
Faster Optimal Algorithms For Segment Minimization
With Small Maximal Value ?

Technical Report CS 2011-08

Therese Biedl1, Stephane Durocher2, Céline Engelbeen3, Samuel Fiorini4, and Maxwell Young11 David R. Cheriton School of Computer Science, University ofWaterloo, ON, Canadafbiedl,m22youngg@uwaterloo.ca2 Department of Computer Science, University of Manitoba, MB, Canada
durocher@cs.umanitoba.ca3 Département de Mathématique, Université Libre de Bruxelles, Brussels, Belgiumfceline.engelbeen,sfiorinig@ulb.ac.be

Abstract. The segment minimization problem consists of finding the smallest set of integer
matrices (segments) that sum to a given intensity matrix, such that each summandhas only one
non-zero value (thesegment-value), and the non-zeroes in each row are consecutive. This has di-
rect applications in intensity-modulated radiation therapy, an effective form of cancer treatment.

We study here the special case when the largest valueH in the intensity matrix is small. We
show that for an intensity matrix with one row, this problem is fixed-parameter tractable (FPT) inH; our algorithm obtains a significant asymptotic speedup over the previous best FPT algorithm.
We also show how to solve the full-matrix problem faster thanall previously known algorithms.
Finally, we address a closely related problem that deals with minimizing the number of segments
subject to a minimumbeam-on-time, defined as the sum of the segment-values. Here, we obtain
a almost-quadratic speedup over the previous best algorithm.

1 Introduction

Intensity-modulated radiation therapy (IMRT) is an effective form of cancer treatment, where radia-
tion produced by a linear accelerator is delivered to the patient through a multileaf collimator (MLC).
The MLC is mounted on an arm that can revolve freely around thepatient so that he or she can be
irradiated from several angles. We focus on the so-calledstep-and-shootmode, where the radiation
is delivered in a series of steps. In each step, two banks of independent metal leaves in the MLC are
positioned to obstruct certain portions of the radiation field, while leaving others exposed. Neither
the head of the MLC, nor its leaves move during irradiation. Atreatment plan specifies the amount
of radiation to be delivered along each angle.

For any given angle, the radiation field is discretized and decomposed intom�n pixels, wherem
is typically the number of pairs of leaves of the MLC. This determines a decomposition of the radia-
tion beam intom� n beamlets. The amount of radiation is represented as anm� n intensity matrixA of non-negative integer values, whose entries represent the amount of radiation to be delivered
through the corresponding pixel, along the given angle.

The leaves of the MLC can be seen as partially covering rows ofA; for each rowi of A there
are two leaves, one of which may slide inwards from the left tocover the elements in columns1 to` � 1 of that row, while the other may slide inwards from the right to cover the elements in columnsr + 1 to n. Thus the entries ofA that are not covered form an interval[`; r℄ := f`; ` + 1; : : : ; rg of
consecutive columns. After each step, the amount of radiation applied in that step (this can differ per
step) is subtracted from each entry ofA that has not been covered. The irradiation for the given angle
is completed when all entries ofA have reached0.? This work was supported by the “Actions de Recherche Concertées” (ARC) fund of the “Communauté

française de Belgique”, and the National Sciences and Engineering Research Council of Canada (NSERC).
C.E. acknowledges support from the “Fonds pour la Recherchedans l’Industrie et l’Agriculture” (F.R.I.A.).

2 Biedl, Durocher, Engelbeen, Fiorini, Young

1 1 2 2 2 1
1 2 4 4 2 0
1 1 1 0
0 1 1 0 00

22

0 0

1 1 0
0

0 0 000
000

000000
0 0 0 0

10 0

0 0

0
0 0 00

111
11

0
00

00

0 0 0
0

111

1 0 0

0
1 10 0

0 0
1 1 1
1 0
1 1 1 0
0 1 1 0 00

1 1 1
1 1 1

11

0 00

0

0 1

x
0 1 1 1 1 0

= +2 x 1 x + 1

Fig. 1. An example of a segmentation of an intensity matrix whereH = 4.

Setting leaf positions in each step of the treatment plan requires time. Minimizing the number
of steps reduces treatment time, which increases patient comfort, and can result in increased patient
throughput, reduced machine wear, and overall reduced costof the procedure. Minimizing the number
of steps for a given treatment plan is the primary objective of this paper.

Formally, asegmentis am� n binary matrixS such that ones in each row ofS are consecutive.
Each segmentS has an associated non-negative integer weight which we callthe segment-value,
denoted byvS(S) or simplyv(S) whenS is understood. We call a segment ant-segment if its value
is t. A segmentationofA is a set of segments whose weighted sum equalsA. So,S is a segmentation
of A if and only if we haveA = PS2S v(S)S. Figure 1 illustrates the segmentation of an intensity
matrix.

The (minimum-cardinality) segmentation problemis, given an intensity matrixA, to find a min-
imum cardinality segmentation ofA. In this paper, we also consider the special case of a matrixA
with one row, which we call thesingle-row segmentation problem, in contrast with the more general
full-matrix segmentation problemwhich consists ofm multiple rows.

Finally, as a consequence of our results on the segmentationproblem, we also briefly examine a
different, but closely relatedlex-minproblem: find a minimum cardinality segmentation among those
with minimum beam-on-time, defined as the total value

PS2S v(S) of the segmentation.4 As the
segmentation problem focuses on the time incurred for establishing leaf positions, optimizing the
beam-on-time also has implications for making procedures more efficient by reducing the time spent
administering the treatment corresponding to the segmentsthemselves.

Related Work

The segmentation problem is known to be NP-complete in the strong sense, even for a single row [9,
2, 3], as well as APX-complete [4]. Bansalet al.[4] provide a24=13-approximationalgorithm for the
single-row problem and give better approximations for moreconstrained versions. Work by Collinset
al. [10] shows that the single-columnversion of the problem is NP-complete and provides some non-
trivial lower bounds given certain constraints. Work by Luan et al. [16] gives two approximation
algorithms for the fullm� n segmentation problem, and Biedlet al. [6] extend this work to achieve
better approximation algorithms that result in performance improvements.

A number of heuristics are known [3, 20, 11, 14] as well as approaches for obtaining optimal
(exact) solutions [7, 1, 19]. Particularly relevant to our work is that of Cambazardet al.[8] who show
that the segmentation of a single row is fixed-parameter tractable (FPT); specifically, they give an
algorithm which achieves an optimal segmentation inO(p(H)2 n) time, whereH is the largest value
in A andp(H) is the number of partitions ofH.

Kalinowski [15] studies the lex-min problem and gives polynomial time algorithms for whenH is
a constant. In the single-row case, he gives aO(p(H)2 n) time algorithm. The solution output by this
first algorithm is also optimal for the minimum-cardinalitysegmentation problem (this follows from
known results, e.g. [4]). For generalm � n intensity matrices, he provides aO(2HpHmn2H+2)
time algorithm. From this second algorithm, one can derive an algorithm for the fullm�n minimum
segmentation problem with time complexityO(2HH5=2mn2H+3). This is done by guessing the
beam-on-timeT of a minimum cardinality segmentation and appending a row tothe intensity matrix
to increase its minimum beam-on-time toT ; it can be shown thatT 2 O(H2 n).
Our Contributions

We summarize our contributions below:
4 The lex-min problem is also known as themin DT-min DCproblem where DT stands fordecomposition time

(i.e., the beam-on-time) and DC stands for decomposition cardinality (i.e., the number of segments); however,
we refer to this as the lex-min problem throughout.

Title Suppressed Due to Excessive Length 3

– For the single-row segmentation problem, we provide a faster exact algorithm. In particular, our
algorithm runs inO(p(H)H n) time, which is polynomial inn so long asH 2 O(log2 n).
In comparison to the result of Cambazardet al. [8], our algorithms is faster by a factor of
(p(H)=H); to the best our knowledge, ours is the asymptotically fastest FPT algorithm.

Despite our result for the single-row problem, significant challenges remain in solving the full-matrix
problem and here we achieve two important results:

– For generalH, we give an algorithm that yields an optimal solution to the full-matrix segmenta-
tion problem inO(mnH=2(1��)(H)) time for an arbitrarily small constant� > 0. Note, that with
a minor change, the result of Kalinowski [15] can be applied to solve the segmentation problem
(i.e. ignoring the aspect of beam-on time); however, the worst case running time is
(mn2H+2).
Therefore, our result yields a better-than-quadratic improvement in the running time.

– ForH = 2, the full matrix problem can be solved optimally inO(mn) time in contrast to theO(mn2) time implied by the previous result for generalH. This result also has implications for
the approximation algorithms in [6] where it can be employedas a subroutine to improve results
in practice.

Finally, we address the lex-min problem:

– For generalH, we give an algorithm that yields an optimal solution to the full-matrix lex-
min problem in timeO(mnH=2(12�")H). In comparison to the previous best result by Kali-
nowski [15], our algorithm yields a almost-quadratic improvement in the running time and, to
the best of our knowledge, obtains the fastest asymptotic time complexity to date.

Therefore, our algorithms represent a significant asymptotic speed-up and the techniques required to
achieve these improvements is non-trivial. In the appendix, we specify the necessary data structures
for our algorithms, along with some discussion of trade-offs between time and space complexity,
which should be of use in practice.

2 Single-row segmentation

In this section, we prove that the single-row segmentation problem is FPT inH, the largest value
in the intensity matrixA. SinceA has only one row, we represent it as a vectorA[1::n℄. We call a
segmentation ofA[1::n℄compactif any two segments in itbegin(i.e., have their first non-zero entries)
at different indices, andend(i.e., have their last non-zero entries) at different indices. The following
observation is straightforward; we give a proof in Section Aof the appendix.

Lemma 1. For any segmentationS of a single row, there exists a compact segmentationS 0 withjS0j � jSj.
Our algorithm uses a dynamic programming approach that computes an optimal segmentation of

any prefixA[1::j℄ ofA. We say that a segmentation ofA[1::j℄ is almost-compactif any two segments
in it begin at different indices, and any two segments in it either end at different indices or both end
at indexj. We will only compute almost-compact segmentations; this is sufficient by Lemma 1. We
compute the segmentation conditional on the values of the last segments in it.

Let S be a segmentation of vectorA[1::j℄; eachS 2 S is hence a vectorS[1::j℄. Define the
signatureof S to be the multi-set obtained by taking the valuev(S) of each segment ending inj.
Note that the signature of a segmentation ofA[1::j℄ is apartitionof A[j℄, i.e., a multi-set of positive
integers that sum toA[j℄ � H.

We briefly review some notation for multi-sets. A multi-setM with entries from the universe[H℄ := f1; : : : ;Hg can be described via theH-tuple (m1(M), : : : , mH (M)), wheremt(M)
denotes the multiplicity of elementt in M. We usejjMjj := PHt=1mt(M) to denote the car-
dinality of M. For two such multi-setsM1 andM2, let M1 [M2 be the multi-set defined bymt(M1 [M2) := mt(M1) + mt(M2) for t 2 [H℄; let M1 \M2 be the multi-set defined bymt(M1 \M2) := minfmt(M1);mt(M2)g for t 2 [H℄; and letM1 �M2 be the multi-set de-
fined bymt(M1 � M2) := maxf0;mt(M1) � mt(M2)g for t 2 [H℄: Adding (resp. deleting)

4 Biedl, Durocher, Engelbeen, Fiorini, Young

Notation DefinitionA A m� n intensity matrix. Form = 1,A[1::j℄ is a vector.H Largest value inA.[H℄ The setf1, . . . , Hg.� The smallest number such that every row ofA has at most� number-changes.S Segment ofA. Form = 1, S[1::j℄ is a vector.v(S) Value of a segment ofA.S Set of segments that are a segmentation forA[1::j℄.
Signature ofS Multi-set of all values of segments inS ending in indexj.� Partition of a value inA; in our context, the partition ofA[j℄.�j�1(') Set of partitions ofA[j� 1℄ that can be obtained from' by deleting at most one

element and adding at most one element.f(j;�) Minimum number of segments in an almost-compact segmentationS of A[1::j℄
that has signature�.p(H) Number of partitions of the integerH.mt(M) Multiplicity of elementt in a multi-setM.M Multi-set with entries from the universe[H℄ can be described via theH-tuple(m1(M), : : : ,mH(M)).M(S) Multi-set defined by values of segments in segmentationS.
(A[i℄) Complexity of rowi of A.f 0(j; �; �) For partition� of A[j℄ and a multiset� over [H℄, this function equals1 if theref 0(j;�; �) exists a segmentationS of A[1::j℄ with signature� and multi-setM(S) � �; 0 otherwise.f 00(j;�; �) For partition� of A[j℄ and a multiset� over[H℄, this function equals the mini-
mum possible number of 1-segments in a segmentationS of A[1::j℄ with signa-
ture� and multi-setM(S) � � [(1; 0; : : : ; 0).M; M lex Set of interesting multi-sets for the full-matrix and lex-min problem.

Table 1.Summary of frequently used notation.

elementt 2 [H℄ from multi-setMmeans increasing (resp. decreasing)mt(M) by one (while keep-
ing mt(M) � 0). Finally, we say thatM1 is containedin M2 and writeM1 � M2 whenevermt(M1) � mt(M2) for t 2 [H℄:

In order to help the reader, we aggregate our frequently usednotation in Table 1.
The key idea of our algorithm is to compute the best almost-compact segmentation ofA[1::j℄

subject to a given signature. Thus define a functionf as follows:

Given an integerj and a partition� of A[j℄, let f(j; �) be the minimum number of segments in an
almost-compact segmentationS of A[1::j℄ that has signature�.

We will show thatf(j; �) can be computed recursively. To simplify computation we will usef(0; �) as a base case; we assume thatA[0℄ = A[n + 1℄ = 0. The only possible partition of0 is the
empty partition, and sof(0; ;) = 0 is our base case.

Given a partition� of A[j℄, let �j�1(�) be the set of those partitions ofA[j � 1℄ that can be
obtained from� by deleting at most one element, and then adding at most one element. The recursive
formula forf will be given in Lemmas 2 and 3.

Lemma 2. For j � 1, f(j; �) � min 2�j�1 (�)ff(j � 1;) + jj�� jjg
Proof. Consider an almost-compact segmentationSj of A[1::j℄ that achieves the left-hand side, i.e.,
its signature is� and jSjj = f(j; �). We have four kinds of segments inSj : (1) Those that end at
indexj�2 or earlier, (2) those that end atj�1 (there can be at most one, sinceSj is almost-compact),
(3) those that end atj and start atj � 1 or earlier, and (4) those that end atj and begin atj (there can
be at most one).

Let Sj�1 be the segmentation ofA[1::j � 1℄ obtained fromSj by taking all segments of type
(1)–(3), and deleting the last entry (at indexj). The value of each segment inSj�1 is defined as the
value of the corresponding segment inSj . Note thatSj�1 is also almost-compact. The signature
of Sj�1 is the same as�, except that the value of the (unique) segment of type (4) (ifany) has been
removed, and the value of the (unique) segment of type (2) (ifany) has been added. So 2 �j�1(�).

Title Suppressed Due to Excessive Length 5

If both a segment of type (4) and a segment of type (2) exist inSj , then they necessarily have
different non-zero values (otherwise they could be combined, contradicting the minimality ofSj).
Hencejj�� jj is exactly the number of segments of type (4). SojSj�1j = jSjj � jj�� jj, which
proves the claim. ut
Lemma 3. For j � 1, f(j; �) � min 2�j�1 (�)ff(j � 1;) + jj�� jjg.
Proof. Let 2 �j�1(�) be a partition ofA[j℄ that achieves the minimum on the right-hand side.
Let Sj�1 be an almost-compact segmentation that achievesf(j � 1;), i.e., it is a segmentation ofA[1::j � 1℄ with signature and cardinalityf(j � 1;).

Define a segmentationSj of A[1::j℄ as follows. Each segment ofSj�1 that ends before indexj � 1 is extended by setting itsjth entry to be0 and added toSj . For each valuet in � �, there
must be ant-segment inSj�1 that ends at indexj � 1; add this segment toSj and let it end atj � 1
(i.e., set itsjth entry to 0). For each valuet in \ �, there must be ant-segment inSj�1 that ends at
indexj � 1; add this segment toSj and extend it toj (i.e., set itsjth entry to1). In all the preceding
cases, the value of each segment inSj is defined as the value of the corresponding segment inSj�1.

Finally, for each valuet in � � , define a new segment inSj that starts atj and has valuet.
One easily verifies thatSj has signature�, and therefore it is a segmentation ofA[1::j℄, since� is a
partition ofA[j℄. We can convert it to an almost-compact segmentation as in the proof of Lemma 1.
Also, jSjj = jSj�1j+ jj�� jj, which proves the result. ut
Theorem 1. The single-row segmentation problem can be solved inO(p(H)H �n) time andO(n+p(H)H) space, wherep(H) is the number of partitions ofH.

Proof. It follows from Lemmas 2 and 3 that, forj � 1, f(j; �) = min 2�j�1 (�)ff(j�1;)+ jj�� jjg. Here, the idea is to evaluatef(j; �) recursively with a dynamic programming approach; the
optimal value can then be found inf(n+ 1; ;). To achieve the time complexity, we need to store the
partitions in a suitable data structure. The key property here is that any partition� of A[j℄ � H hasO(pH) distinct integers in the setf1; : : : ;Hg. Thus, we can describe a partition inO(pH) space,
and store it (using a trie5) so that it can be located inO(pH) time. We give the details of this data
structure in the appendix. Using such tries, we can also generate all relevant partitions efficiently;
sincej�j�1(�)j 2 O(pH), we can therefore computef(j; �) from the stored values off(j � 1; �)
in O(H). Summing over all� andj = 1; : : : ; n then gives the desired time bound. ut

Note that the algorithm is fixed-parameter tractable with respect to parameterH. It is known

thatp(H) � e��p 2�H3 [12], so this algorithm is in fact polynomial as long asH 2 O(log2 n). In the
present form, it only returns the size of the smallest segmentation, but standard dynamic programming
techniques can be used to retrieve the segmentation in the same running time with anO(logn) space
overhead. Finally, we note that the space requirement can beimproved by a factor ofH at the expense
of an additionallogH factor in the running time (see Section B in the appendix).

3 Full-matrix segmentation

In this section, we give an algorithm that computes the optimal segmentation for a full matrix, and
which is polynomial as long asH is a constant.

3.1 Segmenting a row under constraints

The difficulty of full-matrix segmentation lies in that rowscannot be solved independently of each
other, since an optimal segmentation of a full matrix does not mean that the induced segmentations
of the rows are optimal. Consider for example241 1 12 2 23 3 335 = 241 1 10 0 01 1 135+ 240 0 02 2 22 2 235

5 There are much simpler data structures, e.g. we could store partitions as entries in aH-dimensional array, but
this would use more space and/or be slower.

6 Biedl, Durocher, Engelbeen, Fiorini, Young

which is an optimal segmentation, but the induced segmentation for the third row is not optimal.
If S is a segmentation, then letmt(S) be the number oft-segments inS; note that this defines a

multi-set over[H℄ which we refer to as themulti-setM(S) defined by segmentationS.
We now want to compute whether a rowA[1::n℄ has a segmentationS such thatM(S) � �

for some given multi-set�. We do this again with dynamic programming, by further restricting the
segmentation to the firstj elements of the row of the matrix, and by restricting the signature (the
implied partition of the last entry). Thus define the following:

Given an integerj, a partition� ofA[j℄, and a multiset� over [H℄, definef 0(j; �; �) to be1
if there exists a segmentationS ofA[1::j℄ with signature� and multi-setM(S) � �. Definef(j; �; �) to be0 otherwise.

For example, considerA = [1 3 2 4℄, � = f1; 3g and� = f1; 1; 1; 2; 3g. Thenf 0(4; �; �) asks
whether we can segmentA such that at index4 we use one1-segment and one3-segment, and
overall we use at most three1-segments, at most one2-segment, and at most one3-segment. The
answer in this case is yes ([1 3 2 4℄ = [1 1 0 0℄+ [0 2 2 0℄ + [0 0 0 1℄ + [0 0 0 3℄), sof 0(4; �; �) = 1.
Note that we were allowed one more1-segment than was actually used; this is acceptable since the
multi-set of the segmentation is allowed to be a subset of�.

We claim thatf 0(�; �; �) has a simple recursive formula. The base case is againj = 0 (as before
we assumeA[0℄ = A[n+ 1℄ = 0). SinceA[0℄ = 0, the only possible signature can be;, and we havef 0(0; ;; �) = 1 for all possible multi-sets�. Forj � 1, we can computef 0(j; �; �) from f 0(j�1; �; �)
as follows:

Lemma 4. For all j � 1,f 0(j; �; �) = max is a partition ofA[j � 1℄ f 0(j � 1; ; � � (��)): (1)

Before proving this, we will illustrate it with the above example ofA = [1 3 2 4℄, � = f1; 3g
and� = f1; 1; 1; 2; 3g. Let = f2g and� 0 = f1; 1; 2g. Thenf 0(3; ; � 0) = 1 since[1 3 2℄ =[1 1 0℄+ [0 2 2℄. Furthermore, we have�� = f1; 3g and�� (��) = f1; 1; 2g= � 0. Therefore,
the formula says thatf 0(4; �; �) should be1, which indeed it is.

The following proof is quite similar in spirit to the proofs of Lemmas 2 and 3, except that we also
need to keep track of how the multi-sets of segmentations change.

Proof (of Lemma 4).Assume first thatf 0(j; �; �) = 1, so we have a segmentationSj of A[1::j℄ with
signature� andM(S) � �. Let Sj�1 be its implied segmentation ofA[1::j � 1℄, and let it have
signature . Then� � contains exactly those values of segments ofSj that begin (and end) atj, and hence are not inSj�1. SinceSj contains at mostmt(�) segments of valuet, thereforeSj�1
contains at mostmt(�)�mt(��) segments of valuet. Thus segmentationSj�1 has signature
and satisfiesM(Sj�1) � � � (� �), which provesf 0(j � 1; ; � � (� �)) = 1 and hence the
right-hand side is1.

Now assume that the right-hand side is1, say for partition there exists a segmentationSj�1
that has signature and satisfiesM(Sj�1) � � � (��). By adding a newt-segment (beginning
and ending atj) for each valuet in � � , and extending a segment to also cover indexj for each
valuet in \�, we can create a segmentationSj ofA[1::j℄ that has signature� andM(Sj) � �, sof 0(j; �; �) = 1 as desired. ut

We now turn to the run-time of actually computingf 0. In the above definition, we have not
imposed any bounds on�, other than that it is a multi-set over[H℄. But clearly we can restrict the
multi-sets considered. Assume for a moment that we know an optimal segmentationS� of the full
matrix. We call a multi-set� relevantif � �M(S�). Clearly it suffices to computef 0 for all relevant
multi-sets.

To find (a superset of) relevant multi-sets without knowingS�, we exploit thatM(S�) cannot
contain too many segments of the same value. Let�[i℄[j℄ := A[i℄[j℄� A[i℄[j � 1℄ for j 2 [n + 1℄,
where we assume thatA[i℄[0℄ = A[i℄[n+ 1℄ = 0. We say that there is amarkerbetween indexj � 1
andj in row i if �[i℄[idxn℄ 6= 0, i.e., if the value inA changes. Let�i be the number of markers in
row i, and let� = maxi �i.

Title Suppressed Due to Excessive Length 7

From now one, whenever we consider a segmentation of a row, wewill assume that it has been
standardizedin the following way: (1) Every segments begins and ends at a marker. For if it doesn’t,
then some other segments(s) must end wheres begins (or vice versa), and by moving all these end-
points to the nearest marker, we retain a segmentation without adding any new segments (and perhaps
even deleting some.) (2) Whenever a segment ends at a marker,then there is no other segment of the
same value that begins at that marker. For otherwise the two segments could be combined into one.

We now prove a useful bound on segmentations of the full matrix A.

Lemma 5. If all rows ofA have at most� markers, then there exists a minimum cardinality segmen-
tation that has at most�=2 t-segments for allt 2 [H℄.
Proof. Among all optimal segmentations ofA, letS� be the one that maximizes

PHt=1mt(M(S�))2.
Assume for contradiction that there is somet 2 [H℄ for whichS� containsr > �=2 segments of valuet. We will then create another segmentationS 0 that usesr�1 segments of valuet, and one additional(2t)-segment. HenceS 0 has the same cardinality asS�, but at the same time

PHt=1mt(M(S 0))2 >PHt=1mt(M(S�))2, contradicting the choice ofS�.
To see why such anS 0 exists, consider any row ofA and its segmentation byS�. As explained

above, we assume that this segmentation is standardized. Ifthe segmentation uses at mostr � 1
segments of valuet, then we use the exact same segmentation inS 0. If it usesr > �=2 segments of
valuet, then there must be in this segmentation twot-segments that both begin at the same marker,
or both end at the same marker, say the former. We can replace these two segments by a2t-segment,
followed by one (possibly empty)t-segment once the first of the two segments ends. Hence again we
obtain a segmentation of the row that can be used forS 0. Therefore, in every row we can change the
segmentation byS� into one that can be used forS 0, proving thatS 0 exists, a contradiction. ut

Now letM be all those multi-sets over[H℄ where all multiplicities are at most�=2; this contains
all relevant multi-sets. We store these in anH-dimensional array with indices in[0::�=2℄; this takesO((�=2)H) space, and allows lookup of a multi-set inO(H) time. Using (1), one can easily see that
we can compute the valuesf 0(j; �; �) as shown in Algorithm 1.

Algorithm 1
1: LetM be all multi-sets where all multiplicities are at most�=2.
2: for all multi-sets� in M do
3: Initialize f 0(0; ;; �) = 1.
4: for j = 1; : : : ; n+ 1 do
5: for all multi-sets� in M do
6: for all partitions� of A[j℄ do
7: Initialize f 0(j; �; �) = 0
8: for all partitions of A[j� 1℄ do
9: Compute�0 = � � (��)

10: if f 0(j � 1; ; �0) = 1 then
11: Setf 0(j;�; �) = 1 andbreak
12: end if
13: end for
14: end for
15: end for
16: end for
17: end for

The running time of Algorithm 1 is determined by the time to compute� 0 and looking upf 0(j �1; ; � 0). Computing� 0 (given�, � and) can certainly be done inO(H) time. To look upf 0(j �1; ; � 0), we first look up� in the appropriate data structure inO(H) time. With each multi-set� 2 M , we store all partitions ofA[j � 1℄ and ofA[j℄ (for the current value ofj), and with each of
them, the values off 0(j � 1; ; �) andf 0(j; ; �), respectively. Looking up or changing these values
(given� and) can then be done inO(pH) time by storing partitions in tries.

So lines 9-11 requireO(H) time. They are executedp(H) times from line 8,p(H) times from
line 6, jM j times from line 5, andn+ 1 times from line 4; this isO(n(�=2 + 1)Hp(H)2H) time.

8 Biedl, Durocher, Engelbeen, Fiorini, Young

As for the space requirements, we need to store all relevant multi-sets, and with each, all partitions
ofA[j�1℄ andA[j℄, which takesO(H) space per partition. So the total space isO(p(H)H(�=2)H).
Lemma 6. Consider one rowA[1::n℄. In O(n(�=2)Hp(H)2H) time andO(p(H)H(�=2)H) space
we can compute anH-dimensional binary arrayF such that for anym1; : : : ;mH � �=2 we haveF(m1; : : : ;mH) = 1 if and only if there exists a segmentation ofA[1::n℄ that uses at mostmt
segments of valuet for t 2 [H℄.
3.2 Full-matrix

Solving the full-matrix problem is now quite simple. For allrows i, compute the tableFi described
in Lemma 6. This takes timeO(mn(�=2)Hp(H)2H) total. The space isO(p(H)H(�=2)H) per
row, but once done with a rowi we only need to keep theO((�=2)H) values for the corresponding
tableFi; therefore, in total, it isO(maxfm; p(H)Hg(�=2)H). Now, inO(m(�=2)H) time find the
numbersm1; : : : ;mH for whichFi(m1; : : : ;mH) is 1 forall rowsi and for whichm1 + � � �+mH
is minimized.
Claim. The valuesm1; : : : ;mH exist, and the optimal segmentation has sizem1 + � � �+mH .
Proof. Let S� be an optimal segmentation of the full matrix with at most�=2 segments of valuet
for all t 2 [H℄. By Lemma 5, such a segmentation exists. Letm�t be the number oft-segments inS�. The row segmentations induced byS� have at mostm�t segments of valuet for all t 2 [H℄, soFi(m�1; : : : ;m�H) is 1 for all rows. Thusm1; : : : ;mH exist and by their choice as minimizing the
sum we havem1 + � � �+mH � m�1 + � � �+m�B = jS�j.

For the other inequality, by choice of themt’s, every rowi has a segmentationSi with at mostmt
segments of valuet. We can combine these segmentations with a greedy packing algorithm (see also
[6]): Definemt matrix-segments of valuet by taking from each row a row-segment of valuet if there
is one left. Repeat for allt. This gives a segmentationS of the full matrix of sizem1 + � � �+mH , sojS�j � m1 + � � �+mH .

Combining the two inequalities showsjS�j = m1 + � � �+mH . ut
This implies the next result.

Theorem 2. The full-matrix segmentation problem can be solved inO(mn(�=2)Hp(H)2H) time
andO(maxfm; p(H)Hg(�=2)H) space if each row has at most� markers.

Note that one could view our result as a fixed-parameter tractability result, where the parameter
is H + �. However, normally� will be large. In particular, if a natural pre-processing step is ap-
plied that removes from each row ofA any consecutive identical numbers (this does not affect the
size of the optimum solution), then� = n + 1. We therefore prefer to re-phrase our theorem to
express the worst-case run-time in terms ofm;n andH only. Note that� � n + 1 always, so the

run-time becomesO(mnH+1p(H)2H=2H). Recall thatp(H) � e�p 2H3 � e2:6pH and, therefore,Hp(H)2 � He5:2pH = 2lg (H)+5:2pH lg (e) � 28:6pH , implying thatp(H)2H=2H 2 O(2�(1��)H)
for some arbitrarily� > 0 for H sufficiently large.

Corollary 1. The full-matrix segmentation problem can be solved inO(mnH+1=2(1��)H) time,
where� > 0 is an arbitrarily small constant, andO(mnH) space.

3.3 Further improvements of the complexity

We sketch a further improvement that removes a factor ofn from the running time. Recall that the
functionf 0(j; �; �) was defined to be1 if and only if there exists a segmentationS of A[1::j℄ with
signature� and multi-setM(S) � �. In its place, we can instead define a functionf 00(j; �; �), which
contains the minimum number of 1-segments in a segmentationS of A[1::j℄ with signature� and
multi-setM(S) � � + �1. Here,�1 is the multi-set that hasm1(�1) = 1 andmt(M1) = 0 for allt 6= 1. In other words, the segmentation that definesf 00 is restricted in the number oft-segments only
for t > 1, and the restriction on1-segments is expressed in the return-value off 00. In particular, the
value off 00(j; �; �) is independent of the first multiplicity of�, and hence must be computed only
for those� withm1(�) = 0; there are only(�=2 + 1)H�1 such multi-sets�.

Title Suppressed Due to Excessive Length 9

It remains to argue thatf 00 can be computed efficiently, with a similar formula as forf 0. This
is quite simple. To computef 00(j; �; �), try all possible partitions of A[j � 1℄, compute� 0 =��(��), and let� 00 be� 0 with its first multiplicity changed to0. Look up the valuef 00(j�1; ; � 00)
and add to it the number of 1s in� � . This gives one possible candidate for a segmentation; we
find the best one by minimizing over all . We leave the formal proof of correctness to the reader.

We can hence computef 00(n+1; ;; �) for all (�=2)H�1 multi-sets� inO(n(�=2)H�1 p(H)2H)
time. Doing this for all rows, we can compute the maximum of the valuesf 00(n+1; ;; �)over all rows.
The optimum segmentation can then be found by choosing the one that minimizes this maximum
plus jj�jj over all�. As before, this only adds an extraO(m) factor to the run-time, which is henceO(mn(�=2)H�1p(H)2H), and similarly as before this can be simplified toO(mnH=2(1�")H).
Theorem 3. The full-matrix segmentation problem can be solved inO(mnH=2(1��)H) time, for� > 0 an arbitrarily small constant, andO(mnH�1) space.

3.4 Solving the lex-min problem

Recall that the lex-min problem is that of finding a minimum cardinality segmentation among those
with minimumbeam-on-time, defined as the total value

PS2S v(S) of the segmentation. Here, we
show how to apply our techniques to achieve a speed up in solving this problem. To this end, we need
the notion of thecomplexity of rowA[i℄ which is defined as:
(A[i℄) := 12 n+1Xj=1 j�[i℄[j℄j = n+1Xj=1maxf0;�[i℄[j℄g= n+1Xj=1�minf0;�[i℄[j℄g;
where as before�[i℄[j℄ := A[i℄[j℄�A[i℄[j � 1℄ for j 2 [n+ 1℄.

Importantly, is was shown in [14] that the minimum beam-on time can be computed efficiently;
it is
(A) := maxif
(A[i℄)g. To solve the lex-min problem, we simply have to change our focus
regarding the setM of interesting multi-sets. Instead of the relevant multi-sets as used earlier, where
each multiplicity is at most�=2, we need all multi-sets� such that

PHt=1 t�mt(�) equals the minimum
beam-on time. LetM lex be the set of these multi-sets and their subsets. While Lemma5 no longer
applies, we still obtain a useful bound on the sizeM lex .

Lemma 7. If all rows ofA have at most� markers, then there exists a minimum cardinality segmen-
tation among all those that have minimum beam-on time that has at most� � 1 t-segments for allt 2 [H℄. Moreover, fort > H=2, there are at most�=2 t-segments.

Proof. The proof is almost identical to the one of Lemma 5, except that we need to chooseS 0 more
carefully to ensure that it, too, has minimum beam-on time. So let S� be a minimum cardinality
segmentation among all those that have minimum beam-on time. As usual, we assume thatS� has
been standardized; this does not affect the beam-on time.

It is then near-trivial thatS� has at most�=2 t-segments fort > H=2: No two such segments can
overlap (since their combined value exceedsH), and so no two of them can share a marker (sinceS�
is standardized); since each touches two markers thereforethere can be at most�=2 of them.

The other claim is more complicated. Assume for contradiction that there is somet 2 [H℄ for
whichS� containsr � � segments of valuet. We will then create another segmentationS 0 that usesr � 2 segments of valuet, and one additional2t-segment. HenceS 0 has the same beam-on time and
a smaller cardinality asS�, contradicting the choice ofS�.

To see why such anS 0 exists, consider any row ofA and its segmentation byS�. If the segmen-
tation uses at mostr � 2 segments of valuet, then we use the exact same segmentation inS 0. If it
usesr � 1 � � � 1 � �=2 segments of valuet, then as in the proof of Lemma 5, two of them must
start at the same marker, and we remove them and replace them by a (2t)-segment. The resulting
segmentation has less thanr � 2 segments of valuet and one of value2t and so can be used forS 0.

Now finally assume that some row containsr � � segments of valuet. Define an auxiliary graphH as follows:H has a vertex for every marker, and an edge between two markersif and only if there
exists at-segment that begins at one of them and ends at the other.H has� vertices andr � � edges,

10 Biedl, Durocher, Engelbeen, Fiorini, Young

and hence contains a cycleC. Let s1 = [j1; j2℄ be a shortest segment onC (as measured byj2� j1),
and lets0 ands2 be its neighbours onC.

Rename, if needed, so thats0 ands2 share the marker atj1 andj2, respectively, withs1. SinceS�
is standardized, we haves0 = [j1; j3℄ ands2 = [j0; j2℄. Sinces1 was the shortest segment onC, we
havej0 � j1 � j2 � j3. Now define a segment[j1; j2℄ of value2t, and ifs0 6= s2 another segment[j0; j3℄ of valuet, and use these segments instead ofs0; s1; s2. One easily verifies that this is also a
segmentation of the row, and it can be used forS 0. This proves thatS 0 exists, a contradiction. ut

We can hence find and store a (super-set of)M lex by using all entries in anH-dimensional
array [0; �℄bH=2
 � [0; �=2℄dH=2e, and there areO(�H=2H=2) such multi-sets. We will computef 00(n+ 1; ;; �) for all such multi-sets�, and then pick a multi-set� for which jj�jj+PHt=1mt(�) is

minimized, and for which
PHt=1 tmt(�) equals
(A). This is then the multi-set used for a minimum

segmentation among those with minimum beam-on time; we can find the actual segmentation by
re-tracing the computation off 00(n+ 1; ;; �).

By the same analysis used for the minimum cardinality segmentation problem, and the improve-
ment described in the previous Section 3.3, we have:

Theorem 4. The lex-min problem can be solved inmnH=2(12�")H time and withO(mnH�1) space.

Recall that Kalinowski’s algorithm in [15] has a time complexity of O(2HpH �m � n2H+2). So we
obtain an almost-quadratic improvement in the time complexity. Finally, we note that it is intuitively
reasonable that our algorithm can be applied to the lex-min problem since the restriction on the space
of feasible solutions that the beam-on time be minimized canbe captured by modifying appropriately
the set of interesting multi-setsM lex .

4 The special case ofH = 2
ForH = 2 (i.e., a 0/1/2-matrix), the algorithm of Section 3.3 has run-timeO(mn2). As we show in
this section, however, yet another factor ofn can be shaved off by analyzing the structure of the rows
more carefully. In a nutshell, the functionf 00 of Section 3.3 can be computed from the structure of the
row alone, without needing to go through all possible signatures; we explain this now. Throughout
Section 4, we assume that all entries in the intensity matrixare 0, 1, or 2.

4.1 Single row forH = 2
As before, letA[1::n℄ be a single row of the matrix. Consider a maximal interval[j0; j00℄ such thatA[j0::j00℄ has all its entries equal to2. We callA[j0::j00℄ a towerif A[j0� 1℄ andA[j00+1℄ both equal0, asimple stepif one ofA[j0�1℄ andA[j00+1℄ equals1 and the other0, and adouble stepotherwise.
(As usual we assume thatA[0℄ = A[n+ 1℄ = 0.) We uset, s andu to denote the number of towers,
simple steps and double steps, respectively. Figure 2 illustrates how interpretingA[i℄ = t ast blocks
atop each other gives rise to these descriptive names.

...

Fig. 2. Two kinds of simple steps, a tower, and a double-step.

Recall that
(A[i℄) =Pn+1j=1 maxf�[i℄[j℄; 0g is the complexity of a rowi of a full matrixA; we
use
(A) for the complexity of the single rowA under consideration.

Lemma 8. Defineg(d) as follows:g(d) := 8<:
(A)� 2d if d < t,
(A)� t� d if t � d � s + t,
(A)� 2t� s if t+ s < d.

Title Suppressed Due to Excessive Length 11

Then for anyd � 0, f 00(n+1; ;; f0; dg) = g(d). In other words, any segmentationS ofA with at mostd segments of value2 has at leastg(d) segments of value1. Moreover, there exists a segmentation
that has at mostd segments of value 2 and at mostg(d) segments of value 1.

Proof. Let S be a segmentation ofA that uses at mostd segments of value 2. As before, we as-
sume thatS has been standardized, which can be done without increasingthe number of 2-segments.
Therefore, any tower, step or double-step ofA is either entirely covered by a 2-segment, or it does
not intersect any 2-segment.

Let s2; t2 andu2 be the number of steps, towers, and double-steps (respectively) that are entirely
covered by a 2-segment. We claim the the number of 1-segmentsof S is
(A) � s2 � 2t2, and can
prove this by induction ons2 + t2 + u2. If s2 + t2 + u2 = 0, thenS has only 1-segments, and sinceS is standardized, the number of 1-segments equals
(A). If, say,t2 > 0, then letA0 be the vector
obtained fromA by removing a tower that is covered by a 2-segment (i.e., by replacing the 2s of
that tower by 0s), and letS 0 be the segmentation ofA0 obtained fromS by removing the 2-segment
that covers that tower. ThenA0 hast02 = t2 � 1 towers covered by 2-segments, and furthermore
(A0) =
(A) � 2. SinceS andS 0 have the same number of 1-segments, the claim easily followsby
induction. Similarly one proves the claim by induction ifs2 > 0 or u2 > 0.

Therefore the number of 1-segments inS is
(A)�s2�2t2. We also know thats2+ t2+u2 � d.
So to get a lower bound on the number of 1-segments, we should minimize
(A)� s2 � 2t2, subject
to s2 + t2+ u2 � d and the obvious0 � s2 � s, 0 � t2 � t and0 � u2 � u. The bound now easily
follows by distinguishing whetherd < t (the minimum is att2 = d, s2 = u2 = 0), or t � d < t+ s
(minimum att2 = t, s2 = d� t, u2 = 0) or t+ s < d (minimum att2 = t, s2 = s, u2 = 0.)

For the second claim, we obtain such a segmentation by usingminfd; tg 2-segments for towers,
thenminfd� t; sg 2-segments for stairs ifd � t, and cover everything else by 1-segments. ut

The crucial idea forH = 2 is that sinceg(�) can be described explicitly with only three linear
equations that can easily be computed, we can save space and time by not storingf 00(n+1; ;; f0; dg)
explicitly as an array of length�=2 + 1, and not spendingO(n � �=2) time to fill it.

4.2 Full matrix segmentation forH = 2
As in Section 3.3, to solve the full-matrix problem we need tofind the valued� that minimizesd+maxiff 00i (n+ 1; ;; f0; dg)g=: D, wheref 00i (�) is functionf 00(�) = g(�) for row i. We can hence
find the optimal segmentation ofA as follows. Compute the complexity and the number of towers
and stairs in each row; this takesO(mn) time total. Eachf 00i (�) is then the maximum of three lines
defined by these numbers. Henced+maxiff 00i (n + 1; ;; f0; dg)g is the maximum of3m lines. We
hence can computeD (and with itd�) by taking the intersection of the upper half-spaces definedby
the3m lines (this can be done inO(m) expected time easily, and inO(m) worst-case time with a
complicated algorithm [13]), and then finding the grid pointwith the smallesty-coordinate in it.

Once we foundd�, we can easily compute a segmentation of each row that has at mostD � d�
segments of value1 and at mostd� segments of value2 (see the proof of Lemma 8) and combine
them into a segmentation of the full matrix with the greedy-algorithm; this can all be done inO(mn)
time. Thus the overall run-time isO(mn).
Theorem 5. A minimum cardinality segmentation of an intensity matrix with values inf0; 1; 2g can
be found inO(mn) time.

An immediate application of this result is that it can be combined with theO(logh) approximation
algorithm in [6]. While approximation guarantee remains unchanged, this should result in improved
solutions in practice while not substantially increasing the running time.

One naturally asks whether this approach could be extended to higher values ofH. The main
obstacles to doing this is the functiong(d). The overall approach would work well forH = 3
if we had a functiongi(d2; d3) for each rowA[i℄ lower bounding the number of1-segments in a
segmentation if it has at mostd2 segments of value2 andd3 segments of value3. It seems likely that
the functionsgi(d2; d3) would be piecewise linear just likeg(d) was, but it is not clear how many
pieces there are, and whether we can compute them easily fromthe structure of the row. Thus a faster
algorithm forH = 3 (or higher) remains to be found.

12 Biedl, Durocher, Engelbeen, Fiorini, Young

5 Conclusion

In this work, we developed several algorithms that provide drastic running time improvements for
the minimum cardinality problem. At this point, a couple interesting problems remain open. Does the
full-matrix problem admit a FPT result ifm > 1 butm is small (i.e., a small number of rows)? Is the
full-matrix problemW [1℄-hard inH?

References

1. Davaatseren Baatar, Natashia Boland, Sebastian Brand, and Peter J. Stuckey. Minimum cardinality matrix
decomposition into consecutive-ones matrices: Cp and ip approaches. InProceedings of the 4th Interna-
tional Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR), pages 1–15, 2007.

2. Davaatseren Baatar and Horst W. Hamacher. New lp model formultileaf collimators in radiation therapy.
Contribution to the Conference ORP3, Universität Kaiserslautern, 2003.

3. Davaatseren Baatar, Horst W. Hamacher, Matthias Ehrgott, and Gerhard J. Woeginger. Decomposition of
integer matrices and multileaf collimator sequencing.Discrete Applied Mathematics, 152(1–3):6–34, 2005.

4. Nikhil Bansal, Don Coppersmith, and Baruch Schieber. Minimizing setup and beam-on times in radiation
therapy. InProceedings of APPROX-RANDOM, pages 27–38, 2006.

5. T. Biedl, S. Durocher, H. Hoos, S. Luang, J. Saia, and M. Young. Improved approximations for segment
minimization in intensity modulated radiation therapy, 2009. Submitted.

6. Therese Biedl, Stephane Durocher, Holger H. Hoos, ShuangLuan, Jared Saia, and Maxwell Young. A note
on improving the performance of approximation algorithms for radiation therapy.Information Processing
Letters, 111(7):326–333, 2011.

7. Sebastian Brand. The sum-of-increments constraint in the consecutive-ones matrix decomposition problem.
In Proceedings of the 24th Symposium on Applied Computing (SAC), pages 1417–1418, 2009.

8. Hadrien Cambazard, Eoin O’Mahony, and Barry O’Sullivan.A shortest path-based approach to the multileaf
collimator sequencing problem. InIntegration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CP-AI-OR), pages 41–55, 2009.

9. Danny Z. Chen, Xiaobo Sharon Hu, Shuang Luan, Shahid A. Naqvi, Chao Wang, and Cedric X. Yu. Gener-
alized geometric approaches for leaf sequencing problems in radiation therapy. InProceedings of the15th
International Symposium on Algorithms and Computation (ISAAC), pages 271–281, 2004.

10. Michael J. Collins, David Kempe, Jared Saia, and MaxwellYoung. Non-negative integral subset represen-
tations of integer sets.Information Processing Letters, 101(3):129–133, 2007.

11. Cristian Cotrutz and Lei Xing. Segment-based dose optimization using a genetic algorithm.Physics in
Medicine and Biology, 48(18):2987–2998, 2003.

12. Wladimir de Azevedo Pribitkin. Simple upper bounds for partition functions. The Ramanujan Journal,
18(1):113–119, 2009.

13. Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational Geometry (3rd
edition). Springer-Verlag, 2008.

14. Konrad Engel. A new algorithm for optimal multileaf collimator field segmentation.Discrete Applied
Mathematics, 152(1–3):35–51, 2005.

15. Thomas Kalinowski. The complexity of minimizing the number of shape matrices subject to minimal beam-
on time in multileaf collimator field decomposition with bounded fluence.Discrete Applied Mathematics,
157(9):2089–2104, 2009.

16. Shuang Luan, Jared Saia, and Maxwell Young. Approximation algorithms for minimizing segments in
radiation therapy.Information Processing Letters, 101(6):239–244, 2007.

17. Robert Sedgewick.Algorithms in Java, Parts 1–4 (Fundamental Algorithms, Data Structures, Sorting,
Searching. Addison-Wesley, 2002.

18. R. Alfredo C. Siochi. Minimizing static intensity modulation delivery time using an intensity solid
paradigm.International Journal of Radiation Oncology * Biology * Physics, 43(3):671–680, 1999.

19. Giulia M. G. H. Wake, Natashia Boland, and Les S. Jennings. Mixed integer programming approaches to
exact minimization of total treatment time in cancer radiotherapy using multileaf collimators.Computers
and Operations Research, 36(3):795–810, 2009.

20. Ping Xia and Lynn J. Verhey. Multileaf collimator leaf sequencing algorithm for intensity modulated beams
with multiple static segments.Medical Physics, 25(8):1424–1434, 1998.

Title Suppressed Due to Excessive Length 13

A Missing proof

Lemma 1. For any segmentationS of a single row, there exists a compact segmentationS 0 withjS0j � jSj.
Proof. Start with an arbitrary optimal segmentationS; we can argue how to modifyS to obtain a
compact segmentation of the same size. Leti be the smallest index such that two segmentsS; S0 of S
begin at indexi. SayS andS0 have non-zero valuea anda0 and end at indicesj andj0, respectively.
If j = j0, then the two segments could be combined into one to give a smaller segmentation, a
contradiction. Soj 6= j0, sayj < j0.

Define two new segmentsS00 andS000 as follows. SegmentS00 begins ati, ends atj and has valuea+a0. SegmentS000 begins atj+1, ends atj0, and has valuea0. ClearlyaS+a0S0 = (a+a0)S00+a0S000,
soS 0 = S�fS; S0g[fS00; S000g is also an optimal segmentation, and has fewer segments thatstart ati. Iterate until only one segment starts ati, then iterate with all larger values where multiple segments
start. (Note that all new segments inS 0 start ati or later, so this eliminates all coinciding start-indices.)
Then similarly eliminate coinciding end-indices, starting at the largest one where they occur. ut
B Data structures to store partitions

Recall that a partition� of a value� H is a multi-set over the universe[H℄ = f1; : : : ;Hg. Lett1 > � � � > t` be those values that occur at least once in�. We can then describe� as a string�(�) = (t1;mt1(�)); : : : ; t`;mt`(�));
wheremtk(�) > 0 is the multiplicity of valuetk in �, for k = 1; : : : ; `. For example, we have� = f4; 2; 1; 1; 1g() �(�) = (4; 1; 2; 1; 1;3)
A key observation is that�(�) has lengthO(pH). For recall that� is a partition of a value� H,
and hence

Pk̀=1mtk(�)tk � H. If we had` > p2H thenH � X̀k=1mtk (�)tk � X̀k=1 tk � X̀k=1 k = `(` + 1)2 � p2H(p2H + 1)2 > H;
a contradiction. Soj�(�)j = 2` � 2p2H = O(pH).

Thus, to store and access information about�, we will store and access information about string�(�), which is a string withO(pH) entries in the alphabet� = f1; : : : ;Hg. We store such strings
using atrie, i.e., a tree where arcs to the children of a node are labelledwith distinct letters from�.
See for example [17] for more details about tries.

The node on levelk of the trie refers to entryk of the strings�(�), i.e., it either distinguishes by
the next valuetk for whichmtk(�) is non-zero, or (one level farther down) by whatmtk(�) is. To
find the appropriate child, each node stores an arrayC[1 : : :H℄ whereC[t℄ refers to the child where
the value ist.

So to find the entry for a partition� (which has been stored as list�(�)), we trace from the top
downwards in the trie, using thekth entry in�(�) to find the appropriate child of the node on thekth
level. The time to do so isO(jj�(�)jj) = O(pH).

The space requirement for this trie isO(H) per node. If we use a compressed trie (i.e., we
only split at a node if it actually has multiple descendants), then the number of nodes in the trie
is proportional to its number of leaves, which isp(H). Hence the trie needsO(p(H)H) space.

14 Biedl, Durocher, Engelbeen, Fiorini, Young

B.1 Decreasing space by increasing time

Instead of using an array to store the children of a node, we can use a binary search table or a hash-
table with constant load factor. Then the space at each node is proportional to its number of children,
and hence the total space used at internal nodes isO(p(H)). But we still needO(p(H)pH) space
to store the description�(�) for all partitions�, so the total space isO(p(H)pH). This savings in
space comes at an increased run-time: With binary search trees, the lookup time is nowO(logH)
at each node, and with hash-tables, it isO(1) expected time. For all but really large values ofH,
this rather small decrease in space does not seem to warrant the more complicated data structure and
potential time-increase.

B.2 Creating partitions

We can use this trie to create all partitions of all values� H efficiently. Let� be a partition ofL � H.
Let t1 be the largest value of�, and let�0 be the partition obtained from� by deleting one copy oft1. Then�0 is a partition ofL� t1. Thus, every partition� of L can be obtained by taking a partition�0 of a valueL0 < L such thatL � L0 is no smaller than the largest value in�0. It is easy to see that
this is a 1-1 correspondence.

to compute�(L), we assume that we have computed�(1); : : : ; �(L � 1) already and stored
them in their appropriate tries. Create a new trie with root noder. For eachL0 < L, we obtain the
partitions ofL with largest valueL�L0 by scanning the trie that stores�(L0). More precisely, ignore
all partitions in�(L0) that are located at childrenC[L�L0+1; : : : ; L0℄ of the root; these have largest
value bigger thanL � L0. Then scan through each remaining partition ofL0, add one valueL � L0
to it to obtain a partition ofL, and add it into the trie that stores�(L). This takesO(pH) time per
partition that is inserted, and henceO(p(L)pH) time overall. Doing this forL = 1; : : : ;H finds all
partitions ofH in timeO(pH(p(1) + � � �+ p(H))) = O(p(H)pH).

