.

Fig. 3. The graph F from Fig. 2 (dotted), the added vertex v, (dashed) and the graph
D (solid).

Recall that there is a 1-1-correspondence between angles in a planar graph
and its dual. So for every inner angle a of F' there is a corresponding inner angle
8 of D. For every outer angle «; of F, there are four corresponding inner angles

182,82, B¢ of D at the duals of the three edges from the vertex at «; to the

added vertex v, in F*. See Fig. 3.
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Non-aligned RI-drawings and rectangular drawings: Recall that we as-
sume the existence of a set A of inner labels of F' that must be labeled 1 in any
decent Rl-labeling. We use the same set A to restrict rectangular drawings of
D. More precisely, we say that a rectangular drawing I'grp of D respects A if for
every angle o € A (which is an inner angle of F), the corresponding angle in
I'rp has RD-label 1.

In this part, we aim to show that step (iii) is correct: If D does not have a
rectangular drawing that respects A, then F does not have a non-aligned open
RI-drawing. We prove this by showing that any non-aligned open RI-drawing of
F can be converted to a rectangular drawing of D with corresponding angles.

Definition 2. We say that a non-aligned RI-drawing I'ry of F' and a rectangular
drawing I'rp of D have the same inner structure if for any two corresponding
inner angles o and 8 of F and D, angle a has Rl-label 1 if and only angle 8
has RD-label 1.

Theorem 2. For any non-aligned RI-drawing of F, there exists an inner rect-
angular drawing of D that has the same inner structure.

Proof. Assume we have a non-aligned RI-drawing of F, and let £gr;(.) be the
corresponding Rl-labeling of angles of F. We show how to convert £z (.) into an
RD-labeling £rp(.) of the angles of D such that the conditions of Lemma 2 are
satisfied. We define £rp(.) as follows:

If « is an inner angle of F' with corresponding inner angle g of D, then set
{rp(B) = 2 — {rr(a). Since « has label 0 or 1, hence 8 has label 1 or 2, and it
has label 1 if and only if & has label 1, so the two sets of labels have the same
inner structure.

If « is an outer angle of F', then assigning labels to its corresponding 4 angles
of D is more complicated (and in particular, not always a local operation.) Let
Qg, . . ., a1 be the outer angles of F' in clockwise order; addition in the following
is modulo k. For each ay, let 8}, ..., 3 be the four corresponding inner angles
of D, in clockwise order around the face. Now for each 7 (see also Fig. 4):

— If Lrr(ey) = 0, then assign labels 2,2,2,2 to Z, 3, Bt

— If Lrr(ey) = 2, then assign labels 1,2,2,1 to Z , 32, Bt

— If Lrr(ey) = 3, then assign labels 1, 1,2,1 to Z , 32, Bt

— If Lrr(ey) = 4, then assign labels 1,1,1,1 to 282, BL.

— The most complicated case is {rr(a;) = 1. We asagn either labels 1,2, 2,2

or labels 2,2,2,1 to 81, 82, 32, 3%, but the choice between these depends on
the neighborhood.
Explore from angle «; both clockwise and counter-clockwise along the outer-
face until we obtain a maximal subsequence where all Rl-labels are 1. Say
this sequence is a;, ..., a;. As we can show (see Lemma 10 in the appendix),
the sequence a;_1,q;j,...,a;, a;41 does not have the form 0110, so one of
aj_ 1 and ozl_|_1 has label > 2. If lrr(ej—1) > 2, then assign labels 1,2,2,2
to B}, B2, 32, Bt (and also to all other correspondmg angles in that subse—
quence) else assign labels 2,22 1 to 8}, 82, 32, Bt.
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Finally, for all outer angles of D, we set the RD-label such that the sum of

labels around the vertex is 4. We verify the conditions of Lemma 2:

Fig. 4. Conversion of Rl-labels of F' to RD-labels of D.

Each inner angle of D has RD-label 1 or 2 since Rl-label of inner angles of
F are Qor 1.

Every inner face f of D has exactly 4 angles that have RD-label 1. For f
corresponds to some vertex vy of I, and the Rl-labels at v; sum to 4. By
construction, an Rl-label ¢ at vertex v; gives rise to ¢ angles with RD-label
1 at f (this holds even if v; is an outer vertex of F.)

The RD-labels at every vertex v of D sum to 4. For if v is an inner vertex,
then it corresponds to a triangle T of F' which had RlI-labels {0, 1, 1}, which
correspond to RD-labels {2, 1, 1}.If v is an outer vertex, then by construction
of the RD-labels at outer angles of D the total is 4.

We claim that every outer angle « of D has RD-label {1,2,3}. Recall that
{rp (@) is defined as 4 minus the sum of other labels at the vertex v that
supports «. Since there is at least one other label at v, and it is 1 or 2, hence
ERD (a) S 3.

Tt is harder to show that £grp(c) > 0. Assume to the contrary that {gp (o) <
0. Since there are at most two inner angles at v, hence there must be ex-
actly two (say B and ﬁz’1+1) and they must both have RD-label 2. From the
construction, this can happen only if £rr(e;) = 0 = €rr(a;41). We can show
(see Lemma 9 in the appendix) that no two consecutive outer angles in a
non-aligned RI-drawing have Rl-label 0, so this cannot happen.

Finally we must show that the number of labels on the outer face sum to
2k + 4, where k is the number of angles on the outer-face of D. This is a
simple (but lengthy) counting-argument, which we omit for brevity’s sake.

Hence the RD-labeling satisfies all conditions of Lemma 2 and an inner rectan-
gular drawing with these angles can be created. O

We note here that the proof did not use anything about the RI-drawing

except that it induces a decent Rl-labelling for which the sequence of labels at
outer angles does not contain 01*0. This will be crucial for the sufficiency in
Theorem 1 later.
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The contrapositive of Theorem 2 proves correctness of step (iii). If D does not
have a rectangular drawing that respects A, then F' cannot have a non-aligned
RI-drawing with all angles in A having Rl-label 1. Fig. 5 shows an RD-labeling
that respects the restrictions of Fig. 3, and the corresponding inner rectangular
drawing.

Fig.5. Graph D with the restrictions on RD-labels (left), and an inner rectangular
drawing expanded to a rectangular drawing by adding shaded rectangles (right).

From inner rectangular drawing to non-aligned RI-drawing:

Lemma 4. Any inner rectangular drawing I'p of D that respects A can be ex-
panded into a rectangular drawing I'p: of a graph D’ of size O(|D|) such that
inner angles of D are inner angles of D', and I'p: respects A.

Proof. As part of his orthogonal-shape approach to orthogonal graph drawing,
Tamassia ([12], see also [1]) provided an algorithm to add a linear number of
vertices and edges to an orthogonal drawing to turn it into a rectangular drawing
without changing directions of edges. The algorithm does not create any vertex
of degree 4. Applying this algorithm to the inner rectangular drawing I'p gives
a rectangular drawing I'p: of a graph D’ and only adds vertices and edges in
the outer-face, since all inner faces are rectangles already. Hence all inner angles
(and their RD-labels) are preserved. O

Lemma 5. If D’ has a rectangular drawing I'p: that respects A, then there is a
super graph F' of F that has a good RI-labeling.

Proof. We prove this by converting the RD-labeling of I'ps into an Rl-labeling
of F’, hence more or less the reverse of the proof of Theorem 2. Let F’ be the
dual of D’ minus the outer face vertex. For every angle a of F’, let i be the
number of angles in D’ that correspond to « and that have RD-label 1 (i.e.,
their geometric angle is 7/2.) Set {pr(«) = 4. See Fig. 6.

Since every inner vertex of D’ has RD-labels {1, 1,2} at its angles, every inner
triangle of F' receives Rl-labels {1, 1,0}. Since every face of the RD-drawing is
a rectangle, the RI-labels at any vertex of F’ sum to 4. Also, any angle in A
obtains Rl-label 1 since its corresponding label had RD-label 1, so the resulting
RI-labeling is decent. But in fact it is good: in a rectangular drawing (where the
outer-face is a rectangle), any rectangle adjacent to the outer-face has at least
two angles of value 7/2 on the outer-face. O
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Fig. 6. The drawing I'ps (dotted edges) and the graph F' (left) and the corresponding
decent RI-labeling of F’ (right).

Lemma 6. If F’ has a good RI-labeling, then F' has a non-aligned RI-drawing
with this Rl-labeling.

Proof. We can apply Miura et al.’s algorithm to construct an RI-drawing. How-
ever, their algorithm only promises an oblique drawing; it need not be non-
aligned. But we can modify their algorithm to make the drawing non-aligned.
Briefly, they can show that valid coordinates can be found by solving a system
of constraints. All constraints have the form of an acyclic digraph where edge-
weights express lower bounds on the differences of z-coordinates. Since there are
no upper bounds on relative z-coordinates, we can find a solution to this sytem
of constraints where all z-coordinates are distinct (e.g. by adding edges to turn
the digraph into a total order (a complete acyclic digraph) and enforcing a min-
imum weight of 1 on all edges. Similarly we can compute distinct y-coordinates.
Hence we obtained a non-aligned RI-drawing with the same Rl-labels. a

Putting it all together: If a graph G has an open Rl-drawing with non-
aligned frame F, then D has a rectangular drawing with the same inner structure
(Theorem 2). Hence we can find an inner rectangular drawing that respects A,
expand it to a rectangular drawing (Lemma 4), extract a good Rl-labeling from
it (Lemma 5), and create a non-aligned RI-drawing from it (Lemma 6). See also
Fig. 7. Insert the filled triangles and delete the added vertices and edges then
results in the desired open RI-drawing with non-aligned frame of . This proves
correctness of the algorithm.

Our proof was constructive and gives rise to an algorithm to test whether
G has an open Rl-drawing with non-aligned frame. It remains to analyze the
run-time of this algorithm. Most steps are clearly doable in linear time. The
bottleneck is the time to test whether D has an RD-labeling that respects A.

We do this with a flow-approach inspired by Tamassia [12]. We only sketch
the details here. Tamassia created a flow network of a plane graph that encodes
the shapes (i.e., abstract descriptions via bends and angles) of all possible plane
orthogonal drawings. It is easy to add upper and lower bounds that forbid bends
on the edges, forbids reflex angles at interior faces, and forces angles in A to have
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Fig. 7. The Rl-drawing of (G obtained by the algorithm.

geometric angle 7/2. The feasible integral flows in this network then correspond
to the desired RD-labels. Tamassia’s result required finding a minimum-cost
flow, but since we forbid bends on edges, we only need to find a feasible flow,
which can be done in O(n'®logn) time [4].

Theorem 3. Let ¢ be a plane inner triangulated graph. In O(n'®logn) time,
we can test whether G has a planar weak open RI-drawing with non-aligned
frame, and if so, construct it.

We briefly return to the suffiency for Theorem 1. If F' has a decent Rl-labeling
with no subsequence 01*0 among the labels on the outer-face, then as mentioned
after Theorem 2, D has a rectangular drawing that respects A. Steps (iv-x) of the
algorithm then construct a planar weak open Rl-drawing of G with non-aligned
frame, proving Theorem 1.

4 Conclusion

We have presented an algorithm to find an open RI drawing with non-aligned
frame of a given inner triangulated graph G, if there exists such a drawing.
We also characterized existence of such drawings in terms of properties of RI-
labelings.

Our results also imply a correspondence between non-aligned RI-drawings
and inner rectangular drawings. Theorem 2 shows that any non-aligned RI-
drawing can be converted to an inner rectangular drawing with the same in-
ner structure. Steps (iv)-(x) of our algorithm show that any inner rectangular
drawing can be converted to a non-aligned RI-drawing, that preserves the inner
structure. So apart from modifications near the outer-face (rectangles can “slide
outward”), there is a 1-1-correspondence between non-aligned RI-drawings and
inner rectangular drawings.

The most pressing open problem is what happens when we want to drop “with
non-aligned frame”. Can we efficiently test whether a given inner triangulated
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graph has a weak open RI-drawing? We note here that the concept of RI-labeling
can be generalized quite easily to the case when the drawing is not necessarily
non-aligned, if we add labels in {0, 1} to each edge with an edge labeled 1 if it
is parallel to a coordinate axis. It is quite easy to find necessary conditions for
such a labeling, but are they sufficient? And if they are sufficient, how easy is it
to test whether a graph has a labeling that satisfies these conditions? Neither of
these questions appears straight-forward to answer.

Secondly, what is the situation for planar graph that are not inner trian-
gulated? How quickly can we test whether they have a weak open RI-drawing
(perhaps under some restrictions on the frame graph)?
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A Three models of RI-drawings

In this paper, we studied three types of (planar, weak, open) RI-drawings: Those
without any restrictions on coordinates, those where the frame is oblique and
those where the frame is non-aligned. Clearly every non-aligned RI-drawing is
oblique, and any of them is an unrestricted RI-drawing. We now briefly discuss
that these models are truly different in the sense that there are graphs that have
a drawing in one model, but not the other.

Lemma 7. There exists an inner triangulated graph that has a planar weak open
RI drawing, but admits no planar weak open RI drawing with oblique frame.

Proof. Fig. 8 shows an example of an open RI drawing of a graph that admits
no open RI drawing in which the frame graph is oblique. For assume it did, and
consider the induced Rl-labeling of the frame. Note that the label at angle o«
must be 1, for the incident vertex must have label-sum 4, and every inner angle
has Rl-label 0 or 1. Similarly the angle 8 must have Rl-label 1, forcing Rl-label
0 onto 7. But the vertex at v is not adjacent to all vertices inside the separating
triangle and so must not have Rl-label 0. Contradiction. a

<> <>

Fig. 8. An RI drawable graph admitting no RI drawing with oblique frame.

Lemma 8. There exists an inner triangulated graph that has a planar weak
open RI drawing with oblique frame, but does not admit a planar weak open RI
drawing with non-aligned frame.

Proof. Fig. 9 shows a graph (and its frame) that has a planar weak open RI-
drawing with oblique frame. Assume we could draw it with non-aligned frame.
Observe that the structure of the separating triangles forces all the Rl-labels
in the frame as indicated. Since the Rl-labels at a vertex sum to 4, therefore
ap and asy have Rl-label 0, while a;y has Rl-label 1. Hence the outer-face has a
sub-sequence 010 among its Rl-labels, which can be shown to be impossible in
a non-aligned drawing (Lemma 10.) O

However, as was shown implicitly in Lemma 6, if a graph has an oblique RI-
drawing such that all outer angles have Rl-label 2,3, or 4, then the drawing can
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Fig. 9. A graph that has an Rl-drawing with an oblique frame (left), but the forced
Rl-labels in the frame (right) force some vertices to be aligned.

be converted to a non-aligned RI-drawing with the same Rl-labels by extracting
the good Rl-labeling. So the concepts of oblique and non-aligned coincide if the
outer-face is “nice” in the sense of consisting of four chains that are z-monotone
and y-monotone.

B Necessity of Theorem 1

In this section, we study properties of the sequence of RI-labels that we encounter
as we walk around the outer-face and hence prove necessaity for Theorem 1.

Lemma 9. In a planar oblique RI drawing, the cyclic sequence of RlI-labels
around the outer-face does not contain 00.

Proof. Assume two vertices u and v are adjacent on the outer face. Let u' (resp.
v’) be the other neighbor of u (resp. v) on the outer face. v’ and v’ are outside
the axis-aligned rectangle induced by v and . If both angles v'uv and uvv’ have
label 0, then the segments uu’ and v’ intersect, contradicting planarity (see

Fig. 10). O

Fig. 10. Two adjacent outer angles having label 0 in an RI drawing.

Lemma 10. In a planar non-aligned RI-drawing, the sequence of RI-labels around
the outer-face does not contain 0170,

Proof. Assume for contradiction that the outer-face contains a subsequence set
of vertices vo,v1, ..., vk, vp41 such that the Rl-label at vy is 0, the Rl-label at
V9, U3,...,V,_1 is 1 and the Rl-label at v is 0.
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For any 1 < ¢ < k, vertex v; has Rl-label 1 at the outer angle, and hence has
exactly one free ray, which is an axis-aligned ray that extends from v; into the
outer-face. We say that v; 1 is closer to v; than v;_1 if the order of coordinates
with respect to the free ray is v;, viy1,vi—1. For example, if the free ray from
v; goes upward, then the y-coordinates must satisfy y(v;) < y(viy1) < y(vi—1).
Recall that none of these y-coordinates can coincide since we have a non-aligned
RI-drawing, so one of the neighbors of v; must always be closer to v; than the
other. We need a helpful claim:

Claim: Let v; have RI-label 1 (i.e., 1 <@ < k). If v;_1 is closer to v; than v; 14,
then v;_;1 cannot have Rl-label 0. Likewise, if v; 1 is closer to v; than v;_1, then
v;41 cannot have Rl-label 0.

Proof of claim: We only prove the first claim, the other one is symmetric.
After possible rotation, we may assume that the free ray at v; goes upward.
Consider Fig. 11(a). If v;_; had RI-label 0, then any placement of v;_5 either
leads to a crossing between (v;_1,v;—2) and (v;, vj41), or v;_» is in the rectangle
of edge (vi, v;41), or in the rectangle of edge (v;_1, v;), contradicting the planar
RI-drawing. (Note that v;_5 cannot be on the edge of such a rectangle since the
drawing is non-aligned.) O

Since vy has Rl-label 0, therefore vs is closer to vy than vy. Now let 1 < ¢ < k
be maximal such that v; has RI-label 1 and ;41 is closer to v; than v;_1. Consider
Fig. 11(b); after possible rotation we may assume that the free ray at v; goes
upward. By the claim, v;;1 cannot have Rl-label 0, so ¢ + 1 < k and v;41 has
RI-label 1. By choice of i, v;45 is farther from v;11 than v, so it is left (with
respect to x-coordinates) of v;. We can see that v; 42 cannot have Rl-label 0,
for it did, then by planarity v;13 would be in one of the rectangles of (v;_1, v;),
(i, vig1) OF (U541, Vit2). SO ;42 has RI-label 1, and by choice of 4, v;41 is closer
to vy than viys. So vertex v; 43 is below (with respect to y-coordinates) vertex
vi4+1, and therefore also below vertex v;_1. But now regardless of the placement
of viy3, either edge (viya, vit3) intersects (v;_1,v;), or v;43 is in in the rectangle
defined by (v;—1,v;), or v;_1 is in the rectangle defined by (viy2,vit3). Either
way, we do not have a planar non-aligned RI-drawing, a contradiction. O

vig1

Vil __

Fig. 11. For the proof of Lemma 10.



