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Abstract. Paging for multicore processors extends the classical paging problem to a setting in which
several processes simultaneously share the cache. Recently, Hassidim [16] studied cache eviction policies
for multicores under the traditional competitive analysis metric, showing that LRU is not competitive
against an offline policy that has the power of arbitrarily delaying request sequences to its advantage.
In this paper we study caching under the more conservative model in which requests must be served
as they arrive. We study the problem of minimizing the number of faults, deriving bounds on the
competitive ratios of natural strategies to manage the cache. We then study the offline paging problem
and show that deciding if a request can be served such that at a given time each sequence has faulted
at most a given number of times is NP-complete and that its maximization version is APX-hard (for an
unbounded number of sequences). Lastly, we describe offline algorithms for the decision problem and
for minimizing the total number of faults that run in polynomial time in the length of the sequences.

1 Introduction

In the last few years, multicore processors have become the dominant processor architecture. While
cache eviction policies have been widely studied both in theory and practice for sequential proces-
sors, in the case in which various simultaneous processes share a common cache, the performance
of even the most common eviction policies is not yet fully understood. In particular, there is almost
no theoretical backing for the use of current eviction policies in multicore processors. Recently,
a work by Hassidim [16] presented a theoretical study of paging strategies for shared caches in
multicores or Chip Multiprocessors (CMPs). In a CMP system with p cores, a shared cache might
receive up to p page requests simultaneously. Hassidim proposes a somewhat unconventional model
in which the paging strategy can schedule the execution of threads. While in principle there is no
reason why this cannot be so, historically the scheduler within the operating system concentrates
in fairness and throughput considerations to determine which task should be executed while the
paging algorithm focuses on which of the pages currently in cache should be evicted upon a fault.

In this work we assume a more conservative model, in which cache algorithms are not allowed to
make any scheduling decisions but must serve all active requests. In this model, a paging strategy
serves a set of p request sequences with a shared cache of size K. Requests can be served in
parallel, thus various pages can be read from cache or fetched from memory simultaneously, and
a fault delays the remaining requests of the sequence involved by τ units of time. We define as
FINAL-TOTAL-FAULTS (FTF) the problem of minimizing the total number of faults, and as
PARTIAL-INDIVIDUAL-FAULTS (PIF) the problem of deciding, given a request sequence R and
bound vector b ∈ N

p, whether R can be served such that at time t the number of faults on each
sequence Ri is at most bi.

⋆ A two page research announcement of this result appeared in the brief announcement session in SPAA’11 [18].



Without loss of generality we define a cache strategy as a combination of a possible partition
policy, and an eviction policy, and compare the performance of natural strategies for FTF within
this framework. We show that when restricted to static partition strategies, the choice of the
partition has more impact than the choice of an eviction policy. We show, however, that strategies
that partition the cache cannot be competitive with respect to shared strategies if they do not
update the partition often, even for disjoint request sequences. On the other hand, partitions that
change often are essentially equivalent to shared strategies.

We then study the offline cache problem and show properties of optimal offline algorithms. We
show that PIF is NP-complete and that a maximization version does not admit a Polynomial Time
Approximation Scheme (PTAS). We then present optimal offline algorithms for both FTF and PIF
that run in polynomial time in the length of the sequences (and exponential in the number of
sequences).

The rest of the paper is organized as follows. We review related work in Section 2. In Section
3 we describe the CMP cache model and formally define the problems we address in this paper.
In Section 4 we describe natural strategies to minimize the number of faults and derive bounds on
their performance. We study the offline problem in Section 5. We provide concluding remarks and
future directions of research in Section 6.

2 Related Work

The performance of the cache in the presence of multiple threads has been extensively studied,
and research on the subject has increased markedly since the appearance of mainstream multicore
architectures. A variety of works have studied cache strategies in practice, developing heuristics to
dynamically partition the cache (e.g. [25, 19, 8]) or to manage cache at the operating system level
(e.g [11, 28, 21]).

From a theoretical perspective, researchers have studied schedulers and algorithms with good
theoretical cache performance (See, e.g., [5, 4, 9] and references therein). More directly related to
cache replacement policies, various models have been proposed to analyze the performance of paging
algorithms in the presence of multiple request sequences, either modeling multiple applications or
multiple threads. In what follows, we briefly review some of these models, which differ mainly in
the assumptions they make with respect to the abilities of paging algorithms to schedule requests.

Fiat and Karlin [13] study paging algorithms in the access graph model, in which request se-
quences are restricted to paths in a graph [7]. They study the multi-pointer case, in which several
paths through an access graph might be performed simultaneously, modeling both different appli-
cations (the graph could be disconnected) or multithreaded computations (having several paths in
one same connected component). In this model, the order of requests is independent of the paging
algorithm, which makes the paging problem substantially different from the one we study in this
paper.

Barve et al. [2] study multiapplication caching in the competitive analysis framework [24]. In
this model a set of page requests corresponding to different applications is served with a shared
cache, and bounds are given with respect to a worst possible interleaving of the request sequences.
As in Fiat and Karlin’s model, however, the order of requests is the same for all algorithms.

Feuerstein and Strajilevich introduced Multi-Threaded Paging (MTP) [12]. In this problem,
given a set of page requests, an algorithm must decide at each step which request to serve next, and
how to serve it. They show that when no fairness restrictions are imposed there exist algorithms
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with bounded competitive ratio, but that no competitive algorithms exist when general fairness
restrictions are imposed. Results in this model were further extended in [26] and [23]. In this
model, a paging algorithm has the capability of scheduling requests, and thus the order in which
requests are served is algorithm dependent.

A recent paper by Hassidim [16] introduced a model for cache replacement policies specific to
multicore caches and studied the performance of algorithms in the competitive analysis framework
with makespan as the performance measure. Hassidim’s model includes the fetching time of pages
from memory. Thus if the algorithm incurs on a fault on one sequence, it can continue serving
other sequences while the faulting sequence’s page is fetched from memory. Hassidim shows that
the competitive ratio of LRU with a cache of size K is Ω(τ/α), where τ is the ratio between miss
and hit times, and the offline optimal has a cache of size K/α. He also shows that computing the
optimal offline schedule is NP-complete, and presents a PTAS for constants p (number of cores)
and τ .

As in the MTP model, Hassidim’s model assumes that the paging strategy can choose to serve
requests of some sequences and delay others. In particular, the offline strategy is able to modify
the schedule of requests, and hence is more powerful than a regular cache eviction algorithm. We
discard this possibility, assuming that the order in which requests of different processors arrive
to the cache is given by a scheduler over which the caching strategy has no influence. Given a
request, the algorithm must serve the request either from cache or slow memory, and it cannot be
delayed. Hence, our model is different from previous models in that we assume no explicit scheduling
capabilities of the paging strategy, while at the same time faults introduce delays in sequences, thus
changing the order of requests in the input.

3 The Cache Model

The model we use in this paper is broadly based on Hassidim’s model [16]. We have a multicore
processor with p cores {1, . . . , p}, and a shared cache of size K pages. The input is a multiset of
request sequences R = {R1, . . . , Rp}, where Rj = σj

s1
, . . . , σj

snj
is the request sequence of core j of

length nj . σj
si is the identifier of the i-th page of the request, with 1 ≤ si ≤ N , where N is the size

of the universe of pages. The total number of page requests is n =
∑p

j=1 nj . We assume K ≫ p

and nj ≫ K, for all 1 ≤ j ≤ p. In particular, we assume that K ≥ p2, which can be regarded as
a CMP variant of the tall cache assumption. We say that a request R is disjoint if

⋂p
j=1 Rj = ∅

and non-disjoint otherwise. In practice, a single instruction of a core can involve more than one
page. We treat each request as a request for one page, which models the case of separate data and
instruction caches.

A parallel request is served in one parallel step. This assumes that requested pages from different
cores can be read in parallel from cache. We assume as well that fetching can be done in parallel,
i.e. pages from memory corresponding to requests of different cores can be brought simultaneously
from memory to cache.

In our model, when a page request arrives it must be serviced. The only choice the paging
algorithm has is in which page to evict shall the request be a fault. A cache miss delays the remaining
requests of the corresponding processor by an additive term τ1. In other words, if request σj

i∗ is a

miss, then for all i > i∗, the earliest time at which σj
i can be served is increased by τ .

1 Note that in [16] τ is defined as the fetching time, which in this paper is τ + 1.
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To be consistent with [16], we adhere to the convention than when a page needs to be evicted
to make space, first the page is evicted and the cache cell is unused until the fetching of the new
page is finished. We also assume that cache coherency is provided at no cost to the algorithms.
Finally, we adopt the convention that simultaneous requests are served logically in a fixed order
(e.g. by increasing number of processor), which for online algorithms means that requests are served
without knowledge of simultaneous requests that are served later according to the logical order.

Under this model, various natural choices of objective functions may be considered. We define
and address the following problems in this paper:

Definition 1 (FINAL-TOTAL-FAULTS (FTF)).
Given a set of requests R = {R1, . . . , Rp}, a cache size K, an integer τ ≥ 0, minimize the total
number of faults when serving R with a size of cache K.

Definition 2 (PARTIAL-INDIVIDUAL-FAULTS (PIF)).
Given a set of requests R = {R1, . . . , Rp}, a cache size K, a time t, an integer τ ≥ 0, and b ∈ N

p,
can R be served with a cache of size K such that at time t the number of faults on each sequence
Ri is at most bi?

Definition 3 (MAX-PARTIAL-INDIVIDUAL-FAULTS (MAX-PIF)).
Given an instance of PARTIAL-INDIVIDUAL-FAULTS, maximize the number of sequences whose
number of faults at a given time is within the given bound.

Intuitively PIF is harder than FTF, since the former poses more restrictions on feasible solutions.
Posing a bound on individual faults might be required to ensure fairness, and furthermore, doing
so at arbitrary times can be used to ensure fairness throughout the execution of an algorithm.

4 Bounds of Online Strategies for Minimizing Faults

Natural strategies to manage the cache in the multicore cache model can be classified in two families:
shared and partition. In the first one, the entire cache is shared by all processors, and a cache cell
can hold a page corresponding to any processor. In the second one, the cache is partitioned in p
parts, with each part destined exclusively to store pages of requests from one processor. A partition
strategy is static if the size of all parts remain constant during an execution and dynamic otherwise.

Both shared and partition strategies are accompanied by an eviction policy A. We use SA to
denote the algorithm that uses a shared cache with eviction policy A. For partition strategies the
partition needs to be specified as well. Thus, sPB

A and dPD
A are the static partition and dynamic

partition algorithms that use eviction policy A and partitions B and D, respectively.
A partition is a function k : {P, N} → {Π(K, p)}, where P = {1, . . . , p} is the set of processors,

and Π(K, p) = {{k1, k2, . . . , kp} | ki ∈ {0, . . . , K} ∧
∑p

i=1 ki = K} is the set of possible partitions
of K with p nonnegative integers. Thus, k(i, t) is the size of the cache for processor i at time t.
We make the restriction that all partitions must assign at least one unit of cache to all processors
whose requests are active. For dynamic partitions, a reduction in the size of a part of a processor
might involve evicting pages of that processor. If at any time t the cache contains c(j, t) pages in
the part of processor j, then if at time t + 1, k(j, t + 1) < k(j, t), then max{c(j, t) − k(j, t + 1), 0}
pages are evicted from the cache according to the eviction policy.

For example, according to the notation defined above, SLRU evicts the least recently used page
in the entire cache and sPOPT

LRU performs LRU on each part of the partition, which is determined
offline so as to minimize the total number of faults.
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In the remainder of this section we compare the performance of partition and shared strategies
for FTF. We denote the number of faults of a strategy Alg on a sequence R as Alg(R).

Partitioning the cache may desirable to avoid costs of managing concurrency issues that arise
when different processors are allowed to access the same cells. A static partition allows the execution
of regular paging algorithms in each part, oblivious to the presence of other threads. Let us first
restrict global strategies to static partitions, and consider a fixed partition of the cache, independent
of the input sequences. In this scenario, results analogous to the ones of sequential paging apply.
For example, the following Lemma implies that in this setting the competitive ratio of LRU, FIFO,
or any deterministic marking or conservative2 algorithm is K.

Lemma 1 (Online vs. offline eviction policies with a fixed static partition). Let A be
any deterministic online cache eviction algorithm and let B = {k1, k2, ..., kp} be any online static
partition. There exists a sequence R such that sPB

A (R)/sPB
OPT (R) = Ω(maxj{kj}). When A is

any marking or conservative algorithm (e.g. LRU), there is a matching upper bound, i.e., ∀ R,
sPB

A (R)/sPB
OPT (R) ≤ maxj{kj}.

Proof (lower bound). Let j∗ = argmaxj{kj}. The sequence R is such that for j 6= j∗, Rj =

(σj
1)

n/p, i.e., the same page is requested n/p times, while Rj consists of requesting, among pages
{σ1, σ2, ..., σkj∗+1}, the page just evicted by A, where σi1 6= σi2 for i1 6= i2, and all sequences are

disjoint. sPB
A (R) = n/p + p − 1, since it faults on every request of Rj∗ and once on each other

sequence. On the other hand, since sPB
OPT only evicts a page of sequence Rj∗ if it is not requested

in the following kj∗ requests, we have sPB
OPT (R) ≤ (n/p)/kj∗ + p − 1 and the lemma follows.

Proof (upper bound). Divide sequence Rj in phases such that a new phase starts every time there
is a request for the (kj +1)-th distinct page since the beginning of the previous phase, and the first
phase begins at the first page of Rj . sPB

LRU faults at most kj times in each phase of Rj , while any
algorithm must fault at least once in each phase. Let φj denote the number of phases of sequence
Rj , then sPB

LRU (R) ≤
∑p

j=1 φjkj ≤ maxj{kj}
∑p

j=1 φj . On the other hand, sPB
OPT (R) ≥

∑p
j=1 φj ,

and thus sPB
LRU (R)/sPB

OPT (R) ≤ maxj{kj}. ⊓⊔

Although traditional sequential eviction policies are competitive for given static partitions, when
the partition can take into account the input sequences, then no deterministic online algorithm is
competitive, as shown in the following Lemma:

Lemma 2 (Online static partition strategies are not competitive). Let B = {k1, ..., kp}
be any online static partition. Let k∗ = minj{kj |kj ≥ 2}. ∃R, s.t. for all A, sPB

A (R)/sPOPT
LRU (R) ≥

min{k∗, p − 1} n
K2p

= Ω(n).

Proof. Consider first A = LRU . Let j∗ = argminj{kj |kj ≥ 2} (i.e. kj∗ = k∗). Let P denote the
set of the first kj∗ processors in decreasing order of part of the cache according to B. Note that if

kj∗ ≥ (p−1) then P is equal to the set of all processors. Let P ′ = P \{j∗}. Let Rj = (σj
1σ

j
2...σ

j
kj+1)

xj

with xj such that xj(kj+1) = n/p for all j ∈ P ′, and let Rj = (σj
1σ

j
2...σ

j
kj

)xj j /∈ P ′ and j 6= j∗, where

xj is such that xjkj = n/p. Let Rj∗ = (σj∗

1 )n/p. sPB
LRU faults on every request of |P ′| processors

and faults only on the first request of processor j∗. Hence, sPB
LRU (R) ≥ min{kj∗ , (p − 1)}n/p.

2 See [6, Ch. 3] for the definitions of marking and conservative algorithms.
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On the other hand, an optimal partition for R would be one such that all different pages of
each request Rj fit in the cache. Intuitively, an optimal partition takes units of cache from j∗ and
assigns them to other processors. Let kOPT

j denote the size of the cache for processor j according

to the optimal partition, then kOPT
j = kj + 1 if j ∈ P ′ and kOPT

j = min{1, kj − (p − 1)} for

j = j∗. The number of faults of sPOPT
LRU on R is K, since it only faults on the first request to each

different page. Hence sPB
LRU (R)/sPOPT

LRU (R) ≥ min{kj∗ , (p − 1)}n/Kp = Ω(n). Now, by Lemma 1
sPB

OPT (R) ≥ sPB
LRU (R)/K, and the lemma follows. ⊓⊔

Although strategies that partition the cache only once or that even allow a small number
of changes during the execution might be simple to manage compared to general strategies, the
performance of these strategies is not competitive when shared strategies are allowed. While this is
perhaps to be expected for non-disjoint sequences, surprisingly this holds even for disjoint sequences.
Theorem 1 shows that static partitions are preferable over static partitions (even if the partition is
computed offline) and dynamic partitions that do not change often.

Theorem 1. Let A be any deterministic online cache eviction policy, and let D be any online
dynamic partition strategy that changes the sizes of the parts o(n) times. The following statements
hold:

1. There exists a sequence R such that sPOPT
OPT (R)/SLRU (R) = Ω(n).

2. For all R SLRU (R)/sPOPT
OPT (R) ≤ K.

3. There exists a sequence R s.t. dPB
A (R)/SLRU (R) = ω(1). Furthermore, if D varies the partition

a constant number of times, dPD
A (R)/SLRU (R) = Ω(n).

Proof. 1. Let K1 = 0 and Kj =
∑j−1

i=1 ki + 1, for all 2 ≤ j ≤ p. Consider a sequence of requests R,
in which processor j requests the following pages, for all j simultaneously:

(σj
1)

(j−1)(K/p+1)(τ+x)(σj
1σ

j
2 . . . σj

K/p+1)
x(σj

1)
(K+p−j(K/p+1))(τ+x)

where σj
i1
6= σj

i2
for all i1 6= i2, and x is a parameter. In other words, processor j requests the same

page for a while, then repeatedly requests K/p + 1 distinct pages (call this the distinct period),
and then goes back to requesting the same page again. All processors do the same, taking turns
to be the processor currently in the distinct period: when one processor is in the distinct period,
all other processors request repeatedly the same page. Given the request sequence, an optimal
partition assigns K/p+1 units of cache to p−1 processors, and the rest to one processor: assigning
more than K/p+1 units of cache to any processor does not result in fewer faults, and assigning
less than K/p + 1 to more than one processor increases the number of faults. Let j∗ be the
processor whose partition is kj∗ = K/p− (p− 1). Consider the distinct period of this processor.
Let A be any eviction policy. No matter what the eviction policy A is, even the optimal offline,
sPOPT

A will fault at least once every kj∗ requests. Hence sPOPT
A (R) ≥ x(K/p + 1)/kj∗ . On the

other hand, SLRU (R) faults only on the first K/p + 1 requests of the distinct period of each
processor, for a total of K + p faults. Hence sPOPT

A (R)/SLRU (R) ≥ x/(pkj∗). x can be made
arbitrarily large, in fact n = τ(K +p)(p−1)+xp(K+p) and thus x = n/(p(K +p))+τ(p−1)/p,
and thus x/(pkj∗) = Ω(n).

2. Divide a sequence Rj of processor j in phases such that in a sequential traversal of pages, a new
phase begins either on the first page, or at the (kj + 1)-th different page since the beginning
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of the current phase, where kj is the size of the cache assigned by OPT to processor j. Define
a phase for the entire sequence R equivalently for the cache size K. Call this phase a shared
phase. We claim that a shared phase cannot start and end without at least one sequence changing
phase. In other words, the phase of at least one sequence must end before the end of a shared
phase. If this was not the case, within the shared phase, the number of different pages in the
sequence of each processor j would be at most kj , and therefore the total number of different
pages in the shared phase would be at most K, which is a contradiction. Let φ denote the
number of shared phases of sequence R and φj denote the number of phases of sequence Rj .
The above claim implies that φ ≤

∑p
j=1 φj . Since SLRU will fault at most K times per shared

phase, and any cache eviction algorithm must fault at least once per phase, it follows that
SLRU (R) ≤ Kφ ≤ K

∑p
j=1 φj ≤ KsPOPT

OPT (R).

Note that the arguments holds for any τ ≥ 0: although during the execution of the algorithm
the effect of τ changes the length of the phases of each sequence and therefore it changes the
phases of the entire sequence, it still holds that a phase for the entire sequence cannot end
before a change of phase of at least one sequence.

3. Let a stage of D denote a period in which the sizes of the partition are constant. If the number
of stages of D is o(n), then at least one stage has non-constant length ℓ = ω(1) (in number of
parallel page requests). We then apply the same argument as in the proof of statement 1. Let
R in this stage consist of a sequence in the form of the sequence in that proof: each processor’s
sequence has three periods: (1) only one page σj

1 is requested repeatedly, (2) the page requested

is any page not in the cache of processor j (the distinct period), and (3) again only one page σj
1

is requested. The length of period (2) is m pages, and each processor takes turns to be in the
distinct period. Hence the total number of requests in the stage is mp2 = ℓp. Let t be the time
where the long stage begins. During the distinct period of processor j, Rj consists of repeatedly

requesting the page not in j’s cache, among the pages {σj
1, ..., σk(j,t)+1}. dPD

A faults on every

request of the distinct period of all processors, and hence in this stage dPD
A (R) = pm = ℓ. On

the other hand, in this stage, SLRU faults only on the first request to a distinct page in the
distinct period of each processor, and thus in this stage SLRU (R) = K + p (recall we assume
kj ≥ 1 for all 1 ≤ j ≤ p at all times). Let the rest of R be such that neither algorithm faults.
Then dPD

A (R)/SLRU (R) ≥ ℓ/(K+p) = ω(1). Note that if partitions are allowed only a constant
number of stages, then dPD

A (R)/SLRU (R) = Ω(n).

⊓⊔

Theorem 1 suggests that competitive strategies must either be shared or have a partition that
changes often. We show that in fact these types of strategies are equivalent for disjoint sequences.
Although a dynamic partition strategy executes an eviction policy in each part separately, if the
variation in the partition can be determined globally, then any shared strategy can be simulated
by a dynamic partition on disjoint sequences. The following lemma shows this for shared LRU:

Lemma 3 (Dynamic partitions equal shared strategies for disjoint sequences). There
exists a dynamic partition D such that for all disjoint R, dPD

LRU (R) = SLRU (R).

Proof. Let D be the following strategy. D starts by assigning an equal share of the cache to all
processors. On a request to page σj

i , if this page is a fault, let j∗ be any processor whose cache
is not full, or if all caches are full, the processor whose least recently page contained in its cache
partition is the least recently used overall. D modifies kj∗ to be kj∗ − 1 (evicting one page in this
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cache according to LRU if the cache is full), and assigns that cache cell to j, the processor of the
new request. If, on the other hand, σj

i is a hit, no change in the partition is made, and only the
priority of the pages in the cache of processor j is updated according to the eviction policy. It is
not difficult to see that at all times, the caches of dPD

LRU and SLRU contain the same pages: if the
entire cache is not full, no pages are evicted; if the cache is full, both algorithms evict the overall
least recently used page. ⊓⊔

The above observation implies that a dynamic partition strategy can be as effective as any other
strategy. In fact, Hassidim [16] showed in his model that an optimal algorithm evicts the page that
is furthest in the future for some processor. This is equivalent to having a dynamic partition in
which upon a fault, the part of one processor is reduced and the page that is furthest in the future
in that processor’s sequence is the one which should be evicted. We show in Section 5 that the same
result holds in our model.

Multicore paging differs from sequential paging in that the actions of algorithms modify the
order of future requests. Hence paging strategies must decide which page to evict not only with the
goal of delaying further faults, but at the same time trying to properly align the demand periods of
future requests. An online strategy, however, is oblivious to future request, and hence in general its
strategy cannot work toward the second goal. In this sense, in multicore paging an optimal offline
strategy has significantly more advantage over an online strategy than in sequential paging. While
in the latter setting any online marking algorithm has a bounded competitive ratio of K [17, 27], in
multicore paging the competitive ratio might be larger. Although the optimal offline strategy does
not have the ability of scheduling requests, it can effectively delay the sequence of one processor
and serve the rest of the sequences having enough cache space. In particular, if τ = Ω(n), then the
competitive ratio of SLRU can be arbitrarily large.

Lemma 4 (Lower bound on the competitive ratio of LRU). There exists a sequence R
such that SLRU (R)/SOPT (R) = Ω(p(τ + 1)).

Proof. Consider a disjoint sequence R where each Rj consists of repeatedly requesting pages

(σj
1 . . . σj

K/p+1), where all pages are different, and |Rj | = n/p. SLRU will fault on every single

request. An offline algorithm SOFF , after the initial K requests (all faults) can evict the pages
of one sequence only, say Rp. Thus pages σj

K/p+1 for j = 1, . . . , p − 1 will replace p − 1 pages

currently in the cache of Rp. Since K ≥ p2, (p − 1)(K/p + 1) < K and hence all the pages of
Rj , j 6= p fit in the cache and thus SOFF will incur in no more faults on these sequences. The
total number of faults on sequences R1, . . . , Rp−1 will then be (p − 1)(K/p + 1). On requests of
Rp, SOFF evicts the next page to be requested in Rp (note that since there is space in SOFF ’s
cache to store at least one page of Rp, SOFF does not have to evict any page of the other se-
quences), and therefore SOFF will fault on every request of sequence Rp while other sequences
are being served. Once the other sequences are completely served, the rest of Rp will be served
with all the cache. The total number of faults on Rp will be K/p + 1 for the initial requests plus
(n/p−K/p− 1)/(τ + 1) for the requests that are served while the other sequences are served, plus
a final K/p + 1 faults before all pages of Rp fit in the cache. The total number of faults of SOFF

is then (p − 1)(K/p + 1) + 2(K/p + 1) + (n/p − K/p − 1)/(τ + 1) = O(n/p(τ + 1)), and hence
SLRU (R)/SOFF (R) = Ω(p(τ + 1)). ⊓⊔

The sequence in the proof of Lemma 4 shows that in general Furthest-In-The-Future is not
optimal: it is not hard to verify that when τ > K/p, SFITF (R) > SOFF (R)
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5 The Offline Problem

In reality requests sequences are not known in advance, and thus paging is an online problem. In
general, however, in any online problem setting deriving efficient optimal offline solutions is both of
theoretical interest as well as useful in evaluating online algorithms in practice in the competitive
analysis framework. Furthermore, an online solution can be designed based on properties of the
offline solution. For example, in traditional paging, LRU approximates the optimal Furthest-In-The-
Future (FITF) algorithm [3] using the past as the best approximation of the future. An example
of an inherently online problem for which the offline problem has been extensively studied is the
List Update problem (See, e.g., [22, 20, 1, 15]).

5.1 Hardness of Multicore Paging

In this section we show that even if the entire sequence of requests is known in advance, the multicore
paging is hard. More specifically, we show that PARTIAL-INDIVIDUAL-FAULTS is NP-complete
and that there is no PTAS for its maximization version. This is in contrast to sequential paging.
If there is only one processor, both FTF and PIF are solvable by FITF, which is not optimal
in the multicore setting.As in the proof of Hassidim’s makespan problem [16], the proof of NP-
completeness of PIF uses a reduction from 3-PARTITION. Hassidim’s proof relies on the fact that
sequences can be scheduled in his model. This is not possible in our model, and hence our reduction
is quite different.

Theorem 2. PARTIAL-INDIVIDUAL-FAULTS is NP-complete.

Proof sketch3: We reduce from 3-PARTITION. Recall that an instance of 3-PARTITION consists
of a set of n integers S = {s1, . . . , sn}, and a bound B, such that B/4 < si < B/2 for all 1 ≤ i ≤ n.
The problem is to determine if S can be partitioned into n/3 sets A1, . . . , An/3 such that for all
1 ≤ j ≤ n/3,

∑

i∈Aj
si = B. Note that the restrictions of the problem imply that each subset Ai

must have exactly 3 elements [14]. Given an instance J of 3-PARTITION, we build an instance
I of PARTIAL-INDIVIDUAL-FAULTS as follows. There are p = |S| sequences. Each sequence
Ri consists of alternating requests to 2 distinct pages αi and βi, i.e. Ri = αiβiαiβi . . ., and all
sequences are disjoint. The length of Ri is |Ri| = B(τ +1)+4τ +5, where τ ≥ 1 is any integer. The
size of the cache is K = (4/3)p, and the maximum allowed number of faults in each sequence Ri is
bi = B − si + 4, at time t = B(τ + 1) + 4τ + 5. Since 3-PARTITION is strongly NP-complete (it
remains NP-complete if the input is encoded in unary), a reduction from a unary-encoded instance
takes polynomial time.

A solution to an instance J of 3-PARTITION gives a solution to I as follows. Let A1, . . . , An/3

be a solution to J . The idea is that each group of 3 sequences corresponding to a group Aj will
share a group of 4 cells of the cache. Each sequence in a group will have a dedicated cell at all
times, while the extra 4-th cell is assigned to each sequence at different times. It is not difficult
to show that if each sequence Ri uses the extra cell continuously so that it incurs in exactly
hi = si(τ + 1) + 1, then at time t = B(τ + 1) + 4τ + 5 the number of faults of this sequence is
exactly (t − hi)/(τ + 1) = B − si + 4.

We argue now that a solution to the instance of PIF gives a solution to J . It is clear that by
time t a sequence Ri must have at least hi = si(τ + 1) + 1 hits in order to satisfy the bound on

3 See Appendix A for a complete proof.
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the number of faults. Given the alternating pages in a sequence, a sequence can have a hit only
if it has two cells for consecutive timesteps. Each sequence uses at least one cell until time t, and
hence there are only p/3 extra cells. Therefore there can be at most p/3 hits in any timestep. In
addition, it is not hard to see that any change in the sequence to which a cell is assigned implies at
least τ timesteps without hits for the two sequences involved. Considering the total number of hits
possible until time t and the minimum total hits required, we can show that the maximum number
of changes in the partition is 2p/3 and hence each sequence must have 2 cells for a continuous
period of time. Furthermore, it can be shown that exactly 3 sequences must share one extra cell,
otherwise at least one sequence will exceed the allowed faults before time t. Finally, it is not hard
to show that the 3 sequences Ri1 , Ri2 , Ri3 that share one cell must be the ones whose corresponding
si’s satisfy si1 + si2 + si3 = B. Hence each group of 3 sequences that share the extra cell define a
solution for the instance J of 3-PARTITION. ⊓⊔

Observe that PIF remains NP-complete even when τ = 0, i.e. when sequences are not delayed
due to faults. This means that this problem is hard also in the multiapplication caching model
of Barve et al. [2]. Note that this is not the case for FINAL-TOTAL-FAULTS, for which FITF is
optimal when τ = 0. This confirms that the goal of achieving a fair distribution of faults is more
difficult to attain than merely minimizing the number of overall faults.

We also show that MAX-PIF is APX-hard, i.e. there is no polynomial time algorithm that can
approximate MAX-PIF within a factor of (1− ǫ) for any ǫ, unless P=NP. In order to show this, we
describe a gap-preserving reduction from MAX-4-PARTITION (shown to be APX-hard in [10]).
Therefore unless P=NP, given an instance of PIF there is no efficient way of serving the request
sequences ensuring that a large part of them will fault within the allowed bounds.

Theorem 3. MAX-PARTIAL-INDIVIDUAL-FAULTS is APX-hard.

Proof. We describe a gap preserving reduction from MAX-4-PARTITION to MAX-PIF. The 4-
PARTITION [14] problem is an analog of 3-PARTITION in which the goal is to partition a set
S = {s1, . . . , sn} in subsets A1, . . . , An/4 such that for all 1 ≤ j ≤ n/4,

∑

i∈Aj
si = B, where

B = (4/n)
∑n

i=1 si. Each element si satisfies B/5 < si < B/3 and thus each subset must have 4
elements. 4-PARTITION is also NP-complete [14], and a reduction to PIF can be built by modifying
the proof of Theorem 2 in a straightforward way: the cache size is now K = (5/4)p, the length
of each sequence is B(τ + 1) + 5τ + 6 and the goal is to serve the sequences such that at time
t = B(τ + 1) + 5τ + 6 sequence i has incurred in at most bi = B − si + 5. It is not hard to see that
the same arguments in the proof of Theorem 2 apply to argue that an instance of 4-PARTITION
admits a solution if an only if the instance of PIF admits a solution.

The MAX-4-PARTITION problem (as defined in [10]) is: given a set S and B as in the 4-
PARTITION problem, find a maximum number of disjoint subsets whose elements add up to B.
This problem is APX-hard, i.e. it does not admit a PTAS (assuming P 6= NP)[10]. Given an instance
J (I) of MAX-4-PARTITION (MAX-PIF), let OPT4PART (J ) (OPTPIF (I)) denote the value of
the optimal solution to J (I). Let n = |S| in J . In order to show that MAX-PIF is APX-hard, we
build a reduction to an instance I of MAX-PIF and show:

1. OPT4PART (J ) ≥ n/4 ⇒ OPTPIF (I) ≥ n
2. OPT4PART (J ) < (1 − ǫ)n/4 ⇒ OPTPIF (I) < (1 − ǫ/4)n

The reduction from an instance J of MAX-4-PARTITION to an instance I of MAX-PIF is exactly
the same as the reduction from 4-PARTITION described above. Since a solution to J gives a
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solution to I, if OPT4PART (J ) ≥ n/4 (and thus equal to n/4) then all sequences of I can be
served with a number of faults within the given bounds, proving statement 1.

For statement 2., note that in the reduction from 4-PARTITION to PIF (adapted from the proof
of Theorem 2), the only way of serving all sequences within the fault bounds is by partitioning
them in groups of 4 that shared 5 cells of cache. Furthermore, the 4 sequences in a group can
be served within the faults bounds if and only if the corresponding elements in S add up to B.
Otherwise, at least one of the sequences will have to incur in more faults than the allowed bound.
Therefore, OPTPIF (I) ≤ 4OPT4PART (J ) + 3(n/4 − OPT4PART (J )) = OPT4PART (J ) + 3n/4.
Since OPT4PART (J ) < (1 − ǫ)n/4, we have OPTPIF (I) < (1 − ǫ)n/4 + 3n/4 = (1 − ǫ/4)n. Thus
the reduction is gap-preserving, proving the theorem. ⊓⊔

5.2 Properties of Offline Algorithms for FINAL-TOTAL-FAULTS

The changes in the relative alignment of sequences can significantly affect the performance of an
algorithm (See the proof of Lemma 4 for an example). Offline algorithms can benefit from properly
aligning the demand periods of future requests. Even without explicit scheduling, a strategy can
try to schedule sequences to its convenience by means of faults and their corresponding delays. For
this purpose, an algorithm could evict a page voluntarily (i.e. not forced by a fault on another page)
before it is requested in order to force a fault. We show, however, that forcing faults for the purpose
of changing the alignments in this way is not beneficial for minimizing the number of faults. We
say that an algorithm is honest if it does not evict a page unless there is a fault, and show that
there exist an optimal algorithm that is honest.

Theorem 4. Let Alg be an offline optimal algorithm that is capable of forcing faults. There exists
an offline algorithm Alg′ that is honest such that ∀ disjoint R, Alg′(R) = Alg(R).

Proof sketch3: We follow an inductive argument similar to the proof of optimality of Furthest-
In-The-Future in the sequential setting [6]. Let Alg be any offline algorithm. The proof is based on
the following claim: for each timestep i we can build an algorithm Algi that behaves exactly like
Alg until t = i − 1 and that at time t = i, if Alg forces a fault, then Algi does not. Furthermore,
Algi(R) ≤ Alg(R). If this claim is true, then we can build an optimal algorithm that does not force
faults: given an optimal algorithm OPT , apply the claim with i = 1 to obtain OPT1, then apply
the claim with i = 2 to obtain OPT2 and so on. OPTt′ is an optimal algorithm, where t′ is the
maximum execution time.

In order to prove that the claim is true, we consider the execution of Alg and Algi after Alg
has forced a fault at t = i. Both executions can differ in the contents of the cache, the relative
alignment of the sequences, and the number of current faults. Based on these, we define 5 possible
states in which the executions can be, for which all satisfy Algi(R, t) ≤ Alg(R, t) at the current
timestep, where Alg(R, t) is the number of faults of Alg at time t. We show that Algi manages to
always keep the executions in one of these 5 states, possibly coming back to total synchronization
with Alg, or reaching the end of the sequence with Algi(R) ≤ Alg(R). ⊓⊔

Hassidim shows that there is an optimal solution for minimizing the makespan that on each
fault it evicts the page that is furthest in the future for some core. In other words, if the sequence
whose page should be evicted is known, the page to be evicted is the furthest in the future in that
sequence. We show that the same result holds in our model for minimizing the number of faults.
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Theorem 5. There exists an optimal offline algorithm for FTF on disjoint sequences that upon
each fault evicts a page σ ∈ Rj whose next request time is maximal in Rj, for some j.

Proof. As in the proof of Theorem 4, we claim that for any offline algorithm Alg there exists an
algorithm Algi that behaves exactly like Alg until time t = i − 1. If at time i Alg evicts a page
from sequence Rj , Algi evicts the page from the same sequence that is furthest in the future, and
Algi(R) ≤ Alg(R). Applying this claim on an optimal algorithm successively at each timestep gives
an optimal algorithm.

We now prove the claim. Suppose that at time t = i Alg evicts a page σ1 ∈ Rj . Algi behaves
exactly like Alg until t = i − 1 but at t = i it evicts a page σ2 ∈ Rj , which is the page furthest in
the future in this sequence. Assume σ1 6= σ2 otherwise the claim is trivially true. Let CAlg(t) and
Alg(R, t) denote the contents of Alg’s cache and the number of faults before serving R(t). We have
CAlg(t) = CAlgi

(t) and CAlg(t + τ) = (CAlgi
(t + τ) ∪ σ2) \ {σ1}, and the sequences have the same

alignment in both algorithms.

Before the request for σ1, if upon a fault Alg evicts σ2, Algi evicts σ1, thus the caches are equal
and from then on Algi behaves exactly like Alg, thus Algi(R) ≤ Alg(R). If Alg instead evicts a
page α 6= σ2, Algi evicts the same page.

If σ2 was not evicted, when σ1 is requested Alg faults and evicts a page α from some sequence.
σ1 is a hit for Algi and thus Alg(R, t) = Algi(R, t) + 1, CAlg(t) = (CAlgi

(t)∪ σ2) \ {α}, and Algi is
ahead in Rj by τ timesteps. Assume first that σ2 is not evicted by Alg before its request. Suppose
Algi gets to σ2 with this configuration (for some α). σ2 is a fault for Algi and a hit for Alg. Algi

evicts α and now Alg(R, t) = Algi(R, t), CAlg(t) = CAlgi
and the sequences are aligned equally.

From then on both algorithms are equivalent and the claim is true. After the request for σ1, Algi

evicts whatever Alg evicts (assume σ2 is not evicted by Alg during this period). If α is requested
(a fault for Alg but a hit for Algi), Algi forces a fault and hence Alg(R, t) = Algi(R, t) + 1 and
CAlg(t) = (CAlgi

(t) ∪ σ2) \ {α
′} still holds, with α′ being the page evicted by Alg. By Theorem 4,

we can build another algorithm Alg′i with the same number of faults that does not force faults,
and hence the claim is true in this case. Now, if Alg evicts σ2 before getting to its request Algi

evicts α, and both caches are the same. When σ2 is requested both algorithms will fault and
Alg(R, t) = Algi(R, t) + 1 holds. However, sequences Rj in both algorithms do not have the same
alignment with respect to the rest of the sequences, with Algi’s sequence being ahead by τ timesteps.
This setting is the same as the one in the proof of Theorem 4 after Alg has forced a fault. Applying
that proof we can show that Algi can keep the execution within the 5 states defined in the proof,
and hence Algi(R) ≤ Alg(R) at the end of the execution. Again, if at any point Algi forces a fault,
then by the same Theorem 4 we can obtain an honest algorithm that does not exceed Algi’s faults.
Since in all cases the claim is true, this proves the theorem. ⊓⊔

5.3 Optimal Algorithms for FINAL-TOTAL-FAULTS and PARTIAL-
INDIVIDUAL-FAULTS

Theorem 5 implies an O(pn) time optimal optimal algorithm for FTF that upon each fault chooses
the sequence to evict from optimally by trying all possibilities. Using dynamic programming, how-
ever, we can obtain a faster algorithm that is exponential in the number of sequences, but polynomial
in the length of the sequences (recall we assume n ≫ p). This algorithm can be extended to solve
PIF as well. We describe next these algorithms, showing that if the number of sequences is constant,
then both FTF and PIF admit polynomial time algorithms.
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Algorithm 1 Minimum Final Total Faults(R,K)
for all configurations C do

F [C, 1, . . . , 1] = 0
for each (x1, . . . , xp) ∈ {2, . . . , ni(τ + 1) + 1}p

do

F [C, x1, . . . , xp] = ∞
for each (x1, . . . , xp) ∈ {1, . . . , ni(τ + 1)}p

do

for all configurations C do

if F [C, x1, . . . , xp] 6= ∞ then

for i = 1 to p do

if xi = (j − 1)(τ + 1) + 1 for some j, and Ri(xi) ∈ C then {Ri(xi) is a hit}
x′

i = xi + τ + 1
else {Ri(xi) is being fetched or it is a fault}

x′

i = xi + 1
for all configurations C′ s.t. R(x) ∈ C′

do

{|R(x) \ C| is the number of faults in R(x) among pages not being fetched}
if F [C, x1, . . . , xp] + |R(x) \ C| < F [C′, x′

1, . . . , x
′

p] then

F [C′, x′

1, . . . , x
′

p] = F [C, x1, . . . , xp] + |R(x) \ C|
return minC{F [C, n1(τ + 1) + 1, . . . , np(τ + 1) + 1]}

Minimizing the number of faults Let x = (x1, . . . , xp), where each xi, 1 ≤ xi ≤ ni(τ + 1) + 1,
is an index of a place in sequence i when serving it, either at a page, or at a time when a page is
being fetched. If xi is of the form xi = (j−1)(τ +1)+1, then xi is the index of the j-th page in Ri.
In this case, we say xi points to a page (denoted as Ri(xi)). Otherwise, xi points to the fetching
period of page ⌈xi/(τ + 1)⌉, and Ri(xi) denotes the page being fetched. Let R(x) denote the set of
pages p indexed by x, including pages in the fetching period.

Given a request R we want to compute, for each possible cache configuration C and possible
vector of positions x, the minimum number of faults required to serve R up to x, and arriving at
a cache configuration C. If xi is in a page, this cost does not include serving Ri(xi). If xi points
to a fetching period, this cost includes the fault on Ri(xi). We compute and store these values
in a (p + 1)-dimensional table storing the minimum cost for each configuration and position. A
cell F [C, x1, . . . , xp] can contribute to a cell F [C ′, x′

1, . . . , x
′

p], where C ′ is any configuration that
contains R(x) and x′

i > xi is the next index on sequence i. If xi points to a page and Ri(xi) is a hit,
then x′

i = xi + τ + 1, i.e. the index jumps to the next page. If Ri(xi) is being fetched or is a miss,
then x′

i = xi +1. Note that requiring that C ′ contains the pages being fetched ensures that no pages
that are being fetched can be evicted when changing configurations. We fill the table in a bottom
up fashion, updating from a cell c only the cells that c can contribute to with a lower number of
faults. The total minimum number of faults is then the minimum among all cache configurations
C of F [C, n1(τ + 1) + 1, . . . , np(τ + 1) + 1]. Algorithm 1 shows this procedure in pseudocode.

The running time of Algorithm 1 is exponential the number of sequences p and the size of the
cache K, but it is polynomial in the length of the sequences, which in practice is much larger than
both p and K. Let w be the total number of different pages requested in an instance. The number of
possible cache configurations is

∑K
i=0

(

w
i

)

≤ (w +1)K . Hence, the total number of cells in table F is

O((w+1)K)(n(τ +1)+1)p). |R(x)| = p and thus at most
(

K
K−p

)

= O(Kp) cache configurations can
contain R(x). Therefore, the time to update the costs of all cells that one cell can contribute to is at
most O(Kp). Since w ≤ n, when K and p are constants, the total running time is O(nK+p(τ +1)p).
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Algorithm 2 Partial Individual Faults(R, K, time, τ, b)
for all configurations C do

F [C, 1, . . . , 1] = {({0}p, 0)}
for each (x1, . . . , xp) ∈ {2, . . . , ni(τ + 1) + 1}p

do

F [C, x1, . . . , xp] = ∅
for each (x1, . . . , xp) ∈ {1, . . . , ni(τ + 1)}p

do

for all configurations C do

if F [C, x1, . . . , xp] 6= ∅ then

for i = 1 to p do

if xi = (j − 1)(τ + 1) + 1 for some j, and Ri(xi) ∈ C then {Ri(xi) is a hit}
x′

i = xi + τ + 1
else {Ri(xi) is being fetched or it is a fault}

x′

i = xi + 1
P = ∅ {P is the list of updated fault vectors}
for each (f , t) in F [C, x1, . . . , xp] do

validVector = true
for i = 1 to p do

f ′

i = f i {fi is the i-th element of f}
if Ri(xi) /∈ C then {Ri(xi) is a fault}

f ′

i = f ′

i + 1
if f ′

i > bi then {this path exceeded the maximum faults for sequence i}
validVector = false

if validVector and t + 1 ≤ time then

P = P ∪ (f ′, t + 1)
if t + 1 = time or x′

i = ni(τ + 1) + 1 for all i = 1..p then {we reached the checkpoint time or the end
of all sequences}

return TRUE
for all configurations C′ s.t. R(x) ∈ C′

do

F [C′, x′

1, . . . , x
′

p] = F [C′, x′

1, . . . , x
′

p] ∪ P
{we reached the end of the table before finding a feasible solution}
return FALSE

Theorem 6. Given a set R of p sequences of total length n, a cache of size K, and τ ≥ 0,
with p = O(1) and K = O(1), the minimum number of faults to serve R can be determined in
O(nK+p(τ + 1)p) time.

Deciding PARTIAL-INDIVIDUAL-FAULTS The algorithm for FTF can be extended to
solve PIF as follows. For each cache configuration C and positions (x1, . . . , xp) we store a set of
pairs (f , t), where f = (f1, f2, . . . , fp) specifies the faults on each sequence when reaching config-
uration (C, x1, . . . , xp) at time t. Thus, each pair (f , t) associated with F [C, x1, . . . , xp] represents
the number of faults in each sequence for a possible way of serving sequence R up to time t. Algo-
rithm 2 shows the algorithm in pseudocode. The number of entries of the table F in Algorithm 2
is O(nK+p(τ + 1)p) as in the algorithm for FTF. However, now each entry stores a list of pairs
of fault vectors and time. Since at any time the number of faults in a sequence is at most n, the
total number of different fault vectors is O((n + 1)p). The time component of each pair can have
at most n(τ + 1) values, and hence each set can have at most O(np+1(τ + 1)) pairs. For each entry
in F we have to go through the list of pairs and compute the new vectors, and hence processing
an entry takes O(pnp+1(τ + 1)) time. Once the new vectors are computed, these might have to
be added to at most at most O(Kp) other entries. Hence the total time to process one entry is
O(pnp+1(τ + 1) + Kp), and therefore the total time is O(nK+2p+1(τ + 1)p+1).
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Theorem 7. Given a set R of p sequences of total length n, a cache of size K, τ ≥ 0, a check-
point time t, and a bound vector b = {b1, . . . , bp}, with p = O(1) and K = O(1), it can be de-
cided if R can be served such that at time t each sequence Ri has incurred in at most bi faults in
O(nK+2p+1(τ + 1)p+1) time.

6 Conclusions

The fact that faults change the relative alignment of request sequences plays a key factor in the
multicore cache problem, making it significantly more difficult than the traditional sequential prob-
lem and even counterintuitive when trying to apply the reasoning that works in the sequential
case. An offline algorithm can and should take advantage of its knowledge of future cache demand
distributions to achieve alignments that combine periods of high demand of some sequences with
low demands of others. Although algorithms are not allowed to explicitly schedule requests, they
can do so by taking this as a consideration when choosing what page to evict.

A natural direction of further research is to obtain competitive online algorithms. Given the
apparent excessive advantage of an offline algorithm over an online strategy that cannot do anything
about future alignments, perhaps comparing online strategies to an optimal offline algorithm that
can align sequences to its advantage might not lead to interesting online strategies. Hence the
definition of a good evaluation framework for online strategies is open for debate, and perhaps other
measures such as fairness or relative progress of sequences should be considered over minimizing
faults globally.
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A Proofs for Section 5

Theorem 2. PARTIAL-INDIVIDUAL-FAULTS is NP-complete.

Proof. It is easy to see that the problem is in NP: given an instance I = {R, K, t, τ, b} with a
“yes” answer, and a certificate consisting of the pages to be evicted after each fault, it can be
verified in time O(tp) that the number of faults in each sequence Ri is at most bi. Note that
t ≤ maxi{|Ri|}(τ + 1), and τ = O(maxi{|Ri|}), therefore the verifier runs in time polynomial in
the size of the input.

In order to show that the problem is NP-complete, we build a reduction from 3-PARTITION.
Recall that an instance of 3-PARTITION consists of a set of n integers S = {s1, . . . , sn}, and a
bound B, such that B/4 < si < B/2 for all 1 ≤ i ≤ n. The problem is to determine if S can be
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partitioned into n/3 sets A1, . . . , An/3 such that for all 1 ≤ j ≤ n/3,
∑

i∈Aj
si = B. Note that the

restrictions of the problem imply that each subset Ai must have exactly 3 elements [14].
Let J be an instance of 3-PARTITION. We build an instance I of PARTIAL-INDIVIDUAL-

FAULTS as follows. There are p = |S| sequences. Each sequence Ri consists of alternating requests
to 2 pages αi and βi, where αi 6= βi, and αi 6= αj and βi 6= βj for all i 6= j, and αi 6= βj

for all i, j. In other words, Ri = αiβiαiβi . . ., and all sequences are disjoint. The length of Ri is
|Ri| = B(τ + 1) + 4τ + 5, where τ ≥ 0 is any integer. The size of the cache is K = (4/3)p, and
we want to know if the number of faults in each sequence Ri is at most bi = B − si + 4, at time
t = B(τ + 1) + 4τ + 5. Note that since 3-PARTITION is strongly NP-complete (it remains NP-
complete if the input is encoded in unary), the reduction can be done from an instance encoded in
unary, and hence it can be done in time polynomial in the size of J .

We show now that there exists a solution for J if and only if we can serve each Ri with at most
bi faults.

(⇒) We show first that if J admits a solution then we can serve each Ri with at most bi faults. Let
A1, . . . , An/3 be the partition for J . Divide the sequences in groups according to the partition, so
that the sequences corresponding to Aj will share a group of 4 cells of the cache. Let Ri1 , Ri2 , and
Ri3 be the sequences in group j. Each of these sequences will be assigned one cell for some time and
two at other times. In other words, the three sequences will have one dedicated cell at least until
time t and will share the extra cell of the group. Sequence Ri will use the extra cell continuously
for enough time so it incurs in exactly hi = si(τ + 1) + 1 hits.

Say Ri1 , Ri2 , and Ri3 use the extra cell in that order. The first request to each sequence results
in a fault and it is fetched to the dedicated cell of the corresponding sequence. The second request
of Ri1 (also a fault) is fetched to the extra cell. Now both pages of Ri1 are in the cache, and they
are kept there for the next hi1 requests of Ri1 . Meanwhile, every request of Ri2 and Ri3 results in a
fault and the eviction of the page in their corresponding dedicated cell. The last hit of Ri1 occurs
at time (2 + si)(τ + 1) + 1, which coincides with a new request σ for Ri2 , since all pages have been
faults for Ri2 . Instead of fetching σ to this sequence’s dedicated cell, σ is fetched into the extra cell
or Ri1 ’s dedicated cell, depending on which page can be evicted at the time (if σ is fetched into
Ri1 ’s dedicated cell then this cell becomes the shared cell and the former shared cell becomes Ri1 ’s
dedicated cell). Now Ri2 has the extra cell and the remaining requests of Ri1 will result in faults.
After hi2 hits of Ri2 , the extra cell is now passed to Ri3 (again the last hit of Ri2 coincides with a
request of Ri3), and this sequences keeps this cell until it completes hi3 hits. At this point, the time
elapsed is the sum of the hits of each sequence, plus 2τ for the transitions of the extra cell from Ri1

to Ri2 and from Ri2 to Ri3 , plus the initial 2(τ + 1) time corresponding to the first 2 faults of the
three sequences. Hence the time is t = hi1 + hi2 + hi3 + 4τ + 2 = (si1 + si2 + si3)(τ + 1) + 4τ + 5 =
B(τ + 1) + 4τ + 5. The same strategy is used for each group in the partition, and the number of
faults of sequence Ri is exactly (t−hi)/(τ +1) = B− si +4. Thus, if there is a solution to J R can
be served such that at time t = B(τ + 1) + 4τ + 5, each sequence has incurred in bi = B − si + 4
faults.

(⇐) We show now that a solution to the instance I of PIF gives a solution to the instance J of
3-PARTITION. If R can be served so that each sequence faults at most B − si + 4 times by time
t, then at least hi = si(τ + 1) + 1 of Ri’s requests must be hits. Note that for all i, |Ri| = t, and
hence each sequence uses at least one cell until time at least t. A request can only be a hit if a
sequence has two cells of the cache for consecutive timesteps. Since there are only (4/3)p cells and
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each sequence uses at least one cell, there are only p/3 extra cells which can be used to store the
second page of a sequence, and hence there can be at most p/3 hits in one timestep.

In addition, any change in the partition that removes one cell from a sequence that had 2 cells
and gives one more cell to another sequence implies at least τ time without hits for the sequences
involved. To see this, let Ri and Rj be two sequences such that k(i, t1) = 2 and k(j, t1) = 1, and
k(i, t1 + 1) = 1 and k(j, t1 + 1) = 2 for some t1 < t. Say page αi was a hit in Ri. Then at t1 + 1, βi

and αj are requested in Ri and Rj , respectively4. αi is evicted from the cache, and αj is fetched in
to the cell previously used by αi. Sequence Rj must wait τ more timesteps before having its first
hit, while sequence Rj ’s next request (αi) will result in a fault. Hence, there are no hits in these
two sequences in the period [t1 + 2, t1 + 1 + τ ], i.e. τ timesteps without hits.

Let C denote the number of all such changes in partition between a pair of sequences. C does
not count the initial assignment of 2 cells to a sequence when starting to serve R, but only when
a sequence acquires an extra cell that held a page of another sequence. Note that no hits can
happen until time 2(τ + 1), and hence the total number of possible hits before time t can be at
most H1 = (p/3)(t− 2(τ + 1))−Cτ = (p/3)(B − 2)(τ + 1) + 4τ + 5)−Cτ . On the other hand, the
minimum number of required hits is H2 =

∑p
i=1 hi =

∑p
i=1 si(τ + 1) + 1 = (p/3)B(τ + 1) + p. We

require H1 ≥ H2, which implies that C ≤ 2p/3, i.e. we can have at most 2p/3 changes in partitions.
Note that initially at most p/3 sequences can be assigned two cells, therefore every sequence must
have 2 cells during a continuous period of time. We call this period the hit period of a sequence.

Consider a group of sequences whose hit periods are consecutive, i.e. a group I = {i1, i2, ...iℓ}
of the sequences such that a request in sequence ij+1 evicts a page from sequence ij to start its hit
period. These sequences can be served using ℓ+1 cells: one cell is dedicated for each sequence, while
the other extra cell is used to assign 2 cells to some sequence during its hit period (this extra cell
need not to be the same one during the entire execution). We claim that ℓ ≤ 3. Too see this, assume
ℓ > 3, then since hit periods have no interruptions, the total time to serve these sequences is at least
the total number of hits, plus the time for each change in partition, plus 2 initial faults, for a total of
T =

(
∑

i∈I hi

)

+(ℓ−1)τ+2(τ+1) =
(
∑

i∈I si(τ + 1) + 1
)

+(ℓ+1)τ+2 > (ℓ/4)B(τ+1)+ℓ+(ℓ+1)τ+2,
since si > B/4 for all 1 ≤ i ≤ p. Taking ℓ = 4, T > B(τ + 1) + 5τ + 6, which is strictly greater
than t, and thus one sequence will not have all its required hits before t and hence it will exceed
the allowed faults. Hence ℓ ≤ 3. Furthermore, ℓ is exactly 3. Assume, otherwise, that sequences
are served in groups of 1, 2, and 3 sequences. Let nℓ be the number of groups of ℓ sequences, for
ℓ ∈ {1, 2, 3}. In order to satisfy the minimum number of hits for each sequence, it must be the case
that a group of ℓ sequences must use at least ℓ + 1 cells. Hence, the following must be satisfied:
n1 + 2n2 + 3n3 = p, and 2n1 + 3n2 + 4n3 ≤ (4/3)p, with n1, n2, n3 ≥ 0. It is not difficult to see that
a feasible solution must have n1 = n2 = 0, and R must be served only with groups of 3 sequences.

Finally, it must be the case that every group of sequences I = i1, i2, i3 must satisfy si1+si2+si3 =
B. Suppose that a group I1 is such that

∑

i∈I1
si < B. Then since B = (3/p)

∑p
i=1 si there must exist

another group I2 such that
∑

i∈I2
si > B. Then, since the minimum number of hits per sequence

is hi = si(τ + 1), the total time to serve the group would be T =
(
∑

i∈I2
hi

)

+ 2τ + 2(τ + 1) >
B(τ + 1) + 4τ + 5 = t, and thus at least one sequence in the group would have to fault more
than its maximum number of allowed faults by time t. Therefore, the only possible way to serve
the requests satisfying the faults requirement for each sequence is to divide them in groups of 3

4 Note that Rj might be fetching a page instead, but the case when a new request comes is the one that minimizes
the time that elapses from t1 until Rj ’s next hit.
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sequences I1, . . . , Ip/3 such that
∑

i∈Ij
si = B for all 1 ≤ j ≤ p/3, which is a solution for the instance

of 3-PARTITION. ⊓⊔

Theorem 4. Let Alg be an offline optimal algorithm that is capable of forcing faults. There exists
an offline algorithm Alg′ that is honest such that ∀ disjoint R, Alg′(R) = Alg(R).

Proof. We follow an inductive argument similar to the proof of optimality of Furthest-In-The-
Future in the sequential setting [6]. The proof relies on the following claim: let Alg be any paging
algorithm and R be any request sequence. Then, for all timesteps i it is possible to construct an
algorithm Algi such that (i) for all t = 1, . . . , i − 1, it behaves exactly like Alg, (ii) if Alg forces a
fault on t = i, Algi does not, and (iii) Algi(R) ≤ Alg(R).

If the claim is correct, this implies that it is possible to obtain an optimal algorithm that does
not force faults: for a given sequence R, start from any optimal algorithm OPT , and apply the
claim with i = 1 to obtain OPT1, then apply the claim with i = 2 to OPT1 to obtain OPT2, and so
on and so forth. OPTt′ is an optimal algorithm that does not force faults, where t′ is the maximum
timestep of the execution of the algorithm on R.

Let us prove the claim. Both algorithms start with an empty cache and hence Algi can do
exactly as Alg does up to step i− 1. If at timestep i Alg does not force a fault, then Algi continues
behaving like Alg until the end of the request, and the number of faults of both algorithms is the
same. Now, assume that Algi forces a fault on t = i on a page p1 on sequence Rs. Let CAlg(t) and
CAlgi

(t) denote the caches of Alg and Algi right before serving R(t). Since both algorithms behaved
exactly the same up to t = i − 1, CAlg(i) = CAlgi

(i). Also, let A(R, t) denote the number of faults
of algorithm A right before serving request R(t).

We argue that from that point on Algi can be such that both algorithms will fault on exactly the
same pages in the rest of the sequences (and hence keeping the same alignment with respect to both
algorithms), and that their caches will differ by at most one page. Furthermore, Algi(R) ≤ Alg(R)
at all times. We show this by defining a set of states that describe the differences between the
algorithms sequences, caches, and number of faults for each subsequent request in Rs for Alg. We
define the following states at time t:

(A) All sequences in both algorithms have the same alignment, CAlg(t) = CAlgi
(t), and Alg(R, t) =

Algi(R, t).
(B) All sequences other than Rs have the same alignment in both algorithms, CAlg(t) = CAlgi

(t),
and Alg(R, t) = Algi(R, t) + 1.

(C) All sequences other than Rs have the same alignment in both algorithms, CAlg(t) = CAlgi
(t) ∪

{p}, and Alg(R, t) = Algi(R, t), where p is a page previously requested in Rs, and the remaining
cell of Algi cache is fetching a page p′ 6= p.

(D) All sequences other than Rs have the same alignment in both algorithms, CAlg(t) = (CAlgi
(t)∪

{p}) \ {α}, and Alg(R, t) = Algi(R, t) + 1, where p is a page previously requested in Rs, and α
is a page from a sequence other than Rs.

(E) All sequences other than Rs have the same alignment in both algorithms, CAlg(t) = CAlgi
(t) ∪

{p}, and Alg(R, t) = Algi(R, t), where p is a page previously requested in Rs, and the remaining
cell of Algi cache is fetching p.

Let p2, p3, . . . be the pages in Rs after p1. We define the request period of each page pj ∈ Rs as
the timesteps that include its request and possible fetching for algorithm Alg, i.e. if pj is request at
time tj by Alg, then its request period is [tj , tj + τ ] if pj is a fault, and just tj if it is a hit. We will
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now show that the above are all the possible states that describe the algorithms in each period. We
will prove this by induction on the request periods of pages in Rs.

Before p1, the algorithms are in state (A). Consider the request period for p1. Recall that
CAlg(t1) = CAlgi

(t1). Alg forces a fault on p1 and hence the cell corresponding to p1 in the cache is
being used to fetch this page until the end of the period. Upon any request σ during the period, if Alg
evicts α, Algi evicts α as well. In this period up to τ pages p2, ..., p1+τ after p1 might be requested
for Algi in Rs. If none of these are faults, then at the end of the period Alg(R, t2) = Algi(R, t2)+1
and the caches of both algorithms are equal, hence the algorithms are in state (B)5. On the other
hand, if any of the pages p2, ..., p1+τ is a fault for Algi, then Algi evicts any of the previous hit
pages in Rs (there is a least one, p1). Hence at the end of the period the number of faults of both
algorithms is the same, and both caches have the same pages, but for the evicted page by Algi,
thus arriving at state (C).

Assume the algorithms are now in one of the states (A),(B),(C),(D), or (E), on period pj , for
j > 1. We show now that Algi can be such that the state of the next period is one of these as well.

[s(j) = A] Suppose we have reached state (A). Since Algi cannot force faults only on request i,
but it can do so on later requests, it just behaves exactly like Alg for the rest of the sequence,
maintaining state (A).

[s(j) = B] We can only arrive to state (B) if Algi had no faults for requests in Rs in the previous
period. Since pj was requested for Algi in the previous period (sequences Rs in both algorithms are
misaligned by τ at most), pj is a hit for Alg. If there is any fault on a request of another sequence,
Algi evicts whatever Alg evicts. At time tj , pj+τ is requested for Algi. If this page is a hit, then we
stay in state (B). If this page is a fault, Algi evicts some page pj′ with j′ < j + τ . At least one page
of Rs is in Algi’s cache since they were all hits in the previous period (and we assume they are not
evicted during this period by Alg). Hence, at the end of the period Alg(R, tj+1) = Algi(R, tj+1)
and CAlg(tj+1) = CAlgi

(tj+1) + {p}, for some p ∈ Rs, arriving at state (C).

[s(j) = C] At the beginning of this period pj is requested for Alg and Algi is fetching some page
pj′ that resulted in a fault in the previous period. This is the case if we arrive from states (A), (B),
and we will see that it holds if we stay in (C), or arrive from (D) or (E) as well. For all faults in
sequences other than Rs, Algi evicts the same page that Alg evicts, unless Alg evicts p, in which
case Algi evicts another page in Rs. If pj is a hit for Alg then nothing changes and we stay in
(C) as well. If pj is a fault, then Alg evicts a page α. Recall that CAlg(tj+1) = CAlgi

(tj+1) + {p}.
Assume first that α 6= p. Then, if all the subsequent pages of Rs requested for Algi are hits and
α is not requested during this period, then we have one more fault for Alg and at the end of the
period Alg’s cache still has p but not α, while Algi does not have p but has α, hence reaching state
(D). If α is requested during the period, then Algi forces a fault on this page and hence we remain
in state (C). Now, if one of the requests from Rs for Algi results in a fault, say pj′ , then, again if α
was not requested before pj′ , then Algi evicts α for this request. If α is requested before pj′ , Algi

forces a fault on α and evicts for pj′ whatever Alg evicted for α (or some page p′ ∈ Rs if Alg evicts
p). At the end of the period the difference in number of faults remains the same. Now, if pj′ 6= p,

5 We assume here and for the rest of the analysis that Algi lets Alg run ahead at least until its next fault in Rs, so
that if it evicts a page pj after the time this page is requested for Algi, Algi forces the fault on this page as well.
In other words, if pj is a hit for Algi at time t, it will be a hit for Alg at time t + τ .
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then we stay in state (C). However, if pj′ = p, i.e. Algi faulted in the page that it did not have but
that Alg had, then we reach state (E).

Now, we analyze the case α = p. The first page in Rs requested for Algi is pj+1. If this page
is a fault, then Algi evicts another page p′ ∈ Rs, for example pj . In this case the number of faults
increases by 1 for both algorithms and we remain in state (C). If on the other hand, pj+1 is in
Algi’s cache (and hence in Alg’s cache), Algi forces a fault on this page, reaching state (E).

[s(j) = D] We could only reach this state if pj is a hit. Let pj′ be the page of Rs requested for Algi.
Suppose α is not requested in R(tj). If pj′ is a hit, then nothing changes, and we remain in state
(D). If pj′ is a fault, Algi evicts α and we reach state (C). If α is requested, since α /∈ CAlg(tj),
Alg evicts a page α′. Algi forces a fault on α. If pj′ is a hit, then we remain in state (D). If pj′ is a
fault, Algi evicts α′ if α′ 6= p, or another page p′ ∈ Rs if α′ = p, reaching state (C).

[s(j) = E] This state is reached when the number of faults of both algorithms is the same and
Algi is fetching the page p that is missing with respect to Alg’s cache. Suppose first that pj 6= p
(i.e. this is not the timestep in which Algi finishes fetching p6). pj is a hit for Alg (this is the case
in the two cases that we can arrive to this state from (C), and the one from (E)). Upon any fault
on another sequence Algi evicts whatever Alg evicts (with the assumption that Alg will not evict
a page of Rs that was a hit in the previous period for Algi). If one of these evictions is for page p,
then Algi evicts another page p′ ∈ Rs and we reach state (C). If p was not evicted, then we remain
in state (E). Now, if pj = p, this page is in Alg’s cache. Again, Algi evicts what Alg evicts for other
requests. If, however, in any of these evictions is the page evicted is p7, Algi evicts another page
p′ ∈ Rs. In this case Alg faults in pj and we are back in state (C). On the other hand, if pj = p
is a hit, Algi finishes at the same time to fetch p, therefore both caches are equal, sequences Rs

in both algorithms are aligned, and the number of faults of both algorithms is the same, thus we
reach state (A).

Therefore, the algorithms can only be in these states until the end of the execution. Since in
any state Algi(R) ≤ Alg(R), this will hold until the end of the sequence, proving the claim. ⊓⊔

6 Note that the sequences Rs in the execution of both algorithms is either aligned or misaligned by exactly τ , with
Alg’s sequence being behind Alg′

is. Thus if the page pj being requested for Alg is the one being fetched by Algi,
it must be the case that this is the timestep in which Algi finishes fetching pj .

7 Since we assume that a parallel request is served independently, it could be the case that p is evicted despite being
requested in the same parallel request.
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