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Abstract. Given an unlabeled, unweighted, and undirected graph with
n vertices and small (but not necessarily constant) treewidth k, we con-
sider the problem of preprocessing the graph to build space-efficient en-
codings (oracles) to perform various queries efficiently. We assume the
word RAM model where the size of a word is Ω (logn) bits.

The first oracle, we present, is the navigation oracle which facilitates
primitive navigation operations of adjacency, neighborhood, and degree
queries. By way of an enumerate argument, which is of independent in-
terest, we show the space requirement of the oracle is optimal to within
lower order terms for all treewidths. The oracle supports the mentioned
queries all in constant worst-case time. The second oracle, we present, is
an exact distance oracle which facilitates distance queries between any
pair of vertices (i.e., an all-pair shortest-path oracle). The space require-
ment of the oracle is also optimal to within lower order terms. Moreover,
the distance queries perform in O

(
k2 log3 k

)
time. Particularly, for the

class of graphs of our interest, graphs of bounded treewidth (where k is
constant), the distances are reported in constant worst-case time.

1 Introduction

Graphs are arguably one of the most prolific structures to model relationships
among entities. With the ever-growing size of objects to model, the corresponding
graphs increase in size. As a result compact representation of graphs has always
been of interest. In this paper, we consider the problem of representing graphs
compactly while allowing efficient access and utilization of the graph by showing
fast support of navigation and distance queries.

Random graphs are highly incompressible [2]. Fortunately, graphs that arise
in practice are not random and turn out to have some combinatorial structural
property. Therefore, researchers have considered graphs with various combina-
torial structures for the purpose of space-efficient representation (see [9] for a
review of the exiting results). In this paper, we are interested in compact repre-
sentation of graphs with a small treewidth (to be defined in Section 2). Graphs
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of bounded treewidth are of interest since many NP-hard problems on general
graphs are solvable in polynomial time on these graphs. In addition, graphs with
small treewidth occur in many more real-world applications [5,6]. We assume
the standard word RAM model where a word is at least lg n bits wide and n is
the number of vertices (lg denotes log2).

1.1 Contribution

In the first part of the paper (Section 4), we describe a data structure that
encodes a given undirected and unlabeled graph with n vertices and treewidth
at most k in k(n + o(n) − k/2) + O(n) bits and supports degree, adjacency,
and neighborhood queries in constant time. Degree query is to report the degree
of a vertex. Adjacency query is given two vertices u,w to determine if edge
(u, v) exists. Neighborhood query is to report all neighbors of a given vertex in
constant time per neighbor. These three queries constitute the set of primitive
navigational queries often required in a graph [2,10,3].

In [12] an implicit representation of graphs with treewidth k in n(lg n +
O (k lg lg(n/k))) bits is presented, which is not compact for all values of k. Al-
though it is not explicitly mentioned, the succinct representation of separable
graphs given in [3] yields an optimal navigation oracle for graphs of bounded
treewidth for any treewidth k = O (1). This is since graphs with a constant
treewidth are also separable (a graph is separable if it and its subgraphs can be
partitioned into two approximately equally sized parts by removing a relatively
small number of vertices [2]). The storage requirement of the oracle for sepa-
rable graphs is optimal to within lower order terms, and previously mentioned
navigation queries perform in constant time. In this paper, we extend the result
to graphs with treewidth k, where k = Ω(1).

Moreover, we show that the storage requirement of the oracle is optimal for
all values of k by proving that k(n−o(n)−k/2)+ δn bits are required to encode
graphs of treewidth k and n vertices (δ is a positive constant). Our proof is
a counting argument which is of independent interest as to best of our knowl-
edge, there existed no such enumerative result for graphs with a given treewidth
(though a lower bound of kn − o(kn) is known [11] for graphs with pagenum-
ber k, which are a larger family of graphs which include graphs with treewidth
smaller than k [8]). The desired oracle of this paper adopts the encoding of [3]
for values k = O (1) and the encoding outlined in this paper for k = Ω (1). Since
the storage requirement of the oracle matches the entropy bound for constant
values of k and our lower bound for non-constant values of k, both the space of
the oracle and our lower bound are tight.

In the second part of the paper, we give distance oracles for undirected,
unlabeled, and unweighted graphs with n vertices and treewidth k that for all
values of k requires the entropy bound number of bits to within lower order terms.
These are exact oracles that report the distance of two given vertices precisely.
The distance queries perform in O(k2 lg3 k) in which k is the graph treewidth.
We emphasize that for graphs of bounded treewidth where k is constant (the
family of graphs of our interest), the queries are supported in constant time.



Exact distance oracles for unweighted undirected graph require Ω
(
n2
)

bits and
there exists an oracle with about 0.79n2 bits [16]. Hence, we show that for graphs
with a bounded treewidth, these results can be significantly improved as there
is a linear size exact distance oracle (the number of edges can be θ(kn)).

The time to construct the oracles depends on the time to compute the
treewidth of the given graph and compute the tree decomposition correspond-
ingly. Determining the treewidth of a graph is NP-hard [5]. Fortunately however,
for graphs with constant treewidth, the treewidth and the corresponding tree
decomposition can be determined in linear time [6]. Moreover, for graphs with
treewidth k = ω (1), there exists a polynomial time algorithm that approximates
the treewidth within O (log k) factor and generates the corresponding tree de-
composition [5]. All other aspects of navigation oracles can be constructed in
O(kn) time where k is the determined treewidth and n is the number of ver-
tices. For the distance oracle, we pre-compute distances between every pairs of
vertices at the initial stage, and this can be accomplished in o(kn2) time [7].

2 Tree Decompositions and variations

We use the notion of tree decompositions of graphs to design the oracles:

Definition 1 ([5]). A tree decomposition of a graph G = (V,E) of width k is a
pair ({Xi‖i ∈ I} , T ) where {Xi‖i ∈ I} is a family of subsets of V (bags), and T
is a rooted tree whose nodes are the subsets Xi such that
–
⋃
i∈I

Xi = V and max
i∈I
|Xi| = k+1.

– for all edges (v, w) ∈ E, there exists an i ∈ I with v ∈ Xi and w ∈ Xi.
– for all i, j, k ∈ I: if Xj is on the path from Xi to Xk in T , then Xi∩Xk ⊆ Xj.

We say a vertex v ∈ V is introduced in node Xi(i ∈ I) of the tree, if v is in the
bag Xi (v ∈ Xi) but not in that of the parent of Xi. All vertices at the bag of the
root node are introduced by definition.

For each of the oracles, we use a specially adapted version of tree decomposi-
tion. For the navigation oracle, we use a standard tree decomposition, in which
each bag contains exactly k+1 vertices, and two neighboring nodes share exactly
k vertex, i.e., each node introduces one vertex. It is known that a tree decomposi-
tion can be changed to form a standard tree decomposition in linear time [4]. To
design distance oracles, we use the height-restricted tree decomposition T , whose
height is logarithmic in the number of vertices, i.e., height(T ) = O (log n). A tree
decomposition can be transformed into a height-restricted tree decomposition by
the following lemma:

Lemma 1. Given a tree decomposition with treewidth k for a graph with n ver-
tices, one can obtain, in linear time, a height-restricted tree decomposition with
n nodes and width at most 3k + 2 (proof in the long version of the paper).



Fig. 1. Two different understanding
of tree vertices in an asymmetric 4-
graph. Dark vertices are tree vertices.

3 Lower bound

To best of our knowledge, there exists no enumerative result for the number of
unlabeled graphs with a given treewidth k. We prove one in this section. We use
the concept of asymmetric trees (also known as identity trees), which are trees
in which the only automorphism is the identity, i.e., each vertex can be uniquely
distinguished from others. Harary et al, showed the total number of asymmetric
trees on n nodes is u(n) ∼ cn−5/2µ−n in which c and µ are positive constants
roughly equal to 0.299 and 0.397, respectively [14]. We use this result to count
asymmetric k-graphs as a family of graphs with treewidth k.

Definition 2. An asymmetric k-graph on n vertices is a graph which has an
asymmetric tree of size n−k as an induced subgraph. The involved vertices in
this subgraph are called tree vertices. Among the other k vertices, there is one
vertex, called center, which is connected to all other k−1 non-tree vertices and
is not connected to any of the n−k tree vertices (Figure 1).

Lemma 2. Any asymmetric k-graph has treewidth at most k.

Proof. Consider a tree decomposition of the asymmetric tree, which has at most
two vertices in each bag. Copy all other vertices except the center to all bags.
Now each bag contains 2 + (k−1) vertices. Create a new bag of size k involving
all non-tree vertices (including center) and attach it to an arbitrary position in
the tree decomposition. The result is a legitimate tree decomposition of width k
(at most k+1 vertices in each bag).

Therefore, to get a lower bound on the number of graphs with of treewidth
k, we just count asymmetric k-graphs.

Theorem 1. The number of asymmetric k-graphs with n vertices is at least
xn ∼c2(k+δ)n−(k2+(3+2δ)k−2)/2×(n−k)−5/2/(n(k−1)!) where c and δ are constants
roughly equal to 0.299 and 0.332 (proof in the long version of the paper).

Since we match the bound with an encoding, the exponent is tight within
lower order terms.

Corollary 1. At least k(n − o(n) − k/2) + δn bits are required to represent a
graph of treewidth k with n vertices, where δ is a constant roughly equal to 0.332.

4 Navigation Oracles

In this section, we provide a compact representation of graphs of treewidth k
which supports adjacency, neighborhood, and degree queries in constant time in



the lg n-bit word RAM model. The representation requires k(n+ o(n)− k/2) +
O(n), which is tight given corollary 1. First we mention some existing results for
auxiliary data structures we use in our representation.
succinct rank/select structures: For a binary sequence S, we define accessS(i)
as the content of the i’th index of S, rankS(i, c) as the number of occurrences
of c before index i, and selectS(i, c) as the index of the i’th occurrence of c in
S (c ∈ {0, 1}). There are data structures which represent a binary sequence of
length n using n + o(n) bits which supports access, rank, select in constant
time. Moreover, for sequences with m ones (m�n), the space can be reduced
to lg

(
n
m

)
+O(n lg lg n/ lg n) to support queries in constant time [17].

Balanced Parenthesis and Multiple Parenthesis: A balanced parenthesis
sequence of size 2n, which is equivalent to an ordered tree of size n, can be
represented in 2n+o(n) bits, with support of access(v), rank(v,′ (′), select(v,′ (′),
findmatch(v), and child(i, v) in constant time [15]; access, rank, and select are
defined as before, findmatch(v) finds the position of parenthesis matching the
parenthesis at position v, and child(v, q) finds the position of the q’th child of
node v. A multiple parenthesis sequence, is an extension of balanced parenthesis
to k types of parenthesis, where an open parenthesis of type i, denoted by (i,
can be matched by a closed parenthesis of the same type, denoted by )i.

Lemma 3. [1] A multiple parenthesis sequence with 2n parentheses of k types,
in which the parentheses of any given type are balanced, can be represented using
(2+ε)n lg k+o(n lg k) bits to support m access, m rank, m select, m findmatch
and m enclose in O(1) time; all operations are defined as before, m enclose(v, i)
gives the position of the tightest open parenthesis of type i which encloses v.

Compact Tables: Given a binary matrix M of size k×n, we are interested in a
compact representation of M which supports the following queries: access(i, j)
which gives the content of M [i, j], r successor(i, j) which gives the entry one in
row i that comes after index j, and c successor(i, j) which is defined identically
on columns. For our purpose, we need to represent matrices in which k ≤ n, and
the first k columns form a triangular submatrix.

Lemma 4. A k×n matrix, in which the first k columns form a triangular sub-
matrix (k≤n) can be presented using kn − k2/2 + o(kn) bits to support access
and successor queries in constant time (proof in the long version of the paper).

4.1 Representing the tree decomposition

Assume for a given graph G = (V,E), a tree decomposition τ of width k is given
in standard form. We assign types to all vertices in a top-down manner: for the
vertices in the root, fix an arbitrary ordering 1 .. k+1 and give a vertex type i
iff it has index i in this ordering. For a vertex v introduced in a bag X, define
type(x) = j, where j is the type of the vertex in the parent of X which has been
replaced by v. Note that the only information associated with each bag is the
type of the vertex it introduces. So we can present the tree decomposition τ as
an ordered tree with a single label, not larger than k+1, on each bag. We assume



(a) (b)

Fig. 2. A standard tree decomposition, an ordered labeled tree, and a multiple paren-
thesis are all equivalent.

the root introduces k+1 vertices of different types, and to make representation
easier separate them in a path of bags, with labels 1 to k+1 (See Figure 2).

To represent τ efficiently, we use multiple parenthesis structure of Lemma
3. Assume a preorder traversal of τ ; we open a parenthesis of type i (i ≤ k)
whenever we enter a bag with label i, and close it when we leave the bag. The
result would be a balanced sequence of 2n parenthesis of k+1 types, and using
Lemma 3, this can be presented using (2 + ε)n lg k + o(n lg k) bits. We call this
sequence the MP sequence and represent every vertex in the graph by the index
of its opening parenthesis in this sequence.

To represent a graph of treewidth k, beside the tree decomposition, we need to
store which edges are indeed present in each bag. In fact, the tree decomposition
represents a (full) k-tree, which is the graph with maximal edges to respect the
tree decomposition. In a graph of treewidth k when a new vertex is introduced
in a bag X, it can be connected to any subset of k vertices present in X. These
vertices all have distinct types as they all appear in bag X. For each vertex v, let
lv be a bitmap of size k + 1, such that lv(j) denotes if there is an edge between
v and uj , where uj is the unique vertex of type j present in bag X. Observe
that uj is introduced in the closest ancestor of v which has type j. Let all lvs
form the columns of a table M , referred as ’big table’, where the vertices are
arranged in preorder. So M is a matrix of size (k + 1) × n and M [j, v] = lv(j)
(see Figure 3). Since two vertices of the same type cannot be connected, for any
vertex v we have M [type(v), v] = 0 (in the figure these entries are distinct by
’*’). Also the first k columns of M are associated with the vertices introduced
in the root and form a triangular submatrix. We apply Lemma 4 to store M in
kn−k2/2+o(kn) bits to support access and successor queries in constant time.

Assume we are given a vertex v (its index in the MP sequence), and we
need to access its column in the big table, i.e., the index of v in the preorder
walk. We use a map structure as follows: create a binary sequence S of size 2n



Fig. 3. A big matrix associated with tree decomposition of Figure 2

with one at position i if the i’th element is an open parenthesis (of any type)
and zero otherwise. We store this sequence using 2n+ o(n) bits to support rank
and select in constant time. Now rankS(v, 1) gives the index of v in the preorder
walk, and selectS(i, 1) retrieves the i’th vertex in the preorder walk. This enables
us to interchangeably represent a vertex by its position in the preorder (the big
matrix index) or its position in the MP sequence. Moreover, assume we are given
a range R in the MP sequence which may start or end with a close parenthesis,
and we need the preorder range which include the involved open parentheses. If
both endpoints of R are open parentheses, we simply map them into preorder
indices as discussed. If R starts (ends) with a closed parenthesis, we need to find
the next (previous) open parenthesis of any type. We can use S to find the index
of next (previous) open parenthesis as selectS(rankS(i, 1)± 1).

The MP sequence and the big table are sufficient for representing a graph of
treewidth k. The other data structures used in the rest of this section are indices
to support queries in constant time. Due to lack of space, we describe support
for neighborhood queries here and support for degree and adjacency queries are
presented in the long version of the paper.

4.2 Neighbor Report

We are given a vertex v, and asked to report its neighbors in constant time
per neighbor. We say a vertex u is a potential neighbors of v if there is a bag
that contains both vertices. The column representing v in the big table distinct
the actual neighbors of v among those potential neighbors which precede v in
preorder walk. To report these neighbors, we successively apply c successor on
the big table M to visit all ones in the column of v. Assume we have M [j, v] = 1,
then we report the parenthesis of type j which encloses v using m enclose(v, j).
Note that these operations take constant time per neighbor.

Next, we show how report neighbors which come after v in the preorder walk.
Using the MP sequence, we can find the potential neighbors of v: we scan se-
quence from the position after v and report every vertex (open parenthesis) until
we observe the first open parenthesis of the same type as v. Let w be such paren-
thesis, we jump to the matching parenthesis of w using m findmatchMP (w) in
constant time, and continue this until we see the close parenthesis matching v.
Therefore, in the tree decomposition, we skip the subtrees in which v has been
overwritten by w.

The potential neighbors of each vertex form segments of consequent vertices
in the preorder walk. A segment of type i is a range of elements in the MP se-
quence bordered by two parenthesis of type i. The bordering parenthesis can be



(a) The MP sequence in which the segments of type 1 are highlighted. The
circles show those associated to vertex A

(b) The contracted parenthesis of type 1 (C1)

Fig. 4. The ignore sequence for vertex A (IgA) is 100100. To find the 4th segment
associated to A in the MP sequence, we find the 3rd child of A in Ci (the starred vertex
in (b)), its matching parenthesis and the one after (arrowed ones) are the boundaries
in the contracted sequence, which can be mapped to the MP sequence.

open or closed, and their segment can be empty if they are adjacent in the MP se-
quence (Figure 4(a)). Note that any segment is associated to exactly one vertex,
which is a vertex of the same type which encloses it. To report actual neighbors
in a given segment associated to vertex v, we successively apply r successorM on
the row of the same type of v in the big table to find all ones in the range of the
segment. So, we can report the neighbors inside a segment in constant time per
neighbor. We also need to address how to select the appropriate segments. We
say the segment is good if it includes at least one actual neighbor of v, and it is
bad otherwise. Note that there may be a non-constant number of bad segments
associated to a vertex, and we cannot probe all of them. For each vertex v, we
define a bitmap Igv where Igv(i) determines whether the ith segment associated
to v is good (’1’) or bad (’0’). We store an ignore sequence IG as follows: read
vertices in preorder, for each vertex v write down a ’2’ followed by the sequence
Igv. The result would be a sequence of size 3n−k on alphabet {0, 1, 2}, which can
be stored using O(n) bits to support select in constant time [13]. To see why the
size of IG is 3n−k−1, note that there 2ni− 1 segments of type i where ni is the
number of vertices with type i, so there are totally 2n− (k+1) segments. Since
each segment is associated to exactly one vertex, the size of IG is 2n−(k+1)+n.
Note that Igv is the subsequent between selectIG(i, 2)+1 and selectIG(i+ 1, 2),
in which i is the index of v in preorder walk.

Using the ignore sequence, we can distinguish the index of good segments
among all segments associated to a vertex v. Next, we need to locate these
segments in the MP Sequence and use the map structure to locate the range of
the segment in the big table. For each type i, we store a contracted parenthesis
of type i, denoted by Ci, as a copy of the MP sequence in which all parenthesis
except those of type i are deleted. The result would be a balanced parenthesis
sequence, equivalently an ordered tree, for each type. The total size of these trees
is equal to n and we need 2n+ o(n) bits to represent them. Assume we need to
locate the t’th segment of vertex v in the MP sequence, and let i be the type of v.
If t=1, the desired segment starts with the parenthesis representing v and ends



with the next parenthesis of the same type, which can be found in constant time.
If t>1, we locate the segment in the contracted parenthesis sequence and then
map it into the MP sequence. First we locate v in the contracted parenthesis,
using vc = selectCi(x,

′(′) where x is the rank of v among vertices of the same
type, i.e., x = rankMP (v,′(i′). Observe the t’th segment of v starts after the
close parenthesis matching the open parenthesis representing t’th child of v in
the contracted parenthesis (Figure 4(b)). So we apply α = childCi

(vc, t) and
β = findmatchCi(α) to find β, β+1 as the two neighboring parenthesis of type
i which bound segment t in the contracted parenthesis. Using rank and select,
respectively on Ci and MP we can locate these parenthesis in the MP sequence.

To summarize, to report neighbors of vertex v which succeed v in the preorder
walk, we use the ignore sequence to find the indices of good segments among
all segments associated to v. We use contracted parenthesis to find the actual
position of the good segments in the MP sequence, and use map structure to
find the range of the segments in the big table. Using r successor operation in
the big table we can report neighbors in constant time per neighbor.

The additional space used for supporting neighbor report are ignore sequence
and contracted parenthesis, which are both stored in O(n) bits. The index used
for degree request needs n lg k + o(nk) bits, and there is no additional index
for adjacency queries (details are presented in the long version of the paper).
Together with the main structures (the MP sequence and the big table), the size
of the oracle would be k(n+ o(n)− k/2) +O(n).

Theorem 2. Given a graph of size n and treewidth k, an oracle is constructed
to answer degree, adjacency, and neighborhood queries in constant time. The
storage requirement of the oracle is optimal to within lower order terms.

5 Distance Oracles

To give a distance oracle, we obtain the height-restricted tree decomposition T
of the input graph G of treewidth k using Lemma 1. Let k′ denote the maximum
number of vertices in each node of T . Since treewidth of T is at most 3k + 2,
we have k′ ≤ 3k + 3. We define the weight of a node as the number of vertices
introduced in that node. Correspondingly, we define the weight of a subtree as
the sum of the weights of nodes in the subtree. There are two recursive decompo-
sitions of G into smaller subgraphs using its height-restricted tree decomposition
T using the following lemma (proof in the long version of the paper):

Lemma 5. For any parameter 1 ≤ L ≤ n, a tree with n nodes such that the
weight of nodes is at most k′ can be decomposed into Θ (n/L) subtrees of weight
at most 2L+ k′ which are pairwise disjoint form their roots. Furthermore, aside
from edges stemming from the component root nodes, there is at most one edge
leaving a node of a component to its child in another component.

In the first phase, tree T is decomposed into smaller subtrees T1, T2, . . . using
Lemma 5 with value L = k′ lg3(n) (the first phase is skipped if L ≥ n). Let Vi



Fig. 5. Distance oracle:
computing the distance
between x and y

be the set of graph vertices that occur in a node in subtree Ti. We define Gi as
the subgraph of G induced on Vi.

Lemma 5 guarantees that there are at most two nodes of each subtree Ti
that are connected via a tree edge to other subtrees; we refer to these tree nodes
as portal nodes. These nodes collectively contain 2k′ graph vertices. We refer to
these vertices as the portal vertices of Gi, and denote this set of vertices by Pi.

To reduce the distance oracle to within Gi’s, we explicitly store the dis-
tance from each portal vertices to all vertices in an ancestor node of the cor-
responding portal nodes. Namely, for each vertex v ∈ Pi in a portal tree node
t and vertex u in a node an ancestor of t, we explicitly store the distance be-
tween v and u. Since the height of the tree is O (log n), there are O (k′ log n)
such vertices as u. The storage requirement of this list in number of bits is
O
(

n
k′ lg3 n

k′ (k′ log(n)) log(n)
)

= o(kn).

We also take the projection of tree T on portal nodes by adding an edge
between two portal nodes if and only if the path in T between them does not
contain another portal node. The projected tree is a tree on O

(
n/(k′ log3(n))

)
nodes. We preprocess and store the tree (in O

(
n/(k′ log3(n))

)
bits) to be able

to answer lowest common ancestor queries in constant time [15].
If we can internally in any Gi determine the distance between any two ver-

tices s, t ∈ Gi, then using the explicitly stored distances for portal vertices,
we can determine the distances globally between any two vertices in G. Given
two vertices x, y, we determine the subgraphs Gx, Gy they belong in. We use a
rank/select structure to accomplish this task in constant time and o(n) storage.
We compute the distances from x to the portal vertices px1 , . . . , p

x
2k′ in Gx and

analogously the distances from y to the portal vertices py1, . . . , p
y
2k′ of Gy (see

Figure 5). Let Tx and Ty be the subtrees corresponding to Gx, Gy. We deter-
mine in constant time the lowest common ancestor L of the roots of Tx and Ty.
Portal vertices have their distances to vertices introduced in their ancestors ex-
plicitly stored. Therefore, px1 , . . . , p

x
2k′ and also py1, . . . , p

y
2k′ have their distances

to vertices l1, . . . , lk′ in the bag of node L stored. Without loss of generality, we
assume the harder case where roots of Tx, Ty are not an ancestor of each other,
the details of the other case is deferred to the full version of this paper.

We repeat the previous step for each Gi by applying Lemma 1 to obtain
a height-restricted tree decomposition and using Lemma 5 with value L =
k′ lg2(k′)(lg lg(n))3 to obtain smaller subgraphs G′i. Additionally, we store the
distance between each second-level portal vertex and all first-level portal vertices
contained in the same subgraph Gi. This structure allows us to reduce the prob-
lem to within second-level subgraphs G′i, without paying a factor of k′ for the



query time. The space requirement of this structure can be analyzed similarly to
o(kn). We repeat the step for a final time using value L = k′ lg2(k′)(lg lg lg(n))3

to obtain tiny subgraphs G′′i . Hence, the problem reduces to computing the dis-
tances of a vertex to third-level portal vertices confined to an individual third-
level graph G′′i . As G′′i ’s are subgraphs of the original graph, their treewidth is at
most k. The corresponding tree decomposition for these graphs can be obtained
trivially by projecting from the tree decomposition of the original graph. Hence,
treewidths of G′′i ’s are k and not k′ any further.

We distinguish two cases according to the value of k. For smaller values of k
where lg k ≤ (lg lg lg n)3, the size of third-level subgraphs G′′i is very small, there-
fore, we use a look-up table to catalog all graphs with p vertices and treewidth
k − 1 such that p < lg(n)/(2k). We exhaustively list answers to all distance
queries together with each graph. The representation of Section 4 bounds the
number of such graphs and consequently the size of the table is o(n). A third-
level graph G′′i = (V ′′i , E

′′
i ) is represented by an index to within the look-up

table and therefore, the space requirement of each G′′i matches the entropy of
graphs with |V ′′i | vertices and treewidth G′′i (we note that every subgraph of a
graph with treewidth k has treewidth at most k). Since

∑
i |V ′′i | = n + o(n),

the distance oracle requires space which matches the entropy of graphs with
treewidth k to within lower order terms. Distances in G′′i are read in constant
time from the table and there is an additive overhead of O(k2) for each level of
recursion. Thus, the total distance query time is O

(
k2
)
. Therefore, the distance

query performs in constant time when k is constant.
For larger values of k, where lg k > (lg lg lg n)3, we simply store third-level

graphs G′′i = (V ′′i , E
′′
i ) using the navigation oracle representation of Section 4

to store each G′′i in k(|V ′′i | + o(|V ′′i |) − k/2) + O(|V ′′i |) bits. Since
∑
i |V ′′i | =

n+ o(n), the total storage requirement for distance oracle in this case is k(n+
o(n) − k/2) + O(n). In order to determine the distance of a vertex in G′′i to
the third-level portals of G′′i , we simply perform a breadth first search (BFS).
The time of performing a BFS is O

(
k2 lg2(k)(lg lg lg(n))3

)
which in this case is

O
(
k2 log3(k)

)
. This dominates the overhead of O

(
k2
)

from recursion, and hence
distance queries perform in O

(
k2 log3(k)

)
time.

Theorem 3. Given an unlabeled, undirected, and unweighted graph with n ver-
tices and of treewidth k, an exact distance oracle is constructed to answer dis-
tance queries in time O

(
k2 log3 k

)
. The storage requirement of the oracle is

optimal to within lower order terms.

6 Conclusion

We considered the problem of preprocessing a graph small treewidth to construct
space-efficient oracles that answers a variety of queries efficiently. We gave a nav-
igation oracle that answers navigation queries of adjacency, neighborhood, and
degree queries in constant time. We also proposed a distance query which reports
the distances of any pair of vertices in O

(
k2 log3 k

)
where k is the (determined)

treewidth. By way of an enumerative result, we showed the space requirements
of the oracles are optimal to within lower order terms.
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