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Abstract

Web services are meant to be easily accessible software
systems. With the emergence of Web service technologies
and the presence of thousands, or perhaps millions, of Web
services in the coming years, the challenge is searching for
a Web service that meets a specified requirement. In this
paper, we propose methods and models for effectively spec-
ifying the search queries in a Web service discovery sys-
tem. We show that while search queries should be speci-
fied precisely enough to contain information for appropri-
ate matching, they should not be too detailed. Users often
do not have a clear vision of their desired Web service and
a search query should be at a high enough level of abstrac-
tion. We propose two models and show how they are appro-
priate for capturing search queries.

1 Introduction

The ultimate goal of creating a public Web service is
to be discovered and used by potential service requesters.
Considering the emergence of thousands, or perhaps mil-
lions, of Web services in the coming years, it is crucial for
these services to be registered and published in a standard
manner. Furthermore, service requesters need to be able to
search for their desired Web services efficiently.

Standards such asUDDI [2] aim to be a uniform way
of storing repositories of Web service specifications, and to
provide efficient methods for searching within them. Such
search mechanisms are mainly based on the idea of deco-
rating service specifications with metadata, and then using
search APIs [9] to carry out efficient search over such meta-
data. This type of search can be considered a keyword-like
search over different attributes of Web services, such as ser-
vice types, business types, and technical finger prints.

While we believe thatUDDI can be a useful standard for
storage and categorization of Web services, we think Web
service discovery should be a more involved activity than
keyword-like searching. Some aspects of the behaviour of

the Web services may be relevant for a search. For exam-
ple, a search query may want to specify the desired Web
service’s inputs and outputs, and perhaps some informa-
tion about message exchange order. More complex Web
services can be created by combining multiple cooperating
simple Web services. Existing formats, such asOWL-S[1],
are used to create more complex Web services by using
workflowanddataflowpatterns to combine multiple simple
Web services. It should be possible to decompose search
queries as well. To ensure that the multiple parts of de-
composed search query are compatible and satisfy the orig-
inal query, more information needs to be described in the
search query than simply values of keywords. Our goal in
this work is to propose richer models for describing Web
services queries and to discuss their advantages and disad-
vantages.

Similar to other requirement specification activities,
searches for Web services can be based onfunctional or
non-functionalrequirements. An example of a functional
requirement is a search for an English-German dictionary
Web service. If there is not an English-German dictionary,
then it is possible to use an English-French and a French-
German dictionary in a pipelined manner to create a com-
posite English-German dictionary.1 An example of a non-
functional requirement is a search for an English-German
dictionary Web service that is available 99% of the times.
In this paper, we are interested in functional search queries.

Zaremski and Wing further categorize searching
based on functional requirements into two main
types: signature/non-behavioural[16] and specifica-
tion/behavioural matching [17]. The former mainly
investigates functions, modules, and their parameters
for comparison, while the latter investigates the precon-
ditions and effects of software artifacts and compares
them against search queries. In this paper, we focus on
signature/non-behavioural matching of Web services.

An important consideration for Web service discovery
systems is the level of abstraction at which search queries
are modelled. We believe that Web services and search

1This example is due to [15].
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queries should not necessarily be expressed at the same
level of abstraction. Service requesters often have a vague
idea about the specification of the service they desire. Also,
it can be argued that a precisely specified search query may
ignore some potentially relevant Web services that do not
satisfy the query, but are acceptable. Thus, it is crucial tobe
able to specify search queries at a higher level of abstraction
than the Web services specifications. A helpful analogy is
to imagine how hard it would be to use Web search engines,
if we had to provide a precise specification of the document
we require.

The form of signature matching described in [16] con-
siders two types of matching, namely, function and module
matching. Their technique focuses on the comparison be-
tween the parameters of functions, their types, and their or-
der to find a certain software artifact. This type of matching
goes beyond keyword searches, however, in terms of cap-
turing the search queries, the queries are described with as
much detail as the software artifacts’ specifications in the
repository.

Using ideas introduced by de Alfaro and Henzinger for
interfaces [8], we characterize the level of abstraction ofa
model of a search query based on its amount ofstatefulness.
Statefulness means how much information about the states
(or behaviours) of the Web services is described in a model.
If one model is less stateful than another model, then we
consider it to be at a higher level of abstraction. Intuitively,
a less abstract model provides a more exact specification of
the states of systems than a more abstract model.

Figure 1 illustrates our proposal for how a typical Web
service discovery system should work. A search query,
S, written in a stateless model appropriate for search
queries, may be decomposed into multiple simpler sub-
queries. The Web service repository provides specifications
of each available service in a stateful model. Asatisfac-
tion relation determines whether a Web service can sat-
isfy the query. The satisfaction relation is defined based
on the semantics of the stateful (Web services) and state-
less formalisms (search queries). In such a scheme, we
desire the satisfaction relation to becompositional. A sat-
isfaction relation is compositional, if given a queryS and
its constituent subqueries,(s1, s2, · · · , sm), and given Web
services that satisfy each subquery,i.e., for all i, wi satis-
fiessi, then the compositionW of the serviceswi, always
satisfiesS. Compositional satisfaction is desired, since it
allows us to divide the task of Web service discovery into
multiple subtasks that can be carried out concurrently. The
search query can be decomposed by the user or automat-
ically. Also, each of the Web services themselves can be
the result of composing multiple Web services. We have
intentionally left the definition of composition and decom-
position unspecified since these can happen through various
operators.

Relation
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s1 ...s2 s3 sm

Search Request

wmw3w1 w2

Search Request
Decomposition
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Figure 1. Web Service Discovery System

In this paper, we introduce models that are expres-
sive enough to capture the users’ functional requirements
(search queries) for a composite Web service. We begin
by examining the stateless model introduced by de Alfaro
and Henzinger [8], called aport dependency interface (PD)
model, and discuss its limitations for specifying Web ser-
vices. The PD model is part of a class of models called
interface models[8]; they have the properties of commuta-
tivity and associativity needed for compositionality. A PDis
capable of specifying the input and output (I/O) behaviours
of systems, as well as adependency scenario, which is a set
of dependencies among inputs and outputs. This search cri-
teria specifies more information than possible in the models
of [16].

Building on de Alfaro and Henzinger’s work, we pro-
pose two new models and show how they can be used for
capturing search queries in a Web service discovery system.
We extend the PD model to amultiple port dependency in-
terface (MPD)model. An MPD is capable of specifying
multiple independent sets of dependency scenarios between
inputs and outputs, as well as outputs and inputs. Next, we
extend MPD to anordered port dependencies (OPD)model,
which is similar to MPD except that dependency pairs are
placed in a sequence allowing a more precise search speci-
fication. OPD can provide a more succinct way to describe
I/O dependencies compared to MPD, however, it lacks the
associativity property in composition, necessary to be an in-
terface model.

Since we are concentrating on modelling search queries,
we do not impose any particular requirements on the for-
mat or technology of the repository in Figure 1; it suffices
for us that the specifications are stored in a stateful manner.
We briefly discuss the suitability ofinterface automata[7],
a stateful interface model, as a candidate for specifying



the behaviours of Web services. Other approaches have
also been proposed for modelling Web service functional-
ity, e.g.,Petri Nets [12], Finite State Machines [4], and Stat-
echarts [5].

The main contributions of our work are as follows: (1)
We separate the models used for search queries from those
used for modelling Web services; (2) We introduce the idea
of using stateless models with I/O dependencies for describ-
ing Web service search queries to raise the level of abstrac-
tion of these descriptions; and (3) We introduce and discuss
two new stateless models for modelling Web services search
queries and discuss their advantages and disadvantages.

2 Background

The class of models calledinterface models[8], intro-
duced by de Alfaro and Henzinger, contains concise mod-
els meant to specifyhow systems can be used. The two
main characteristics of interface models are that they as-
sumehelpful environmentsand supporttop-downdesign. A
helpful environmentprovides proper inputs for an interface
and receives all of its outputs. As such, interfaces are op-
timistic, and do not usually specify all possible behaviours
of the systems. For example, they often do not include fault
scenarios.Top-down designis based on a notion of refine-
ment, which relates two instances of a model. A refinement
of a model can be substituted for the original.

These characteristics make interface models suitable for
describing Web services. Web services rely on a helpful
environment in the form of a coordination mechanism that
appropriately invokes their functionality, provides their re-
quired inputs, and receives all of their possible outputs. In
the context of Web services, top-down design means that
once a Web service is specified as the composition of mul-
tiple interface models, if we replace one of the interfaces
with a more refined version of it, the resulting composition
also refines the initial model. For search queries of Web
services, refinement is less useful. The composition of mul-
tiple search queries should equal the original query rather
than just refine it.

In [8], interface models are categorized intostatelessand
statefulmodels. Stateless models mainly specify the input
and output behaviours of systems, while stateful systems
specify the internal behaviours of systems by modelling the
temporal order of events. We believe that stateless interface
models are appropriate models for capturing search queries
because they provide a richer model than keyword search,
but do not require all the details needed in a specification of
a Web service.

Formally, a model is a well-formed interface model if
the binary operationscompositionand refinementare de-
fined. Composition must be a commutative and associative
operation. To support top-down design, for three interfaces
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Figure 3. Partial order on ports of depen-
dency scenario of PD of Figure 2

F , F ′, G, and the composition ofF andG, F ‖ G, if F ′

refinesF , i.e.,F ′ � F , then:

(F ′ ‖ G) � (F ‖ G)

de Alfaro and Henzinger introduce theport dependency
interface(PD) model, a stateless interface model. PD is
the first model we considered using for Web service search
query specification. Figure 2 is a graphical representation
of a PD,BuyBook, used to describe a Web service search
query for a book buying Web service.2 The named, filled
circles represent theports, which are the inputs and outputs
of BuyBook. The ports on the left are input ports, and ports
on the right are output ports.BuyBookrepresents a search
query for a Web service that can carry out a book purchase
by receiving an ISBN and a credit card number; the output
of the Web service is the author of the book as well as the
reference number for the successful credit card transaction.
The arrows between the ports represent the dependencies
between input and output ports. A dependency pair states
that the value on a certain input port influences the value of
a certain output port.

Dependency pairs in a PD establish an irreflexive partial
order. Figure 3 shows the simple partial order that is implied
by the dependency pairs in Figure 2. A partial order on ports
can express concurrency [14]. Any set of ports in a set of
dependency pairs that are not related by the partial order can
be used concurrently. Thus, a set of dependency pairs is a
powerful tool to express allowed concurrencies in a search
query.

Notice that no dependencies are shown for theBook-
Nameport. Ideally, we would have liked to state that the

2The graphical representation, as shown in Figure 2, is not a part of the
PD model.



service can produce the outputs from both anISBN and
Credit no, or aBookNameandCredit no. However, PD is
not expressive enough to capture the “or” semantics. In the
next section we will introduce our MPD model, which has
this capability.

Formally, the definition of a PD3 is:

Definition 2.1 A port dependency interface modelF =
〈IF , OF , κF 〉, consists of:

- IF : The set of input ports.

- OF : The set of output ports, which is disjoint from the
input ports. We denotePF = IF ∪OF as the set of all
ports.

- κF ⊆ IF × OF : The I/O dependency relation of the
interface, which we call a dependency scenario.

�

The composition of two PDsF andG, F ‖ G, is defined
if they arecomposable, meaning they do not use any of the
same inputs or outputs,i.e.,PF ∩ PG = ∅. Composition of
two composable PDs is the union of their elements:

F ‖ G = 〈(IF ∪ IG), (OF ∪OG), (κF ∪ κG)〉

Renaming of ports in stateless interface models, includ-
ing PD, is done using aconnection functionthat maps an
interface and a renaming function to a new interface. In
this paper, for the sake of simplicity, we present our mod-
els without a description of connection functions; instead,
we use shared names of ports as an implicit way to model
connections. The same models are presented with explicit
connection functions in [10].

3 Multiple Port Dependency Model

In this section, we introduce ourmultiple port depen-
dency interface(MPD) model and define composition on
MPD. MPD, similar to PD, is a stateless interface model.
Compared to a PD, in an MPD we can specify multiple de-
pendency scenarios,i.e.,multiple sets of I/O dependencies.
Different I/O dependency scenarios can be used to specify
search queries for Web services with multiple alternative
behaviours. We believe MPD is an appropriate formalism
for specifying such search queries; while it is simple to use,
it is expressive enough to capture I/O dependencies as well
as concurrent behaviours of systems.

Additionally, within a dependency scenario, MPD allows
output-input dependency pairs rather than just the input-
output pairs of PD. Output-input dependencies can be useful

3The definition of a PD also includes a set of available ports, which
are necessary for refinement. Since we are not interested in refinement
for search queries, we omit this part of the definition in all the models
presented in this paper. This model element plus definitionsof refinement
for all models presented in this paper can be found in [10].
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Figure 4. MPD BuyBook

when we want to model queries for Web services with the
Out-In message passing pattern in WSDL (Web Services
Description Language) 2.0 [6].Out-In represents the sit-
uation where a Web service sends a message to the service
requester and the service requester in turn sends back a mes-
sage.

Dependency pairs of each dependency scenario estab-
lish an irreflexive partial order and thus can express concur-
rency. Since MPDs can have multiple dependency scenar-
ios, it is possible to express different concurrency scenarios
in a search query.

BuyBookin Figure 4 is an MPD with two dependency
scenarios that are represented by dashed and dotted lines.
Each dependency scenario represents one of the possi-
ble ways that the desired Web service should work. The
“dashed” scenario receives the ISBN of a book and a credit
card number, and returns the author of the book and a ref-
erence number for the credit card number transaction. The
“dotted” scenario is similar but receives a book name in-
stead of its ISBN. The Web service satisfying this search
query must be capable of satisfying both dependency sce-
narios.

To overcome some of the restrictions on PD composi-
tion, in MPDs, we introduce the concept ofshared ports.
The set of shared ports between two MPDs are the ports
with the same names. While in PD, two interfaces with
shared ports are not composable, in MPD if each of the ports
in the set of shared ports is an output of one MPD and in-
put of another, they can be composed. Intuitively, shared
ports allow two MPDs to communicate through ports with
the same names.

As an example, consider MPDsF andG in Figure 5;
each MPD has one dependency scenario shown by solid
lines. They are composable MPDs since their shared ports,
b and d, are both the input of one and the output of the
other. If they do not have any shared ports, composition
of two MPDs is the union of their elements. In the pres-
ence of shared ports, the shared ports and dependency pairs
defined on them are removed from the composition; new
dependency pairs are introduced using transitivity between
dependency pairs on shared ports. In Figure 5,F ‖ G is the
composition ofF andG; the (a, f) dependency is a new
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dependency pair created from(a, b) of F and(b, f) of G.
The shared ports of two composable MPDs are removed

and stored in the set ofhidden portsof their composition.
The hidden ports state that a certain port is an internal port
of the system. We require that two composable MPDs not
have any common internal ports.

We can decompose an MPD into two MPDs. As an ex-
ample, the two MPDs in Figure 6 are the decomposition of
MPD BuyBookin Figure 4. If there is no Web service that
can satisfyBuyBook, we may be able to find Web services
that satisfySearchBookandPayCreditindependently, and
then compose those Web services to satisfyBuyBook, as-
suming that our satisfaction relation is compositional. The
portPrice becomes a hidden port in the composition.

In the following subsections, we formally define MPD
and then describe its composition operation. The reader can
refer to [10] for our proofs that MPD is a well-formed inter-
face model.

3.1 Formal Description of MPD

Formally, the definition of an MPD is:

Definition 3.1 A multiple port dependency interfaceF =
〈IF , OF , HF ,UF 〉 consists of:

- IF : The set of input ports.

- OF : The set of output ports, which is disjoint from the
input ports. We denotePF = IF ∪OF .

- HF : The set of hidden ports, which must be disjoint
from IF ∪OF .

- UF : The set of I/O dependency scenarios. Each de-
pendency scenariouF ∈ UF is a set of dependency
pairs, and for each dependency pair(a, b) ∈ uF , the
following conditions hold:

- (a, b) ⊆ ((IF × OF ) ∪ (OF × IF )) (It relates
inputs to outputs or outputs to inputs.)

- ∀ c ∈ PF ⇒ ∄(b, c) ∈ uF (A port cannot both be
influenced by a port and influence another port.
This disallows circular dependencies.)

- ∄d ∈ PF · (d 6= a) ∧ (d, b) ∈ uF (A port is not
influenced by more than one port.)

�

3.2 MPD Composition

MPD composition combines the ports and dependency
scenarios of two composable MPDs, and stores the shared
ports that become hidden in the set of hidden ports of
the resulting MPD. Theshared portsbetween two MPDs,
F andG, are their common input and output ports,i.e.,
SharedPorts(F,G) = PF ∩PG. Two MPDs may be com-
posed if each of their shared ports is an input of one and an
output of another. This restriction avoids the ambiguity cre-
ated by having different input and output ports of the same
name. We also require that two composable MPDs not have
any hidden ports in common since hidden ports are the re-
sult of having had the same input and output ports in two
MPDs that were composed to create this MPD. Composing
two MPDs with the same hidden ports results in an ambi-
guity as to the source of the hidden ports. Similar compos-
ability criterion has been proposed in interface automata [7]
and I/O automata [11]. Formally:

Definition 3.2 Two MPDs,F = 〈IF , OF , HF ,UF 〉 and
G = 〈IG, OG, HG,UG〉 are composable, if and only if the
following three conditions hold:

1. ∀ a ∈ SharedPorts(F,G) ·
((a ∈ IF ) ∧ (a ∈ OG)) ∨ ((a ∈ IG) ∧ (a ∈ OF ))
(A shared port is the input ofF and the output ofG or
vice versa.)

2. HF ∩ HG = ∅ (F andG do not have hidden ports in
common.)



3. For eachuF ∈ UF , uG ∈ UG, andL = uF ∪ uG, the
transitive closure ofL, L∗, satisfies:

∀(x, y) ∈ L∗ ⇒ (y, x) /∈ L∗

(No combination of dependency scenarios ofF andG
results in circular dependencies.)

�

Next, we define composition for MPDs:

Definition 3.3 The composition of two composable MPDs,
F andG, F ‖ G, is an MPD and is defined as:

- IF‖G = (IF ∪ IG)\SharedPorts(F,G)

- OF‖G = (OF ∪OG)\SharedPorts(F,G)
We denotePF‖G = IF‖G ∪OF‖G.

- HF‖G = HF ∪HG ∪ SharedPorts(F,G)

- For eachuF ∈ UF anduG ∈ UG, create auF‖G ∈
UF‖G, such that:

uF‖G =
(uF ∪ uG)

∗\
((SharedPorts(F,G) × PF‖G) ∪

(PF‖G × SharedPorts(F,G)))

Where “\” means set difference.

(Each dependency scenario is the result of combin-
ing dependency pairs of two dependency scenarios be-
longing toF andG with dependency pairs on shared
ports being removed.)

�

4 Ordered Port Dependency Model

While the MPD model is an expressive tool for
capturing search queries, it has its limitations. It
is not possible to specify a total order on differ-
ent ports of an MPD. As an example, consider the
{(ISBN,Author), (Credit no,Ref no)} dependency
scenario in the MPDBuyBookof Figure 4. It is not
clear whether(ISBN,Author) or (Credit no,Ref no)
should happen first, or whether they are concurrent.

To impose an order on the ports, we could ei-
ther have dependency pairs between inputs or be-
tween outputs, e.g., (ISBN,Credit no), or we
could define an order between dependency pairs,e.g.,
〈(ISBN,Author), (Credit no,Ref no)〉. In ourordered
port dependency(OPD) model4, we choose the second

4OPDs are called enhanced port dependency (EPD) models in [10].
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Figure 8. Partial order on ports of dashed de-
pendency rule of Figure 7

approach. OPD is similar to MPD except that instead of
having dependency scenarios, which are sets of dependency
pairs, it hasdependency rules, which are sequences of
dependency pairs. A dependency rule is a total order on the
pairs of dependencies.

Figure 7 shows the OPDBuyBook1. It is very similar
to the search query of MPDBuyBookin Figure 4. Two de-
pendency rules are represented by the dashed and dotted
lines. The numbers on dependency pairs represent the order
of dependency pairs in the dependency rule. Figure 8 rep-
resents the partial order resulting from the “dashed” depen-
dency rule of OPDBuyBook1in Figure 7. The order implies
thatISBNhappens beforeAuthor, Credit noappears before
Refno, and ISBN happens beforeCredit no; the first ele-
ment of a pair comes before the first element of the next
pair in the partial order. The partial order of ports of an
OPD always has a single root.

To make it possible to specify a total sequential order on
ports, OPDs can haveidentity dependencies, i.e., a depen-
dency between a port and itself. An identity dependency
forces a port to be used at a particular point in the depen-
dency rule. For example, OPDBuyBook2, in Figure 9, uses
identity dependencies to specify a very similar search query
as OPDBuyBook1in Figure 9, except that a total order is
imposed on the ports. Figure 10 shows the total order of
ports given by the dashed dependency rule of OPDBuy-
Book2. Also, OPDBuyBook2provides an easier decompo-
sition scheme than OPDBuyBook1; we will see more about
composition and decomposition later in this section.

For search queries, identity dependencies can be used to
captureIn-Only andOut-Only message passing pat-
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terns in WSDL 2.0 [6]. These patterns model the situations
where a Web service requester (In-Only) or provider
(Out-Only) sends a message without receiving any.

Having an order on the pairs of dependencies decreases
the concurrency expressiveness of OPD, in comparison with
MPD, because OPD imposes more order on dependency
pairs and makes their concurrency less likely. On the other
hand, OPDs provide a way of expressing sequentiality lack-
ing in MPDs. We do not entirely loose the ability to express
concurrency in OPD. For example, in the partial order in
Figure 8 the order thatRefno andAuthor are produced is
not specified and these operations can be carried out con-
currently.

Next, we give a formal description of OPD and describe
the composition of two OPDs.

4.1 Formal Description of OPD

Formally, the definition of OPD is as follows:

Definition 4.1 An ordered port dependency modelF =
〈IF , OF , HF ,VF 〉 consists of:

- IF : The set of input ports.

- OF : The set of output ports, which is disjoint from the
set of input ports. We denotePF = IF ∪OF .

- HF : The set of hidden ports, disjoint fromIF ∪OF .

- VF : The set ofdependency rules. EachvF ∈ VF is
a sequence of distinct dependency pairs. For each de-
pendency pair(a, b) ∈ vF one of the following two
sets of conditions must hold:

1. - (a, b) ⊆ ((IF ×OF )∪(OF ×IF )) (It relates
inputs to outputs or outputs to inputs.)

- ∀ c ∈ PF ⇒ ∄(b, c) ∈ vF (A port cannot
both be influenced by a port and influence
another port. This disallows circular depen-
dencies.)

- ∄d ∈ PF · (d 6= a) ∧ (d, b) ∈ vf (A port is
not influenced by more than one port.)

2. - (a = b) ∧ (a ∈ PF ) (It is an identity de-
pendency, i.e., it relates one port to itself.)

- (∄(a, c) ∈ vF ·c 6= a)∧(∄(c, a) ∈ vF ·c 6= a)
(A port that has an identity dependency can-
not take part in any other dependency pair.)

�

4.2 OPD Composition

The composition of two OPDs combines the ports and
dependencies of the two OPDs. The composition operator
creates a new dependency rule by combining a dependency
rule from each of the two OPDs being composed. It has to
somehow mix the dependency pairs such that synchroniza-
tion between shared ports occurs. Rather than considering
all interleavings, we believe it is sufficient to consider only
linear orders in which one or the other model runs until syn-
chronization between shared ports occurs. Including all in-
terleavings makes the model unusable because of its size,
plus requires the Web service to satisfy all interleavings.

The criteria for composability for OPDs is exactly the
same as that for MPDs (Definition 3.2), except that in the
condition to avoid circularity, we consider each dependency
rule as a set rather than a sequence.

The dependency rules of a composed MPD are created
by composing all combinations consisting of a dependency
rule from each of the two models being composed. To en-
sure commutativity, we compose the two rules in either or-
der and include both resulting dependency rules. To com-
pose dependency ruleA with dependency ruleB, we walk
along the dependency pairs ofA sequentially, and include
these pairs in the resulting dependency rule until we reach
a point where the second port in a dependency pair ofA
can synchronize with the first port of a dependency pair in
B, i.e., there is a shared port. At this point, we include
any dependency pairs inB prior to the shared port. Next,
we create a new dependency pair through transitivity of the
two dependency pairs on the shared port. Then, we return
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toA’s dependency rule and repeat these operations until we
reach the end of both sequences. This method ensures that
at most two dependency rules result from the composition
of two dependency rules. Some dependency rules are not
composable. The mathematical definition of this composi-
tion can be found in [10]

OPD composition is restrictive in comparison with
MPD. In MPD, dependency scenarios have the chance
to synchronize in any possible order; in OPD, on
the other hand, the synchronization can only hap-
pen while we traverse forward along the two depen-
dency rules. As an example consider the two de-
pendency rules,r = 〈(a, b), (c, d), (e, f), (g, h)〉 and
s = 〈(l,m), (b, e), (n, o), (f, p)〉; (a, p) is created through
the 〈(a, b), (b, e), (e, f), (f, p)〉 chain of synchronization.
By traversing r first, the resulting dependency rule is
〈(l,m), (c, d), (n, o), (a, p), (g, h)〉. If we start traversings
first, there is no way that we can synchronize on all shared
ports.

As an example of OPD composition, consider the two
OPDs in Figure 11. They are the decomposition of OPD
BuyBook2in Figure 9. The dashed dependency rule of OPD
BuyBook2, 〈(ISBN, ISBN), (Author,Author),
(Credit no,Ref no)〉, is created by combining the dashed
dependency rule of OPDSearchBookwith the dependency
rule of OPDPayCredit. Dependency pair(ISBN, ISBN)
is created by the transitivity of(ISBN,Price) belong-
ing to OPDSearchBook, with (Price, Price) belonging to
OPD PayCredit. This transitive sequence of dependency
pairs is a special case because it ends with an “identity” de-
pendency pair; by definition the result of such a chain of
synchronizations is an identity dependency on the first port
of the first dependency pair. Other dependency pairs that
are not defined on shared ports,i.e.,(Author,Author) and
(Credit no,Ref no), are inserted into the sequence ap-
propriately. Similarly, the second dependency rule of OPD
BuyBook2can be computed. Because identity dependency
pairs affect only one port, it is often the case that their pres-
ence makes it easier to find a decomposition scheme.

OPD composition is not associative, and thus OPD is not
a well-formed interface model. Non-associativity in com-
position arises since we do not allow the interleaving of all
possible behaviours in our composition operation; as such
our composition combines dependency rules in such a way
that the order of combinations affects the resulting depen-
dency rule. We believe that when expressiveness is the ma-
jor concern, and not composition, then the OPD model is
appropriate for capturing search queries.

5 Workflow Patterns

A composite Web service is a set of simple Web ser-
vices that are connected to each other through workflow
patterns. Both MPD and OPD allow the flow of data be-
tween different interfaces via a shared port mechanism,i.e.,
they offer a mechanism to describe data flow. The composi-
tion operation for MPD and OPD can be considered roughly
equivalent to a “parallel” workflow pattern. In this section,
we consider whether it is possible to simulate the workflow
patterns of choice and sequence with MPDs and/or OPDs.
Choice and sequence are among the basic workflow patterns
that are often used in specifying systems [3].

5.1 Sequence

For OPDs, a sequence operation is represented using a
concatenation operator, which describes the sequential ex-
ecution of two OPDs. Because sequence does not support
communication between the involved models, it can only
be defined when there are no shared ports between the two
models.

Definition 5.1 The concatenationof two OPDs, F =
〈IF , OF , HF ,VF 〉 andG = 〈IG, OG, HG,VG〉, is an OPD,
FG = 〈IFG, OFG, HFG,VFG〉, if SharedPorts(F,G) =
∅ and

- IFG = IF∪IG (FG receives bothF ’s andG’s inputs.)

- OFG = OF ∪ OG (FG generates bothF ’s andG’s
outputs.)

- HFG = HF ∪ HG (The hidden ports ofFG is the
union of the hidden ports ofF andG.)

- For eachvF ∈ VF and vG ∈ VG, create av(FG) ∈

VFG such that v(FG) = vF .vG (All dependency
rules ofFG consist of a dependency rule ofF imme-
diately followed by one ofG’s dependency rules.)

�

The sequence workflow pattern for MPD is not relevant
since, as opposed to OPD, it lacks the notion of order in its
dependency pairs.



5.2 Choice

Thechoiceof two OPDsF andG, F � G, means that at
any point of time eitherF orG executes. Unlike sequence,
we allow the set of shared ports of two OPDs to have com-
mon ports on their input or output ports since at each point
in time we only deal with eitherF or G and thus common
names cause neither ambiguity nor circular dependencies.

Definition 5.2 The choice of two OPDs, F =
〈IF , OF , HF ,VF 〉 and G = 〈IG, OG, HG,VG〉, is an
OPD, F � G = 〈IF�G, OF�G, HF�G,VF�G〉, if for all
x ∈ SharedPorts(F,G), either(x ∈ IF ) ∧ (x ∈ IG) or
(x ∈ OF ) ∧ (x ∈ OG), and

- IF�G = IF ∪ IG (F � G receives bothF ’s andG’s
inputs.)

- OF�G = OF ∪OG (F �G generates bothF ’s andG’s
outputs.)

- HF�G = HF ∪HG (The hidden ports ofF �G include
the hidden ports of both OPDs.)

- VF�G = VF ∪VG. (Each ofF �G’s dependency rules
is one ofF ’s or G’s dependency rules.)

�

The choice operation for MPD can be defined in a similar
way.

6 Summary and Future Work

We have introduced a method, along with two models,
for specifying search queries for a Web service discovery
system. We described why search queries should not nec-
essarily be specified at the same level of abstraction as Web
services themselves. We introduced two models that are ca-
pable of specifying search queries at a high level of abstrac-
tion. The first model, the multiple port dependency inter-
face (MPD) model, is a stateless model with sets of depen-
dencies between inputs and outputs. The second one, the or-
dered port dependencies (OPD) model, provides the means
to specify more precisely the order of the inputs and outputs.
We introduced composition for our models, which allows
them to be used for specifying composite search queries by
composing simple search queries.

The next step is to assess how our search query models
work with a repository of Web service specifications and a
satisfaction relation. One possible formalism for specifying
Web services is interface automata (IA) [7]. For example,
a specification of a Web service for buying books is given
in Figure 12 as an IA, which is an automaton machine that
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ISBN Credit_no

Author Err_no Ref_no

BookName

Credit_no?

Credit_no?

Ref_no!

Ref_no!

ISBN?
Price;

BookName?

INPUTS

OUTPUTS

Author!

Author!

Author!

Figure 12. Interface Automata BuyBook

changes its states by input(?), output(!), or internal(;) ac-
tions. This Web service satisfies the requirements of the
MPD in Figure 4, and of the OPDs in Figure 7 and Figure 9.
It provides the set of input and output actions required by
the search queries and satisfies the required dependencies.
One can see the difference in level of abstraction between
the stateless models of PD, MPD, and OPD, and stateful
model of IA in this example.

In this paper, the names of ports are strings that are com-
pared to other port names for equality, however, a richer
meaning could be associated with these names. The satis-
faction relation could relate port names semantically to doa
more meaningful comparison between names. Existing se-
mantic matching engines, such as the one proposed in [13],
can be used for this purpose.

Finally, we believe that the graphical representations of
MPD and OPD can be used to create a simple and intu-
itive GUI to help users create search queries in a Web ser-
vice discovery system. In [10], we give a version of our
models with explicit connection functions, which provides
an easy way to direct the dataflows of the system graphi-
cally between different interfaces. A user can easily draw
boxes and ports, and using composition and workflow op-
erators, and connection functions relate different boxes to
create queries for Web services. We plan to use the GUI as
a platform for experimenting with user-guided decomposi-
tion of search queries.
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