This report was first presented and disseminated in Workshop on Service Oriented Computing:
Consequences for Engineering Requirements (SOCCER), Paris, August 2005.

Specifying Search Queries for Web Service Discovery

Shahram Esmaeilsabzali Nancy A. Day Farhad Mavaddat
Cheriton School of Computer Science, University of Waterlo
Waterloo, Ontario, Canada N2L 3G1
{sesmaeil,nday,fmavadd&®cs.uwaterloo.ca
Technical Report: CS-2011-05

Abstract the Web services may be relevant for a search. For exam-
ple, a search query may want to specify the desired Web
Web services are meant to be easily accessible softwareservice’s inputs and outputs, and perhaps some informa-
systems. With the emergence of Web service technologieion about message exchange order. More complex Web
and the presence of thousands, or perhaps millions, of Webservices can be created by combining multiple cooperating
services in the coming years, the challenge is searching forsimple Web services. Existing formats, suctOMWL-S[1],
a Web service that meets a specified requirement. In thisare used to create more complex Web services by using
paper, we propose methods and models for effectively specworkflowanddataflowpatterns to combine multiple simple
ifying the search queries in a Web service discovery sys-Web services. It should be possible to decompose search
tem. We show that while search queries should be speciqueries as well. To ensure that the multiple parts of de-
fied precisely enough to contain information for appropri- composed search query are compatible and satisfy the orig-
ate matching, they should not be too detailed. Users ofteninal query, more information needs to be described in the
do not have a clear vision of their desired Web service and search query than simply values of keywords. Our goal in
a search query should be at a high enough level of abstrac-this work is to propose richer models for describing Web
tion. We propose two models and show how they are appro-services queries and to discuss their advantages and disad-
priate for capturing search queries. vantages.
Similar to other requirement specification activities,
searches for Web services can be baseduoitional or
1 Introduction non-functionalrequirements. An example of a functional
requirement is a search for an English-German dictionary
The ultimate goal of creating a public Web service is web _se_rvice. I.f there is not an En.glish—German dictionary,
then it is possible to use an English-French and a French-

to be discovered and used by potential service requesters

Considering the emergence of thousands, or perhaps mil_German dictionary in a pipelined manner to create a com-

lions, of Web services in the coming years, it is crucial for posn_e Engllsh-_German _d|ct|ona1=yAn example qf ahon-
. . . . functional requirement is a search for an English-German
these services to be registered and published in a standaré‘i|

. ctionary Web service that is available 99% of the times.
manner. Furthermore, service requesters need to be able t : : . . i
. . : ey n this paper, we are interested in functional search gserie
search for their desired Web services efficiently.

Standards such 49Dl [2] aim to be a uniform way Zaremski and Wing further categorize searching

. L , L based on functional requirements into two main
of storing repositories of Web service specifications, and t types: signature/non-behavioura[16] and specifica
provide efficient methods for searching within them. Such ypes: 9 X P .

. . : tion/behavioural matching [17]. The former mainly
search mechanisms are mainly based on the idea of deco-) . .
. . e ; . Investigates functions, modules, and their parameters
rating service specifications with metadata, and then using . . ! .
- for comparison, while the latter investigates the precon-
search APIs [9] to carry out efficient search over such meta- . . .
. . . ditions and effects of software artifacts and compares
data. This type of search can be considered a keyword-like . . .
. . . them against search queries. In this paper, we focus on
search over different attributes of Web services, suchras se . . : .
. . . : : signature/non-behavioural matching of Web services.
vice types, business types, and technical finger prints. AN ant ideration for Web ice di
While we believe that’/DDI can be a useful standard for n important consideration for YVeb service discovery

storage and categorization of Web services, we think WebSyStem?j 'S" tr(;e IereI t;) flgbstrf;]ctio\r;vaéwhlch searcr:jqueneﬁ
service discovery should be a more involved activity than are modetled. Ve believe thal YWeb services and searc

keyword-like searching. Some aspects of the behaviour of This example is due to [15].

sesmaeil
Text Box
This report was first presented and disseminated in Workshop on Service Oriented Computing: Consequences for Engineering Requirements (SOCCER), Paris, August 2005.

queries should not necessarily be expressed at the same
level of abstraction. Service requesters often have a vague
idea about the specification of the service they desire.,Also

it can be argued that a precisely specified search query may

User

ignore some potentially relevant Web services that do not S Search Requeststateless)
satisfy the query, but are acceptable. Thus, it is crucibéto // \ggigcmhp%esﬂ%enst
able to specify search queries at a higher level of abstracti
than the Web services specifications. A helpful analogy is sl 52 s3 sm
to imagine how hard it would be to use Web search engines, ‘ | ‘ ‘ S
if we had to provide a precise specification of the document Satetaction
we require. ‘ ‘ ‘ ‘
. . . . Web Service

The form of signature matching described in [16] con- @ @ @ Specifications@
siders two types of matching, namely, function and module (stateful)
matching. Their technique focuses on the comparison be-
tween the parameters of functions, their types, and their or Repository of Web Services
der to find a certain software artifact. This type of matching
goes beyond keyword searches, however, in terms of cap- ~ Figure 1. Web Service Discovery System

turing the search queries, the queries are described with as
much detail as the software artifacts’ specifications in the

repository. In this paper, we introduce models that are expres-
Using ideas introduced by de Alfaro and Henzinger for sjve enough to capture the users’ functional requirements
interfaces [8], we characterize the level of abstractioa of (search queries) for a composite Web service. We begin
model of a search query based on its amousstatefulness py examining the stateless model introduced by de Alfaro
Statefulness means how much information about the stategng Henzinger [8], called port dependency interface (PD)
(or behaviours) of the Web services is described in a model.model, and discuss its limitations for specifying Web ser-
If one model is less stateful than another model, then weyices. The PD model is part of a class of models called
consideritto be ata hlgher level of abstraction. Intui'give interface mode]@]; they have the properties of commuta-
a less abstract model provides a more exact specification otivity and associativity needed for compositionality. A RD
the states of systems than a more abstract model. capable of specifying the input and output (1/0) behaviours
Figure 1 illustrates our proposal for how a typical Web of systems, as well asdependency scenariahich is a set
service discovery system should work. A search query, of dependencies among inputs and outputs. This search cri-
S, written in a stateless model appropriate for search teria specifies more information than possible in the models
queries, may be decomposed into multiple simpler sub-of [16].
gueries. The Web service repository provides specification ~ Building on de Alfaro and Henzinger’s work, we pro-
of each available service in a stateful model. sétisfac- pose two new models and show how they can be used for
tion relation determines whether a Web service can sat- capturing search queries in a Web service discovery system.
isfy the query. The satisfaction relation is defined based We extend the PD model toraultiple port dependency in-
on the semantics of the stateful (Web services) and stateterface (MPD)model. An MPD is capable of specifying
less formalisms (search queries). In such a scheme, wenultiple independent sets of dependency scenarios between

desire the satisfaction relation to bempositional A sat- inputs and outputs, as well as outputs and inputs. Next, we
isfaction relation is compositional, if given a quesyand extend MPD to aordered port dependencies (OPDpdel,

its constituent subqueriegii , s2, - - - , s,), @nd given Web which is similar to MPD except that dependency pairs are
services that satisfy each subquers,, for all 7, w; satis- placed in a sequence allowing a more precise search speci-

fiess;, then the compositiofl” of the servicesv;, always fication. OPD can provide a more succinct way to describe
satisfiesS. Compositional satisfaction is desired, since it 1/0 dependencies compared to MPD, however, it lacks the
allows us to divide the task of Web service discovery into associativity property in composition, necessary to baan i
multiple subtasks that can be carried out concurrently. Theterface model.

search query can be decomposed by the user or automat- Since we are concentrating on modelling search queries,
ically. Also, each of the Web services themselves can bewe do not impose any particular requirements on the for-
the result of composing multiple Web services. We have mat or technology of the repository in Figure 1; it suffices
intentionally left the definition of composition and decom- for us that the specifications are stored in a stateful manner
position unspecified since these can happen through variou§Ve briefly discuss the suitability afiterface automat],
operators. a stateful interface model, as a candidate for specifying

the behaviours of Web services. Other approaches have
also been proposed for modelling Web service functional-
ity, e.g.,Petri Nets [12], Finite State Machines [4], and Stat-
echarts [5].

The main contributions of our work are as follows: (1) et no
We separate the models used for search queries from those -
used for modelling Web services; (2) We introduce the idea
of using stateless models with I/O dependencies for describ Figure 2. PD BuyBook
ing Web service search queries to raise the level of abstrac-
tion of these descriptions; and (3) We introduce and discuss
two new stateless models for modelling Web services search ISBN Credit_no
gueries and discuss their advantages and disadvantages.

ISBN
Author
BookName BuyBook

Ref_no

2 Background Author Ref no

The class of models calleidterface model$8], intro- Figure 3. Partial order on ports of depen-
duced by de Alfaro and Henzinger, contains concise mod- dency scenario of PD of Figure 2
els meant to specifjiow systems can be used. The two
main characteristics of interface models are that they as-
sumehelpful environmentand supportop-downdesign. A
helpful environmenprovides proper inputs for an interface
and receives all of its outputs. As such, interfaces are op-
timistic, and do not usually specify all possible behavé&our (F'| G) = (F||G)
of the systems. For example, they often do not include fault
scenarios Top-down desigis based on a notion of refine- de Alfaro and Henzinger introduce tpert dependency
ment, which relates two instances of a model. A refinementinterface (PD) model, a stateless interface model. PD is
of a model can be substituted for the original. the first model we considered using for Web service search

These characteristics make interface models suitable forduery specification. Figure 2 is a graphical representation
describing Web services. Web services rely on a helpful ©f @ PD,BuyBook used to describe a Web service search
environment in the form of a coordination mechanism that query for a book buying Web servicé.The named, filled
appropriately invokes their functionality, provides thes- circles represent theorts which are the inputs and outputs
quired inputs, and receives all of their possible outputs. | 0f BuyBook The ports on the left are input ports, and ports
the context of Web services, top-down design means thaton the right are output port8uyBookrepresents a search
once a Web service is specified as the composition of mul-duery for a Web service that can carry out a book purchase

tiple interface models, if we replace one of the interfaces by receiving an ISBN and a credit card number; the output
with a more refined version of it, the resulting composition Of the Web service is the author of the book as well as the

also refines the initial model. For search queries of Web reference number for the successful credit card transactio

services, refinement is less useful. The composition of mul- The arrows between the ports represent the dependencies
tiple search queries should equal the original query ratherPetween input and output ports. A dependency pair states
than just refine it. that the value on a certain input port influences the value of
In [8], interface models are categorized istatelesand a certain output port.
statefulmodels. Stateless models mainly specify the input ~ Dependency pairs in a PD establish an irreflexive partial
and output behaviours of systems, while stateful systemsorder. Figure 3 shows the simple partial order that s intplie
specify the internal behaviours of systems by modelling the by the dependency pairs in Figure 2. A partial order on ports
temporal order of events. We believe that stateless iterfa Can express concurrency [14]. Any set of ports in a set of
models are appropriate models for capturing search querie$§lependency pairs that are not related by the partial order ca
because they provide a richer model than keyword searchbe used concurrently. Thus, a set of dependency pairs is a
but do not require all the details needed in a specification of Powerful tool to express allowed concurrencies in a search
a Web service. query.
Formally, a model is a well-formed interface model if ~ Notice that no dependencies are shown for Buok-
the binary operationsompositionand refinementare de- ~ Nameport. Ideally, we would have liked to state that the
fined. Composition must be a commutative and associative 2tpe graphical representation, as shown in Figure 2, is natteopthe
operation. To support top-down design, for three integace PD model.

F, F', G, and the composition of’ andG, F || G, if F’
refinesF’,i.e., F’ < F, then:

service can produce the outputs from bothISBN and

Credit.no, or aBookNamendCredit no. However, PD is

not expressive enough to capture the “or” semantics. In the

next section we will introduce our MPD model, which has

this capability. Credit 1o @< U ee Reno
Formally, the definition of a PBis: - T

I1SBN -
[=@ Author
BookName BuyBook

Definition 2.1 A port dependency interface model = i
(Ir,Op, k), consists of: Figure 4. MPD BuyBook

- Ir: The set of input ports.

- Op: The set of output ports, which is disjoint from the
input ports. We denotBr = Ir U O as the set of all
ports.

when we want to model queries for Web services with the
Qut - I n message passing pattern in WSDL (Web Services
Description Language) 2.0 [6Dut - | n represents the sit-

- kp C Ip x Op: The I/O dependency relation of the uation where a Web service sends a message to the service

interface, which we call a dependency scenario. requester and the service requester in turn sends back a mes-
- sage.
The composition of two PD& andG, F || G, is defined Dependency pairs of each dependency scenario estab-

if they arecomposablemeaning they do not use any of the lish an irreflexive partial order and thus can express cencur
same inputs or outputse., Pr N Pe = (. Composition of ~ '€Nncy. Since MPDs can have multiple dependency scenar-

two composable PDs is the union of their elements: ios, it is possible to express different concurrency sdesar
in a search query.
F|G=(IrVUlg),(OrVUOg),(kr Ukg)) BuyBookin Figure 4 is an MPD with two dependency

Renaming of ports in stateless interface models, indud_scenarios that are represented by dashed and dotted lines.
Each dependency scenario represents one of the possi-
interface and a renaming function to a new interface. In Plé Ways that the desired Web service should work. The
this paper, for the sake of simplicity, we present our mod- dashed” scenario receives the ISBN of a book and a credit
els without a description of connection functions; instead card number, and returns the author of the book apd a ref-
we use shared names of ports as an implicit way to model€€"C€ number for the credit card number transaction. The
connections. The same models are presented with explicitdotted scenario 1S similar but receives a l_)OOK name in-
connection functions in [10]. stead of its ISBN. The Web service satisfying this search
query must be capable of satisfying both dependency sce-
narios.

To overcome some of the restrictions on PD composi-
tion, in MPDs, we introduce the concept sifiared ports
The set of shared ports between two MPDs are the ports
with the same names. While in PD, two interfaces with
shared ports are not composable, in MPD if each of the ports

!) . in the set of shared ports is an output of one MPD and in-
pendency scenariose., multiple sets of I/O dependencies.

Diff /0 d d . b dt _f))aut of another, they can be composed. Intuitively, shared
meren dependency scenarios can be Used 1o Spec ports allow two MPDs to communicate through ports with
search queries for Web services with multiple alternative

:~ the same names.
behaviours. We believe MPD is an appropriate formalism . -
for specifying such search queries; while it is simple to, use As an example, consider MPOS andG_ in Figure 5; .
it is expressive enough to capture 1/0 dependencies as WeIFaCh MPD has one dependency scenario ;hown by solid
as concurrent behaviours of systems. ines. They are compo_sable MPDs since their shared ports,
Additionally, within a dependency scenario, MPD allows b andd, are both the input of one and the output of _the
output-input dependency pairs rather than just the input-Other' If they do not have any shared ports, composition

. : . f two MPDs is the union of their elements. In the pres-
output pairs of PD. Output-input dependencies can be usefuf’ P .
utputpal utput-inputdep !) uence of shared ports, the shared ports and dependency pairs

3The definition of a PD also includes a set of available portsiciv defined on them are removed from the composition; new

are necessary for refinement. Since we are not interestegfimement . . . s
for search queries, we omit this part of the definition in b& models dependency pairs are introduced using transitivity betwee

presented in this paper. This model element plus definitibmefinement depende_zncy pairs on shared ports. In Figurg %G is the
for all models presented in this paper can be found in [10]. composition ofF and G; the (a, f) dependency is a new

ing PD, is done using aonnection functiothat maps an

3 Multiple Port Dependency Model

In this section, we introduce oumultiple port depen-
dency interfac§MPD) model and define composition on
MPD. MPD, similar to PD, is a stateless interface model.
Compared to a PD, in an MPD we can specify multiple de-

£ - Op: The set of output ports, which is disjoint from the
d input ports. We denotBr = I U Op.

3 o o
S5 o

”l
©

=
L

- Hp: The set of hidden ports, which must be disjoint
fromIr U OF.

L - Up: The set of I1/0O dependency scenarios. Each de-
FlIG m pendency scenariop € Up is a set of dependency
D pairs, and for each dependency péir,b) € ur, the
following conditions hold:

ST O

Fi 5.MPD C iti
igure omposition - (a,b) € ((Ir x Op) U (OF x Ir)) (It relates

inputs to outputs or outputs to inputs.)

1BN Price - Yc & Pp = 3(b,c) € ur (Aportcannot both be
SearchBook influenced by a port and influence another port.
BookName @ T At This disallows circular dependencies.)

- Bd € Pr-(d # a) A (d,b) € ur (A portis not
influenced by more than one port.)

Price
PayCredit Ref_no
Credit_no

i

3.2 MPD Composition

Figure 6. Decomposition of MPD BuyBook N)
MPD composition combines the ports and dependency

scenarios of two composable MPDs, and stores the shared
) ports that become hidden in the set of hidden ports of
dependency pair created from, b) of I and(b, f) of G. the resulting MPD. Thehared portsbetween two MPDs,
The shared ports of two composable MPDs are removedy 44 G, are their common input and output poris.,
and stored in the set dfidden portsof their composition. SharedPorts(F,G) = PpN Pg. Two MPDs may be com-
The hidden ports state that a certain port is an internal portposed if each of their shared ports is an input of one and an
of the system. We require that two composable MPDS not gt of another. This restriction avoids the ambiguitr-cr
have any common internal ports. ated by having different input and output ports of the same
We can decompose an MPD into two MPDs. As an ex- name “We also require that two composable MPDs not have
ample, the two MPDs in Figure 6 are the decomposition of 5y higden ports in common since hidden ports are the re-
MPD BuyBookin Figure 4. If there is no Web service that - gt of having had the same input and output ports in two

can satisfyBuyBookwe may be able to find Web services \1ppg that were composed to create this MPD. Composing
that satisfySearchBooland PayCreditindependently, and 1,5 pmpps with the same hidden ports results in an ambi-

then compose those Web services to satiflyBook as- guity as to the source of the hidden ports. Similar compos-

suming that our satisfaction relation is compositionale Th ability criterion has been proposed in interface automita [
portPrice becomes a hidden port in the composition. and I/O automata [11]. Formally:

In the following subsections, we formally define MPD

and then describe its composition operation. The readercarbeﬁmtion32 Two MPDs, F = (Ir,Op, Hp,Ur) and
refer to [10] for our proofs that MPD is a well-formed inter- ~"_ (o O.G He, Ug) aré composgi)IeFi’f aﬁa o};ﬂy if the

face model. following three conditions hold:

3.1 Formal Description of MPD 1. V a € SharedPorts(F,G) -
((a € Ip) A(a € Og)) V ((a € Ig) A (a € Op))
(A shared port is the input af' and the output ofs or

Definition 3.1 A multiple port dependency interfade = vice versa.)

(Ir,Op, Hp,Ur) consists of:

Formally, the definition of an MPD is:

2. Hr N Hg = (0 (F and G do not have hidden ports in
- Ip: The set of input ports. common.)

3. Foreachur € U, ug € Ug, andL = ur U ug, the [S

transitive closure of., L*, satisfies: ISBN B e
1 e ~@ Author
V(w.y) € L* = (y,0) & L* Bockame BuyBookd
N il - Ref_no
(No combination of dependency scenariog'dnd G Credit_no ,
results in circular dependencies.)
u Figure 7. OPD BuyBook1
Next, we define composition for MPDs:
ISBN
Definition 3.3 The composition of two composable MPDs,
F and@, F || G, is an MPD and is defined as: / \
- Ipjc = (Ir U Ig)\SharedPorts(F, G) Cregitno Author
- Op|¢ = (Or UOg)\SharedPorts(F, G)
We denothF”G :IF||GUOF||G- Ref no
- Hpje = Hp U Hg U SharedPorts(F, G) Figure 8. Partial order on ports of dashed de-

- For eachurp € Up andug € Ug, create aup|g € pendency rule of Figure 7

Up| g, such that:

urjG = i approach. OPD is similar to MPD except that instead of
(up Uug)"\ having dependency scenarios, which are sets of dependency
((SharedPorts(F,G) x Prj) U pairs, it hasdependency ruleswhich are sequences of
(Prjg x SharedPorts(F, G))) dependency pairs. A dependency rule is a total order on the
pairs of dependencies.
o . Figure 7 shows the OPBuyBookl It is very similar
(Each dependency scenario is the result of co_mbln- to the search query of MPBuyBookin Figure 4. Two de-
ing dependency pairs of two dependency scenarios beyyenqency rules are represented by the dashed and dotted
longing to £ and & with dependency pairs on shared |ineg The numbers on dependency pairs represent the order
ports being removed.) of dependency pairs in the dependency rule. Figure 8 rep-
] resents the partial order resulting from the “dashed” depen
dency rule of OPBuyBooklin Figure 7. The orderimplies
thatISBNhappens beforAuthor, Credit no appears before
Refno, andISBN happens befor€redit no; the first ele-
ment of a pair comes before the first element of the next
pair in the partial order. The partial order of ports of an
OPD always has a single root.

To make it possible to specify a total sequential order on
ports, OPDs can havdentity dependenciese., a depen-
dency between a port and itself. An identity dependency
forces a port to be used at a particular point in the depen-
dency rule. For example, OPBuyBook?2in Figure 9, uses
identity dependencies to specify a very similar searchyquer
as OPDBuyBooklin Figure 9, except that a total order is
imposed on the ports. Figure 10 shows the total order of
ports given by the dashed dependency rule of GRY-
Book2 Also, OPDBuyBookZ2orovides an easier decompo-
sition scheme than OPBuyBook1we will see more about
composition and decomposition later in this section.

For search queries, identity dependencies can be used to
4OPDs are called enhanced port dependency (EPD) models]in [10 capturel n- Onl y and Qut - Onl y message passing pat-

Where *\” means set difference.

4 Ordered Port Dependency Model

While the MPD model is an expressive tool for
capturing search queries, it has its limitations. It
is not possible to specify a total order on differ-
ent ports of an MPD. As an example, consider the
{(ISBN, Author), (Credit_no, Ref no)} dependency
scenario in the MPDBuyBookof Figure 4. It is not
clear whethe(ISBN, Author) or (Credit_no, Re f -no)
should happen first, or whether they are concurrent.

To impose an order on the ports, we could ei-
ther have dependency pairs between inputs or be-
tween outputs, e.g., (ISBN,Credit-no), or we
could define an order between dependency paitg,,
((ISBN, Author), (Credit-no, Re f_no)). In ourordered
port dependencyOPD) model*, we choose the second

- Vr: The set ofdependency ruleskachvp € Vg is
a sequence of distinct dependency pairs. For each de-
pendency paifa,b) € vp one of the following two
sets of conditions must hold:

Author
BookName

Ref_no

Creditno @~
- 1. - (a,b) C((Ir xOp)U(Op xIF)) (It relates

inputs to outputs or outputs to inputs.)
Figure 9. OPD BuyBook2 -Vec € Pp = $(b,c) € vp (A port cannot
both be influenced by a port and influence
another port. This disallows circular depen-

ISBN dencies.)
‘ - Bd € Pr-(d# a) A (d,b) € vy (Aportis
Author not influenced by more than one port.)

‘ 2. -(a=0b) A (a € Pp) (Itis an identity de-
Credit_no . . .
- pendency, i.e., it relates one port to itself.)
- (J(a,c) € vp-c # a)A(B(c,a) € vp-c # a)
Ref no (A port that has an identity dependency can-

Figure 10. Total order on ports of dashed de- not take partin any other dependency pair.)

pendency rule in Figure 9 []

4.2 OPD Composition

terns in WSDL 2.0 [6]. These patterns model the situations
where a Web service requestdrn¢ Onl y) or provider The composition of two OPDs combines the ports and
(Qut - Onl y) sends a message without receiving any. dependencies of the two OPDs. The composition operator

Having an order on the pairs of dependencies decrease§réates a new dependency rule by combining a dependency
the concurrency expressiveness of OPD, in comparison withfule from each of the two OPDs being composed. It has to
MPD, because OPD imposes more order on dependencyomehow mix the dependency pairs such that synchroniza-
pairs and makes their concurrency less likely. On the othertion between shared ports occurs. Rather than considering
hand, OPDs provide a way of expressing sequentiality lack-all interleavings, we believe it is sufficient to considetyon
ing in MPDs. We do not entirely loose the ability to express linear ordersin which one or the other model runs until syn-
concurrency in OPD. For example, in the partial order in chronization between shared ports occurs. Including all in
Figure 8 the order thaRefno and Authorare produced is terleavings makes the model unusable because of its size,
not specified and these operations can be carried out conP!US requires the Web service to satisfy all interleavings.
currently. The criteria for composability for OPDs is exactly the

Next, we give a formal description of OPD and describe Same as that for MPDs (Definition 3.2), except that in the
the composition of two OPDs. condition to avoid circularity, we consider each depenglenc
rule as a set rather than a sequence.

The dependency rules of a composed MPD are created
by composing all combinations consisting of a dependency
rule from each of the two models being composed. To en-

4.1 Formal Description of OPD

Formally, the definition of OPD is as follows: sure commutativity, we compose the two rules in either or-
der and include both resulting dependency rules. To com-
Definition 4.1 An ordered port dependency modgl = pose dependency ruké with dependency rulé3, we walk
(Ir,Op, Hp,VF) consists of: along the dependency pairs dfsequentially, and include
these pairs in the resulting dependency rule until we reach
- Ir: The set of input ports. a point where the second port in a dependency paid of

can synchronize with the first port of a dependency pair in
- Or: The set of output ports, which is disjoint from the B, i.e., there is a shared port. At this point, we include

set of input ports. We denof&: = Ir U Op. any dependency pairs iB prior to the shared port. Next,
we create a new dependency pair through transitivity of the

- Hp: The set of hidden ports, disjoint frof U Op. two dependency pairs on the shared port. Then, we return

Price OPD composition is not associative, and thus OPD is not

1SBN a well-formed interface model. Non-associativity in com-

BookName (¢ Author position arises since we do not allow the interleaving of all
possible behaviours in our composition operation; as such
our composition combines dependency rules in such a way

Price that the order of combinations affects the resulting depen-
dency rule. We believe that when expressiveness is the ma-

Ref_no jor concern, and not composition, then the OPD model is

Credit_no appropriate for capturing search queries.
Figure 11. Decomposition of OPD BuyBook2 5 Workflow Patterns

A composite Web service is a set of simple Web ser-
vices that are connected to each other through workflow

to A’s dependency rule and repeat these operations until wepatterns. Both MPD and OPD allow the flow of data be-
reach the end of both sequences. This method ensures thalveen different interfaces via a shared port mechanism,
at most two dependency rules result from the compositionthey offer a mechanism to describe data flow. The composi-
of two dependency rules. Some dependency rules are notion operation for MPD and OPD can be considered roughly
composable. The mathematical definition of this composi- equivalent to a “parallel” workflow pattern. In this section
tion can be found in [10] we consider whether it is possible to simulate the workflow

OPD composition is restrictive in comparison with patterns of choice and sequence with MPDs and/or OPDs.
MPD. In MPD, dependency scenarios have the chanceChoice and sequence are among the basic workflow patterns
to synchronize in any possible order; in OPD, on thatare often used in specifying systems [3].
the other hand, the synchronization can only hap-
pen while we traverse forward along the two depen- 5.1 Sequence
dency rules. As an example consider the two de-
pendency rules,, = {(a,b),(c,d), (e, f),(g,h)) and For OPDs, a sequence operation is represented using a
s = ((I,m), (b,e), (n,0), (f,p)); (a,p) is created through ~ concatenation operator, which describes the sequential ex
the ((a,b), (b,e), (e, f), (f,p)) chain of synchronization. ecution of two OPDs. Because sequence does not support
By traversingr first, the resulting dependency rule is communication between the involved models, it can only
((1,m), (¢,d), (n,0), (a,p), (g, h)). If we start traversing be defined when there are no shared ports between the two

first, there is no way that we can synchronize on all sharedmodels.

ports. N] Definition 5.1 The concatenationof two OPDs, I’ =
As an example of OPD composition, consider the two (7, 0, [Vp)andG = (I, Og, Hg, Ve), is an OPD,

OPDs in Figure 11. They are the decomposition of OPD ¢y — (Irc,Orc, Hra, Vrc), if SharedPorts(F, G) =
BuyBook2n Figure 9. The dashed dependency rule of OPD () gq

BuyBook2((ISBN,ISBN), (Author, Author),

(Credit_no, Ref_no)), is created by combining the dashed - Irc = [rUIg (F'G receives botli’s andG’s inputs.)
dependency rule of OPBearchBookvith the dependency) _ , ,
rule of OPDPayCredit Dependency pait/ SBN, [SBN) gjtgut_s)OF U Oc (FG generates bot"s and ¢'s
is created by the transitivity of/.SBN, Price) belong- '
ing to OPDSearchBookwith (Price, Price) belonging to - Hpg = Hp U Hg (The hidden ports oF'G is the
OPD PayCredit This transitive sequence of dependency union of the hidden ports df andG'.)

pairs is a special case because it ends with an “identity” de-
pendency pair; by definition the result of such a chain of
synchronizations is an identity dependency on the first port
of the first dependency pair. Other dependency pairs that
are not defined on shared poiits,, (Author, Author) and
(Credit_no, Ref no), are inserted into the sequence ap- W
propriately. Similarly, the second dependency rule of OPD
BuyBookZan be computed. Because identity dependency The sequence workflow pattern for MPD is not relevant
pairs affect only one port, it is often the case that theispre since, as opposed to OPD, it lacks the notion of order in its
ence makes it easier to find a decomposition scheme. dependency pairs.

- For eachvr € Vp andvg € Vg, create avipg) €
Vrg such that vpg) = vr.vg (All dependency
rules of FG consist of a dependency rule Bfimme-
diately followed by one af’s dependency rules.)

5.2 Choice

Thechoiceof two OPDsF andG, F' A G, means that at
any point of time eithe#” or G executes. Unlike sequence,
we allow the set of shared ports of two OPDs to have com-
mon ports on their input or output ports since at each point
in time we only deal with eithef’ or G and thus common
names cause neither ambiguity nor circular dependencies.

Definition 5.2 The choice of two OPDs, F
(Ir,Op,Hp,Vr) and G (I¢,0¢,Hg,Va), is an
OPD,F A G = <IF*G70F*G7Hpkg,Vpkg>, if for all
x € SharedPorts(F,G), either(x € Ir) A (x € Ig) or
(x € Op) A (x € Og), and

Ip,c = Ir U lg (F ~ G receives bothF’s and G’s
inputs.)

Op.c = OpUO¢g (F AG generates botli’s andG’s
outputs.)

Hp,c = Hr UHg (The hidden ports of’ A GG include
the hidden ports of both OPDs.)

Vric = VrUVg. (Each ofF A G's dependency rules
is one ofF’s or G’s dependency rules.)

The choice operation for MPD can be defined in a similar
way.

6 Summary and Future Work

We have introduced a method, along with two models,
for specifying search queries for a Web service discovery
system. We described why search queries should not nec
essarily be specified at the same level of abstraction as We

services themselves. We introduced two models that are ca-

pable of specifying search queries at a high level of abstrac
tion. The first model, the multiple port dependency inter-

i Credit_no

| NPUTS 1SBN i BookName
O

ISBN? Author!

Price;

BookName? ¢ ieit no?

QUTPUTS zAuthor I

Figure 12. Interface Automata BuyBook

\
Credit_no?
Ref_no!

Author!

Err_no?

Author!

)

Err_no I Ref_no

changes its states by input(?), output(!), or internal¢;) a
tions. This Web service satisfies the requirements of the
MPD in Figure 4, and of the OPDs in Figure 7 and Figure 9.
It provides the set of input and output actions required by
the search queries and satisfies the required dependencies.
One can see the difference in level of abstraction between
the stateless models of PD, MPD, and OPD, and stateful
model of 1A in this example.

In this paper, the names of ports are strings that are com-
pared to other port names for equality, however, a richer
meaning could be associated with these names. The satis-
faction relation could relate port names semantically tado
more meaningful comparison between names. Existing se-
mantic matching engines, such as the one proposed in [13],
can be used for this purpose.

Finally, we believe that the graphical representations of
MPD and OPD can be used to create a simple and intu-
itive GUI to help users create search queries in a Web ser-
vice discovery system. In [10], we give a version of our
models with explicit connection functions, which provides
an easy way to direct the dataflows of the system graphi-
ally between different interfaces. A user can easily draw
oxes and ports, and using composition and workflow op-
erators, and connection functions relate different boges t
create queries for Web services. We plan to use the GUI as

_a platform for experimenting with user-guided decomposi-

face (MPD) model, is a stateless model with sets of depen-". ,
fion of search queries.

dencies between inputs and outputs. The second one, the o
dered port dependencies (OPD) model, provides the means

to specify more precisely the order of the inputs and outputs References

We introduced composition for our models, which allows

them to be used for specifying composite search queries by [1] OWL-S: Semantic markup for Web services. W3C

composing simple search queries.

The next step is to assess how our search query models

work with a repository of Web service specifications and a
satisfaction relation. One possible formalism for spenify

Web services is interface automata (l1A) [7]. For example,
a specification of a Web service for buying books is given
in Figure 12 as an IA, which is an automaton machine that

Member Submission, Nov 2004.

[2] UDDI version 3.0.2 UDDI Specification Technical
Committee draft. Oct. 2004.

[3] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede,
B. Kiepuszewski, and A. P. Barros. Workflow patterns.
Distributed Parallel Databased4(1):5-51, 2003.

(4]

(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

Boualem Benatallah, Marlon Dumas, Quan Z. Sheng,
and Anne H. H. Ngu. Declarative composition and
peer-to-peer provisioning of dynamic web services. In
Proceedings of the 18th International Conference on
Data Engineering (ICDE’02)pages 297-308. IEEE
Computer Society, 2002.

Daniela Berardi, Diego Calvanese, Giuseppe De Gi-
acomo, Maurizio Lenzerini, and Massimo Mecella.
Automatic Composition of e-Services that Export
their Behavior. InProc. of the 1st Int. Conf. on Ser-
vice Oriented Computing (ICSOC 2008plume 2910

of Lecture Notes in Computer Sciengages 43-58.
Springer, 2003.

Roberto Chinnici, Martin Gudgin, Jean-Jacques
Moreau, Jeffrey Schlimmer, and Sanjiva Weer-
awarana. Web Services Description Language

[14]

[15]

[16]

services capabilities. IRroceedings of the First Inter-
national Semantic Web Conference on The Semantic
Weh pages 333-347. Springer-Verlag, 2002.

Vaughan R. Pratt. Modelling concurrency with par-
tial orders.International Journal of Parallel Program-
ming, 15(1):33-71, 1986.

Evren Sirin, James Hendler, and Bijan Parsia. Semi-
automatic composition of web services using seman-
tic descriptions. InWeb Services: Modeling, Architec-
ture and Infrastructure Workshop in ICEIS 2Q@ril
2003.

Amy Moormann Zaremski and Jeannette M. Wing.
Signature Matching: a Tool for Using Software Li-
braries. ACM Transactions on Software Engineering
and Methodology4(2):146-170, 1996.

(WSDL) Version 2.0 Part 1: Core Language. W3C [17] Amy Moormann Zaremski and Jeannette M. Wing.

Working Draft, May 2005.

Luca de Alfaro and Thomas A. Henzinger. Interface
Automata. In Volker Gruhn, editoRroceedings of the
Joint 8th European Software Engeneering Conference
and 9th ACM SIGSOFT Symposium on the Founda-
tion of Software Engeneering (ESEC/FSE;@bJume

26, 5 of Software Engineering Notepages 109-120.
ACM Press, 2001.

Luca de Alfaro and Thomas A. Henzinger. Interface
Theories for Component-Based Design. Hroceed-
ings of the First International Workshop on Embedded
Software volume 2211 ot ecture Notes in Computer
Sciencepages 148-165. Springer-Verlag, 2001.

UDDI Open Draft. UDDI Version 2.04 API Specifi-
cation. OASIS Standard, 2002.

Shahram Esmaeilsabzali. An Interface Approach to
Discovery and Composition of Web Services. Master
of Mathematics, School of Computer Science, Univer-
sity of Waterloo, 2004.

N. A.Lynchand M. R. Tuttle. Hierarchical correctness
proofs for distributed algorithms. IRroceedings of
the 6th ACM Symposium on Principles of Distributed
Computing pages 519-543, 1987.

Srini Narayanan and Sheila A. Mcllraith. Simulation,

verification and automated composition of web ser-
vices. InProceedings of the 11th International Con-

ference on World Wide Wepages 77-88, 2002.

Massimo Paolucci, Takahiro Kawamura, Terry R.
Payne, and Katia P. Sycara. Semantic matching of web

Specification matching of software compone®EM
Transactions on Software Engineering and Methodol-
ogy, 6(4):333-369, 1997.

