Faster Optimal Algorithms For Segment Minimization
With Small Maximal Value *

Technical Report CS 2011-08

Therese Biedl, Stephane Duroch&rCéline Engelbeeh Samuel Fiorirtl, and Maxwell Yound

! David R. Cheriton School of Computer Science, University\afterloo, ON, Canada
{biedl,m22young@uwaterloo.ca
2 Department of Computer Science, University of Manitoba,,MMBnada
durocher@cs.umanitoba.ca
* Département de Mathématique, Université Libre de BllasgBrussels, Belgium
{celine.engelbeen,sfiorin@ulb.ac.be

Abstract. The segment minimization problem consists of finding thelsiaset of integer
matrices §egmenfsthat sum to a given intensity matrix, such that each sumrhasdnly one
non-zero value (theegment-valieand the non-zeroes in each row are consecutive. This has di
rect applications in intensity-modulated radiation tipgran effective form of cancer treatment.

We study here the special case when the largest Vlirethe intensity matrix is small. We
show that for an intensity matrix with one row, this problenfiked-parameter tractable (FPT) in
H; our algorithm obtains a significant asymptotic speedup theeprevious best FPT algorithm.
We also show how to solve the full-matrix problem faster takipreviously known algorithms.
Finally, we address a closely related problem that dealsmihimizing the number of segments
subject to a minimunibeam-on-timedefined as the sum of the segment-values. Here, we obtain
a almost-quadratic speedup over the previous best alguorith

1 Introduction

Intensity-modulated radiation therapy (IMRT) is an effeetform of cancer treatment, where radia-
tion produced by a linear accelerator is delivered to theepathrough a multileaf collimator (MLC).
The MLC is mounted on an arm that can revolve freely aroundgtigent so that he or she can be
irradiated from several angles. We focus on the so-cated-and-shoahode, where the radiation
is delivered in a series of steps. In each step, two banksdepi@ndent metal leaves in the MLC are
positioned to obstruct certain portions of the radiatiotdfigvhile leaving others exposed. Neither
the head of the MLC, nor its leaves move during irradiatioriréatment plan specifies the amount
of radiation to be delivered along each angle.

For any given angle, the radiation field is discretized armbdgosed intan x n pixels, wheren
is typically the number of pairs of leaves of the MLC. Thisetatines a decomposition of the radia-
tion beam intan x n beamletsThe amount of radiation is represented asrar n intensity matrix
A of non-negative integer values, whose entries represenaniount of radiation to be delivered
through the corresponding pixel, along the given angle.

The leaves of the MLC can be seen as partially covering rows;dér each row: of A there
are two leaves, one of which may slide inwards from the leftdeer the elements in columnso
¢ — 1 of that row, while the other may slide inwards from the rightbver the elements in columns
7 + 1 ton. Thus the entries oft that are not covered form an intery&lr] := {£, ¢+ 1,...,r} of
consecutive columns. After each step, the amount of radiapplied in that step (this can differ per
step) is subtracted from each entrybthat has not been covered. The irradiation for the giveneangl
is completed when all entries df have reached.

* This work was supported by the “Actions de Recherche Cogeesft(ARC) fund of the “Communauté
francaise de Belgique”, and the National Sciences andriereging Research Council of Canada (NSERC).
C.E. acknowledges support from the “Fonds pour la Rechetahs I'Industrie et I'Agriculture” (F.R..A.).

2 Biedl, Durocher, Engelbeen, Fiorini, Young

\ o[1]1]1]1]0 0lolololo]o o[i[i[z]o]o 0lololo[1]0
11]2]2[2]1 0lo[ojolo]o olo[a1[1]o 1jajalalals

T |:> 12[4[4]2/0] = 2 X [ojozjzizlo] + 1 X [omzizjojo] + 1 X [T[i[i[z00
i 11]2]2[1]0 0lojojolo[o 0lo[11]o[0 1j1j1]1[1]0
0[1/1]0/0/0 0lo[oojolo 0lojojololo ol1[1]0/0l0

Fig. 1. An example of a segmentation of an intensity matrix whidre- 4.

Setting leaf positions in each step of the treatment planireg time. Minimizing the number
of steps reduces treatment time, which increases patienfoc and can result in increased patient
throughput, reduced machine wear, and overall reduceattst procedure. Minimizing the number
of steps for a given treatment plan is the primary objectivihis paper.

Formally, asegments am x n binary matrix$S such that ones in each row fare consecutive.
Each segment has an associated non-negative integer weight which wetlembegment-value
denoted bys(5) or simply»(S) whensS is understood. We call a segmenttasegment if its value
ist. A segmentationf A is a set of segments whose weighted sum egdiao,S is a segmentation
of A _if and only if we haved = 3 ¢ s v(5)S. Figure 1 illustrates the segmentation of an intensity
matrix.

The (minimum-cardinality) segmentation problesy given an intensity matrid, to find a min-
imum cardinality segmentation of. In this paper, we also consider the special case of a matrix
with one row, which we call theingle-row segmentation problein contrast with the more general
full-matrix segmentation problermhich consists ofn multiple rows.

Finally, as a consequence of our results on the segmentatidalem, we also briefly examine a
different, but closely relatelgx-minproblem: find a minimum cardinality segmentation amongéhos
with minimum beam-on-timedefined as the total valug. ;. s v(5) of the segmentatiofi As the
segmentation problem focuses on the time incurred for kshafg leaf positions, optimizing the
beam-on-time also has implications for making procedureserafficient by reducing the time spent
administering the treatment corresponding to the segntkatsselves.

Related Work

The segmentation problem is known to be NP-complete in tlo@egtsense, even for a single row [9,
2, 3], as well as APX-complete [4]. Banglal.[4] provide a24/13-approximation algorithm for the
single-row problem and give better approximations for nwanestrained versions. Work by Collias
al. [10] shows that the singleelumnversion of the problem is NP-complete and provides some non-
trivial lower bounds given certain constraints. Work by huet al. [16] gives two approximation
algorithms for the fulln x n segmentation problem, and Biegtlal.[6] extend this work to achieve
better approximation algorithms that result in perforngimsprovements.

A number of heuristics are known [3,20,11, 14] as well as apghnes for obtaining optimal
(exact) solutions [7, 1, 19]. Particularly relevant to owrwis that of Cambazareit al.[8] who show
that the segmentation of a single row is fixed-parametetaiée (FPT); specifically, they give an
algorithm which achieves an optimal segmentatio®{p(H)* n) time, whereH is the largest value
in A andp(H) is the number of partitions df .

Kalinowski [15] studies the lex-min problem and gives paymial time algorithms for whe#/ is
a constant. In the single-row case, he gives(p(H)? n) time algorithm. The solution output by this
first algorithm is also optimal for the minimum-cardinalgggmentation problem (this follows from
known results, e.g. [4]). For general x n intensity matrices, he provides@(2 v/ H m n?1+2)
time algorithm. From this second algorithm, one can denivalgorithm for the fullm x n minimum
segmentation problem with time complexi®(2” H>/2 mn?#+3). This is done by guessing the
beam-on-tim&" of a minimum cardinality segmentation and appending a rothiéantensity matrix
to increase its minimum beam-on-timekoit can be shown that' € O(H? n).

Our Contributions

We summarize our contributions below:

4 The lex-min problem is also known as then DT-min DCproblem where DT stands falecomposition time
(i.e., the beam-on-time) and DC stands for decompositiadigality (i.e., the number of segments); however,
we refer to this as the lex-min problem throughout.

Title Suppressed Due to Excessive Length 3

— For the single-row segmentation problem, we provide a fastact algorithm. In particular, our
algorithm runs inO(p(H) H n) time, which is polynomial in» so long asif € O(log® n).
In comparison to the result of Cambazagtial. [8], our algorithms is faster by a factor of
2(p(H)/H); to the best our knowledge, ours is the asymptotically &$€T algorithm.

Despite our result for the single-row problem, significamltenges remain in solving the full-matrix
problem and here we achieve two important results:

— For generalld, we give an algorithm that yields an optimal solution to thi-fmatrix segmenta-
tion problem inO (m n*’ /2(1=€)(H)) time for an arbitrarily small constaat> 0. Note, that with
a minor change, the result of Kalinowski [15] can be appleeddlve the segmentation problem
(i.e. ignoring the aspect of beam-on time); however, thestase running time i€ (m n?+2).
Therefore, our result yields a better-than-quadratic swpment in the running time.

— For H = 2, the full matrix problem can be solved optimally @, ») time in contrast to the
O(mmn?) time implied by the previous result for genefal This result also has implications for
the approximation algorithms in [6] where it can be emploge subroutine to improve results
in practice.

Finally, we address the lex-min problem:

— For generalH, we give an algorithm that yields an optimal solution to thé-matrix lex-
min problem in timeO(mn /2(z=4)7)_In comparison to the previous best result by Kali-
nowski [15], our algorithm yields a almost-quadratic imggment in the running time and, to
the best of our knowledge, obtains the fastest asymptaotie tomplexity to date.

Therefore, our algorithms represent a significant asyrigospeed-up and the techniques required to
achieve these improvements is non-trivial. In the appemnaéxspecify the necessary data structures
for our algorithms, along with some discussion of tradesdiétween time and space complexity,
which should be of use in practice.

2 Single-row segmentation

In this section, we prove that the single-row segmentati@blem is FPT inH, the largest value
in the intensity matrixA. SinceA has only one row, we represent it as a vecift..n]. We call a
segmentation ofi[1..n] compacif any two segments in ibegin(i.e., have their first non-zero entries)
at different indices, andnd(i.e., have their last non-zero entries) at different iedicThe following
observation is straightforward; we give a proof in Sectionfahe appendix.

Lemma 1. For any segmentatio of a single row, there exists a compact segmentafiomith
|87 < |S].

Our algorithm uses a dynamic programming approach that ates@n optimal segmentation of
any prefixA[l..5] of A. We say that a segmentationfl..;] is almost-compadf any two segments
in it begin at different indices, and any two segments inthi&i end at different indices or both end
at index;j. We will only compute almost-compact segmentations; thisuifficient by Lemma 1. We
compute the segmentation conditional on the values of Stes&gments in it.

Let S be a segmentation of vectet|[1..;]; eachS € S is hence a vectof[l..5]. Define the
signatureof S to be the multi-set obtained by taking the valy&) of each segment ending jn
Note that the signature of a segmentatiom¢f..j] is a partitionof A[j], i.e., a multi-set of positive
integers that sum td[j] < H.

We briefly review some notation for multi-sets. A multi-set with entries from the universe
[H] := {1,...,H} can be described via th&-tuple (m;(M), ..., mg(M)), wherem; (M)
denotes the multiplicity of elemertin M. We use||M]| := Zfil m: (M) to denote the car-
dinality of M. For two such multi-setsv/f; and M-, let My U M5 be the multi-set defined by
me(My U M) i= my(My) + my(My) fort € [H], let My N M, be the multi-set defined by
me (M1 N My) := min{m(Mq), m (M)} fort € [H], and letM; — M, be the multi-set de-
fined by m;(M; — Ms) := max{0, m;(M;) — m;(My)} fort € [H]. Adding (resp. deleting)

4 Biedl, Durocher, Engelbeen, Fiorini, Young

Notation Definition

A A m x n intensity matrix. Form = 1, A[1..7]is a vector.
H Largest value in.

[H] The se{1, ..., H}.
p The smallest number such that every rowdoias at mosp number-changes.
S Segmentofd. Form = 1, S[1..j] is a vector.

v(5) Value of a segment ofl.
S Set of segments that are a segmentatiomfdr.. 5].

Signature ofS |Multi-set of all values of segments $ ending in index;.

I Partition of a value in4; in our context, the partition ofi[;].

Set of partitions ofd[; — 1] that can be obtained froga by deleting at most orje

®j-1(¢) |elementand adding at most one element.

. Minimum number of segments in an almost-compact segment&tof A[1.. ;]

1G:9) that has signature.

p(H) Number of partitions of the integéf .

m:(M) |Multiplicity of elementt in a multi-setM.

Multi-set with entries from the univerdé/] can be described via thH -tuple]
M (my (M), ..., mu(M)).

M(S) Multi-set defined by values of segments in segmentafion

c(Ali]) Complexity of row: of A.

. For partitiong of A[j] and a multisetr over|[H], this function equals if there

', o,v) J'(5,¢,v) exists a segmentatio§ of A[l..5] with signature¢ and multi-set

M(S) C v; 0 otherwise.

Yo For partitiong of A[j] and a multisetr over[H], this function equals the minji-

f7G,¢v) |mum possible number of 1-segments in a segment&iohA[1..5] with signa

ture$ and multi-setM(S) C v U (¢, 0,...,0).

M, Mieq Set of interesting multi-sets for the full-matrix and lexAnproblem.

Table 1. Summary of frequently used notation.

elementt € [H] from multi-setM means increasing (resp. decreasingj.M) by one (while keep-
ing m; (M) > 0). Finally, we say thajM; is containedn M, and write M; C M, whenever
me(My) < my(My) fort € [H].

In order to help the reader, we aggregate our frequently nstdion in Table 1.

The key idea of our algorithm is to compute the best almostgart segmentation of[1..j]
subject to a given signature. Thus define a funcfi@s follows:

Given an integef and a patrtitiors of A[j], let (4, ¢) be the minimum number of segments in an
almost-compact segmentatiSrof A[1..5] that has signaturé.

We will show thatf(j, ¢) can be computed recursively. To simplify computation wel wile
f(0,-) as a base case; we assume th@ = A[n + 1] = 0. The only possible partition df is the
empty partition, and s¢(0,) = 0 is our base case.

Given a partitiony of A[j], let $;_1(¢) be the set of those partitions dffj — 1] that can be
obtained fromp by deleting at most one element, and then adding at most enesat. The recursive
formula for f will be given in Lemmas 2 and 3.

Lemmaz2. Forj > 1, f(j, ¢) > weg}illlw){f(j - L)+ lo -4l

Proof. Consider an almost-compact segmentasprof A[1..;] that achieves the left-hand side, i.e.,
its signature isp and|S;| = f(j, ¢). We have four kinds of segments &): (1) Those that end at
index;j —2 or earlier, (2) those that end At 1 (there can be at most one, sirgeis almost-compact),
(3) those that end gtand start aj — 1 or earlier, and (4) those that endjadnd begin aj (there can
be at most one).

Let S;_1 be the segmentation of[1..; — 1] obtained fromsS; by taking all segments of type
(1)—(3), and deleting the last entry (at indgx The value of each segmentdi)_, is defined as the
value of the corresponding segmentdn Note thatS;_; is also almost-compact. The signature
of §;_; is the same ag, except that the value of the (unique) segment of type (4nf) has been
removed, and the value of the (unique) segment of type (2n§ij has been added. $oc &;_1(¢).

Title Suppressed Due to Excessive Length 5

If both a segment of type (4) and a segment of type (2) exist;irthen they necessarily have
different non-zero values (otherwise they could be conthitentradicting the minimality of;).
Hence||¢ — 1|| is exactly the number of segments of type (4).|1Sa.1| = |S;| — ||¢ — ¥, WhICh
proves the claim.

Lemma3. Forj> 1, /(j,¢) < min {f(j~1¢)+ o~ vll}
Proof. Let ¢y € &;_1(¢) be a partition of4[;] that achieves the minimum on the right-hand side.
Let S;_1 be an almost-compact segmentation that achigygs- 1, «), i.e., it is a segmentation of
A[l..5 — 1] with signature) and cardinalityf (j — 1, ¢).

Define a segmentatiofi; of A[l..j] as follows. Each segment of;_; that ends before index
J — 1 is extended by setting itgh entry to be) and added t&;. For each value in ¢ — ¢, there
must be ari-segment inS;_; that ends at index — 1; add this segment t§; and letitend aj — 1
(i.e., setitsjth entry to 0). For each valuen ¢ N ¢, there must be aftsegment irS;_ that ends at
indexj — 1; add this segment t§; and extend it tg (i.e., set itsjth entry tol). In all the preceding
cases, the value of each segmensjris defined as the value of the corresponding segmesif.in.

Finally, for each value in ¢ — ¢, define a new segment) that starts aj and has value.
One easily verifies thaf; has signature, and therefore it is a segmentation4ffL.. j], since¢ is a
partition of A[j]. We can convert it to an almost-compact segmentation aipriof of Lemma 1.
Also, |S;| = |S;-1| + ||¢ — ¥||, which proves the resullt. O

Theorem 1. The single-row segmentation problem can be solved((H) H - n) time andO(n +
p(H)H) space, wherg(H) is the number of partitions df .

Proof. It follows from Lemmas 2 and 3 that, fgr> 1, f(j, ¢) = mingee,_, (o) 1S (G — 1, ¥) +||o—
¥||}. Here, the idea is to evaluaféj, ¢) recursively with a dynamic programming approach; the
optimal value can then be found fi{n + 1,). To achieve the time complexity, we need to store the
partitions in a suitable data structure. The key propertg iethat any partitiog of A[j] < H has
O(v/H) distinct integers in the sdl, ..., H}. Thus, we can describe a partition@r{~/H) space,
and store it (using a tr§ so that it can be located i@ (v/H) time. We give the details of this data
structure in the appendix. Using such tries, we can alsorgamall relevant partitions efficiently;
since|®;_1(¢)| € O(vH), we can therefore compujé, ¢) from the stored values of(j — 1,)

in O(H). Summing over al andj = 1, ..., n then gives the desired time bound. O

Note that the algorithm is fixed-parameter tractable wipeet to parametefi. It is known

thatp(H) < eV [12], so this algorithm is in fact polynomial as long Bs€ O(log® n). In the
present form, it only returns the size of the smallest segatiem, but standard dynamic programming
techniques can be used to retrieve the segmentation intfe saning time with a® (log n) space
overhead. Finally, we note that the space requirement cangreved by a factor off at the expense
of an additionalog H factor in the running time (see Section B in the appendix).

3 Full-matrix segmentation

In this section, we give an algorithm that computes the opltsegmentation for a full matrix, and
which is polynomial as long af is a constant.

3.1 Segmenting a row under constraints

The difficulty of full-matrix segmentation lies in that rowannot be solved independently of each
other, since an optimal segmentation of a full matrix dogsrmean that the induced segmentations
of the rows are optimal. Consider for example

111 111 000
2221 =1000]+]222
333 111 222

® There are much simpler data structures, e.g. we could stotiéigns as entries in &-dimensional array, but
this would use more space and/or be slower.

6 Biedl, Durocher, Engelbeen, Fiorini, Young

which is an optimal segmentation, but the induced segnientédr the third row is not optimal.

If S is a segmentation, then let; (S) be the number of-segments itF; note that this defines a
multi-set over] H] which we refer to as theulti-setAM (S) defined by segmentatias.

We now want to compute whether a ro#{1..n] has a segmentatiafi such thatM(S) C v
for some given multi-set. We do this again with dynamic programming, by further rietitrg the
segmentation to the firgt elements of the row of the matrix, and by restricting the atgre (the
implied partition of the last entry). Thus define the follogi

Given an integef, a partitionp of A[j], and a multiset over[H], definef’(j, ¢, v) to bel
ifthere exists a segmentatiohof A[1..5] with signaturey and multi-setM (S) C v. Define
f(J, ¢, v) to bel otherwise.

For example, consided = [1 324], ¢ = {1,3}andv = {1,1,1,2,3}. Then f'(4, ¢,v) asks
whether we can segment such that at indeX we use onel-segment and ong&-segment, and
overall we use at most thrdesegments, at most ortresegment, and at most odesegment. The
answer inthiscase isyeH@24] =[1100]+[0220]4+[0001]+[0003]),s0f' (4, ¢,v) = 1.
Note that we were allowed one moresegment than was actually used; this is acceptable siece th
multi-set of the segmentation is allowed to be a subset of

We claim thatf’(-, -, -) has a simple recursive formula. The base case is ggair) (as before
we assumel[0] = A[n+ 1] = 0). SinceA[0] = 0, the only possible signature can fyeand we have
77(0,0,) = 1 for all possible multi-sets. Forj > 1, we can computg’(j, ¢,v) from f'(; —1,-,-)
as follows:

Lemma4. Forall j > 1,

f/(j7¢7y)_ a f/(j_171/;71/_(¢_1/;))' (1)

= max
¢ is a partition of A[j — 1]

Before proving this, we will illustrate it with the above erple of 4 = [1 3 2 4], ¢ = {1,3}
andv = {1,1,1,2,3}. Let¢ = {2} andv’ = {1,1,2}. Then f'(3,+¢,v') = 1 since[l 3 2] =
[110]4[022]. Furthermore, we hawe— ¢ = {1,3}andv — (¢ —) = {1, 1,2} = v/. Therefore,
the formula says that' (4, ¢, v) should bel, which indeed it is.

The following proof is quite similar in spirit to the proof§loemmas 2 and 3, except that we also
need to keep track of how the multi-sets of segmentationsgeha

Proof (of Lemma 4)Assume first thaf’(j, ¢, v) = 1, so we have a segmentatiSh of A[1..;] with
signaturep and M(S) C v. Let S;_; be its implied segmentation of[1..; — 1], and let it have
signaturey>. Then¢ — 1 contains exactly those values of segmentsSpthat begin (and end) at
7, and hence are not ifi;_,. SinceS; contains at most () segments of valug thereforeS;_;
contains at mosty, () — m (¢ — 1) segments of valug Thus segmentatiofi;_; has signature
and satisfies\(S;_1) C v — (¥» — ¢), which provesf’(j — 1,4, v — (¥ — ¢)) = 1 and hence the
right-hand side ig.

Now assume that the right-hand sidelissay for partitiort/ there exists a segmentatidh_;
that has signaturg and satisfies\t (S;_1) C v — (¢ —). By adding a new-segment (beginning
and ending aj) for each valug in ¢ — «, and extending a segment to also cover ingléar each
valuet in 1y N ¢, we can create a segmentatignof A[1..;] that has signature and M (S;) C v, so
' (j, ¢,v) =1 as desired. O

We now turn to the run-time of actually computirfg. In the above definition, we have not
imposed any bounds an other than that it is a multi-set oveH]. But clearly we can restrict the
multi-sets considered. Assume for a moment that we know éimapsegmentatios™ of the full
matrix. We call a multi-set relevanif v C M (S*). Clearly it suffices to computg for all relevant
multi-sets.

To find (a superset of) relevant multi-sets without know#ig we exploit thatM (S*) cannot
contain too many segments of the same value Alg}[;] := A[é][j] — A[{][j — 1] for j € [n + 1],
where we assume thaf:][0] = A[{][n + 1] = 0. We say that there ismarkerbetween indey — 1
andj in row i if A[i][iden] # 0, i.e., if the value in4 changes. Lep; be the number of markers in
row i, and letp = max; p;.

Title Suppressed Due to Excessive Length 7

From now one, whenever we consider a segmentation of a rowyilvassume that it has been
standardizedn the following way: (1) Every segmentbegins and ends at a marker. For if it doesn't,
then some other segments(s) must end wkéxegins (or vice versa), and by moving all these end-
points to the nearest marker, we retain a segmentation wittttwing any new segments (and perhaps
even deleting some.) (2) Whenever a segment ends at a ntéwdethere is no other segment of the
same value that begins at that marker. For otherwise theg¢giments could be combined into one.

We now prove a useful bound on segmentations of the full matri

Lemma 5. If all rows of A have at mosp markers, then there exists a minimum cardinality segmen-
tation that has at moss/2 ¢-segments for all € [H].

Proof. Among all optimal segmentations df letS* be the one that maximiz&8_, m, (M (S8*))2.
Assume for contradiction that there is sotre [] for whichS$* contains- > p/2 segments of value
t. We will then create another segmentati¥frthat uses — 1 segments of valug and one additional
(2t)-segment. Hencé’ has the same cardinality &, but at the same timgfil me(M(8'))? >
S mi(M(S8*))?, contradicting the choice &*.

To see why such af§’ exists, consider any row of and its segmentation hy*. As explained
above, we assume that this segmentation is standardizéue Eegmentation uses at mest- 1
segments of valug then we use the exact same segmentatia#i .itf it usesr > p/2 segments of
valuet, then there must be in this segmentation twgegments that both begin at the same marker,
or both end at the same marker, say the former. We can regilase two segments by2a-segment,
followed by one (possibly empty}segment once the first of the two segments ends. Hence again w
obtain a segmentation of the row that can be used&foTherefore, in every row we can change the
segmentation by$™* into one that can be used f6f, proving thatS’ exists, a contradiction. O

Now letM be all those multi-sets ovéf] where all multiplicities are at mog{/2; this contains
all relevant multi-sets. We store these in Hrdimensional array with indices iif..p/2]; this takes
O((p/2)") space, and allows lookup of a multi-set@{ H) time. Using (1), one can easily see that
we can compute the valugs(j, ¢, v) as shown in Algorithm 1.

Algorithm 1

1: LetM be all multi-sets where all multiplicities are at meg®.
2: for all multi-setsy in M do

3: Initialize f'(0,0,v) = 1.

4: forj=1,...,n+1do

5 for all multi-setsy in M do

6: for all partitions¢ of A[j] do
7
8
9

Initialize f'(7, ¢, v) =0
for all partitionsy of A[j — 1] do
: Compute/’ = v — (¢ —)
10: if f'(7 —1,¢,v")=1then

11: Setf’(j,¢,v) = 1 andbreak
12: end if

13: end for

14: end for

15: end for

16: endfor

17: end for

The running time of Algorithm 1 is determined by the time tonputer’ and looking upf’(j —
1,4, v'). Computing’ (givenv, ¢ andi) can certainly be done i@ () time. To look upf’(j —
1,4, '), we first look upy in the appropriate data structure @h(/) time. With each multi-set
v € M, we store all partitions ofi[j — 1] and of A[;] (for the current value of), and with each of
them, the values of’ (j — 1, ¢, v) and f'(j, ¢, v), respectively. Looking up or changing these values
(givenv and) can then be done i@(\/ﬁ) time by storing partitions in tries.

So lines 9-11 requir®(H) time. They are executepl H) times from line 8,p(H) times from
line 6, M) times from line 5, anck + 1 times from line 4; this i) (n(p/2 + 1)? p(H)?H) time.

8 Biedl, Durocher, Engelbeen, Fiorini, Young

As for the space requirements, we need to store all relevaltitsets, and with each, all partitions
of A[j — 1] and A[j], which takesO (H) space per partition. So the total spac®i®(H)H (p/2)").

Lemma 6. Consider one rowA[1..n]. In O(n(p/2)" p(H)? H) time andO(p(H)H (p/2)") space
we can compute ai/-dimensional binary array” such that for anyny,...,mg < p/2 we have
F(my,...,mpg) = 1if and only if there exists a segmentation 4fl..n] that uses at most;
segments of valuefor ¢t € [H].

3.2 Full-matrix

Solving the full-matrix problem is now quite simple. For edws ¢, compute the tablé; described
in Lemma 6. This takes timé(mn(p/2)¥ p(H)*H) total. The space i€ (p(H)H (p/2)) per
row, but once done with a rowwe only need to keep th@((p/2)*) values for the corresponding
table F;; therefore, in total, it isD (max{m, p(H)H }(p/2)). Now, in O(m(p/2)H) time find the

numbersny, ..., myg for whichF;(my, ..., mg) is 1 forall rowsi and for whichmy + - - - + mg
is minimized.
Claim. The valuesny, ..., myg exist, and the optimal segmentation has size+ - - - + my.

Proof. Let $* be an optimal segmentation of the full matrix with at mpg2 segments of value
forallt € [H]. By Lemma 5, such a segmentation exists. ket be the number of-segments in
&§*. The row segmentations induced 8§y have at mostn; segments of valuefor all ¢ € [H], so
Fi(m3,...,m}) is 1 for all rows. Thusny, ..., my exist and by their choice as minimizing the
sum we haveny +---+mpg < mj +---+mp = [S*|.

For the other inequality, by choice of the 's, every rowi has a segmentatia$y with at mostm;
segments of value We can combine these segmentations with a greedy paclgogtaim (see also
[6]): Definem, matrix-segments of valueby taking from each row a row-segment of vatuéthere
is one left. Repeat for adl This gives a segmentatighof the full matrix of sizem; + - - - + my, SO
[S*| <my+---+my.

Combining the two inequalities shoyS*| = mq + - - - + mg. m|

This implies the next result.

Theorem 2. The full-matrix segmentation problem can be solvedimnn(p/2)" p(H)?H) time
and O (max{m, p(H)H }(p/2)) space if each row has at mgstarkers.

Note that one could view our result as a fixed-parameterabddly result, where the parameter
is H + p. However, normallyp will be large. In particular, if a natural pre-processingpsis ap-
plied that removes from each row df any consecutive identical numbers (this does not affect the
size of the optimum solution), them = »n + 1. We therefore prefer to re-phrase our theorem to
express the worst-case run-time in termsgfn and H only. Note thatp < n 4 1 always, so the

run-time become®) (mn*+1p(H)2H/27). Recall thatp(H) < ™V 5 < 26V and, therefore,
Hp(H)? < He>VH = 9l (M+5.2VI 15 () < 986VH implying thatp(H)?H /21 € O(2~(1=9™)
for some arbitrarily > 0 for H sufficiently large.

Corollary 1. The full-matrix segmentation problem can be solvedifmn+!/200=9)H) time,
wheree > 0 is an arbitrarily small constant, an@®(mnf!) space.

3.3 Further improvements of the complexity

We sketch a further improvement that removes a factor fsbm the running time. Recall that the
function f'(j, ¢, v) was defined to bé if and only if there exists a segmentatiénof A[1..5] with
signatures and multi-setM (S) C v. In its place, we can instead define a functjéiiy, ¢, v), which
contains the minimum number of 1-segments in a segment&tiohA[1..;] with signatures and
multi-setM(S) C v + v4. Here,v; is the multi-set that hasy; (1) = oo andm, (M;) = 0 for all

t # 1. In other words, the segmentation that defifiéss restricted in the number ofsegments only
for ¢ > 1, and the restriction oh-segments is expressed in the return-valug’ofin particular, the
value of f”/(j, ¢, v) is independent of the first multiplicity of, and hence must be computed only
for thoser with m; (v) = 0; there are onlyp/2 + 1)~ such multi-sets.

Title Suppressed Due to Excessive Length 9

It remains to argue that’ can be computed efficiently, with a similar formula as for This
is quite simple. To computé¢”(j, ¢, v), try all possible partitiong) of A[; — 1], computer’ =
v—(¢—1), and lety” ber’ with its first multiplicity changed t@. Look up the valug” (j — 1, ¢, v")
and add to it the number of 1s ih— «. This gives one possible candidate for a segmentation; we
find the best one by minimizing over atl. We leave the formal proof of correctness to the reader.
We can hence compuf’ (n + 1,0, v) for all (p/2)# ~! multi-setsv in O(n(p/2)% =1 p(H)*H)
time. Doing this for all rows, we can compute the maximum efiblues/”’ (n+1, , v) over all rows.
The optimum segmentation can then be found by choosing teehat minimizes this maximum
plus||v|| over allv. As before, this only adds an exttam) factor to the run-time, which is hence

O(mn(p/2)"~'p(H)*H), and similarly as before this can be simplified¢mn’’ /2(1=)H),

Theorem 3. The full-matrix segmentation problem can be solvedipnn’? /2(1=)) time, for
e > 0 an arbitrarily small constant, and (mnf/~1) space.

3.4 Solving the lex-min problem

Recall that the lex-min problem is that of finding a minimumdiaality segmentation among those
with minimum beam-on-timedefined as the total valug ;. s v(S) of the segmentation. Here, we
show how to apply our techniques to achieve a speed up imgptkis problem. To this end, we need
the notion of thecomplexity of rowA[:] which is defined as:

n+1 n+1 n+1

c(Al1]) := % Z |A[[]] =Y max{0, A[][j]} = Y —min{0, A[{][j]},

=1 j=1

where as before\[:][5] := A[i][j] — A[{][j — 1] for j € [n + 1].

Importantly, is was shown in [14] that the minimum beam-anetican be computed efficiently;
itis e(A) := max;{c(A[i])}. To solve the lex-min problem, we simply have to change oauso
regarding the satl of interesting multi-sets. Instead of the relevant mudtissas used earlier, where

each multiplicity is at most/2, we need all multi-sets such tha@:f‘rz1 t-m(v) equals the minimum
beam-on time. Lelvl,.,. be the set of these multi-sets and their subsets. While LeBn@longer
applies, we still obtain a useful bound on the diZg, .

Lemma 7. If all rows of A have at mosp markers, then there exists a minimum cardinality segmen-
tation among all those that have minimum beam-on time thatatanosty — 1 ¢-segments for all
t € [H]. Moreover, fort > H/2, there are at most/2 t-segments.

Proof. The proof is almost identical to the one of Lemma 5, excepteaneed to choos8’ more
carefully to ensure that it, too, has minimum beam-on timeleés §* be a minimum cardinality
segmentation among all those that have minimum beam-on Asesual, we assume th&t has
been standardized; this does not affect the beam-on time.

Itis then near-trivial thaf* has at mosp/2 t-segments for > H/2: No two such segments can
overlap (since their combined value exceétls and so no two of them can share a marker (sisice
is standardized); since each touches two markers thergfere can be at mogf/2 of them.

The other claim is more complicated. Assume for contraglicthat there is some € [H] for
which §* contains: > p segments of value We will then create another segmentati®rthat uses
r — 2 segments of valug and one additionali-segment. Hencé’ has the same beam-on time and
a smaller cardinality a§>, contradicting the choice &*.

To see why such af’ exists, consider any row of and its segmentation hy*. If the segmen-
tation uses at most — 2 segments of valug then we use the exact same segmentatia irf it
usesr — 1 > p — 1 > p/2 segments of valug then as in the proof of Lemma 5, two of them must
start at the same marker, and we remove them and replace theni2b)-segment. The resulting
segmentation has less thar 2 segments of valueand one of valu@¢ and so can be used f6&f.

Now finally assume that some row contains p segments of valug Define an auxiliary graph
H as follows:H has a vertex for every marker, and an edge between two mafkerd only if there
exists af-segment that begins at one of them and ends at the éfheaisp vertices and- > p edges,

10 Biedl, Durocher, Engelbeen, Fiorini, Young

and hence contains a cydlé Lets; = [ji, j2] be a shortest segment 6h(as measured bjs — j1),
and letsg ands, be its neighbours of'.

Rename, if needed, so thatands; share the marker @t andj,, respectively, withs;. SinceS*
is standardized, we havg = [j1, j3] andsz = [jo, j2]. Sinces; was the shortest segment 6fhwe
havej, < j1 < j2 < js. Now define a segmelfi, j2] of value2t, and if sy # s, another segment
[Jo, ja] of valuet, and use these segments instead,0f, s2. One easily verifies that this is also a
segmentation of the row, and it can be usedS0rThis proves thaf’ exists, a contradiction. O

We can hence find and store a (super-setidf), by using all entries in arf{-dimensional
array [0, p]L/21 x [0, p/2]#/21, and there are)(p /211/2) such multi-sets. We will compute

7 (n+ 1,0, v)for all such multi-set®, and then pick a multi-set for which ||v|| + Zf‘;l me(v)is

minimized, and for WhiciEfI:1 tmy (v) equalse(A). This is then the multi-set used for a minimum
segmentation among those with minimum beam-on time; we cahtfie actual segmentation by
re-tracing the computation g¥'(n + 1,0, v).

By the same analysis used for the minimum cardinality segatiem problem, and the improve-
ment described in the previous Section 3.3, we have:

Theorem 4. The lex-min problem can be solvedim* /2(3=)# time and withO(mn* ~1) space.

Recall that Kalinowski’s algorithm in [15] has a time comytg of O (2 H - m - n?+2). So we
obtain an almost-quadratic improvement in the time coniplekinally, we note that it is intuitively
reasonable that our algorithm can be applied to the lex-muhlpm since the restriction on the space
of feasible solutions that the beam-on time be minimizedomacaptured by modifying appropriately
the set of interesting multi-sett4;. . .

4 The special case o = 2

For H = 2 (i.e., a 0/1/2-matrix), the algorithm of Section 3.3 has-time O(mn?). As we show in
this section, however, yet another factomodan be shaved off by analyzing the structure of the rows
more carefully. In a nutshell, the functigtf of Section 3.3 can be computed from the structure of the
row alone, without needing to go through all possible sigredt; we explain this now. Throughout
Section 4, we assume that all entries in the intensity mate0, 1, or 2.

4.1 Singlerow forH = 2

As before, letA[1..n] be a single row of the matrix. Consider a maximal intefyal;”'] such that
A[j’..7"] has all its entries equal th We call A[;’..;"] a towerif A[j’ — 1] andA[;"” + 1] both equal
0, asimple stefif one of A[j’ — 1] andA[;” + 1] equalsl and the othef, and adouble steptherwise.
(As usual we assume thaf0] = A[n + 1] = 0.) We use, s andu to denote the number of towers,
simple steps and double steps, respectively. Figure 2riflies how interpreting[i] = ¢ ast blocks
atop each other gives rise to these descriptive names.

Fig. 2. Two kinds of simple steps, a tower, and a double-step.

Recall thate(A[i]) = Z;;’ll max{A[¢][j], 0} is the complexity of a row of a full matrix 4; we

usec(A) for the complexity of the single row under consideration.

Lemma 8. Defineg(d) as follows:

c(A) —2d ifd <t,
gld):=< c(A)—t—d ift<d<s+t,
c(A)—2t—s ift+s<d.

Title Suppressed Due to Excessive Length 11

Thenforanyl > 0, /" (n+1,0,{0,d}) = g(d). In other words, any segmentatiSrof A with at most
d segments of valu2 has at leasy(d) segments of value. Moreover, there exists a segmentation
that has at most segments of value 2 and at mgét/) segments of value 1.

Proof. Let & be a segmentation of that uses at most segments of value 2. As before, we as-
sume thatS has been standardized, which can be done without incretig@ngumber of 2-segments.
Therefore, any tower, step or double-stepdofs either entirely covered by a 2-segment, or it does
not intersect any 2-segment.

Let s5, 12 andus be the number of steps, towers, and double-steps (resplgttikiat are entirely
covered by a 2-segment. We claim the the number of 1-segroétss ¢(A4) — s; — 25, and can
prove this by induction oRy + t5 + us. If s5 4 t2 + us = 0, thensS has only 1-segments, and since
§ is standardized, the number of 1-segments equ@$. If, say,z; > 0, then let4’ be the vector
obtained fromA by removing a tower that is covered by a 2-segment (i.e., placing the 2s of
that tower by 0s), and I8’ be the segmentation of obtained fromS by removing the 2-segment
that covers that tower. TheA’ hast, = ¢, — 1 towers covered by 2-segments, and furthermore
c(A') = ¢(A) — 2. SinceS andS’ have the same number of 1-segments, the claim easily follgws
induction. Similarly one proves the claim by inductiosif > 0 or u; > 0.

Therefore the number of 1-segmentsSiis ¢(A4) — s; — 2¢,. We also know thag, +t2 +ug < d.

So to get a lower bound on the number of 1-segments, we shanithine ¢(A4) — s; — 25, subject
t0 sy + t5 + up < d and the obvioud < s, < 5,0 < {3 <t and0 < uy < u. The bound now easily
follows by distinguishing whethet < ¢ (the minimumis at; = d, s = us = 0),0rt <d <t+s
(minimum att, = ¢, s =d —t,uz = 0) ort + s < d (minimum atty = ¢, s3 = s, ug = 0.)

For the second claim, we obtain such a segmentation by usin{, ¢} 2-segments for towers,
thenmin{d — ¢, s} 2-segments for stairs if > ¢, and cover everything else by 1-segments. O

The crucial idea foilf = 2 is that sincey(-) can be described explicitly with only three linear
equations that can easily be computed, we can save spadeneruytnot storing’”’ (n+1, %, {0,d})
explicitly as an array of length/2 + 1, and not spendin@(n - p/2) time to fill it.

4.2 Full matrix segmentation for H = 2

As in Section 3.3, to solve the full-matrix problem we needital the valued* that minimizes
d+max;{f/'(n+1,0,{0,d})} =: D, wheref!(-) is functionf” (-) = ¢(-) for row . We can hence
find the optimal segmentation of as follows. Compute the complexity and the number of towers
and stairs in each row; this takégmn) time total. Eachf!(-) is then the maximum of three lines
defined by these numbers. Hente max;{f/(n + 1,0, {0,d})} is the maximum ofim lines. We
hence can computB (and with itd*) by taking the intersection of the upper half-spaces defined
the 3m lines (this can be done if?(m) expected time easily, and {#(m) worst-case time with a
complicated algorithm [13]), and then finding the grid painth the smallesy-coordinate in it.

Once we found{*, we can easily compute a segmentation of each row that haesit/in- d*
segments of valué and at mosti* segments of value (see the proof of Lemma 8) and combine
them into a segmentation of the full matrix with the greettyeaithm; this can all be done i@ (mn)
time. Thus the overall run-time @(mn).

Theorem 5. A minimum cardinality segmentation of an intensity matrithwalues in{0, 1, 2} can
be found inD(mn) time.

An immediate application of this result is that it can be cameld with theO(log) approximation
algorithm in [6]. While approximation guarantee remainshanged, this should result in improved
solutions in practice while not substantially increasing tunning time.

One naturally asks whether this approach could be extermadyher values ofi. The main
obstacles to doing this is the functigtid). The overall approach would work well fdi = 3
if we had a functiory; (d3, ds) for each rowA[:] lower bounding the number df-segments in a
segmentation if it has at mogt segments of valug andds segments of valug. It seems likely that
the functionsy; (dz, d3) would be piecewise linear just likg(d) was, but it is not clear how many
pieces there are, and whether we can compute them easilyttiestructure of the row. Thus a faster
algorithm forH = 3 (or higher) remains to be found.

12

5

Biedl, Durocher, Engelbeen, Fiorini, Young

Conclusion

In this work, we developed several algorithms that provigestic running time improvements for
the minimum cardinality problem. At this point, a coupledresting problems remain open. Does the
full-matrix problem admit a FPT resultif: > 1 butm is small (i.e., a small number of rows)? Is the
full-matrix problemW 1]-hard inH ?

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Davaatseren Baatar, Natashia Boland, Sebastian Bradd®Reter J. Stuckey. Minimum cardinality matrix
decomposition into consecutive-ones matrices: Cp and fpoaehes. IrProceedings of the 4th Interna-
tional Conference on Integration of Al and OR Techniquesam$raint Programming for Combinatorial

Optimization Problems (CPAIORpages 1-15, 2007.

. Davaatseren Baatar and Horst W. Hamacher. New Ip modetddtileaf collimators in radiation therapy.

Contribution to the Conference ORP3, Universitat Kaiser®rn, 2003.

. Davaatseren Baatar, Horst W. Hamacher, Matthias Ehmodt Gerhard J. Woeginger. Decomposition of

integer matrices and multileaf collimator sequenciDigcrete Applied Mathematic$52(1-3):6—34, 2005.

. Nikhil Bansal, Don Coppersmith, and Baruch Schieber. iiining setup and beam-on times in radiation

therapy. InProceedings of APPROX-RANDQpages 27-38, 2006.

. T. Biedl, S. Durocher, H. Hoos, S. Luang, J. Saia, and M.ngoumproved approximations for segment

minimization in intensity modulated radiation therapy020 Submitted.

. Therese Bied|, Stephane Durocher, Holger H. Hoos, Shuaag, Jared Saia, and Maxwell Young. A note

on improving the performance of approximation algorithmisradiation therapylnformation Processing
Letters 111(7):326-333, 2011.

. Sebastian Brand. The sum-of-increments constrainticdinsecutive-ones matrix decomposition problem.

In Proceedings of the 24th Symposium on Applied Computing)($ages 1417-1418, 2009.

. Hadrien Cambazard, Eoin O’'Mahony, and Barry O’Sulliv&ishortest path-based approachto the multileaf

collimator sequencing problem. Integration of Al and OR Techniques in Constraint Programgyfor
Combinatorial Optimization Problems (CP-Al-QRpages 41-55, 2009.

. Danny Z. Chen, Xiaobo Sharon Hu, Shuang Luan, Shahid AviN&@jao Wang, and Cedric X. Yu. Gener-

alized geometric approaches for leaf sequencing problemegiation therapy. IfProceedings of thé5th
International Symposium on Algorithms and ComputatioAAS), pages 271-281, 2004.

Michael J. Collins, David Kempe, Jared Saia, and Max¥aling. Non-negative integral subset represen-
tations of integer setdnformation Processing Letterd01(3):129-133, 2007.

Cristian Cotrutz and Lei Xing. Segment-based dose apdition using a genetic algorithmPhysics in
Medicine and Biology48(18):2987—-2998, 2003.

Wiladimir de Azevedo Pribitkin. Simple upper bounds fartjtion functions. The Ramanujan Journal
18(1):113-119, 2009.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Magklefnars. Computational Geometry (3rd
edition) Springer-Verlag, 2008.

Konrad Engel. A new algorithm for optimal multileaf doiator field segmentationDiscrete Applied
Mathematics152(1-3):35-51, 2005.

Thomas Kalinowski. The complexity of minimizing the nioen of shape matrices subjectto minimal beam-
on time in multileaf collimator field decomposition with boded fluenceDiscrete Applied Mathematics
157(9):2089-2104, 2009.

Shuang Luan, Jared Saia, and Maxwell Young. Approxanatigorithms for minimizing segments in
radiation therapylnformation Processing Letterd01(6):239-244, 2007.

Robert SedgewickAlgorithms in Java, Parts 1-4 (Fundamental Algorithms, & &tructures, Sorting,
Searching Addison-Wesley, 2002.

R. Alfredo C. Siochi. Minimizing static intensity modion delivery time using an intensity solid
paradigm.International Journal of Radiation Oncology * Biology * Péigs 43(3):671-680, 1999.

Giulia M. G. H. Wake, Natashia Boland, and Les S. JenniiMjged integer programming approaches to
exact minimization of total treatment time in cancer raldéapy using multileaf collimatorsComputers
and Operations ResearcB6(3):795-810, 2009.

Ping Xia and Lynn J. Verhey. Multileaf collimator leatgencing algorithm for intensity modulated beams
with multiple static segmentdedical Physics25(8):1424—-1434,1998.

Title Suppressed Due to Excessive Length 13

A Missing proof

Lemma 1. For any segmentatio of a single row, there exists a compact segmentafiomith
|87 < |S].

Proof. Start with an arbitrary optimal segmentatién we can argue how to modif§ to obtain a
compact segmentation of the same size.ilte the smallest index such that two segments’ of S
begin at index. SayS andS’ have non-zero value anda’ and end at indicegandj’, respectively.
If ;j = 4/, then the two segments could be combined into one to give #desns@gmentation, a
contradiction. Sq # j/, sayj < j'.

Define two new segmenis’ and.S”’ as follows. Segmen$” begins at, ends af and has value
a+a’. Segments’’ begins afj+1, ends afj’, and has value . ClearlyaS+a’S" = (a+a’)S"+a'S"",
soS’ = §—{5, 5 }U{9”, 8"} isalso an optimal segmentation, and has fewer segmentst#nsat
i. Iterate until only one segment startg ghen iterate with all larger values where multiple segreent
start. (Note that all new segmentsShstart at or later, so this eliminates all coinciding start-indiges.
Then similarly eliminate coinciding end-indices, stagtat the largest one where they occur. O

B Data structures to store partitions

Recall that a partitio of a value< H is a multi-set over the univerdél] = {1,..., H}. Let
ty > --- > t, be those values that occur at least once.ile can then describgas a string

O'(QS) = (tlv mt1(¢))7) tZa mye, (¢))7
wherem, (¢) > 0 is the multiplicity of valuet; in ¢, for k = 1, ..., £. For example, we have
d={4,2,1,1,1} <= o(¢) = (4,1,2,1,1,3)

A key observation is that(¢) has lengthO(v/H). For recall tha is a partition of a value< H,
and henc{:izl me, (¢)tx < H.If we had? > +/2H then

J2

H > Z Mty (¢)tk

k=1 k=1 k=1

= > H
2 - 2 > 4

>§Z:tk>§£:k W0+1) V2H(V2ZH 4 1)

a contradiction. Str(¢)| = 2¢ < 2v/2H = O(VH).

Thus, to store and access information abgutve will store and access information about string
o(¢), which is a string withO(v/H) entries in the alphabef = {1, ..., H}. We store such strings
using atrie, i.e., a tree where arcs to the children of a node are labeligddistinct letters from?¥.
See for example [17] for more details about tries.

The node on levek of the trie refers to entry of the stringsy(¢), i.e., it either distinguishes by
the next value;, for which my, (¢) is non-zero, or (one level farther down) by whaf, (¢) is. To
find the appropriate child, each node stores an atfgly. . .] whereC'[t] refers to the child where
the value ig.

So to find the entry for a partition (which has been stored as list¢)), we trace from the top
downwards in the trie, using theh entry ino(¢) to find the appropriate child of the node on #té
level. The time to do so i®(||o(¢)]|) = O(VH).

The space requirement for this trie (5 H) per node. If we use a compressed trie (i.e., we
only split at a node if it actually has multiple descendagntisgn the number of nodes in the trie
is proportional to its number of leaves, whichpig?). Hence the trie need3(p(H) H) space.

14 Biedl, Durocher, Engelbeen, Fiorini, Young

B.1 Decreasing space by increasing time

Instead of using an array to store the children of a node, weausa a binary search table or a hash-
table with constant load factor. Then the space at each squteportional to its number of children,
and hence the total space used at internal nod@s¢f)). But we still needO (p(H)v'H) space

to store the description(¢) for all partitions¢, so the total space @(p(H)+v/H). This savings in
space comes at an increased run-time: With binary seareh, titee lookup time is noW (log H')

at each node, and with hash-tables, iti6l) expected time. For all but really large valuesiof
this rather small decrease in space does not seem to wdreamiore complicated data structure and
potential time-increase.

B.2 Creating partitions

We can use this trie to create all partitions of all valge#’ efficiently. Let¢ be a partitionofl. < H.
Let ¢y be the largest value af, and let¢’ be the partition obtained from by deleting one copy of
t1. Theng’ is a partition ofl, — ¢1. Thus, every partitiog of I. can be obtained by taking a partition
¢’ of avalueL’ < L such thatl. — L’ is no smaller than the largest valuedif It is easy to see that
thisis a 1-1 correspondence.

to computed (L), we assume that we have computed),...,#(L — 1) already and stored
them in their appropriate tries. Create a new trie with ramdev. For eachl’ < I, we obtain the
partitions of with largest valud. — L’ by scanning the trie that stor@$7’). More precisely, ignore
all partitionsind(L’) that are located at childreri{L — L' + 1, ..., L’] of the root; these have largest
value bigger thar, — L’. Then scan through each remaining partition.gfadd one valud. — I’
to it to obtain a partition of., and add it into the trie that storég). This takesO(v/H) time per
partition that is inserted, and hen©ép(L)v/ H) time overall. Doing this fol, = 1,. .., H finds all

partitions of f in time O(VH (p(1) + - - - + p(H))) = O(p(H)VH).

