
Proportional Contact Representations of Planar Graphs
Technical Report CS 2011-11

Md. J. Alam1, T. Biedl2, S. Felsner3, M. Kaufmann4, and S. G. Kobourov11 Department of Computer Science, University of Arizona Tucson, AZ, USA2 School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada3 Institut für Mathematik, Technische Universität Berlin, Berlin, Germany4 Wilhelm-Schickhard-Institut für Informatik, TübingenUniversität Tübingen, Germany

Abstract. We study contact representations for planar graphs, with vertices rep-
resented by simple polygons and adjacencies represented bya point-contact or a
side-contact between the corresponding polygons. Specifically, we consider pro-
portional contact representations, where given vertex weights are represented by
the areas of the corresponding polygons. Several natural optimization goals for
such representations include minimizing the complexity ofthe polygons, the car-
tographic error, and the unused area. We describe optimal (with respect to com-
plexity) constructive algorithms for proportional contact representations for gen-
eral planar graphs and planar 2-segment graphs, which include maximal outer-
planar graphs and partial 2-trees. Specifically, we show that: (a) 4-sided polygons
are necessary and sufficient for a point-contact proportional representation for
any planar graph; (b) triangles are necessary and sufficientfor point-contact pro-
portional representation of partial 2-trees; (c) trapezoids are necessary and suf-
ficient for side-contact proportional representation of partial 2-trees; (d) convex
quadrilaterals are necessary and sufficient for hole-free side-contact proportional
representation for maximal outer-planar graphs.

1 Introduction

For both theoretical and practical reasons, there is a largebody of work about repre-
senting planar graphs ascontact graphs, i.e., graphs whose vertices are represented by
geometrical objects with edges corresponding to two objects touching in some spec-
ified fashion. Typical classes of objects might be curves, line segments, or polygons.
An early result is Koebe’s theorem [20] that all planar graphs can be represented by
touching disks.

In this paper, we consider contact graphs, with vertices represented by simple poly-
gons and adjacencies represented by a point-contact or a side-contact between the cor-
responding polygons; see Fig. 1. In the weighted version of the problem, the input is not
only a planar graph but also a weight functionw : V (G) ! R+ that assigns a weight
to each vertex ofG = (V;E). A graphG admits aproportional contact representation
with the weight functionw if there exists a contact representation ofG, where the area
of the polygon for each vertexv of G is proportional to its weightw(v). Such repre-
sentations have practical applications in cartography, VLSI Layout, and floor-planning.
Using adjacency of regions to represent edges in a graph can lead to a more compelling
visualization than drawing a line segment between two points [3].



Fig. 1.(a) A planar graph and its proportional point-contact representation with four-sided
non-convex polygons; (b) A 2-tree and its proportional side-contact representation with
4-sided convex polygons and proportional point-contact representation with triangles; (c)
A maximal outer-planar graph and its hole-free proportional side-contact representation
with 4-sided convex polygons.

In contact representations of planar graphs it is desirable, for aesthetic, practical
and cognitive reasons, to limit how complicated the polygons are. In practical areas
like VLSI layout, it is also desirable to minimize the unusedarea in the representation,
also known as “holes”. Another aspect of such representations is whether it uses convex
polygons or not. With these considerations in mind, we studythe problem of construct-
ing proportional point-contact and side-contact representations of planar graphs w.r.t.
the following parameters:

– complexity: maximum number of sides in a polygon representing a vertex;
– cartographic error:maxv2V jA(v)�w(v)j, whereA(v) isv’s area,w(v) its weight;
– holes:total unused area of the representation that is in the interior.

1.1 Related Work

Koebe’s theorem [20] is an early example of point-contact representation and shows
that a planar graph can be represented by touching circles. Any planar graph also has
a contact representation where all the vertices are represented by triangles [5] and with
cubes in 3D [9]. Kaufmannet al. [18] show that max-tolerance graphs have contact
representations with homothetic triangles. Badentet al. [1] show that partial planar 3-
trees and some series-parallel graphs also have contact representations with homothetic
triangles. Recently, Gonçalveset al. [12] proved that any 3-connected planar graph and
its dual can be simultaneously represented by touching triangles.

While the above results deal with point-contacts, the problem of constructing side-
contact representations is less studied. Gansneret al. [10] show that any planar graph
has a side-contact representation with convex hexagons. moreover, they show that 6
sides are necessary if convexity is required. The characterization of graphs admitting
a hole-free side-contact representation with rectangles was obtained by Kozḿiński and
Kinnen [21] or in the dual setting by Ungar [25]. Buchsbaum etal. [3] give an overview
on the state of the art concerning rectangle contact graphs.It is also known that outer-
planar graphs can be represented with side-contact representations of triangles [11].
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Note that in all previous contact representation results, the areas of the circles or
polygons is not considered. That is, these results deal withthe unweighted version of
the problem. Furthermore, previous work on contact representation does not consider
whether holes are allowed, and if so, how big they will be. Ourpaper will take both area
of shapes and existence of holes into account; we can show then that representations by
triangles or even convex shapes are not possible.

Motivated by the application in VLSI layouts, contact representations of planar
graphs with rectilinear polygons has also been studied and it is known that8 sides are
sometimes necessary and always sufficient (see e.g. [27]). Rahmanet al.give an algo-
rithm for hole-free proportional contact representation with 8-sided rectilinear polygons
for a special class of plane graphs [23].

Another application of proportional contact representations can be found incar-
tograms, or value-by-area maps. Here, the goal is to redraw an existing geographic map
so that a given weight function (e.g., population) is represented by the area of each
country. Algorithms by van Kreveld and Speckman [26] and Heilmannet al. [16] yield
representation with rectangular polygons and with zero or small cartographic errors but
the adjacencies may be disturbed. De Berget al. describe an algorithm for hole-free
proportional contact representation with at most40 sides for an internally triangulated
plane graphG (and only20 sides whenG has four vertices on the exterior face and
contains no separating triangles [4]. This was later improved to34 sides [19] and then
to 12 sides [2].

1.2 Our Results

In this paper we study the problem of proportional contact representation of planar
graphs, while minimizing the complexity of the polygons, the cartographic error, and
the unused area. The four main results in our paper are optimal (with respect to com-
plexity) constructive algorithms for proportional contact representations for general pla-
nar graphs, outer-planar graphs, and partial 2-trees. Specifically, we show that: (a) 4-
sided polygons are necessary and sufficient for a point-contact proportional represen-
tation for any planar graph; (b) triangles are necessary andsufficient for point-contact
proportional representation of partial 2-trees; (c) trapezoids are necessary and sufficient
for side-contact proportional representation of partial 2-trees; (d) quadrilaterals are nec-
essary and sufficient for hole-free side-contact proportional representation for maximal
outer-planar graphs.

Class of Graphs Convexity Complexity
Lower Bound

Complexity
Upper Bound

Hole-Free Type of
Contact

Planar � 4 4 � point
Planar2-Trees

p 3 3 � point
Planar2-Trees

p 4� 4 � side
Maximal Outer-planar

p 4 4 p
side

Table 1.All results in this table are from in this paper, except the one marked (�), which
follows from [11]. All algorithms are free of cartographic error.
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2 Preliminaries

In a point-contact representationof a planar graphG = (V;E), we construct a setP
of closed simple interior-disjoint polygons with an isomorphismP : V ! P where for
any two verticesu; v 2 V , the boundaries ofP(u) andP(v) touch at acontact pointif
and only if(u; v) is an edge. Let� be a contact representation ofG. Then each interior
face ofG corresponds to a bounded hole in� and the exterior face ofG corresponds
to the unbounded hole in� . A side-contact representationof a planar graph is defined
analogously, where instead of a contact point, we have acontact sidebetweenP(u) andP(v), which is a non-empty line segment in the boundary of both.

In a weighted version of the problem, the input also includesa weight functionw : V (G) ! R+ that assigns a positive weight to each vertex ofG. We say thatG
admits aproportional contact representationwith the weight functionw if there is a
contact representation ofG where the area of the polygon for each vertexv of G is
proportional to its weightw(v). We define thecomplexity of a polygonal regionas the
number of sides it has.

A plane graphis a planar graph with a fixed embedding. A plane graph isfully
triangulatedor maximally planarif all its faces including the outerface are triangles.
Both the concept of “canonical order” [6] and “Schnyder realizer” [24] are defined for
fully triangulated plane graphs in the context of straight-line drawings of planar graphs
on an integer grid. As we rely on these two concepts for our algorithms for proportional
contact graph representations, we briefly review them below.

Let G = (V;E) be a fully triangulated plane graph with outerfaceu, v, w in clock-
wise order. ThenG has acanonical orderof the verticesv1 = u, v2 = v, v3, : : :,vn = w which satisfies for every4 � i � n:

– The subgraphGi�1 � G induced byv1, v2, : : :, vi�1 is biconnected, and the
boundary of its outer face is a cycleCi�1 containing the edge(u; v).

– The vertexvi is in the exterior face ofGi�1, and its neighbors inGi�1 form an (at
least 2-element) subinterval of the pathCi�1 � (u; v).
A Schnyder realizerof a fully triangulated graphG is a partition of the interior

edges ofG into three setsT1, T2 andT3 of directed edges such that for each interior
vertexv, the following conditions hold:

– v has out-degree exactly one in each ofT1, T2 andT3,
– the counterclockwise order of the edges incident tov is: enteringT1, leavingT2,

enteringT3, leavingT1, enteringT2, leavingT3.

The first condition implies that eachTi, i = 1; 2; 3 defines a tree rooted at ex-
actly one exterior vertex and containing all the interior vertices such that the edges are
directed towards the root. The following well-known lemma shows a profound connec-
tion between canonical orders and Schnyder realizers.

Lemma 1. LetG be a fully triangulated plane graph. Then a canonical order of the
vertices ofG defines a Schnyder realizer ofG, where the outgoing edges of a vertexv
are to its first and last predecessor (where “first” is w.r.t. the clockwise order aroundv), and to its highest-numbered successor.
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3 Proportional Point-Contact Representations of Planar Graphs

In this section we show that 4-sided non-convex polygons aresometimes necessary
and always sufficient for a proportional contact representation of a planar graph. We
first describe an algorithm to obtain proportional point-contact representations of planar
graphs using 4-sided non-convex polygons. We then show thatthere exists a planar
graph with a given weight function that does not admit a proportional point-contact
representation with convex polygons, let alone with 3-sided polygons, thus making our
4-sided construction optimal.

Theorem 1. Let G = (V;E) be a planar graph and letw : V ! R+ be a weight
function. ThenG admits a proportional contact representation with respectto w in
which each vertex ofV is represented by a quadrilateral.

Proof. We prove this claim constructively, showing how to generatea proportional con-
tact representation ofG with respect tow. We may assume thatG is fully triangulated,
for if it is not, we can add dummy vertices to make it so, and later remove those dummy
vertices from the obtained proportional contact representation.

Assume after possible scaling thatw(v) � 1=n2 for all v 2 V . We construct the
drawing incrementally, following a canonical orderingv1; : : : ; vn. (We will often usej
instead ofvj to simplify notation.) So that we don’t have to change it later, we prescribe
quite exactly what the quadrilateral assigned toj looks like before even placing it.
Doing so will be easier using the notation of a Schnyder realizer, so letT1; T2; T3 be the
Schnyder realizer defined by the canonical ordering, withT1 is rooted at1, T2 is rooted
at2 andT3 is rooted atn. Let�i(j) is the parent ofj in treeTi.

Assign an integer�(j) to every vertexj such thatn � �(�1(j)) > �(j) >�(�2(j)) � 1; this can be done sinceT�12 [ T1 is known to be acyclic, whereT�12 is
the treeT2 with the direction of all its edges reversed. Now for every vertex j 6= 1; 2; n,
we define thespikeS(j) to be a quadrilateral with one reflex vertex. One segment (the
base) is horizontal withy-coordinatej. Its length will be determined later, but it will
always be at least2w(j). From the left endpoint of the base, the spike continues with
the upward segment, which has slope�(j) and up to itstip which hasy-coordinatey = �3(j). Next comes thedownward segmentuntil the reflex vertex, and from there
to the right endpoint of the base. See Figure 3(a). The placement of the reflex vertex
is quite arbitrary, as long as the resulting shape has areaw(j) and the down-segment
has positive slope. Note that since the base has length� 2w(j) andy-coordinatej, the
reflex vertex will havey-coordinate at mostj + 1.

We first place1; 2; n, and then add3; : : : ; n� 1 (in this order):

– Vertex1 is represented by a triangleS(1) whose base has length2w(1)=(n � 1),
placed arbitrarily withy-coordinate1. The tip ofS(1) hasy-coordinaten.

– Vertex2 is represented by a triangleS(2) whose base has length2w(2)=(n � 2),
placed aty-coordinate2 and with its left endpoint abuttingS(1). The tip ofS(2)
hasy-coordinaten.

– Vertex n is represented by a triangle whose base is aty-coordinaten and long
enough to cover the tips ofS(1) andS(2). We choose the height ofS(n) such that
the area is correct.
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Throughout placing vertices, we maintain the following invariant:

For j � 2, after vertexj has been placed, the horizontal line withy-
coordinatej + 1 intersects only the spikes of the vertices on the outer-face
of Gj, and in the order in which they are on the outer-face.

To placej � 3, we place the base ofS(j) with y-coordinatej, and extend it from
the down-segment of�1(j) to the up-segment of�2(j). Recall that�2(j) and�1(j)
are exactly the first and last predecessor ofj, andj = �3(i) for all other predecessorsi 6= j. HenceS(j) touches�1(j) and�2(j) at the ends of the base, and all other
predecessorsi of j have their tip at the base. So this creates a contact betweenj and all
its predecessors. The rest ofS(j) is then as described above.

This ends the description of the placement. It is straightforward to verify that the
invariant holds, and thereforeS(j) does not intersect any other spikes. To see that the
base ofS(j) is long enough, letp` andpr be its left and right endpoint, ands` andsr be the other segments containing them. Imagine that we extend s` andsr until they
meet in a pointp. Sincesr contains a point withy-coordinate� j � 1 (at the base ofS(�2(j))), triangle�fp; p`; prg has heighth � 1. See also Figure 3.

Let t = �(vj) be the slope of the up-segment ofS(vj). Since�(�2(vj)) < �(vj) =t, thereforesr has slope at mostt� 1 andx(pr) � x(p) + ht�1 . On the other hand, the
slope ofs` is positive by construction, and must exceed the slope of theup-segment
of �1(vj), which has slope�(�1(vj)) > �(vj) = t. So s` has slope� t + 1 andx(pi`) � x(p) + ht+1 . Therefore,x(pr)� x(p`) � ht� 1 � ht+ 1 = h(t+ 1� (t� 1))t2 � 1 � 2ht2 � 2n2 � 2w(vj)
where the last inequality holds since weights are small enough. Therefore the base ofS(j) is wide enough, which ends the proof of the theorem. ut
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Fig. 4. Graph without prpoportional
convex contact representation.

Our construction used non-convex shapes.
We can show that this is sometimes required.
The (somewhat technical) proof of the follow-
ing lemma is in the appendix, and the graph for
it is given in Figure 4 where the weight of the
four small vertices is smaller than the weight of
the four large vertices (a factor of 3 suffices).

Lemma 2. There exists a planar graph and
a weight function such that the graph does
not admit a proportional contact representation
with respect to the weight function with convex
shapes for all vertices.

Lemma 2 also implies that using polygons of
three sides are not always sufficient for proportional contact representations of planar
graphs. On the other hand, Theorem 1 implies that any planar graph has a proportional
contact representation with any given weight function on the vertices so that each of
the vertices is represented by a non-convex polygon of at most four sides. Summarizing
these two results we have the following theorem.

Theorem 2. Four-sided non-convex polygons are always sufficient and sometimes nec-
essary for proportional contact representation of a planargraph with a given weight
function on the vertices.

4 Subclasses of Planar Graphs with Convex-ShapeRepresentations
In this section we address the problem of proportional contact representations for sub-
classes of planar graphs. The lower bound in Lemma 2 shows that for planar triangula-
tions, the complexity in any proportional contact representation must be at least 4 and
the polygons must be non-convex. We hence focus on planar graphs with fewer edges.
In the next subsection we deal with proportional contact representations using triangles
(or convex quadrilaterals for side-contacts.) Then we discuss hole-free representations
for maximum outer-planar graphs.

4.1 2-Segment Graphs and Partial 2-Trees

Consider a planar graph that has an (unweighted) contact representation using line seg-
ments such that the intersection of any three segments is empty. We call this a2-segment
representationand the graph a2-segment graph. We show that four-sided convex poly-
gons are always sufficient and sometimes necessary for side-contact representations of
these graphs. In fact, vertices will be represented by trapezoids. In case where only
point-contacts are required, we show that 3 sides are sufficient (and, of course, neces-
sary) for proportional contact representations of 2-segment graphs.

Theorem 3. LetG = (V;E) be a planar 2-segment graph. Then for any weight func-
tionw : V ! R+ and any" > 0, G has a proportional side-contact representation
such that vertexv is represented by a trapezoid with area at leastw(v)� " and at mostw(v).
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Proof. Let `(v) be the line segment that representsv. We assume that" is small enough
such that “off-setting” anỳ(v) by distance

p"=2 preserves adjacencies and does not
create intersections. Here,off-setting`(v) means moving it in parallel while shorten-
ing/lengthening it so that it still touches the segments at its ends. We also assume (after
possible scaling) thatjj`(v)jj � 2w(v)=p"+p" for all verticesv.

For any vertexv, create two copies of̀(v) that are off-set in parallel in both direc-
tions by so much that the trapezoidT (v) between the two off-set lines has areaw(v).
By the assumption onjj`(v)jj, this will require an off-set of les than

p"=2, hence adja-
cencies are preserved. So we get a proportional side-contact representation, except thatT (u) andT (v) intersect for any edge(u; v).

To remove these intersections, let(u; v) be an edge, and assume that in the 2-
segment representation,`(u) ended at an interior point of`(v). We then “retract”T (u),
i.e., we replace it byT (u)� T (v). It remains to show that this does not disturb the area
too much. Note thatT (u) \ T (v) is a parallelogram, defined bỳ(v) and one off-set
line of `(v), as well as the two off-set lines of`(u). where the pairs of parallel lines
have distance less than

p"=2 and
p", respectively. Therefore, the area ofT (u) \ T (v)

is less than"=2, and we remove such an area at each end ofT (u). This proves that the
area of the retracted trapezoid is more thanw(u)� " as desired. ut

It is hence natural to ask for a characterization of 2-segment graphs. Thomassen
gave one (Theorem 4) at Graph Drawing 1993 but never published his proof.

Theorem 4. A planar graphG = (V;E) is a 2-segment graph if and only ifjE[W ℄j �2jW j � 3 for every subsetW of the vertices. As usualE[W ℄ denotes the set of edges
with both ends inW .

We provide a new proof of Theorem 4 based on rigidity theory inthe appendix.
The condition stated in the theorem can efficiently be checked (Lee and Streinu [22]
provide a simple algorithm). In contrast, Hliněný [17] showed that the recognition of
general contact graphs of segments is NP complete.

We call a graphG 2-shellableif it is planar and 2-degenerate, i.e., has a vertex orderv1; : : : ; vn such that fori � 3 vertexvi has at most two neighbours inv1; : : : ; vi�1.
Such graphs have at most2n � 3 edges, hence by Theorem 4 a 2-shellable graph is a
2-segment graph. Moreover, from the proof it is easy to see that we may assume that
the endpoints of segment`(v) are adjacent to the predecessors ofv for all verticesv.
We can then create a proportional side-contact representation as above but without area-
error by creating trapezoids in this vertex order. For each vertexvi, first shorteǹ (vi)
so that it ends at the off-set lines ofvi’s predecessors. Then off-set`(vi) so that the
resulting trapezoid has areaw(vi). Some calculation shows that all off-sets are still at
most

p"=2, so adjacencies are preserved.

Theorem 5. Let G = (V;E) be a 2-shellable graph andw : V ! R+ be a weight
function. ThenG admits a proportional side-contact representation where each vertex
ofG is represented by a trapezoid with areaw(v).

We derive two corollaries from Theorem 3 and 5. First, it is known that planar bi-
partite graphs are 2-segment graphs (we can even restrict the segments to be horizontal
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Fig. 5. (a&b) A 2-segment graph and representation; (c) converting to trapezoids.

or vertical) [15]. Hence they have a proportional side-contact representation with arbi-
trarily small carotgraphic error with trapezoids (in fact,rectangles.)

Second, a2-tree is either an edge or a graphG with a vertexv of degree two inG
such thatG � v is a 2-tree and the neighbors ofv are adjacent. Apartial 2-tree is a
subgraph of a 2-tree; this is the same as series-parallel graphs. Every partial 2-tree is
planar. Directly from the definition we see that 2-trees (andhence partial 2-trees) are
also 2-degerate, so they are 2-shellable. Therefore they have a proportional side-contact
representation with trapezoids. We can also show that 4 sides are sometimes required.

Theorem 6. Four-sided convex polygons are always sufficient and sometimes neces-
sary for a proportional side-contact representation of a partial 2-tree with a given
weight function.

Proof. Sufficiency follows from Theorem 5, since partial 2-trees are 2-shellable. To
establish necessary, consider the 2-tree obtained fromK2;4 by adding an edge between
the vertices of the partition of size two. These two verticesthen have four common
neighbors. But as was proved in [11], in any side-contact representation with triangles,
any pair of adjacent vertices has at most three neighbors. Hence our graph has no side-
contact representation with triangles, let alone one that respects the weights. ut

Note that if we move from side-contact representations to point-contact representa-
tions, we can reduce the complexity. Namely, replace line-segments by triangles such
that only one endpoint of̀(v) gets moved (in both directions.) As in Theorem 3 we can
hence prove (details are omitted):

Theorem 7. Let G = (V;E) be a 2-segment graph andw : V ! R+ be a weight
function. Then for any" > 0, G admits a proportional point-contact representation
where each vertex ofG is represented by a triangle with area betweenw(v) andw(v)�". If G is a 2-shellable graph, then the area of the triangle ofv is exactlyw(v).
4.2 Maximal Outer-planar Graphs

In this section, we study maximal outer-planar graphs, i.e., planar graphs whose outer-
face is ann-cycle and all interior faces are triangles. These are 2-trees, so the results
from the previous subsection apply, but (using a different construction) we can construct
a side-contact represention using triangles that has no holes.

So assume thatG is a maximal outer-planar graph. For any two verticesu; v denote
by G(u; v) the graph induced by the vertices that are betweenu to v (ends excluded)
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while walking along the outer-face in ccw order, and letw(G(u; v)) be the sum of the
weights of all these vertices.

An aligned triangleis a triangle with horizontal base and tip below the base. This
then naturally defines aleft andright sideof the triangle. The crucial idea is that we can
represent an outer-planar graph insideanyaligned triangle of suitable area.

Lemma 3. LetG = (V;E) be a maximal outer-planar graph and(u; v) an edge on
the outer-face ofG, with u beforev in ccw order. Letw : V ! R+ be a weight-
function. Then for any aligned triangleT of areaw(G(v; u)), there exists a hole-free
proportional side-contact representation ofG(v; u) insideT such that the left [right]
side ofG contains segments of the neighbors ofu [v] and of no other vertices.

Proof. We proceed by induction on the number of vertices inG. In the base case,G is
a 3-cyclefu; v; xg. UseT as shape forx; this satisfies all conditions.

In the step, letx be the unique common neighbour ofu andv. Divide T with a
segments from the tip to the base such that the regionT` left of s has areaw(G(x; u))+12w(x), and the regionTr right of ` has areaw(G(v; x)) + 12w(x). Cut off triangles
of area12w(x) each from the tips ofT` andTr ; the combination of these two triangles
forms a convex quadrilateral of areaw(x)which we use forx. See Figure 6. Recursively
placeG(x; u) andG(v; x) (if non-empty) in the triangles ofT that remain; one easily
verifies that these have the correct area and that we obtainedthe desired side-contact
representation. utP(x)sG(v; x) P(v)P(u)

(a) (b)

G(x;u) vu
(c)

T` TrTx
Fig. 6.The construction for maximal outer-planar graphs: (a) the graph; (b) splitting trian-
gle T suitably; (c) adding u and v in the outer-most recursion.

Applying this lemma for an arbitrary edge(u; v) on the outer-face and arbitrary
triangleT of appropriate area then gives a drawing ofG(v; u); we can add triangles foru andv to it to complete it to a contact representation ofG, and hence obtain the result.

Corollary 1. LetG = (V;E) be a maximal outer-planar graph and letw : V ! R+
be a weight function. ThenG admits a hole-free proportional side-contact representa-
tion where vertices are represented by convex quadrilaterals.

We now show that the representation obtained by this algorithm is also optimal for a
maximal outerplanar graph with respect to complexity. To dothis we used thesnowflake
graphS, which is the graph obtained from a triangle by repeatedly walking around the
outer-face and adding a vertex of degree 2 at each edge; see Fig. 7(a).
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Lemma 4. S has no hole-free side-contact representation with triangles that all have
the same area.

Sketch of Proof. Assume for contradiction that there is such a representation � . LetSi be the vertices added when we walk around the outer-face for the ith time; we call
this theith level. One can observe that all the angles in the outer-boundary ofthe� are
concave except for at most four convex corners. Since the number of vertices doubles
on each level, there must be two trianglesT andT 0 on adjacent levels such that the
base ofT (by which we mean the side that was exposed after addingT ) is at least twice
the length of the base ofT 0. Since both triangles have equal area, a simple calculation
involving adjacent angles shows that this is a contradiction; see Fig. 7(b). ut

Fig. 7. (a) The snowflake graph S; (b)
illustration for the proof of Lemma 4.

By Corollary 1 and Lemma 4, we have the
following theorem.

Theorem 8. Convex quadrilaterals are al-
ways sufficient and sometimes necessary for
hole-free proportional side-contact represen-
tations of maximal outer-planar graphs.

5 Conclusion and Open Problems
We described several constructive algo-
rithm for proportional point-contact and side-
contact representations of planar graphs,
outer-planar graphs, and 2-trees. We focused
on the complexity of the polygons represent-
ing vertices, and provide bounds on this complexity that aretight, for a variety of graph
classes and drawing models.

However, many problems still remain open. Most interestingis: what is the com-
plexity of side-contact proportional representations of maximal planar graphs? We can
achieve 8-sided polygons easily (essentially by cutting the ends of the 4-sided spikes),
but can we do less? Likewise, what is the complexity for hole-free proportional repre-
sentations of maximal planar graphs? Here, a bound of 12 is known (and the polygons
are orthogonal) [2], but can we do better if polygons need notbe orthogonal (or perhaps
even if they do)? Vice versa, can we show a lower bound on the complexity?
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Appendix

Proof of Lemma 2.We aim to show that the graph in Figure 8(a) has no proportional
representation with convex polygons if the small vertices have weightÆ and the larger
vertices have weightD > 3Æ. Assume for contradiction that we had such a representa-
tion. Note that this graph is 3-connected and all faces of this graph are isomorphic (even
when taking vertex weights into account), so all planar embeddings of it are equivalent.
We may assume therefore thatd is in the outer-face. We will focus now on the sub-graph
defined bya0; a1; a2 and its interior. See Figure 8(b) for an illustration of the following
notation.

For i = 0; 1; 2, let pi be a point of contact betweenP(ai) andP(ai+1) (where
addition is modulo 3.) Further, letqi be a point of contact betweenP(ai) andP(b).
DefineT0 to be the triangle�fp0; p1; p2g andT2 to be the triangle�fq0; q1; q2g. LetT1 be the triangle obtained by moving the edges ofT0 parallel inward until the resulting
triangle circumscribesT2, i.e., until its sides containq0; q1 andq2. Let p0i be the corner
of T1 that corresponds to the cornerpi of T0.

Now we analyze the areas of various triangles defined by thesepoints. First, tri-
angle�fp0; p1; q1g � P(a1) by convexity, so it has area at mostÆ. Next, triangle�fp1; p01; q1g has the same height and a not-larger base than�fp0; p1; q1g, so the area
of �fp1; p01; q1g is at mostÆ. Similarly one shows that triangle�fp1; q2; p01g has area
at mostÆ.

Now consider triangle�fp1; q2; q1g; this containsP(
0) and hence has area at leastD. Therefore triangle�fp01; q2; q1g = �fp1; q2; q1g ��fp1; q2; p01g ��fp1; p01; q1g
has area at leastD�Æ�Æ > Æ (by choice ofD � 3Æ.) Similarly one shows that triangle�fp02; q0; q2g and triangle�fp00; q1; q0g have area strictly greater thanÆ.

Finally, observe thatT0 � P(b), and henceT0 has area at mostÆ. But now we have
a triangleT0 of area at mostÆ that is circumscribed by a triangleT1 such that the three
triangles ofT1 � T0 each have area strictly greater thanÆ. This is impossible by a very
old result from geometry; see e.g. [7]. utba0 a1a2 P(b)

(a) (b)

q1d 
0
2
1 p2 p0 p1p01p02 p00q2q0P(a0) P(a1)P(a2)
Fig. 8.A graphG, and proving that it does not have a proportional contact-representation
with convex shapes.
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Proof of Theorem 4.We aim to show a planar graph is a 2-segment graph if and only if
for anyW � V , we havejE[W ℄j � 2jW j � 3. The necessity of the condition is easily
seen. LetS be the set of segments of a 2-segment representation ofG. ForW � V letXW be the set of end-points of segments inS corresponding to vertices ofW . Since
we have a 2-segment representation we may assume thatjXW j = 2jW j. There is an
injection� from edges inE[W ℄ to points inXW , points belonging to the convex hull
of XW , however, can not be in the image of�. Since the convex hull contains at least
three points we get:jE[W ℄j � jXW j � 3 = 2jW j � 3.

For the converse we need some prerequisites. A Laman graph isa graphG = (V;E)
with jEj = jV j�3 andjE[W ℄j � jW j�3 for allW � V . Laman graphs are of interest
in rigidity-theory, see e.g. [13,8]. Laman graphs admit a planar Henneberg construction,
i.e., an orderingv1; : : : ; vn of the vertices such that ifGi is the graph induced by the
verticesv1; : : : ; vi thenG3 is a triangle andGi is obtained fromGi�1 by one of the
following two operations:

(H1) Choose two verticesx, y fromGi�1 and addvi together with the edges(vi; x)
and(vi; y).

(H2) Choose an edge(x; y) and a third vertexz fromGi�1, remove(x; y) and addvi
together with the three edges(vi; x), (vi; y), and(vi; z.

In [14] it is shown that planar Laman graphs admit a planar Henneberg construction
in the sense that the graph is constructed together with a plane staight-line embedding
and vertices stay at their position once they have been inserted.

Now letG be a planar graph fulfilling the condition of the theorem. We may assume
thatG is Laman since we can easily get rid of edges in a segment contact representation
by retracting ends of segments. Consider a planar HennebergconstructionG3; : : :Gn.
Starting from three pairwise touching segments representingG3 we add segments one
by one. For the induction we need the invariant that after adding theith segmentsi we
have a 2-segment representation ofGi and there is a correspondence between the cells
of the segment representation and the faces ofGi which preserves edges, i.e., if(x; y)
is an edge of the face, then one of the corners of the corresponding cell is a contact
betweensx andsy. Figure 9 indicates how to add segmentsi in the cases wherevi is
added byH1, resp.H2. It is evident that the invariant for the induction is maintained.utx y zsix y H2 x y zsiH1x y

Fig. 9. The addition of segment si.
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