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Abstract—The problem of Internet intrusions has become a
world-wide security concern. To protect computer users from
malicious attacks, Intrusion Detection Systems (IDSs) are de-
signed to monitor network traffic and computer activities in order
to alert users about suspicious intrusions. Collaboration among
IDSs allows users to benefit from the collective knowledge and
information from their collaborators and achieve more accurate
intrusion detection. However, most existing collaborative intru-
sion detection networks rely on the exchange of intrusion data
which raises the privacy concern of participants. To overcome this
problem, we propose SMURFEN: a knowledge-based intrusion
detection network, which provides a platform for IDS users to
effectively share their customized detection knowledge in an IDS
community. An automatic knowledge propagation mechanism
is proposed based on a decentralized two-level optimization
problem formulation, leading to a Nash equilibrium solution
which is proved to be scalable, incentive compatible, fair, efficient
and robust. We evaluate our rule sharing mechanism through
simulations and compare our results to existing knowledge
sharing methods such as random gossiping and fixed neighbors
sharing schemes.

I. INTRODUCTION

In recent years, Internet intrusions have become more so-
phisticated and difficult to detect. With the increasing com-
plexity of software and systems, thousands of vulnerabili-
ties are being discovered and exposed for exploitation every
year. Attacks usually appear before security vendors release
their defense technology and software vendors release their
corresponding patches (e.g., zero-day attacks). Attacks from
the Internet are usually accomplished with the assistance of
malicious code (a.k.a. malware), including worms, viruses,
Trojan horses, and Spyware. An example is the Conflicker
worm which infected more than 3 million servers from year
2008 to 2009, with an estimated economic loss of $9.1 billion
[1]. Recent intrusion attacks compromise a large number of
nodes to form botnets [2]. Hackers not only harvest private
data and identify information from compromised nodes [3],
but also use those compromised nodes to launch distributed
attacks such as distributed-denial-of-service (DDoS) attacks,
distribution of spam messages, or organized attacks such as
Fast-Flux service networks [4].

To protect computer users from malicious intrusions, In-
trusion Detection Systems (IDSs) are designed to monitor
network traffic and computer activities by raising intrusion
alerts to network administrators or security officers. IDSs

can be categorized into host-based (HIDS) or network-based
(NIDS) according to their targets, and signature-based or
anomaly-based according to their detection methodologies. A
NIDS monitors the network traffic from/to one or a group
of computers and compare the data with known intrusion
patterns. A HIDS monitors the activities of one computer
but has a deeper insight by tracking the system files and
system logs of the computer. A signature-based IDS identifies
malicious codes if the a match is found with a pattern in the
attack signature database. An anomaly-based IDS, on the other
hand, monitors the traffic volume or behavior of the computer
and raise alerts when they are out of a predefined normal
scope. Compared to HIDS, an NIDS has a broader view of the
status of the network it monitors, but may miss some intrusions
which are hard to detect by observing network traffic only. A
signature-based IDS can accurately identify intrusions and the
false positive rate is low compared to anomaly-based detection.
However, it is not effective for zero-day attacks, polymorphic,
and metamorphic malware [5]. An anomaly-based IDS may
detect zero-day attacks by analyzing their abnormal behaviors.
However, an anomaly-based detection usually generates a high
false positive rate.

Traditional IDSs work independently from each other and
rely on downloading new signatures or detection rules from the
corresponding security vendor’s signature/rule base to remain
synchronized with new detection knowledge. However, the
increasing number and diversity of intrusions render it not
effective to rely on the detection knowledge from a single
vendor, since not a single vendor can cover all the possible in-
trusions due to limited labor and available technology. Indeed,
vendors usually choose to cover high priority intrusions which
may have large influence among their clients or have high risk
levels. Collaborative intrusion detection networks (CIDNs)
provide a platform for IDSs to take advantage of the collective
knowledge from collaborators to improve the overall detection
capability and accuracy. However, most existing CIDNs, such
as [6], [7], [8], [9], and [10], rely on the sharing of intrusion
data with others, which raise privacy concerns from the
participants. The other way, sharing detection knowledge such
as malware signatures and intrusion detection rules, causes less
privacy concern.

In reality, expert IDS users, including security analysts,
network administrators, and security system programmers,



create their own detection rules or customize existing ones
to improve detection accuracy specifically for their individual
environment [11]. A new detection rule created by one user
may be adopted directly by another user if they have similar
network/computer configurations. For example, detection rules
created for an academic computing environment may be
easily adopted by another similar institution; a new intrusion
detection rule created to minimize vulnerability of a software
can be adopted by others using the same software. An expert
user who creates new rules for newly revealed vulnerabilities
may share their rules with others who are subject to similar
vulnerabilities. Sharing rules among a large group of users can
be an effective way to improve the overall security among all
users.

In this paper, we leverage the benefit of intrusion detection
knowledge sharing and propose SMURFEN, a knowledge-
based collaborative intrusion detection network, where intru-
sion detection knowledge is shared among users who have
similar interests in the community. Accordingly, an automatic
knowledge dissemination mechanism is proposed to allow
users effectively share detection rules with other users without
overwhelming their receiving capacities.

The major contributions of this paper are as follows: 1)
We propose a novel intrusion detection rule sharing system,
called SMURFEN1, which is based on a peer-to-peer overlay
and uses the collective social intelligence for intrusion de-
tection. 2) We develop a rule dissemination protocol based
on a decentralized two-level optimization framework, which
determines the information propagation rates to each recipient.
We set an optimal rule sharing policy for each node and
show the existence of a Nash equilibrium in the intrusion
detection network. 3) We employ Bayesian learning for each
node to estimate the compatibility ratio of others based on the
empirical data collected by the node. 4) We design distributed
dynamic algorithms to find the Nash equilibrium and per-
form comprehensive simulations to demonstrate the efficiency,
incentive-compatibility, fairness, robustness and scalability of
the rule sharing mechanism.

The rest of the paper is organized as follows. In Section
II, we give an overview of collaborative intrusion detection
systems and information sharing paradigms. In Section III, we
describe the SMURFEN framework. The knowledge sharing
system modeling and analysis are elaborated in Section IV.
We discuss the Bayesian learning of IDS compatibility in
Section V and evaluate the proposed system using simulation
in Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Traditional IDS collaboration utilizes the collective intrusion
information and knowledge from other IDSs to improve accu-
racy in intrusion detection. Existing CIDNs can be categorized
into information-based and expertise-based. In an information-
based CIDN, IDSs collect intrusion data such as intrusion

1SMURFEN is an abbreviation for “SMURFs deFENse”.

alerts or firewall logs from other nodes to perform overall in-
trusion detection for the whole network. Most works proposed
in the last few years are information-based CIDNs, such as [6],
[7], and [8]. They are especially effective in detecting epidemic
worms or attacks, and most of them require homogeneous
participant IDSs. In an expertise-based CIDN, suspicious
data samples are sent to expert collaborators for diagnosis.
Feedbacks from the collaborators are then aggregated to help
the sender IDS detect intrusions. Examples of such CIDNs
include those given in [12], [9], [13], and [10]. Expertise-based
CIDNs may involve heterogeneous IDSs and are effective in
detecting many intrusion types including malware, scannings,
and vulnerability exploitations.

However, both types of CIDNs rely on the sharing of
intrusion data, which raises the concern of privacy and in-
formation breaching. Therefore, it greatly discourages users
from collaborating with unknown parties. In contrast, sharing
detection knowledge, such as detection rules, policies, or
malware signatures, does not involve the sharing of sensitive
data. Hence, it can effectively eliminate the privacy concern
in IDS collaboration. In fact, some open source IDSs, such
as Snort, use mailing lists to allow users to contribute and
share their own detection rules. However, mailing lists do not
provide customized filtering and they do not scale well either,
making it inefficient for frequent knowledge exchange within
large communities such as social networks and peer-to-peer
networks.

Information and knowledge propagation in a community can
be realized through gossiping. Gossiping is a communication
paradigm where information is propagated through multi-
hop pair-wise communication. Gossiping has been used to
exchange information in distributed collaborative intrusion de-
tection, such as local gossiping [14], and global gossiping [15].
Sharing observations from distributed nodes is useful to detect
and throttle fast spreading computer worms. It is effective
for communications in ad hoc or random networks, where
a structured communication topology is hard to establish.
However, traditional gossiping relies on random pairs-wise
communication and information flooding. Therefore, it is not
suitable when the network is large and the messages are only
intended to be delivered to a small set of nodes. Mailing list
broadcasting can be seen as a special type of gossiping where
one node communicates with every other node in the network
to deliver messages.

Publish-subscribe systems also manage the information
delivery from publishers to subscribers among collaborative
networks. Compared to gossiping, publish-subscribe systems
allow customized information delivery. They can be either
topic-based, such as [16], or content-based, such as [17]. In a
topic-based system, publishers and subscribers are connected
together by predefined topics; content is published on well-
advertised topics to which users can subscribe based on
their interests. In a content-based system, users’ interests are
expressed through queries, and a content filtering technique
is used to match the publishers’ content to the subscriber.
However, publish-subscribe systems do not take the quality of



the information into consideration. Hence, they are not suitable
for the intrusion detection rule sharing, for which the rule
quality is critical and should be taken into account.

III. SMURFEN: A KNOWLEDGE SHARING INTRUSION
DETECTION NETWORK

An intrusion detection rule is a detection policy which
specifies the pattern of suspicious attacks. Each rule can
trigger an alert once the pattern is matched. Detection rules
can be vulnerability-based or exploit-based. A vulnerability
is a software defect or system misconfiguration that allows
attackers to gain access or interfere with system operations.
Common examples of software vulnerabilities are software
buffer overflows and HTTP header injection. A vulnerability-
based detection rule specifies the pattern of attacks on a
specific vulnerability. The patterns can be the IP address,
port number, protocol flags, and context of the data payload.
An exploit-based detection rule specifies the common patterns
of general attacks. Comparatively the exploit-based detection
causes higher false positives than vulnerability-based detec-
tion, but is effective when the vulnerabilities are unknown.

Defense against attackers is a challenging problem since a
defender needs to know all possible attacks to ensure network
security, whereas an attacker only needs to know a few attack
techniques to succeed. It is often impossible for one person or
a small group of defenders to know all attack techniques but is
common to have knowledge about some attacks. As a result,
the attackers have a significant advantage over the defenders.
This motivates defenders to share knowledge with others to
overcome their weakness. In fact, some open source intrusion
detection systems, such as Snort [18] and OSSEC [19], allow
users to create and edit detection rules, which provides an
opportunity for users to contribute and exchange intrusion
detection rules. The purpose of SMURFEN is to provide such
a platform for users to share their detection rules with others
effectively. In this paper, we use Snort detection rules as
examples to demonstrate our rule-sharing system. We focus
on an efficient rule sharing mechanism design and compare
it with other possible solutions such as random gossiping and
fixed neighbors sharing mechanisms.

A. The SMURFEN Framework

The SMURFEN framework is built on a Chord [20] peer-to-
peer (p2p) communication overlay as illustrated in Figure 1.
Each node is assigned a key and maintains a finger table which
contains a list of other nodes for key search (e.g. routing) in
the Chord ring. Other than that, each node also maintains a list
of neighbors to communicate and exchange intrusion detection
rules with. We call such a list the acquaintance list. In the rest
of this paper, we use the terms acquaintance and neighbor
interchangeably. Note that the acquaintance relationship is
symmetric, i.e., if node i is in node j’s acquaintance list,
then node j is in node i’s acquaintance list. Each node may
have a long list of acquaintances and each acquaintance j
has a certain probability pij ∈ (0, 1] to be chosen to receive
rules from the sender node i. A user on the receiver side
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Fig. 1. SMURFEN design of 8 nodes on a Chord ring: nodes 3 and 7 receive
a rule from node 1. The feedbacks are collected by node 6.

evaluates rules sent from its neighbors and may choose to
“accept” or “reject” the rule. The decision is then recorded
by a Bayesian learning algorithm to update the compatibility
ratio of the sender. The compatibility ratio from i to j is
the probability that the rules from the sender i are accepted
by the receiver j. The higher a collaborator’s compatibility,
the more helpful it is in collaboration. The decision is also
sent to a corresponding rule feedback collector. The feedback
collector is a random node in the p2p network, determined by
a key mapping function of the rule ID and the sender ID. The
corresponding node holding the key will host the feedback of
the rule. Inexperienced users can check feedback from others
before they make their own decision whether to accept the rule
or not. Users can also report false positives and true positives
about the rule, so that the rule creator can collect feedback and
make updates accordingly. More details about the feedback
collector are provided in section III-D.

B. Snort Rules

Many intrusion detection systems, such as Snort, allow users
to create and edit their own detection rules in their rule base.
Snort rules are certified by the Vulnerability Research Team
(VRT) [21], after being tested by security experts. Snort rules
are vulnerability-based and written in plain text; hence can
be easily interpreted and edited by users. Snort rules obtained
from third parties can be adopted directly or indirectly with
some changes. Snort rules can be independent or can be
grouped together into rule units. The basic rule structure
includes two logical sections: the header section and the option
section. The rule header contains the rule’s action, protocol,
source and destination IP addresses and network masks, and
the source and destination ports information. The rule option
section contains alert messages and information on which parts
of the packet should be inspected to determine whether the
rule action should be taken [22]. Figure 2 illustrates a simple
Snort rule. When a TCP packet with the destination IP and
port number matching the specified pattern and data payload
containing the specified binary content is detected, a “mounted



access” alert is raised.

Fig. 2. An Example of Snort Rule (adapted from [22])

C. Join or Leave SMURFEN

To prevent the man-in-the-middle attack, the communication
between each pair of nodes is signed by the private key of
the sender. When a new node joins the network, it creates
a key pair (Ke,Kd), and registers a new ID into the p2p
network. Note that the complexity of searching for a node
with a specific ID in Chord is O(log(n)). If a conflict is
detected, a new key pair is generated and the process is
repeated until the registration is successful. After that, the
new node sends connection requests to random nodes in the
network and acquaintance relationships are established when
the requests are accepted. New intrusion detection rules are
exchanged among acquaintances.

When a node leaves a network, it is not required to send a
notification to other nodes. When a collaborator sends rule re-
trieving requests and receives no response, it automatically sets
the acquaintance connection status to be inactive and select
new acquaintances. Note that the frequency of acquaintance
seeking requests should be limited for each node. Excessive
acquaintance seeking requests from a node are dropped by
routing nodes to prevent from DoS attacks.

D. Feedback Collector

When a user receives new rules from the community, she/he
may evaluate the rules and determine whether or not to adopt
the rule. A SMURFEN system includes feedback collectors to
record the feedback on the rules from users. Less experienced
users may check the feedback from others before making their
decisions. As shown in Figure 3, rule author “A” propagates a
new rule i to its acquaintances R1 and R2. Both rule receivers
can retrieve and send feedback from/to the feedback collector
C, which is a random node in the p2p network determined
by the key mapping of the creator and the rule ID. Replicas
collectors can be used to improve the availability of feedback
collector service. All feedbacks are signed by their authors to
prevent from malicious tampering.

CA

R1

R2

C

M

A transfers the Bloom filter of 
its acquaintance list to C

C and its replicas are 
chosen by H(IDA,IDrule)

Send feedback 
of rule i

Retrieve feedback of rule i

Malicious 
feedbackrule i

rule i

Fig. 3. Feedback Collection in SMURFEN. The malicious node M attempts
to leave fraudulent feedback but was blocked since it does not match the
Bloom filter on the feedback collector.

Moreover, to avoid feedback fraudulence, each feedback
collector maintains a Bloom filter [23] of the authorized
nodes list. The rule author hashes all of its acquaintances
into a Bloom filter and passes it to the feedback collector.
Only nodes with hashed IDs matching the Bloom filter are
allowed to leave feedback on the collector. The use of Bloom
filter not only reduces the communication overhead to transfer
long acquaintance lists, it also avoids unnecessary information
leaking from the rule author.

E. An example

For a better understanding of the rule sharing framework,
we illustrate the mechanism with an example (see Figure 1).
Assume that user 1 (on node 1) detects a new software
vulnerability and creates a new Snort rule x to protect the
system before the official release from the VRT. User 1 is
part of the rule sharing network. The new rule is automatically
propagated to its acquaintances through a propagation process
(to be described in Section IV). User 3 and user 7 receive rule
x from user 1. The user 7 finds rule x to be useful to her/his
network and can choose to accept or reject it. The decision
is then notified to a feedback collector on node 6. If the rule
is adopted and alerts are triggered by rule x, the decision
whether it is a true or false alarm is also forwarded to node
6. Users can reject a formally accepted rule any time when
it causes large false positives or does not detect any attack
after a certain amount of time. Rule x is also propagated to
node 3. The user 3 finds that the rule covers vulnerabilities but
does not have enough experience to judge the quality of the
rule, she/he chooses to inspect the feedback from other users
about the rule from the feedback collector. The decision of
acceptance or rejection can be delayed to allow enough time
for observation.

IV. SMURFEN KNOWLEDGE PROPAGATION MODELING

Knowledge propagation is an essential part of the SMUR-
FEN system. In this section, we describe a system model for a
collaborative network comprising a set of n IDSs, denoted by
N . In the network, users are allowed to contribute and share
rules with others using peer-to-peer communication substrate.
A user i propagates new rules to its neighbors, denoted by
Ni, with a probability pij , j ∈ Ni, to achieve an optimal
impact. We let ni = |Ni| be the number of neighbors of
node i. The communication in the collaboration network is
bi-directional, i.e., if node i propagates rules to node j, then
node j also propagates rules to node i. We use a matrix
r = [rij ]i,j∈N to represent the rule propagation rate between
nodes in the network and rij ∈ [0, r̄i], ∀i, j ∈ N , is the
rule propagation rate from node i to node j. To make the
design robust to DoS attacks, nodes specify maximum sending
rate from their neighbors. Denoted by R = [Rij ]i,j∈N the
requested sending rate from i to j. Note that Rij is controlled
by node j and informed to node i. SMURFEN requires nodes
to control their sending rate under the requested rate, i.e.,
rij ≤ Rij , ∀i, j ∈ N . To control the communication overhead,



an IDS i can set the upper-bound Mi ∈ R++ on the total out-
bound communication rate, i.e,

∑
j∈Ni

rij ≤ Mi. Denote by
r̄i the rule contribution rate from node i. The rule propagation
rate from node i to other nodes can not exceed the rule
contribution rate r̄i of node i. Let pij ∈ [0, 1] denote the
probability that node i send a rule to node j when such a new
rule occurs. Then the probability can be derived from the rule
sending and contribution rates, i.e., pij =

rij
r̄i

.
Propagated rules are not all equally useful to their recipients.

To capture the metric of relationship on helpfulness, we
use a matrix C = [Cij ]i,j∈N to denote the compatibility
ratio between two nodes, where Cij ∈ [0, 1], ∀i, j ∈ N ,
representing the probability or likelihood that a rule useful
to node i is also useful to node j. Note that the compatibility
matrix can be asymmetric, i.e., Cij ̸= Cji.

Our goal is to devise a system-wide rule propagation proto-
col so that the rules contributed by all contributors are fairly
distributed to other nodes so as to optimize their impact on
the system. To achieve this goal, we model our system based
on a two-level optimization problem formulation sketched in
Figure 4. At the lower level, an IDS i solves the optimization
problem (PPi) where it chooses its propagation rate r⃗i to
optimize its public utility function. At the upper level, an
IDS i determines the request rate to all neighbors R⃗i from
a private optimization problem (Pi). The choice of Rji at the
upper level influences the decision-making at the lower public
optimization level.

(Pi) max Ui
b

(PPi) max Ui
r

(Pi) max Uj
b

(PPi) max Uj
r

Rij=qij rjiRji=qji rij

IDS i IDS j

rij

rji

Fig. 4. An illustration of the rule propagation protocol between IDS i
and IDS j. Each IDS has a two-level decision process. IDS i optimizes the
propagation rate rij based on an altruistic or public optimization (PPi) and
uses a private optimization problem (Pi) to determine the requested sending
rate Rji which will be passed to IDS j for its propagation decisions. It can
be seen that the (PPj) decision of IDS j depends on the decision from (Pi)
of IDS i. The interdependence of the agents leads to a Nash equilibrium.

A. Lower Level – Public Utility Optimization

In this subsection, we formulate an optimization framework
for each node to decide the propagation rate to all its neighbors
to maximize its utility. The utility of each node Ui has
two components: a public utility function Ur

i and a private
utility function U b

i . The utility Ur
i measures the aggregated

satisfaction level experienced by node i’s neighbors weighted
by their compatibility ratios. It allows a node to propagate its
rules more toward those with whom it is more compatible.
On the other hand, U b

i measures the satisfaction level of a

node with respect to the amount of help it receives from its
neighbors.

An IDS i can control two sets of variables, r⃗i = [rij ]j∈Ni

and R⃗i = [Rji]j∈Ni . We call qji =
Rji

rij
the greed factor,

which reflects the greediness of the request from node j.
qji > 1 indicates that node j requests a higher rule propagation
rate from node i than the rate it propagates to node i. The
introduction of greed factor serves two major purposes: 1)
it sets an expectation of return ratio so that a node i can
determine its rule propagation rate rij and Rij/rji can reach
qij to achieve maximum satisfaction from node j; 2) it serves
as an upper bound for communications between nodes i and
j, i.e., rij ≤ qijrji, or equivalently, rij ≤ Rij . It circumvents
potential denial-of-service attacks from a malicious node who
sends an excessive volume of traffic to node j.

The public optimization problem (PPi) seen by each node
i, i ∈ N , is given by

(PPi) max
r⃗i∈Rni

Ur
i (r⃗i) :=

∑
j∈Ni

CjiSij(rij) (1)∑
j∈Ni

rij ≤ Mi, (2)

rij ≤ Rij , (3)
0 ≤ rij ≤ r̄i, (4)

where Sij : R → R is the satisfaction level of node j in
response to the propagation rate rij of node i. We let Sij take
the following form

Sij(rij) := Cij log

(
1 +

rij
Rij

)
. (5)

The concavity and monotonicity of the satisfaction level indi-
cate that a recipient becomes increasingly pleased when more
rules are received but the marginal satisfaction decreases as
number of received rules increases. The parameter Cij in (5)
suggests that a node j is more content when the compatibility
or usefulness of rules sent from node i is high.

The objective function Ur
i : Rni → R in (1) aggregates

the satisfaction level Sij of node j by the compatibility factor
Cji. The utility Ur

i can be viewed as a public altruistic utility
in that a node i seeks to satisfy its collaborators by choosing
propagation rates r⃗i. The problem (PPi) is constrained by (2)
in that the total sending rate of a node i is upper bounded by its
communication capacity. The additional constraint (4) ensures
that the propagation rate does not exceed its rule contribution
rate r̄i. Note that the constraint (3) is imposed by its recipient
while constraint (4) is set by node i itself.

Define the set F1
i := {r⃗i ∈ Rni :

∑
j∈Ni

rij ≤ Mi,Mi ∈
R++} and F2

i := ∩j∈NiF2
ij , where F2

ij := {rij ∈ R+ :
rij ≤ min(Rij , r̄i)}. The optimization problem is feasible if
and only if Fi := F1

i ∩F2
i is not empty. The feasible set is a

convex polytope and it can be represented by the convex hull
of its finite set of Ki extreme points Ki = {k1, k2, · · · , kKi},
where Ki = |Ki|. Since the utility function (1) is strictly
convex in r⃗i and the feasible set is convex, the optimization



problem (PPi) is in a form of convex programming and admits
a unique solution.

It can be seen that when Mi is sufficiently large and (2)
is an inactive constraint, the solution to (PPi) becomes trivial
and rij = min(Rij , r̄i) for all j ∈ Ni. The situation becomes
more interesting when (2) is an active constraint. Assuming
that qij and hence Rij have been appropriately set by node j,
we form the Lagrangian functional Li : Rni × R× Rni → R

Li(r⃗i, µi, δij) :=
∑
j∈Ni

CjiCij log

(
1 +

rij
Rij

)

−µi

∑
j∈Ni

rij −Mi

−
∑
j∈Ni

δij(rij − r̄i), (6)

where µi, δij ∈ R+ satisfy the complementarity conditions
µi

(∑
j∈Ni

rij −Mi

)
= 0, and δij(rij − r̄ij) = 0, ∀j ∈ Ni,

where r̄ij := min(Rij , r̄ij). We minimize the Lagrangian with
respect to r⃗i ∈ Rni

+ and obtain the first-order Kuhn-Tucker
condition: CijCji

rij+Rij
= µi + δij , ∀j ∈ Ni. When (2) is active

but (3) and (4) are inactive, we can find an explicit solution
supplied with the equality condition∑

j∈Ni

rij = Mi (7)

and consequently, we obtain the optimal solution

r⋆ij = r∗ij :=
CijCji∑

u∈Ni
CiuCui

(
Mi +

∑
v∈Ni

Riv

)
−Rij . (8)

When either one of the constraints (3) and (4) is active, the
optimal solution is attained at one of the extreme points of the
polytope. Since the log function has the fairness property, the
optimal solution r⋆ij has non-zero entries when the resource
budget Mi > 0. In addition, due to the monotonicity of the
objective function, the optimal solution r⋆ij is attained when
all resource budgets are allocated, i.e., constraint (2) is active.
Hence, the optimal solution r⋆ij to (PPi) is always on the face
of the polytope where (7) holds .

Remark 1: We can interpret (8) as follows. The solution
r∗ij is composed of two components. The first part is a
proportional division of the resource capacity Mi among
|Ni| neighbors by their compatibilities. The second part is
a linear correction on the proportional division by balancing
the requested sending rate Rij . It is also important to notice
that by differentiating r∗ij with respect to Rij , we obtain
∂r∗ij
∂Rij

=
CijCji∑

u∈Ni
CiuCui

− 1 < 0, suggesting that at the optimal
solution, the propagation rate decreases as the recipient sets
a higher requested sending rate. If a node wishes to receive
higher propagation rate from its neighbors, it has no incentive
to overstate its level of request. Rather, a node j has the incen-
tive to understate its request level to increase r∗ij . However, the
optimal solution is upper bounded by min(barri, Rij). Hence,
by understating its request Rij , the optimal propagation rate
is achieved at its boundary point min(r̄i, Rij).

B. Upper Level – Private Utility Optimization

An IDS i has another degree of freedom to choose its level
of requested sending rate Rji of its neighbors. Rji states the
maximum rule propagation rate from node j to i that node i
can accept. In contrast to the public utility optimization, the
optimization at this level is inherently non-altruistic or private.
The objective of an IDS i is to choose R⃗i so that its private
utility U b

i : Rni
+ → R is maximized, i.e.,

(Pi) max
R⃗i∈Rni

+

U b
i (R⃗i), (9)

subject to the following constraint from the total receiving
capacity R̄i, i.e.,

∑
j∈Ni

Rji ≤ R̄i. Let U b
i take the form

of U b
i :=

∑
j∈Ni

Cji log(1 + r⋆ji), where r⋆ji is the optimal
solution attained at (PPi). The log function indicates that
an IDS intends to maximize its own level of satisfaction by
choosing an appropriate level of request. The request capacity
is imposed to prevent excessive incoming traffic as a result
of high level of requests. We assume that the capacity is
sufficiently large so that the constraint is inactive. Therefore,
the decision variable Rji is uncoupled and the problem (Pi)
can be equivalently separated into |Ni| optimization problem
with respect to each j, i.e., for every j ∈ Ni,

(Pij) max
Rji∈R+

log(1 + r⋆ji). (10)

The following proposition characterizes the optimal choice of
Rji or qji of node i.

Proposition 1: Assume that r̄i is sufficiently large so that
the constraint (4) is inactive. The optimization problem (Pi)
admits an optimal solution given by

R∗
ji = q∗jirij =

1

2

CijCji∑
u∈Nj

CjuCuj

Mj +
∑
v∈Nj

Rjv

 .

(11)
Proof: The proof of Proposition 1 is in Appendix A.

Combining the solutions to optimization problems (PPi) and
(Pi) with the above result, we arrive at

r⋆ij = R∗
ij =

1

2

CijCji∑
u∈Ni

CiuCui

(
Mi +

∑
v∈Ni

Riv

)
. (12)

Equation (12) suggests that an optimal response of node i to
node j is to propagate rules at the same rate as the requested
rate, which is proportional to the propagation rate sent by node
j by the optimal greed factor q∗ij since R∗

ij = q∗ijrji.
The properties of the solutions to (Pi) and (PPi) are illus-

trated in Figure 5 for an IDS i and its two neighboring peers.
In this illustrative example, we look at the optimal propagation
rule for node i to communicate with node 1 and 2. Node i
solves (PPi) with constraints (1) ri1+ri2 ≤ Mi, (2) ri1 ≤ Ri1,
and (3) ri2 ≤ Ri2. The shaded region is the feasible set of the
optimization problem. The optimal allocation can be points on
the face of ri1+ri2 = Mi of the feasible set. Given the request
rates Ri1 and Ri2, suppose the optimal allocation is found
at the red point. At the higher level, nodes 1 and 2 need to
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ri2
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ri2

Ri1 Ri1
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Fig. 5. An illustrative example of a 3-person system involving the set of
nodes {i, 1, 2}. Node i solves (PPi) while nodes 1 and 2 solve (P1i) and
(P2i), respectively.

solve the optimization problems (P1i) and (P2i), respectively.
They have incentives to understate their requests. For example,
node 1 can request a lower rate until it hits R∗

i1 and the optimal
allocation will increase until it reaches R∗

i1. This fact leads to
the green point which is the optimal solution to (PPi) found
on the vertex of its feasible set given that ri1 ≤ R∗

i1. Node 2
makes the same decision and results in R∗

i2.

C. Nash Equilibrium

In a collaboration network, each node responds to other
nodes by choosing optimal propagation rates and request
rates. The two-level optimization problem leads to two game
structures of interest. Let G1 := ⟨N , {r⃗i}i∈N , {Ur

i }i∈N ⟩
be the game that corresponds to optimization problem (PPi)
in which each node chooses its propagation rates given the
requested sending rates from its neighbors. Hence, the utilities
of the users in Equation (5) reduce to mere functions of rij .
Denote by G2 := ⟨N , {r⃗i, R⃗i}i∈N , {Ur

i , U
b
i }i∈N ⟩ the game

that corresponds to the two-level optimization problem (PPi)
together with (Pi). In G2, each node i chooses its propagation
rates as well as its request rates. We study the existence and
uniqueness properties of Nash equilibrium (NE) of these two
games as follows.

Proposition 2: There exists a NE for G1 and G2.
The proof of Proposition 2 is in Appendix B.
Theorem 1: There exists a NE such that rij = Rij , ∀i, j ∈

N in G2. We call such NE a prime NE.
The proof of Theorem 1 is provided in Appendix C. In the

following, we propose two results on the uniqueness of NE
in G1 and G2. Their proofs are in Appendices D and E,
respectively.

Proposition 3: Assume that only (2) is an active constraint
in optimization problem (Pi) of each node i in G1. Let λij =

CijCji∑
u∈Ni

CiuCui
. There exists a unique NE for G1 if qijqji ̸=

1
(1−λij)(1−λji)

for each pair of neighbor nodes i, j.

Proposition 4: Assume that r̄i is sufficiently large and the
response of each node follows (12). There exists a unique NE
for G2 if niλij < 2 for every pair of neighbor nodes i and j.

D. Dynamic Algorithm to Find the Prime NE

Algorithm 1 Distributed Dynamic Algorithm to Find the Prime NE
at node i

1: Initialization :
2: R⃗in ⇐ {ϵ, ϵ, ..., ϵ} // Small request rates for new neighbors.
3: R⃗out ⇐ SendReceive(R⃗in) // Exchange requested sending rates

with all neighbors.
4: set new timer event(tu, “SpUpdate”) // Update sending rates

and request rates periodically.
5: Periodic update:
6: at timer event ev of type “SpUpdate” do
7: // Update the sending rate to all neighbors and then update the

requested sending rates from all neighbors.
8: for k = 0 to B do
9: r⃗out ⇐ OptimizeSending(C, R⃗out,M, r̄) // (PPi) optimiza-

tion.
10: r⃗in ⇐ SendReceive(r⃗out) // Exchange sending rate with all

neighbors.
11: R⃗in ⇐ OptimizeRequest(C, r⃗in, R̄) // (Pi) optimization.
12: R⃗out ⇐ SendReceive(R⃗in) // Exchange requested sending

rate with all neighbors.
13: end for
14: set new timer event(tu, “SpUpdate”)
15: end timer event

In this subsection, we describe a distributed algorithm (Al-
gorithm 1) for each node to decide its rule propagation rates.
The subscript i is removed for the convenience of presentation.
The goal of the algorithm is to lead the system to converge
to a prime NE that we defined previously. In the beginning,
nodes set a small requested sending rate for all new neighbors
(line 2). An update process is triggered periodically where
function OptimizeSending is used for the nodes to find their
optimal sending rates r⃗out based on the compatibility matrix
C and requested sending rate R⃗out, which is informed by the
acquaintances in process SendReceive (line 3). M and r̄ are the
sending capacity and rule contribution rate of i respectively.
Function OptimizeRequest is used for the nodes to find optimal
R⃗in (G2) which gives the maximal private utility, given the C,
the incoming sending rate r⃗in, and the receiving capacity R̄.
The update process is repeated B rounds to yield a converged
result.

The purpose of Algorithm 2 is to find the optimal numerical
solution for (PPi) under general conditions. This algorithm is
based on the properties that the marginal weighted satisfactions
from all neighbors are continuous and monotonically decreas-
ing, i.e., (CjiS

′′
ij) < 0, ∀i, j. S contains the sorted marginal

weighted satisfactions of all neighbors at their boundaries
{0,min(r̄i, Rij)}. The idea is to find the “cutoff” marginal
satisfaction, where neighbors with both marginals higher than
the “cutoff” take their upper-bounds, neighbors with both
marginals lower than the ‘cutoff” take their lower-bounds,
and others takes inner solutions with their marginals equal
to the “cutoff”. We start “cutoff” low, increase it step by step,
and move nodes to SH and SM accordingly until the sending
resource exceeds its capacity. The computation complexity of
Algorithm 2 is O(|N |).



Algorithm 2 Function OptimizeSending(C, R⃗out, M , r̄)
1: // Sort the marginal satisfaction of all neighbors at their lower-

bound and upper-bound. N is the acquaintance list.
2: S ← ∅ // S is a descending ordered set, initially empty.
3: for i = 0 to |N | do
4: S ⇐ S ∪ { Ci

R⃗out
i

, “L”,Ni} // Add the marginal weighted
satisfaction at the lower bound 0 of node i.

5: S ⇐ S ∪ { Ci

R⃗out
i +min(r̄,R⃗out

i )
, “H”,Ni} // Add the marginal

weighted satisfaction at the upper bound of node i.
6: end for
7: // Three sets, containing neighbors taking upper-bound, medium

value, and lower-bound at the optimal solution.
8: SH = ∅, SM = ∅, SL = N
9: for each V ∈ S do

10: NextCutOff← FirstElementOf(V ) // Marginal satisfaction.
11: if Resource(SL,SM ,SH ,NextCutOff) < M then
12: if SecondElementOf(V) = “L” then
13: move the associated neighbor of V from SL to SM
14: else
15: move the associated neighbor of V from SM to SH
16: end if
17: else
18: go to FinalStep: // The final cutoff marginal is lower than

the NextCutOff.
19: end if
20: end for
21: FinalStep: // Assign sending rates to all neighbors.
22: for j = 0 to |N | do
23: if Nj ∈ SH then
24: r⃗j = min(r̄, R⃗out

j ) // Nodes take upper-bounds.
25: else if Nj ∈ SL then
26: r⃗j = 0 // Nodes take lower-bounds.
27: else
28: // All the other neighbors have inner solutions. We use

Kuhn-Tucker condition to find their solutions.
29: r⃗j =

Cj(M−
∑

k∈SH
min(r̄,R⃗out

k )+
∑

k∈SM
R⃗out

k )∑
k∈SM

Ck
− R⃗out

j

30: end if
31: end for
32: return r⃗

Algorithm 3 Function OptimizeRequest(C, r⃗in, R⃗in, R̄)
1: S ← ∅ // Sorted set descending, initially empty.
2: for i = 0 to |N | do
3: if r⃗ini = 0 then
4: R⃗in

i ⇐ R⃗in
i /2 // Request to i is too high, cut in half.

5: else if r⃗ini < R⃗in
i then

6: R⃗in
i ⇐ r⃗ini // Tune down request to approach Prime NE.

7: else
8: S ⇐ S ∪ {Ci,Ni} // S is sorted by Ci, the compatibility

ratio of neighbor i.
9: end if

10: end for
11: // Increase the requested sending rate of the half neighbors with

higher compatibility by a small amount.
12: for j ∈ TopHalf(S) do
13: R⃗in

j ⇐ R⃗in
j +∆ // Increase the request rate slightly.

14: end for
15: U =

∑
k∈|N| R⃗

in
k // Total request rate.

16: if U − R̄ > 0 then
17: R⃗in ⇐ R̄

U
R⃗in // Normalize into constraint R̄.

18: end if
19: return R⃗in

Algorithm 3 is used to adjust the requested sending rate
of all neighbors according to their last status. We use an fast
decrease and linear increase strategy for request adjustment. If
the requested sending rate from last cycle is not fully claimed,
then the next request is adjusted to be the claimed amount;
otherwise, increase the request slightly. The computation com-
plexity of Algorithm 3 is O(|N |).

V. BAYESIAN LEARNING MODEL FOR COMPATIBILITY

In Section IV, we assumed that the compatibilities of all
neighbors are known. In practice, they can be learned from past
experience. In this section, we introduce a Bayesian learning
approach for nodes to learn the compatibilities of neighbors.

Past decisions to accept or reject rules from a neighbor
can be seen as a Bernoulli trial with parameter p as the
compatibility ratio from the neighbor. In the SMURFEN
system, a node j uses a beta distribution to estimate the
compatibility Cij from its neighbor i. In the beginning, node j
sets an initial belief on i. The posterior probability is updated
at each step using the empirical data on the outcome of the
acceptance/rejection decision.

A. Baysian Learning Model for Compatibility Ratio

When node j receives a new detection rule from peer i, it
can choose either to accept the rule (o = 1), or reject the rule
(o = 0). Let X ∈ Ω := {0, 1} be a random variable which
denotes the decision outcome: rejected or accepted. Note that
on the case that a rule is accepted in the beginning and then
rejected due to high false positive rate, the weight of the
reject decision is doubled to reverse the impact of the previous
acceptance decision. Since the definition of compatibility ratio
of an acquaintance is the probability a rule is accepted from the
acquaintance, we have Cij = P[X = 1], where P : 2Ω → [0, 1]
is a probability measure. We estimate Cij based on the past
observations On := {ok}nk=1 ∈ {0, 1}n. The distribution of
Cij can be written as a beta distribution in the form of

C
(n)
ij

pdf∼ Γ(α(n) + β(n))

Γ(α(n))Γ(β(n))
xα(n)−1(1− x)β

(n)−1, (13)

α(n) =

n∑
k=1

λtk × ok + C0λ
t0 × α0, (14)

β(n) =

n∑
k=1

λtk × wk(1− ok) + C0λ
t0 × β0, (15)

where α0, β0 are the initial beliefs of Cij , 1 − Cij , re-
spectively; α(n), β(n) represent the Beta parameters after n
decision outcomes; ok ∈ {0, 1} is the kth experience; tk is the
age of the kth experience; C0 ∈ (0,+∞) is the weight of the
initial belief. wk ∈ {1, 2} is the weight of the reject decision,
wk = 1 for the rejection of new rule and wk = 2 for the
rejection of previously accepted rule. We put more weights on
recent experience by introducing a forgetting factor λ, which
is used to discount older experiences.



B. The Estimation of Compatibility Ratio

Denote the cumulative density function (CDF) of Cij by

C
(n)
ij

CDF∼ F (x;α(n), β(n)) = Ix(α
(n), β(n)), (16)

where Ix(α
(n), β(n)) is the regularized incomplete beta func-

tion [24]. Let C̃
(n)
ij denote the estimated compatibility after

n observations. We assign the 90% credential lower-bound of
the CDF as C̃

(n)
ij , i.e., C̃(n)

ij = I−1
0.1 (α

(n), β(n)). We name the
above estimate a credible-bound compatibility. The estimate
C̃

(n)
ij has several properties as follows:

(P1) for each node i, increasing the rule sharing rate increases
its compatibility ratio with others.

(P2) when α(n) and β(n) are sufficiently large (> 10), the
beta density function can be approximated by a Gaussian
distribution. Therefore, we have C̃ij ≈ µx − 2σx =

α(n)

α(n)+β(n) − 2
√

α(n)β(n)

(α(n)+β(n))2(α(n)+β(n)+1)
, where µx and

σx are the mean and the variance of the random variable
X , respectively.

VI. EVALUATION

In this section, we use a simulation network to demonstrate
the appealing properties of the SMURFEN system. All our
experiments are based on the average of a large number of
experiment replications with different random seeds. Confi-
dence intervals are small enough to be neglected.

A. Simulation Setup

We simulate a network of n nodes. Each node i ∈
{1, 2, · · · , n} is labeled with an expertise level e(i) ∈ [0, 1],
which is the probability that a rule propagated by node i is
effective for intrusion detection. Each node i contributes detec-
tion rules to the network following a Poisson distribution with
an average arrival rate r̄i. The rule propagation follows the
two-level game design described in Section IV. We evaluate
the scalability, efficiency, incentive compatibility, fairness, and
robustness of the rule propagation system. The parameters we
used in our experiments are shown in Table I.

In SMURFEN, Cij is learned by j through past experiences
using the credible-bound compatibility method described in
Section V-B. In the following experiments, we compare the
credible-bound method with other commonly used learning
methods such as Simple Average (SA) and Moving Average
(MA) through a stochastic discrete event simulation. The
simple average and moving average learning schemes are
summarized as follows.

1) Simple Average: Node j takes the average of the past
experiences, i.e., CS

ij =
∑n

k=0 ok

n .
2) Moving Average: Node j takes the moving average

of the past experiences. Older experiences are discounted
exponentially over time, i.e., CM

ij =
∑n

k=0 λtkok∑n
k=0 λtk

.

B. Compatibility Learning

We set up a simple network containing node 0 and node 1.
Node 0 with expertise level 0.8 sends rules to node 1 following
a Poisson process with r01 = 10 rules/day. At the beginning of
day 40, node 0 is compromised and starts spamming node 1.
Node 1 evaluates and compares C01 using the three different
methods. The forgetting factor used is λ = 0.95.

Figure 6 shows that C01 converges after a few days and the
credible-bound method yields slightly lower value compared
to the other two methods. From the 40th day, all methods
observe a fast dropping of C01. However, the learning speeds
of the moving average and the credible-bound methods are
faster than the simple average method. This is because the
forgetting factor puts higher weights on new experiences. We
then change r01 from 1 to 19 and observe the compatibility
C01 at the 40th day using the three methods. From Figure 7,
we see that C01 increases and approaches to 0.8 asymptotically
under the credible-bound method, while C01 from the two
other methods mostly stay at 0.8. Therefore, nodes contribute
to the collaboration network more have higher compatibility
ratios when the credible-bound method is used.

C. Convergence of Distributed Dynamic Algorithm

In this experiment, we evaluate the convergence speed of
the dynamic algorithm (Algorithm 1) for the participants to
achieve the equilibrium. We configure a network of 4 nodes
sharing the same set of vulnerabilities; the expertise levels
of nodes are 0.9, 0.8, 0.7, and 0.5, respectively. Parameter
settings are: Mi = 10 rule/day, R̄i = 100 rules/day, and
r̄i = 10 rules/day, for all i. All nodes start with small
sending rates and small request rates to all neighbors, and
adjust them following Algorithm 1. The number of updating
and exchanging is controlled by parameter B. To make an
appropriate choice of B, we try different values of B and
observe the sending rate from node 0 to other nodes after B
rounds of optimal adjustment and information exchange. The
result is shown in Figure 8. We can see that the sending rates
have a fast convergence speed. The similar situation occurs
under some other parameter settings. Therefore, we fix B = 10
in the rest of the experiments.

D. Scalability and Information Quality

In this experiment we compare the scalability and informa-
tion quality using the traditional mailing list and SMURFEN
propagation system. We set up a network with size starting
from 10 nodes and we increase it by 30 nodes each round till

TABLE I
SIMULATION PARAMETERS

Parameter Value Description

Mi 10, 100 The propagation sending capacity of node i
R̄i 10, 100 The receiving capacity of node i
r̄i 1, 10 The rule contribution rate of node i
λ 0.95 Forgetting factor for Equation (14)
B 10 Computation rounds for Algorithm 1
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130. Among all the nodes, 20% are expert nodes with expertise
level 0.9, 80% are novice nodes with expertise level 0.1. All
nodes have the same setting, i.e., M = R̄ = 20 rules/day and
r̄ = 1 rule/day.

Figure 9 shows the rule receiving rate from both methods.
We can see that when using the mailing list propagation, the
number of rules a node receives increases linearly with the
network size. When the network size is large, the receiving rate
may exceed the tolerance of users and may be considered as
spam. SMURFEN system controls the received rule rate within
the predefined capacity, and does not increase with the network
size. Therefore, SMURFEN system is scalable regarding to the
network size.

The information quality for both methods is plotted in Fig-
ure 10.We define the information quality to be the percentage

of useful rules that nodes receive. We see that when using the
SMURFEN system, the information qualities received by both
the low-expertise and the high-expertise nodes are significantly
improved compared to the mailing list method. The high-
expertise nodes receive higher quality rules than low-expertise
nodes, which reflects the incentive-compatibility of the system.

E. Incentive Compatibility and Fairness

Incentive compatibility is a required feature for a collabo-
ration network since it determines the long-term sustainability
of the system. In an incentive-compatible system, a well-
behaving node benefits more than an ill-behaving one. In this
experiment, we change the expertise level and rule contribution
rate of a participating node, and observe the output of its return
benefit, which is the expected number of useful rules a node
receives per day.

In this experiment, we configure a network with 30 nodes
with random expertise levels in [0, 1], and we set M = R̄ =
100 rules/day and r̄ = 10 rules/day for all nodes. We change
the expertise level of node 0 from 0.1 to 1.0 and observe its
return benefit. We compare our results with two other informa-
tion propagation methods, namely uniform gossiping and best
neighbor mechanism. In the uniform gossiping mechanism,
rules are propagated to randomly selected nodes uniformly
from the neighborhood. The receiver drops rules from less
compatible neighbors if the total receiving rate is over limit. In
the best neighbor mechanism, rules are always propagated to a
few fixed (best) neighbors. The sending capacity and receiving
capacity also apply to the uniform gossiping and best neighbor
propagation. Therefore, we also configure their sending and
receiving capacities to be 100 rules/day.

Figure 11 shows that uniform gossiping provides no incen-
tive to nodes with higher expertise levels. On the other hand,
the best neighbor propagation scheme provides incentive but
no fairness. Nodes of the same expertise levels may have very
different return benefit. This is because under the best neighbor
mechanism, nodes form collaboration groups. Nodes of the
same expertise level may join different groups. Since the return
benefit largely depends on which group a node belongs to,
nodes with the same expertise levels may have significantly
different return benefit. On the contrary, SMURFEN has a
continuous concave utility on the return benefit over expertise
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levels. It ensures incentive compatibility as well as fairness.
Next we change the rule contribution rate r̄0 of node 0 and
observe the return benefit. We can see in Figure 12 that
the collaboration benefit increases with rule contribution rate.
Contributing more to the collaboration network brings a higher
return benefit. Our propagation system is incentive compatible
on both contribution quality and quantity.

F. Robustness of the System

The purpose of this experiment is to demonstrate the robust-
ness of the system in the face of denial-of-service attacks. We
fix M = R̄ = 100 rules/day and r̄ = 10 rules/day for other
nodes except the attacker node 0. We let node 0 increase its
contribution rate r̄0 from 1 to 20 with unlimited M0, which is a
typical strategy of a spammer. We observe the influence of the
node on all the other nodes. We define the influence of a node
i to be the total number of rules received by all the neighbors
of i per day. The larger the influence of a node, the higher
potential of damage the node can cause once it is malicious.
We can see from Figure 13 that the influence of a node is
bounded in the system. This is because the SMURFEN system
enforces propagation agreements between each pair of nodes.
Each node sets a rule propagation limit to all its neighbors
using the two-level game (see Section IV). Therefore, when a
node intends to launch a DoS attack, the amount of rules it is
allowed to send to others is bounded by the limits set by its
neighbors. Nodes sending excessive traffic to neighbors will
be revealed as potential malicious nodes, and thus removed
from the neighbor list of others.

VII. CONCLUSION

In this paper, we have introduced a peer-to-peer rule sharing
system called SMURFEN for collaborative intrusion detec-
tion and used a game-theoretic framework for its protocol
design. The propagation mechanism has been derived from
a decentralized two-level optimization problem formulation.
We have shown that at the equilibrium our system has the
properties of incentive compatibility, and robustness to denial-
of-service attacks. Moreover, the system has also been proved
to be fair, efficient and scalable. We used Bayesian learning to
estimate the compatibility between nodes based on empirical
data. By simulation, we have corroborated these important
CIDN properties. As future work, we intend to show system

robustness to different insider attacks. In addition, under the
current rule propagation protocol, we can further demonstrate
the macroscopic behavior of SMURFEN arising from multi-
hop rule propagations and analyze the time evolution of the
rule propagation at the system level.

APPENDIX

A. Proof of Proposition 1

Proof: From Remark 1, we learn that r∗ij is a monotonic
decreasing function with respect to Rij or qij . Since the
utility function in (Pij) is monotonically increasing with
r∗ji, increasing Rji will decrease the utility. Hence, an IDS
seeks to lower Rji until the optimal utility is achieved to be
U b⋆
i = log(1 + r̄ji). In other words, an optimal solution R∗

ji

achieves at
r∗ji = r̄ji. (17)

Assume that r̄i is sufficiently large, we have r̄ji = Rji. Then
R∗

ji solves

R∗
ji =

CijCji∑
u∈Nj

CjuCuj

Mj +
∑
v∈Nj

Rjv

−R∗
ji, (18)

which yields (11). It is easy to see that any requests 0 < Rji <
R∗

ji will lower the optimal allocation r⋆ij and hence its utility.

B. Proof of Proposition 2

Proof: In G1, for each i ∈ N , the feasible set Fi is a
closed, bounded and convex subset of Rni . The public utility
function Ur

i is jointly continuous in its arguments and strictly
convex in r⃗i. Hence, using Theorem 4.3 in [25], we can show
that G1 admits a Nash equilibrium in pure strategies.

In G2, without relaxation, the convex program (PPi) admits
a solution r̃ij , which is continuous in R⃗i [26]. The feasible set
of (Pi) is compact and convex and the U b

i is jointly continuous
in its arguments and strictly convex in R⃗i. Hence, G2 has
a Nash equilibrium at the level of private optimization. We
can determine r⋆ij which yields an equilibrium at the level of
public optimization. Therefore, G2 admits a Nash equilibrium
in pure strategies of {(r⃗i, R⃗i), i ∈ N}.



C. Proof of Theorem 1

We first introduce a few definitions and then prove Propo-
sition 5, which will be used in the proof of Theorem 1.

Definition 1: Let R⃗∗
i , r⃗i, i ∈ N , be a NE. The non-prime

degree D of an equilibrium is the number of distinct pairs
{i, j}, j ∈ Ni, such that R∗

ij ̸= r∗ij . Note that a prime NE has
non-prime degree 0.

Proof: In this proof, we show that any non-prime NE can
be reduced to a prime NE with D = 0. From Proposition 2, we
know there exists at least one NE for G2. Let R∗ = [R⃗∗

i ]i∈N
and r∗ = [r⃗∗i ]i∈N be a NE. Suppose it is not a prime
NE. Hence, there must exist at least one pair that satisfies
r∗uv < R∗

uv for some pair {u, v}. Construct a feasible solution
(R′, r∗) from (R∗, r∗) such that R

′

ij = R∗
ij , for every

{i, j} ∈
∪

i̸=j,j∈Ni,i∈N {i, j}\{u, v}, and R
′

ij = r∗ij , for
{i, j} = {u, v}. From Proposition 5, we can show that (R′, r∗)
also constitutes a NE, whose non-prime degree becomes
D̄i − 1. By an iterative process, a non-prime NE (R∗, r∗)
can be reduced to a prime NE. Hence, there exists a prime
NE in G2.

Proposition 5: Let (R∗, r∗) be a NE with D̄ ̸= 0 and
{u, v} be a pair of nodes such that r∗uv < R∗

uv . Let (R′, r′) be
a constructed feasible solution such that r′ = r∗, R

′

ij = R∗
ij ,

for every {i, j} ∈
∪

i ̸=j,j∈Ni,i∈N {i, j}\{u, v}, and R
′

ij = r∗ij ,
for {i, j} = {u, v}. Then (R′, r∗) is a NE of G2.

Proof: We need to show that r∗ is an optimal response
to R

′
and then nodes have no incentive to deviate from R

′
.

For a feasible solution (R, r), we say that rij is a boundary
allocation if rij = min(r̄i, Rij); otherwise, we say that rij
is an internal allocation. At an NE solution, the marginal
gains ∂Ur

i

∂rij
, j ∈ Ni, are equal for internal allocation points.

In addition, the marginal gain of i at boundary allocations is
no less than the marginal gains of i at internal allocations.

Since R∗ is a G2 NE, node v has no incentive to move
by changing Ruv . If a node v decreases its request to u from
value R∗

uv to value r∗uv, then the allocation from node u will
not increase. This can be easily shown by contradiction as
follows.

Suppose the reverse is true, then there must exist an internal
allocation rum to m whose marginal gain is higher than the
marginal gain at R

′

uv . However, from (2) and (5), we can
see that by understating the requests, nodes can increase their
marginal gains. Hence, the marginal gain at r∗um is larger than
the marginal gain at r∗uv. Therefore, we can conclude that r∗ is
not an optimal solution of configuration R∗, which contradicts
with the property of NE.

We also observe that node v can not gain from u by
either decreasing or increasing its request at R

′

uv. Decreasing
the request results in decreasing the allocation from u, since
the resource is bounded by the request. On the other hand,
increasing the request at R

′

uv shall not increase the allocation
from u, since it will otherwise contradict with the properties
of NE R∗ that nodes v can not gain better utility by changing
its request at an NE.

Therefore, after the node v decreases R∗
uv to R

′

uv = r∗uv,
we arrive at r

′
= r∗. The constructed solution R

′
and r

′
is

another NE of G2.

D. Proof of Proposition 3

Proof: For each pair of collaborative nodes i, j we have

rij = Aijrij + bij , (19)

where rij = [rij , rji]
T , and

bij =

 λij

(
Mi +

∑
v ̸=j,v∈Ni

qivrvi

)
λji

(
Mj +

∑
v ̸=i,v∈Nj

qjvrvj

)  , (20)

Aij =

[
0 (λij − 1)qij

(λji − 1)qji 0

]
(21)

Given that the existence of Nash equilibrium and the assump-
tion on qij and qji, the uniqueness of the Nash equilibrium is
ensured only when Aij is non-singular.

E. Proof of Proposition 4

Proof: From (12), we can find optimal response R∗
ij to

other nodes is given by

R∗
ij =

λij

2− λij

Mi +
∑

v ̸=j,v∈Ni

Riv

 . (22)

Since R∗
ij is linear in Riu, u ∈ Ni, we can build (22) into a

linear system of equations with the variables Rij , i, j ∈ N
stacked into one vector. The linear system has a unique
solution if the condition of diagonal dominance holds, leading
to the condition.
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