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Abstract. We study contact representations for planar graphs, witices rep-
resented by simple polygons and adjacencies represengeg@dint-contact or a
side-contact between the corresponding polygons. Spaitjfizve consider pro-
portional contact representations, where given vertegsiare represented by
the areas of the corresponding polygons. Several natutahiaption goals for
such representations include minimizing the complexitthefpolygons, the car-
tographic error, and the unused area. We describe optinital @spect to com-
plexity) constructive algorithms for proportional corteepresentations for gen-
eral planar graphs and planar 2-segment graphs, whichdecataximal outer-
planar graphs and partial 2-trees. Specifically, we show tap4-sided polygons
are necessary and sufficient for a point-contact propaticgpresentation for
any planar graph; (b) triangles are necessary and suffitepbint-contact pro-
portional representation of partial 2-trees; (c) trapdgare necessary and suf-
ficient for side-contact proportional representation atiph2-trees; (d) convex
quadrilaterals are necessary and sufficient for hole-firdEcontact proportional
representation for maximal outer-planar graphs.

1 Introduction

For both theoretical and practical reasons, there is a laogy of work about repre-
senting planar graphs asntact graphsi.e., graphs whose vertices are represented by
geometrical objects with edges corresponding to two objemiching in some spec-
ified fashion. Typical classes of objects might be curves Begments, or polygons.
An early result is Koebe’s theorem [20] that all planar giphn be represented by
touching disks.

In this paper, we consider contact graphs, with verticesesgmted by simple poly-
gons and adjacencies represented by a point-contact oe-@asidact between the cor-
responding polygons; see Fig. 1. In the weighted versioh@ptoblem, the inputis not
only a planar graph but also a weight functien V() — R* that assigns a weight
to each vertex ofs = (V, F). A graph( admits aproportional contact representation
with the weight functionw if there exists a contact representatiorfwhere the area
of the polygon for each vertex of (7 is proportional to its weights(v). Such repre-
sentations have practical applications in cartographysMlayout, and floor-planning.
Using adjacency of regions to represent edges in a grapleadrid a more compelling
visualization than drawing a line segment between two gdBit
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Fig. 1.(a) A planar graph and its proportional point-contact representation with four-sided
non-convex polygons; (b) A 2-tree and its proportional side-contact representation with
4-sided convex polygons and proportional point-contact representation with triangles; (c)
A maximal outer-planar graph and its hole-free proportional side-contact representation
with 4-sided convex polygons.

In contact representations of planar graphs it is desirdbteaesthetic, practical
and cognitive reasons, to limit how complicated the polygare. In practical areas
like VLSI layout, it is also desirable to minimize the unuseda in the representation,
also known as “holes”. Another aspect of such represemsitgowhether it uses convex
polygons or not. With these considerations in mind, we sthéyproblem of construct-
ing proportional point-contact and side-contact repregemns of planar graphs w.r.t.
the following parameters:

— complexity maximum number of sides in a polygon representing a vertex;
— cartographic errormax,cv |A(v)—w(v)|, whereAd(v) isv's areaw(v) its weight;
— holes:total unused area of the representation that is in the onteri

1.1 Related Work

Koebe’s theorem [20] is an early example of point-contaptesentation and shows
that a planar graph can be represented by touching circlegphanar graph also has
a contact representation where all the vertices are repeséy triangles [5] and with
cubes in 3D [9]. Kaufmanret al. [18] show that max-tolerance graphs have contact
representations with homothetic triangles. Badstrdl. [1] show that partial planar 3-
trees and some series-parallel graphs also have contaesespations with homothetic
triangles. Recently, Gongalvesal.[12] proved that any 3-connected planar graph and
its dual can be simultaneously represented by touchinggies.

While the above results deal with point-contacts, the pwbbf constructing side-
contact representations is less studied. Gansnat.[10] show that any planar graph
has a side-contact representation with convex hexagonseaver, they show that 6
sides are necessary if convexity is required. The chaiaaten of graphs admitting
a hole-free side-contact representation with rectangiesabtained by Kozrihski and
Kinnen [21] or in the dual setting by Ungar [25]. Buchsbauralef3] give an overview
on the state of the art concerning rectangle contact grdipissalso known that outer-
planar graphs can be represented with side-contact repa¢isas of triangles [11].



Note that in all previous contact representation resutis,areas of the circles or
polygons is not considered. That is, these results deal thilunweighted version of
the problem. Furthermore, previous work on contact reprtes@n does not consider
whether holes are allowed, and if so, how big they will be. @aper will take both area
of shapes and existence of holes into account; we can shovittherepresentations by
triangles or even convex shapes are not possible.

Motivated by the application in VLSI layouts, contact reggptations of planar
graphs with rectilinear polygons has also been studied tsasdknown that? sides are
sometimes necessary and always sufficient (see e.g. [2afimBnet al. give an algo-
rithm for hole-free proportional contact representatiating-sided rectilinear polygons
for a special class of plane graphs [23].

Another application of proportional contact representatican be found icar-
tograms or value-by-area maps. Here, the goal is to redraw an egigeographic map
so that a given weight function (e.g., population) is repmésd by the area of each
country. Algorithms by van Kreveld and Speckman [26] andiidannet al.[16] yield
representation with rectangular polygons and with zerar@lkcartographic errors but
the adjacencies may be disturbed. De Betr@l. describe an algorithm for hole-free
proportional contact representation with at mtsides for an internally triangulated
plane graphy (and only20 sides wheni has four vertices on the exterior face and
contains no separating triangles [4]. This was later impdow 34 sides [19] and then
to 12 sides [2].

1.2 Our Results

In this paper we study the problem of proportional contapresentation of planar
graphs, while minimizing the complexity of the polygonsg ttertographic error, and
the unused area. The four main results in our paper are dpfivita respect to com-
plexity) constructive algorithms for proportional cortegpresentations for general pla-
nar graphs, outer-planar graphs, and partial 2-trees.if®jadly, we show that: (a) 4-
sided polygons are necessary and sufficient for a pointacbptroportional represen-
tation for any planar graph; (b) triangles are necessarysaffitient for point-contact
proportional representation of partial 2-trees; (c) tempes are necessary and sufficient
for side-contact proportional representation of partitiees; (d) quadrilaterals are nec-
essary and sufficient for hole-free side-contact propoéiicepresentation for maximal
outer-planar graphs.

.| Complexity | Complexity Type of
Class of Graphs | Convexit Hole-Free
P Yl Lower Bound Upper Bound Contact
Planar X 4 4 X point
Planar2-Trees v 3 3 X point
Planar2-Trees Vi 4* 4 X side
Maximal Outer-plana v 4 4 v side

Table 1. All results in this table are from in this paper, except the one marked (*), which
follows from [11]. All algorithms are free of cartographic error.



2 Preliminaries

In apoint-contact representatioof a planar graplty = (V, F'), we construct a seP
of closed simple interior-disjoint polygons with an isopbism? : V' — P where for
any two vertices:, v € V', the boundaries oP(«) andP(v) touch at econtact poinif
and only if(u, v) is an edge. Lef” be a contact representation@f Then each interior
face of G corresponds to a bounded holelinand the exterior face aff corresponds
to the unbounded hole ifi. A side-contact representaticaf a planar graph is defined
analogously, where instead of a contact point, we hasangact sidéetweer («) and
P(v), which is a non-empty line segment in the boundary of both.

In a weighted version of the problem, the input also includegeight function
w : V(G) — Rt that assigns a positive weight to each vertexGofwe say thaty
admits aproportional contact representatiowith the weight functionw if there is a
contact representation of where the area of the polygon for each vertegrf ¢ is
proportional to its weights(v). We define theeomplexity of a polygonal regioas the
number of sides it has.

A plane graphis a planar graph with a fixed embedding. A plane grapfully
triangulatedor maximally planaiif all its faces including the outerface are triangles.
Both the concept of “canonical order” [6] and “Schnyder izat’ [24] are defined for
fully triangulated plane graphs in the context of straifihé-drawings of planar graphs
on an integer grid. As we rely on these two concepts for owrélyms for proportional
contact graph representations, we briefly review them helow

Let G = (V, E) be a fully triangulated plane graph with outerface, w in clock-
wise order. Then& has acanonical orderof the verticesv; = u, v = v, vs, ...,
v, = w Which satisfies for every < i < n:

— The subgraph=;_; C G induced byv, va, ..., v;_1 is biconnected, and the
boundary of its outer face is a cyalé _; containing the edgéu, v).
— The vertexv; is in the exterior face of;_;, and its neighbors it/; _; form an (at

least 2-element) subinterval of the p&th ; — (u, v).

A Schnyder realizeof a fully triangulated graplix is a partition of the interior
edges ofZ into three setd’, T; andl5 of directed edges such that for each interior
vertexwv, the following conditions hold:

— v has out-degree exactly one in eactipf I3 and7s,
— the counterclockwise order of the edges incident is: entering/y, leavingTs,
enteringls, leaving7y, enteringls, leavingTs.

The first condition implies that each;, i = 1, 2,3 defines a tree rooted at ex-
actly one exterior vertex and containing all the interiortiees such that the edges are
directed towards the root. The following well-known lemnm@ws a profound connec-
tion between canonical orders and Schnyder realizers.

Lemma 1. Let ¢ be a fully triangulated plane graph. Then a canonical ordétle
vertices of(; defines a Schnyder realizer @f where the outgoing edges of a veriex
are to its first and last predecessor (where “first” is w.rhet clockwise order around
v), and to its highest-numbered successor.



3 Proportional Point-Contact Representations of Planar Gaphs

In this section we show that 4-sided non-convex polygonssaraeetimes necessary
and always sufficient for a proportional contact repreg@amaf a planar graph. We
first describe an algorithm to obtain proportional pointiawxt representations of planar
graphs using 4-sided non-convex polygons. We then showtliea¢ exists a planar
graph with a given weight function that does not admit a prtpoal point-contact
representation with convex polygons, let alone with 3-didelygons, thus making our
4-sided construction optimal.

Theorem 1. Let G = (V, E) be a planar graph and letv : V — R* be a weight
function. Then(G admits a proportional contact representation with respecte in
which each vertex df is represented by a quadrilateral.

Proof. We prove this claim constructively, showing how to geneggpeoportional con-
tact representation @F with respect tav. We may assume théat is fully triangulated,
forif itis not, we can add dummy vertices to make it so, andrle@move those dummy
vertices from the obtained proportional contact represéort.

Assume after possible scaling thatv) < 1/n? for all v € V. We construct the
drawing incrementally, following a canonical ordering . . ., v,,. (We will often usej
instead ofv; to simplify notation.) So that we don’t have to change itiaee prescribe
quite exactly what the quadrilateral assigned;jtmoks like before even placing it.
Doing so will be easier using the notation of a Schnyder zeglso letl}, I3, T5 be the
Schnyder realizer defined by the canonical ordering, Witfs rooted afl, 7% is rooted
at2 and7s is rooted ate. Let&;(j) is the parent of in treeT;.

Assign an integetr(j) to every vertexj such thatn > #(é1(j)) > =(j) >
m(¢2(j)) > 1; this can be done sincg; " U T} is known to be acyclic, wher&; ' is
the tre€l’; with the direction of all its edges reversed. Now for everstaxej # 1, 2, n,
we define thespikeS(;) to be a quadrilateral with one reflex vertex. One segment (the
basg is horizontal withy-coordinatej. Its length will be determined later, but it will
always be at leastw (). From the left endpoint of the base, the spike continues with
the upward segmentwhich has sloper(j) and up to itstip which hasy-coordinate
y = P3(j). Next comes thelownward segmenintil the reflex vertex, and from there
to the right endpoint of the base. See Figure 3(a). The placewrf the reflex vertex
is quite arbitrary, as long as the resulting shape hasatg¢pand the down-segment
has positive slope. Note that since the base has lengtia (j) andy-coordinatej, the
reflex vertex will havey-coordinate at most+ 1.

We first placel, 2, n, and then add, . .., n — 1 (in this order):

— Vertex 1 is represented by a triangi& 1) whose base has lengtlw (1)/(n — 1),
placed arbitrarily withy-coordinatel. The tip ofS(1) hasy-coordinaten.

— Vertex 2 is represented by a triangi2) whose base has lengtlw (2)/(n — 2),
placed aty-coordinate2 and with its left endpoint abutting(1). The tip ofS(2)
hasy-coordinaten.

— Vertex n is represented by a triangle whose base ig-abordinater and long
enough to cover the tips ¢f(1) andS(2). We choose the height &f(») such that
the area is correct.



ment of 1,2,n.

p"

Fig. 3. (a) Adding 7; (b) computing the width of the base.

Throughout placing vertices, we maintain the followingdarnant:
For j > 2, after vertex; has been placed, the horizontal line with

coordinatej + 1 intersects only the spikes of the vertices on the outer-face
of (G4, and in the order in which they are on the outer-face.

To placej > 3, we place the base &f(j) with y-coordinatej, and extend it from
the down-segment @b, (j) to the up-segment eb(j). Recall thatb,(j) and®,(j)
are exactly the first and last predecessof,aind;j = @3(7) for all other predecessors
i # j. HenceS(j) touchesd,(j) and®,(j) at the ends of the base, and all other
predecessorsof j have their tip at the base. So this creates a contact betjraed all
its predecessors. The rest$fj) is then as described above.

This ends the description of the placement. It is straightéod to verify that the
invariant holds, and therefo®(;j) does not intersect any other spikes. To see that the
base ofS(j) is long enough, lep, andp, be its left and right endpoint, and and
s, be the other segments containing them. Imagine that we @éxteand s, until they
meet in a poinp. Sinces, contains a point withy-coordinate< j — 1 (at the base of
S(P2(7))), triangleA{p, p¢, pr } has heightt > 1. See also Figure 3.

Lett = 7(v;) be the slope of the up-segment&fv; ). Sincer (P2 (v;)) < w(v;) =
¢, therefores, has slope at most— 1 andz(p,) > z(p) + ;. On the other hand, the
slope ofs, is positive by construction, and must exceed the slope ofiisegment
of &4 (v;), which has sloper(®1(v;)) > w(v;) = t. Sos, has slope> ¢ + 1 and
#(pil) < 2(p) + - Therefore,

h _h{t+1-(t=1) 2k _ 2

) — > - = >=> = >2

#(pr) —alpe) 2 =7 — 7 21 2 37 2 5z 2 2wlv)
where the last inequality holds since weights are small ghotiherefore the base of
S(j) is wide enough, which ends the proof of the theorem. O



Our construction used non-convex shapes. g, a,

We can show that this is sometimes required.

The (somewhat technical) proof of the follow- \@/
ing lemma is in the appendix, and the graph for =

it is given in Figure 4 where the weight of the @ @

four small vertices is smaller than the weight of

the four large vertices (a factor of 3 suffices).

Lemma 2. There exists a planar graph and

a weight function such that the graph does e

not admit a proportional contact representation

with respect to the weight function with convekig. 4. Graph without prpoportional
shapes for all vertices. convex contact representation.

Lemma 2 also implies that using polygons of
three sides are not always sufficient for proportional contapresentations of planar
graphs. On the other hand, Theorem 1 implies that any plasaphdias a proportional
contact representation with any given weight function om vhrtices so that each of
the vertices is represented by a non-convex polygon of at foossides. Summarizing
these two results we have the following theorem.

Theorem 2. Four-sided non-convex polygons are always sufficient antesiones nec-
essary for proportional contact representation of a plagaaph with a given weight
function on the vertices.

4 Subclasses of Planar Graphs with Convex-Shape Represetitans

In this section we address the problem of proportional ainmtgpresentations for sub-
classes of planar graphs. The lower bound in Lemma 2 showfothalanar triangula-
tions, the complexity in any proportional contact repréagon must be at least 4 and
the polygons must be non-convex. We hence focus on planphgraith fewer edges.
In the next subsection we deal with proportional contaateggntations using triangles
(or convex quadrilaterals for side-contacts.) Then weutisdole-free representations
for maximum outer-planar graphs.

4.1 2-Segment Graphs and Partial 2-Trees

Consider a planar graph that has an (unweighted) contagsemtation using line seg-
ments such that the intersection of any three segments ityevidp call this &2-segment
representatiorand the graph a-segment grapiWe show that four-sided convex poly-
gons are always sufficient and sometimes necessary foceittact representations of
these graphs. In fact, vertices will be represented by n@igs. In case where only
point-contacts are required, we show that 3 sides are sirffi¢and, of course, neces-
sary) for proportional contact representations of 2-segrgeaphs.

Theorem 3. Let G = (V, F) be a planar 2-segment graph. Then for any weight func-
tionw : V — RT and anye > 0, (¢ has a proportional side-contact representation
such that vertex is represented by a trapezoid with area at lea$t) — < and at most
w(v).



Proof. Let£(v) be the line segment that representiVe assume thatis small enough
such that “off-setting” any/(v) by distance,/z/2 preserves adjacencies and does not
create intersections. Hereff-setting/(v) means moving it in parallel while shorten-
ing/lengthening it so that it still touches the segmentssa¢mds. We also assume (after
possible scaling) that/(v)|| > 2w(v)// + /< for all verticesv.

For any vertex, create two copies df(v) that are off-set in parallel in both direc-
tions by so much that the trapezdifv) between the two off-set lines has areé).
By the assumption ofj¢(v)||, this will require an off-set of les thayz/2, hence adja-
cencies are preserved. So we get a proportional side-¢opfaesentation, except that
T(u) andT (v) intersect for any edgé, v).

To remove these intersections, let, v) be an edge, and assume that in the 2-
segment representatiofiz) ended at an interior point &f v). We then “retract’T’(u),
i.e., we replace it by"(u) — T'(v). It remains to show that this does not disturb the area
too much. Note tha'(«) N T'(v) is a parallelogram, defined byv) and one off-set
line of £(v), as well as the two off-set lines éf«). where the pairs of parallel lines
have distance less thart/2 and/z, respectively. Therefore, the arealofu) N 1'(v)
is less tharz /2, and we remove such an area at each erifi(ef). This proves that the
area of the retracted trapezoid is more thgm) — ¢ as desired. O

It is hence natural to ask for a characterization of 2-sedrgesphs. Thomassen
gave one (Theorem 4) at Graph Drawing 1993 but never puldistseproof.

Theorem 4. A planar graph; = (V, E) is a 2-segment graph if and only|i7[W]| <
2|W| — 3 for every subsell’ of the vertices. As usudi[1¥] denotes the set of edges
with both ends ifi4/.

We provide a new proof of Theorem 4 based on rigidity theorthie appendix.
The condition stated in the theorem can efficiently be chei¢kee and Streinu [22]
provide a simple algorithm). In contrast, Hlinény [17psted that the recognition of
general contact graphs of segments is NP complete.

We call a graplts 2-shellabléf it is planar and 2-degenerate, i.e., has a vertex order
v1,..., 0, Such that fori > 3 vertexv; has at most two neighbours in, ..., v;_;.
Such graphs have at mast — 3 edges, hence by Theorem 4 a 2-shellable graph is a
2-segment graph. Moreover, from the proof it is easy to saewile may assume that
the endpoints of segme#ifv) are adjacent to the predecessors dbr all verticesw.

We can then create a proportional side-contact represamtet above but without area-
error by creating trapezoids in this vertex order. For eaatiex v;, first shorter(v;)

so that it ends at the off-set lines ofs predecessors. Then off-séty;) so that the
resulting trapezoid has are&(v;). Some calculation shows that all off-sets are still at
most,/z/2, so adjacencies are preserved.

Theorem 5. Let G = (V, F)) be a 2-shellable graph ana : V' — R* be a weight
function. TherG admits a proportional side-contact representation whexehevertex
of G is represented by a trapezoid with aredv).

We derive two corollaries from Theorem 3 and 5. First, it i®kmn that planar bi-
partite graphs are 2-segment graphs (we can even resgisements to be horizontal
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Fig. 5. (a&b) A 2-segment graph and representation; (c) converting to trapezoids.

or vertical) [15]. Hence they have a proportional side-achtepresentation with arbi-
trarily small carotgraphic error with trapezoids (in fagictangles.)

Second, &-treeis either an edge or a graghwith a vertexv of degree two in¢¥
such thaty — v is a 2-tree and the neighbors ofare adjacent. Aartial 2-treeis a
subgraph of a 2-tree; this is the same as series-parallghgr&very partial 2-tree is
planar. Directly from the definition we see that 2-trees (hadce partial 2-trees) are
also 2-degerate, so they are 2-shellable. Therefore theydproportional side-contact
representation with trapezoids. We can also show that 4 sidesometimes required.

Theorem 6. Four-sided convex polygons are always sufficient and somestineces-
sary for a proportional side-contact representation of artfs 2-tree with a given
weight function.

Proof. Sufficiency follows from Theorem 5, since partial 2-trees arshellable. To
establish necessary, consider the 2-tree obtained Kfgmby adding an edge between
the vertices of the partition of size two. These two vertitteen have four common
neighbors. But as was proved in [11], in any side-contaatesgntation with triangles,
any pair of adjacent vertices has at most three neighborsédeur graph has no side-
contact representation with triangles, let alone one #sgiects the weights. O

Note that if we move from side-contact representations totpmntact representa-
tions, we can reduce the complexity. Namely, replace leggrents by triangles such
that only one endpoint df(v) gets moved (in both directions.) As in Theorem 3 we can
hence prove (details are omitted):

Theorem 7. Let G = (V, F) be a 2-segment graph and : V' — R™ be a weight
function. Then for any > 0, G admits a proportional point-contact representation
where each vertex @f is represented by a triangle with area betweefv) andw(v) —

e. If (G is a 2-shellable graph, then the area of the triangle @ exactlyw(v).

4.2 Maximal Outer-planar Graphs

In this section, we study maximal outer-planar graphs, planar graphs whose outer-
face is ann-cycle and all interior faces are triangles. These are &strso the results
from the previous subsection apply, but (using a differemistruction) we can construct
a side-contact represention using triangles that has reshol

So assume thdt is a maximal outer-planar graph. For any two vertieces denote
by G(u, v) the graph induced by the vertices that are betweémv (ends excluded)



while walking along the outer-face in ccw order, andugt(u, v)) be the sum of the
weights of all these vertices.

An aligned triangleis a triangle with horizontal base and tip below the bases Thi
then naturally defineslaft andright sideof the triangle. The crucial idea is that we can
represent an outer-planar graph insiahy aligned triangle of suitable area.

Lemma3. Let G = (V, E) be a maximal outer-planar graph and, ») an edge on
the outer-face of, with « beforev in ccw order. Letw : V — RT be a weight-
function. Then for any aligned trianglE of areaw(G'(v, u)), there exists a hole-free
proportional side-contact representation 6 v, «) insideT such that the left [right]
side of(+ contains segments of the neighbors:¢¥] and of no other vertices.

Proof. We proceed by induction on the number of vertices/inn the base casé; is
a 3-cycle{u, v, 2 }. UseT as shape for; this satisfies all conditions.

In the step, letr be the unique common neighbour @fand ». Divide 1" with a
segment from the tip to the base such that the regioreft of s has areav (G'(z, u)) +
1w(z), and the regiorf;. right of ¢ has areaw(G(v, z)) + w(z). Cut off triangles
of area%w(x) each from the tips of; and7; the combination of these two triangles
forms a convex quadrilateral of aredx) which we use for:. See Figure 6. Recursively
placeG (z, u) andG(v, ) (if non-empty) in the triangles df that remain; one easily
verifies that these have the correct area and that we obttiredesired side-contact
representation. O

xr

@ (©

Fig. 6. The construction for maximal outer-planar graphs: (a) the graph; (b) splitting trian-
gle T suitably; (c) adding » and v in the outer-most recursion.

Applying this lemma for an arbitrary edger, ») on the outer-face and arbitrary
triangleT of appropriate area then gives a drawingb, «); we can add triangles for
u andw to it to complete it to a contact representatiorthfand hence obtain the result.

Corollary 1. LetG = (V, E) be a maximal outer-planar graph and let: V' — R™
be a weight function. Thei admits a hole-free proportional side-contact representa-
tion where vertices are represented by convex quadrilédera

We now show that the representation obtained by this algorig also optimal for a
maximal outerplanar graph with respect to complexity. Tohdswe used thenowflake
graph S, which is the graph obtained from a triangle by repeatedikivg around the
outer-face and adding a vertex of degree 2 at each edge;GeH &).

10



Lemma4. S has no hole-free side-contact representation with tri@sghat all have
the same area.

Sketch of Proof. Assume for contradiction that there is such a represemtdtid_et

S; be the vertices added when we walk around the outer-fac&éath time; we call

this theith level One can observe that all the angles in the outer-boundahedf are
concave except for at most four convex corners. Since theébruuof vertices doubles

on each level, there must be two trianglesand 7’ on adjacent levels such that the
base ofl’ (by which we mean the side that was exposed after adtjng at least twice

the length of the base @'. Since both triangles have equal area, a simple calculation
involving adjacent angles shows that this is a contradi¢tiee Fig. 7(b). O

By Corollary 1 and Lemma 4, we have the
following theorem.

Theorem 8. Convex quadrilaterals are al- -,
ways sufficient and sometimes necessary for’
hole-free proportional side-contact represen-
tations of maximal outer-planar graphs.

5 Conclusion and Open Problems

We described several constructive algo-

rithm for proportional point-contact and sideFig. 7. (a) The snowflake graph S; (b)
contact representations of planar graphiustration for the proof of Lemma 4.
outer-planar graphs, and 2-trees. We focused

on the complexity of the polygons represent-

ing vertices, and provide bounds on this complexity thatigig, for a variety of graph
classes and drawing models.

However, many problems still remain open. Most interestiagvhat is the com-
plexity of side-contact proportional representations akimal planar graphs? We can
achieve 8-sided polygons easily (essentially by cuttirgethds of the 4-sided spikes),
but can we do less? Likewise, what is the complexity for Hode-proportional repre-
sentations of maximal planar graphs? Here, a bound of 12aaikriand the polygons
are orthogonal) [2], but can we do better if polygons needeairthogonal (or perhaps
even if they do)? Vice versa, can we show a lower bound on thmplexity?

() ®)
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Appendix

Proof of Lemma 2. We aim to show that the graph in Figure 8(a) has no proportiona
representation with convex polygons if the small verticagehweighty and the larger
vertices have weighb > 3. Assume for contradiction that we had such a representa-
tion. Note that this graph is 3-connected and all faces sfghaph are isomorphic (even
when taking vertex weights into account), so all planar estdbvegs of it are equivalent.
We may assume therefore tldds in the outer-face. We will focus now on the sub-graph
defined byug, a1, a; and its interior. See Figure 8(b) for an illustration of tddwing
notation.

Fori = 0,1,2, let p; be a point of contact betweef(a;) andP(a;11) (wWhere
addition is modulo 3.) Further, let be a point of contact betweeP(a;) and P (b).
DefineT, to be the triangleA{po, p1, p2} andT; to be the triangleA{qo, ¢1, ¢2}. Let
Ty be the triangle obtained by moving the edgegpparallel inward until the resulting
triangle circumscribegy, i.e., until its sides contaigy, g1 andq,. Let p; be the corner
of T} that corresponds to the corngrof 7.

Now we analyze the areas of various triangles defined by thes#s. First, tri-
angle A{po, p1,41} C P(a1) by convexity, so it has area at mastNext, triangle
A{p1, pl, ¢1} has the same height and a not-larger base thigw, p1, g1 }, So the area
of A{p1, p),q1} is at mos®. Similarly one shows that trianglé&{p, ¢2, p| } has area
at mosts.

Now consider triangle\ {p1, ¢2, ¢1 }; this containg”(¢o) and hence has area at least
D. Therefore triangl%{p/b q2, ql} = A{pla q2, ql} - A{pla q2, pll} - A{pla plla 111}
has area at leagd —J — 9 > ¢ (by choice ofD > 34.) Similarly one shows that triangle
A{ph, g0, g2} and triangleA{p;, ¢1, g0} have area strictly greater than

Finally, observe thaly C P(b), and hencdy has area at most But now we have
a triangleT;, of area at mosi that is circumscribed by a trianglg such that the three
triangles ofl} — Ty each have area strictly greater tlahis is impossible by a very
old result from geometry; see e.g. [7]. O

(a) (b)

Fig. 8.A graph (7, and proving that it does not have a proportional contact-representation
with convex shapes.
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Proof of Theorem 4.We aim to show a planar graph is a 2-segment graph if and only if
foranyW C V, we have| E[W]| < 2|W| — 3. The necessity of the condition is easily
seen. LetS be the set of segments of a 2-segment representaticnoér W C V' let
Xyw be the set of end-points of segmentsSircorresponding to vertices . Since
we have a 2-segment representation we may assuméXhat = 2|W|. There is an
injection¢ from edges inE[W] to points inXy, points belonging to the convex hull
of Xy, however, can not be in the image @fSince the convex hull contains at least
three points we getF[W]| < | Xw|— 3 = 2|W| - 3.

For the converse we need some prerequisites. A Laman graghaphy = (V, F)
with |E| = |V| -3 and|E[W]| < |[W|—3forall W C V. Laman graphs are of interest
in rigidity-theory, see e.g. [13, 8]. Laman graphs admitanpl Henneberg construction,
i.e., an orderingn, ..., v, of the vertices such that @; is the graph induced by the
verticesvy, ..., v; thenGs is a triangle and; is obtained from&;_; by one of the
following two operations:

(H1) Choose two vertices, y from (;_; and addv; together with the edgg®;, »)
and(v;, y).

(H2) Choose an edggr, y) and a third vertex from (&;_1, remove(z, y) and addy;
together with the three edgés;, x), (v;, y), and(v;, z.

In [14] it is shown that planar Laman graphs admit a planarrté®erg construction
in the sense that the graph is constructed together withree gimight-line embedding
and vertices stay at their position once they have beentetser

Now let' be a planar graph fulfilling the condition of the theorem. Wayrassume
that(s is Laman since we can easily get rid of edges in a segmentaorfaesentation
by retracting ends of segments. Consider a planar Hennebesgruction7s, . . . G,
Starting from three pairwise touching segments represg(iti we add segments one
by one. For the induction we need the invariant that afteiragitheith segment; we
have a 2-segment representatiorgfand there is a correspondence between the cells
of the segment representation and the faces;ofvhich preserves edges, i.e. i, y)
is an edge of the face, then one of the corners of the correapgpeell is a contact
betweens,, ands,. Figure 9 indicates how to add segmenin the cases where; is
added byH,, resp.H,. It is evident that the invariant for the induction is maintd.

O

Hy

Fig. 9. The addition of segment s;.
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