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Abstract. With enormous data emerging on the Web, traditional keyword searching is chal-
lenged by short queries posed by users to vaguely describe their information need. Query
expansion has been researched for decades and a variety of expansion strategies have im-
proved retrieval effectiveness. At present, knowledge-based query expansion approaches are
popular as the Web becomes more semantic. This paper studies state-of-the-art in ontology-
based query expansion approaches, and expands on practical strategies to exploit the rich
semantics of domain ontologies. This paper, one the one hand, focuses on finding out the suc-
cess factors for ontology-based query expansion; on the other hand, it emphasizes the tradeoff
between the gained retrieval effectiveness and the incurred computation cost.

1 Introduction

The amount of information available on the Web increases with time, which further advances search
services for online users. Searchers naturally prefer to post queries in their native languages, while
oftentimes queries in these human languages can not be exactly understood by computers. A sim-
plified and straightforward way to formulate user queries is using keywords in place of natural
languages to approximate users’ information needs. Keyword queries are then processed by search
engines in a Boolean way, i.e., every document is treated as a set element and searching a key-
word returns a set of relevant documents to the original keywords. Boolean operations, including
AND, OR, NOT and so on, are subsequently performed on sets of documents to return the final set of
(possibly ranked) documents as results. Discouragingly, up to the present date none of the devel-
opments in search services, as far as we know, largely match the search skills of an information
specialist, e.g., a librarian, who retrieves specific information pieces strategically and effectively
among a vast amount of resources. Bates [1979] studied the human search strategy and compiled a
set of tactics that librarians used in information retrieval, in hopes that the tactics can be leveraged
in automated search services to help improve search results.

In an online setting, web users tend to follow specific search trends, while present various user
behavior in searching. First of all, the majority of user queries carries a short form. For instance,
the average number of terms per query is 2.4 for web users, as observed in [Spink et al., 2001], and
1.59 for small-scale system users [Dumais et al., 2003]. Another related characteristic of users is
their preference for popular or broad terms, e.g., a number of highly frequent query terms represent
sexuality and current news in [Spink et al., 2001]. General terms, more ambiguous than specific
ones, result in queries harder for search engines to interpret. Moreover, very few web users adopts
advanced searching options, e.g., Boolean operators, in query formulation [Spink et al., 2001; Dumais



et al., 2003]. Regardless of the experience, users tend not to refine the queries [Hsieh-Yee, 1993;
Spink et al., 2001; Markey, 2007]. A high percentage of mistakes were also observed from users who
occasionally employed advanced search options [Spink et al., 2001]. This behavior exhibits a lack of
subject knowledge of users to formulate more accessible queries or users expect the search engines
to completely satisfy their information needs based on minimal query input.

The challenges posed above can be dealt with in at least two ways: one is to refine the user
queries, and the other is to optimize the search service in hopes that the search service return
reasonable results whatever the user input is. The orientation of this paper is to focus on refining
the user queries, instead of the latter way. Naturally, before initiating a search process, users can be
guided to formulate more useful queries in terms of understandability. Structured query processing
aims this direction by designing query languages, e.g., database querying in SQL, knowledge base
querying in SPARQL, and so on. Nevertheless, end users face insurmountable difficulty in manipu-
lating the query language to formulate keyword queries, especially the web users, in general, posing
short and unstructured queries. When queries consisting of a few uncontrolled terms surface, the
question becomes how to reformulate user queries into ones that are amenable to search services.
This paper thus addresses query expansion (QE), an apparatus to include more relevant search
terms in the query for improved retrieval results.

1.1 Query Expansion Overview

Query expansion, generally thought of as a recall-based! technique, is aimed to automatically for-
mulate a user query into one that is more amenable for information retrieval. Earlier research
[Voorhees, 1994] already showed that though query expansion had limited retrieval improvement
on detailed or complete queries, it demonstrated great potential for significantly improving results
given short queries.

In literature, QE approaches are studied in different ways. For instance, [Manning et al., 2008,
Chap. 9] and [Wollersheim and Rahayu, 2005a] categorized QE approaches into global and local
methods, where methods in the first category are query-idependent since all documents are ex-
amined for all queries. Conversely, methods in the second class modify a query relative to the
documents initially returned by the query. Discussions regarding these approaches can be found
in [Xu and Croft, 2000]. Alternatively, Grootjen and van der Weide [2006] characterized QE ap-
proaches as extensional, intensional, or collaborative ones. The first set of approaches materializes
information need in terms of documents, for instance relevance feedback and local analysis meth-
ods. Intensional approaches, primarily thesauri/ontology-based, take advantage of the semantics of
keywords. Collaborative ones exploit users’ behavior, e.g., mining query logs, as a complement to
previous approaches.

This paper refines the classification of mainstream QE approaches as follows. QE approaches are
semantic [Aronson et al., 1994; Shah et al., 2002], syntactical (mostly through statistical methods)
[Salton and Buckley, 1990; Buckley et al., 1994b; Jing and Croft, 1994], or a combination of the two
[Croft, 1986; Farfan et al., 2009], as the syntactic and semantic approaches are not orthogonal. Syn-
tactical approaches considers the term dependence statistically, e.g., exploiting term co-occurrence.

! To engance recall or precision depends on the users’ objectives. In general, recall is improved as an effect
of QE, e.g., [Greenberg, 2001a; Sihvonen and Vakkari, 2004; Egozi et al., 2008], while in some cases
precision is enhanced as well, e.g., [Lee et al., 2008].



Semantic term dependence is captured in semantic QE approaches?. An overview on statistical
approaches follows.

We refer statistical methods, which normally entail global analyses, to the techniques that
understand a corpus in a statistical manner, mostly based on term co-occurrence analyses. Earlier
research (e.g., [Hersh and Hickam, 1995]) strongly suggests the use of statistical methods after their
empirical analyses on information retrieval using thesauri. The thesaurus look-up query expansion
approach is criticized for causing query drift mainly because of the polysemy of words [Buckley
et al., 1994b]. However, there also are arguments [Yang and Chute, 1993] supporting that various
factors influence the thesauri-based retrieval performance. For instance, a rich vocabulary in a
thesaurus and reasonable mapping between different vocabulary, e.g., between thesaurus concepts
and textual words, indeed improved the performance [Yang and Chute, 1993; Yang, 1994].

Relevance feedback [Salton and Buckley, 1990], a representative of local analysis approaches,
offers benefits for searching small databases, but has a minimal effect in general cases [Hersh and
Hickam, 1995]. In fact, relevance feedback suffers from a lack of semantics in the corpus, which
restrains its applications in several occasions, for example, when the query concept is as general as
a disjunction of more specific concepts [Manning et al., 2008, Chap. 9]. Numerous improvements
have been made to local analysis methods Xu and Croft [2000]; Bai et al. [2007]. In particular,
Xu and Croft [2000] proposed a local context analysis to combine both global and local analyses.
That is, the selection of expansion terms is enhanced by considering concepts in the top-ranked
documents that frequently co-occur with “many” query terms in the whole collection. Compared
to relevance feedback, candidate expansion terms are more relevant to the query, as they have
been observed to co-occur frequently in all documents; hence, such expansion terms minimize the
chances of query drift seven if the returned top-ranked documents contain many irrelevant results
in the feedback phase. In fact, Xu and Croft [2000] relied on the (reasonable) hypothesis that “a
common term from the top-ranked relevant documents will tend to co-occur with all query terms
within the top-ranked documents.” Note that the above method is more effective if all query terms
constitute some concept so that they tend to co-occur frequently in the whole collection. A different
way to handle irrelevant feedback documents was shown in Mitra et al. [1998]. Focusing on initially
retrieving an acceptable set of documents to resolve query drift, Mitra et al. [1998] re-ranked a
larger set containing the initial documents to result in a higher proportion of relevant documents
used for feedback.

Retrieval feedback [Srinivasan, 1996b], a derivation of relevance feedback, adds terms among
the top (either user-selected or pseudo) relevant documents to the query. This suite of relevance-
feedback-based approaches has shown significant improvement in many information retrieval tasks.
Nevertheless, the effectiveness of feedback-style QE approaches requires a careful selection of the
seed queries, ranking functions, and some other factors. Srinivasan [1996b] further seeked to combine
the statistical methods with relevance retrieval for query expansion, though the results reflect no
or only minimal improvements. Srinivasan [1996b] also confirmed that thesaurus-based methods
produce significant improvement. Arguably, Aronson and Rindflesch [1997] concluded that ontology-
based QE is a more effective and favorable method than relevance feedback. However, an optimal
system that benefits from both retrieval feedback and ontology-based QE is feasible [Srinivasan,
1996¢; Aronson and Rindflesch, 1997].

2 Observe that semantic term dependence can be studied on the document dimension in information re-
trieval as well, e.g., document expansion or language model smoothing.



1.2 Related Work

Query answering with the use of ontologies has been well researched recently. For instance, onto-
logical information aids in structuring the data [Shah et al., 2002] or query [Pound et al., 2010]. Tt
is rational to believe that search engines may evolve into knowledge engines, because users are be-
coming more interested in specific facts satisfying the queries while facing a vast volume of returned
information. A good illustration is Wolfram|Alpha®, which returns “systematic factual knowledge”
in response to users’ free form input. Some query answering engines [Bast et al., 2007; Pound et al.,
2010] normally process keyword queries in a structured manner internally over a large ontology
to return relevant answers, while most systems accept free text as input, e.g., Wolfram|Alpha,
Freebase?, Kngine®, etc.

Hoang and Tjoa [2006] surveyed several ontology based query systems on various aspects of
using ontologies, including faceted search, query reformulation and refinement and so on, while this
paper is specifically devoted to ontology-based query expansion. Bhogal et al. [2007] provided a
comprehensive review of ontology based query expansion, which presents several query expansion
approaches, focusing on examples using corpus dependent or independent ontologies. Bhogal et al.
[2007], however, did not detail how to improve query expansion using ontologies. This paper elabo-
rates on the critical phases of ontology-based query expansion and emphasizes the balance between
computation cost and retrieval effectiveness in each phase, based on the analyses of existing works.

1.3 Organization

This paper is organized as follows. The next section, Sect. 2, defines the problem of query expan-
sion and introduces notations used in the discussions throughout this paper. Sect. 3 introduces
a synthesized view of query expansion strategies and presents the components of ontology-based
query expansion as follows. Sect. 4 elaborates on annotating the underlying corpora with the aid
of ontologies. Sect. 5 discusses various aspects of domain ontologies. The core component is Sect.
6 that details the ontology-based query expansion algorithm. The results generated by the core
component are processed for robustness, as shown in Sect. 7. Finally, we conclude the paper in
Sect. 8.

2 Problem Statement

This section defines the problem and introduces necessary notation. In addition, the motivation
of exploiting domain knowledge that is represented in the form of ontologies is discussed in this
section.

2.1 Definitions

The problem of query expansion, the definitions of an entity and a document are stated as follows.

3 http://www.wolframalpha.com
* http://www.freebase.com
5 http://www.kngine.com



Definition 1 (Keyword Query and Query Expansion). Let Q, ¢, X, possibly with subscripts,
denote some keyword query, concept, and keyword resp., then Q is a set of keywords {1, ..., %K;|i >
1}, whose semantics is denoted by the set of concepts {c1,...,cjlj > 1}, for some positive integers
i,7. Query Expansion is a query reformulation technique that appends to Q a (possibly empty) set
of keywords {Xm, . .., Km+n} while retaining the semantics of Q, for some positive integers m,n.

Definition 1 ensures that there exists at least one concept for every non-empty keyword query. In
addition, the number of concepts may not equal that of keywords. Query expansion does not mean
to expand concepts presumed in a query (i.e., the query intent remains intact) but to augment the
keyword set by including terms more relevant to the concepts such that the query intent becomes
more concrete and “tangible” to search engines. According to definition 1, two special cases might
occur. When all the keywords relate to one concept, this QE coincides with concept-based query
expansion shown in [Qiu and Frei, 1993]. When every keyword corresponds to an individual concept,
the keywords may be considered independent of each other.

Definition 2 (Entity). An entity e is defined by

e = € | {en,...,en},

where an atomic entity e® refers to a piece of information unit considered indecomposable under
some context.

The actual interpretation of entities depends on the context. For example, the name of a person
may be considered an atomic entity in some context, but it may turn out an entity composed of
two atomic entities { first_name,last_name} in another context.

Definition 3 (Document). A document 2 is a collection of entities {e1, ..., e;} for some positive
integer i. A domain is a section of the world expressing some specialized subject knowledge. Such
knowledge spreads over a domain corpus D, i.e., a collection of documents D = {»1,..., D} for
some positive integer k.

A document itself is not an entity but contains a rich set of entities. In a domain corpus, an
entity can occur in any document as many times as possible.

2.2 The Effects of Domain Knowledge

The application of background knowledge is substantiated by the assumption that subject knowl-
edge does have positive effects on query expansion. This assumption has already been validated,
e.g., [Hsieh-Yee, 1993; Sihvonen and Vakkari, 2004]. Interestingly, the way the users behave when
employing domain knowledge depends on variables like the level of task difficulty and their expertise
in the domain.

Expert or experienced users, i.e., users that are familiar with the topics involved in queries,
were found to call for more relevant terms in formulating queries by exploiting their own domain
knowledge, i.e., using their own terms [Hsieh-Yee, 1993; Sihvonen and Vakkari, 2004]. When they
were tested with queries outside their areas of expertise, expert users extensively took advantage
of knowledge sources for term suggestion [Shute and Smith, 1993]. It seemed that novice users,
as opposed to expert users, rarely consulted the thesaurus or other knowledge sources [Hsieh-Yee,
1993; Sihvonen and Vakkari, 2004]. The appreciation of domain knowledge is limited for novice
users. However, it is interesting to observe that novice users still uses their limited knowledge of the



field spontaneously to generate terms [Shute and Smith, 1993], although a low level of knowledge
requires more changes of the initial query (thus more terms are used) [Wildemuth, 2004].

To sum, domain knowledge affects user behavior in that high domain knowledge lead to more
efficient term selection strategies and less errors in search tactics [Wildemuth, 2004]. Furthermore, it
seemed that terms selected by experts tend to gather more around the query concepts [Sihvonen and
Vakkari, 2004] and that experts tended to formulate shorter queries [Duggan and Payne, 2008]. The
application of domain knowledge help users reduce noise in obtaining more useful terms. Altogether,
It is also plausible to state that users’ familiarity with the search domain has a great effect on
retrieval results. Undoubtedly, an effective semantic query expansion strategy is expected to leverage
the domain knowledge.

2.3 The Effects of Ontologies

The performance of information retrieval can be improved either by making the queries more
comprehensible to the documents or vice versa. The difficulties lie in the way that query terms
relate to documents. A substantial body of research on ontology-guided QE, as early as [Biswas
et al., 1986], reveals that ontologies may bridge the gap between query terms and documents through
semantic mechanisms. Specifically, adding ontology to QE approaches was described concisely as
having the consequences of “an increase in the effectiveness of retrieval and a decrease in the
efficiency of text processing” in [Croft, 1986].

A thesaurus in this paper is considered a simplified ontology, for it lacks a formalism for repre-
senting the domain semantics [Nagypdl, 2005]. Thesauri/ontologies may be used solely on the query
side as a source of relevant terms, however, they may also be involved in query processing (the ac-
tual retrieval). Typically, in the latter case, ontologies may be exploited to disambiguate queries,
annotate or index documents, compute similarity between queries and documents, and so on, as
shown in [Biswas et al., 1987]. It appears that using ontologies on the query side alone is insufficient
to improve retrieval effectiveness, but this claim is not fully substantiated in the literature. This
paper highlights the discussion about this problem.

Ontologies An ontology is a Knowledge Base (KB) expressing the subject knowledge of a domain.
In this paper description logics underly the ontologies as the knowledge representation protocol.
A domain ontology is characterized as a combination of intensional knowledge and extensional
knowledge of its domain. Specifically, intensional knowledge, similar to a database schema, describes
the structure of knowledge in the domain (referred to as a TBox); extensional knowledge expresses
instances in the domain (referred to as an ABox), similar to tuples (data) in databases. Unlike
databases, the distinction between schema and data in ontologies may be blurred by introducing
the concept construct nominal. Every ontology has a set of vocabulary descriptions, called its
signature, that consists of concepts ({C}), roles ({R}) and instances ({I}).

A concept C' is defined inductively, for instance in the basic description logic ALC, as: C, D :=
A|C 1 D|C U D|3R.C|VR.C|=C, where A is an atomic concept and R an atomic binary role. The
expressiveness of this logic can be extended by introducing more concept constructs. Semantics and
other details are further explained in [Baader et al., 2003].

Intensional knowledge about a domain is expressed as a set of axioms in a TBox, in the form of
C C D, stating that C is a subconcept of D. Conventionally, C' = D is written as a shorthand for
C C D and D C C, meaning that C is logically equivalent to D.



Extensional knowledge exists in an ABox that is shown as assertions about instances. A role
assertion of the form R(Iy, I3) specifies the relationship between the two instances, and a concept
assertion in the form of C'(I;) indicates the concept that the instance belongs to.

3 A Synthesized View

There were different systems for applying domain knowledge to query expansion. Most of the
systems share the same strategies, consequently, this section unifies these ontology-based QE ap-
proaches to allow for easy implementation and comparison across systems.

3.1 An Overview

The synthesized plan, depicted in Fig. 1, consists of three major components. The preprocessor,
accepting raw user queries as the input, analyzes the queries and applies some query cleaning or
disambiguation techniques to them. Both syntactic and semantic techniques may be employed in the
preprocessor to obtain a “clean” copy of the raw query, possibly with annotations. The preprocessor
is briefly discussed in Sect. 3.2.

The core component is query expansion, achieved in several phases. Before any actual query
expansion, the mapping between the vocabulary of the ontologies and that of the corpus is to
be built and maintained. The mapping is indispensable for retrieval improvement using ontology-
based QE approaches (Sect. 3.3). The mapping in principle can be obtained in two ways. On the
one hand, the corpus to be queried against may be annotated (Sect. 4), with the help of the domain
ontologies. This process explains the label “Annotation” in Fig. 1. On the other hand, a corpus-
relevant ontology can be constructed from the corpus (Sect. 5), i.e., the label “Construction” in
Fig. 1. A query expansion algorithm that focuses on term selection is executed to solicit candidate
terms from multiple sources (Sect. 6).

A post-processor (Sect. 7) serves the purpose of optimizing the set of candidate terms output
by the query expansion component and of formulating new queries to be evaluated.

3.2 Query Annotation

Whether a user query fits in the domain underlying an ontology is a fundamental question to
ontology-based QE. This paper assumes that the submitted user queries are within a particular
domain (or against a domain-specific corpus) so that the domain ontologies can be directly utilized.
Otherwise, the domain of a query has to be determined in the query annotation phase, e.g., lever-
aging the user profiles [Dumais et al., 2003], feedback-style feature (concept) selection [Egozi et al.,
2008], manual assignment (user selection) and so on.

A mapping between queries and ontological entities seems necessary. Bhogal et al. [2007] at-
tributed the mismatch between query terms and ontological concepts to ontology design, which
ignores the fact that a query can take on various forms to express the same information needs. User
queries are ambiguous because they are too short to express the user information needs precisely,
in addition to the inherent ambiguity in natural languages. Details about query disambiguation
techniques can be found in the literature, e.g., [Pu and Yu, 2008; Stojanovic, 2005].

Traditionally, query keywords are assigned a weight to probabilistically discerning relevant from
irrelevant documents. Furthermore in most IR systems stop words, whose weights are negligibly
small, are stripped off the keyword queries. We assume hereafter that the keywords are well-formed,
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Fig. 1. A Synthesized Plan for Ontology-based QE

i.e., they adhere to predefined syntax. This assumption rules out the possibility of syntactic problems
in queries.

Queries can be preprocessed to identify important keywords that can be linked to entities in
ontologies or corpora to help identifying query intent, e.g., [Kim and Kim, 1990; Dey et al., 2005].
Typically, query terms are annotated in the same manner as corpora are, for example [Croft, 1986;
Srinivasan, 1996¢; Aronson et al., 1994; Aronson and Rindflesch, 1997; Crouch and Yang, 1992].
Compared to a corpus, queries may be subject to more thorough annotation due to its smaller size. A
comprehensive analysis of a query may tokenize the word and sentence boundaries, tag the words for
their part-of-speech, segment sentences to recognize noun and verb phrases, eliminate stopwords
and so on [Moldovan and Mihalcea, 2000]. To resolve polysemy of words, query disambiguation
techniques can be used. For instance, Moldovan and Mihalcea [2000] ranked the word senses based
on the number of hits of web searches that are composed of one sense of the word, the corresponding
synonyms specified in WordNet for that sense, and the original other words. The rank order of
senses was further refined in [Moldovan and Mihalcea, 2000] by introducing the conceptual density
between two words. That is, the method measures the density of common concepts between the
hierarchies of the two words in their WordNet glosses, which have the explanatory comments and
examples on concepts. Some studies instead assign ontological concepts to queries manually, as
shown in [Voorhees, 1994; Hersh et al., 2000; Wollersheim and Rahayu, 2005b; Dey et al., 2005],
or conversely, the keywords can be manually linked to ontological concepts [Jarvelin et al., 2001].
In an interactive environment, e.g., [Tudhope et al., 2006], users are prompted to select ontological
concepts for keywords.

We believe query annotation, which interprets a query as concepts, is particularly indispensable
for concept based query expansion. However, ambiguity is inherent in natural languages, hence it
may not be completely resolved by automated procedures, sometimes even impossible by human
beings. Annotation does not guarantee that the queries are free from ambiguity. Disambiguation
may be partly resolved either syntactically or semantically, using approaches presented in, e.g.,
[Pu and Yu, 2008; Pound et al., 2010]. Query ambiguity may be further relaxed by heuristics.
For instance, Calegari and Pasi [2008] attempts to personalize query expansion using the Google



desktop widget. Similarly, mining user behaviors may as well be helpful, as shown in [Dumais et al.,
2003]. Cui et al. [2002] made use of query logs to reflect the preferences of a majority of users, which
decreases the probability of presenting irrelevant information to users. Fu et al. [2005] maintained
a log file of statistical data for interpreting fuzzy spatial relationships like near. Also as discussed
in Sect. 4.1, facets are handy for understanding query intent as users normally have a vague idea
about what they are looking for.

3.3 Linking Corpus and Ontology

Definition 1 raises some important issues. First of all, it is difficult to discover the query intent from
user queries and have the query intent represented in a combination of concepts. In addition, given
ontological concepts, significant efforts may be required to build the association between keywords
and concepts. For query expansion, it also remains to study how to appropriately select additional
terms that are considered relevant to the query intent. Researching possible solutions to these issues
is the central theme of this paper. There is a lack of research in terms of how to effectively and
efficiently relate the domain corpus to the ontology. This paper first state why an ontology should
reference the content of documents in a corpus. As a consequence, the paper elaborates how can an
ontology “understand” a corpus.

Ontologies’ Dependency on Domain Knowledge Ontologies may well capture domain knowledge if
the ontology engineers have a solid understanding of the domain, because the quality of domain
ontologies relies heavily on a “correct” representation of the domain knowledge, either by way
of manual construction or by some automated tools. Evidences were shown in existing systems.
In [Voorhees, 1994], Wordnet, a hand-crafted thesaurus independent of any particular domain,
provided very limited improvement on query expansion. Contrarily, using thesauri built from a
corpus, e.g., [Qiu and Frei, 1993], improved retrieval effectiveness moderately. Jones et al. [1995]
also suggested that highly structured and rich thesauri designed for a particular domain should be
built, when they witnessed no improvement on retrieval performance using thesaurus-based query
expansion. Various reasons account for the fruitless attempts of using corpus-independent ontologies
in query expansion, one of which is that these ontologies are too general to capture specific domain
facts, for instance, proper nouns included in a query may be overlooked.

As stated in Sect. 2.3, empirical evidences showed that using corpus independent thesaurus
(ontologies) query expansion “does not necessarily improve searching performance” [Hersh et al.,
2000], as opposed to other expansion strategies based on retrieval relevance [Srinivasan, 1996¢] and
term co-occurrence analysis [Buckley et al., 1994b]. In [Hersh et al., 2000], UMLS was used to
expand queries in MEDLINE annotated by the MeSH ontology. Because MeSH terms in MED-
LINE already lead to non-trivial retrieval improvement [Hersh et al., 1994], it might be the case
that ontology-based query expansion has limited capability to further improve the result. Never-
theless, results shown in [Hersh et al., 1994] suggest that a corpus-dependent ontology is more
effective, and [Aronson and Rindflesch, 1997] empirically showed that ontology-based query expan-
sion is effective in some cases only when documents are MeSH-indexed. More solid studies for this
question [Srinivasan, 1996¢; Aronson et al., 1994] showed that the mapping from the corpus to the
metathesaurus/ontologies is crucial. Yang and Chute [1993] thus proposed the linear least square fit
mapping for such a purpose, which automatically learns from a training set of relevant queries and
documents. Similarly, Yang [1994] introduced an expert network to generate a mapping between
training queries and training documents.



Therefore, we conclude that an ontology should be corpus-aware to significantly improve retrieval
efficacy. Analogous to [Xu and Croft, 2000; Bai et al., 2007], ontologies, representing domain or
general knowledge, provide a global context, while the corpora being queries provide a local context.
Consequently, building the correspondence between the ontologies and the corpora amounts to
combining the global and local context analyses. The remaining question is on the granularity
of mutual understanding between an ontology and a domain corpus. A mapping to promote such
understanding tends to be expensive to build. Hence, our aim is to minimize the efforts in annotating
the corpus while maximizing the performance gains. Mapping can be constructed in two major ways.
One is to tag the corpus with the ontological entities, typically concepts. The other is to augment
the ontology by drawing missing salient terms from the corpus. The first approach is discussed in
Sect. 4, and the second in Sect. 5.

Ambiguity may exist in the mapping. In the first place, words in the ontologies are themselves
ambiguous®, and their participation in annotating a corpus may lead the ontology-corpus mapping
astray. Other than that, ontological entities mapped to ambiguous words in the corpus also present
ambiguity, as briefly discussed in Sect. 4.3. Under such occasions, disambiguation seems important
for ontology-based approaches to outperform the others. Though this problem is open, we still
witness attempts to resolve ambiguity using contextual information, e.g., Aronson et al. [1994];
Rindflesch and Aronson [1994] partially disambiguated words based on the distribution patterns of
semantic types in text.

4 Corpus Annotation

A corpus may be structured in a way friendly to human beings, however, it can only be vaguely
understood by computers. Corpus annotation provides a mechanism for computers to partly make
sense of documents in the corpus, generally by annotating important document entities with tags
that are friendly to computers. Such tags, sometimes called meta-data, markups, etc., may be
provided a prior or derived from additional sources, e.g., ontologies. Nevertheless, notice that the
ontology contributing to the tags may not necessarily be the one used for query expansion though
in general the two ontologies share a common vocabulary for retrieval effectiveness. For example, in
[Hersh et al., 2000] MeSH metathesaurus is used to annotate MEDLINE collections, while UMLS
is employed to query against MEDLINE. Corpus annotation enables a correspondence between the
documents and the ontological entities.

In practice, some popular domain corpora, including MEDLINE and CDA documents, directly
refer document terms to ontological entities, hence requiring no corpus annotation [Rada and Bick-
nell, 1989; Tudhope et al., 2006; Farfan et al., 2009; Liu et al., 2009]. In particular, Rada and
Bicknell [1989] even represented every document as a set of ontological entities. We also noticed
that some works expand the query solely based on the query itself and the ontology, completely
avoiding annotating the domain corpus [Navigli and Velardi, 2003].

When a corpus needs to be annotated, either a manual or an automatic process surface. Manual
annotation is common for small corpora, where documents can be semantically marked up by
human experts [Biswas et al., 1986; Aronson and Rindflesch, 1997]. Automatic corpus annotation
are challenging, yet several tools are available, e.g., [Dill et al., 2003; Kiryakov et al., 2004], aiming
to enrich textual web content with metadata. For instance, [Dill et al., 2003] used the TAP ontology

5 Concepts in ontologies, in general, are precisely defined and free from ambiguity, but the words/terms in
their definitions are not.



[Guha and McCool, 2003], an evolving general-purpose ontology, to resolve ambiguity; MetaMap
[Aronson, 2001] is used in [Wollersheim and Rahayu, 2005b] for mapping biomedical text to the
UMLS metathesaurus and extracting concepts from Ohsumed documents. Because of scalability
and ontology availability, automatic annotation may be unavailable in some cases. In particular,
the Web, which represents the most general and complicated domain, poses great challenges for any
search engines that try to “understand” its content by way of annotation. The focus of this paper
is to annotate domain corpora, which are significantly smaller than the web corpus.

4.1 Annotation Granularity

Document annotation can be accomplished in a variety of ways because of the number of structuring
units that can be considered for annotation, i.e., the granularity of annotation. It would be a
gargantuan undertaking for a large corpus to be annotated in the finest grain. Therefore, the
granularity of annotation has a direct impact on the success of linking corpora entities to ontological
entities and on the efforts devoted in annotation. The following discussion presents several types of
annotation, from the most granular to the most abstract annotation.

Words Intuitively, word level annotation as shown in [Buckley et al., 1994b; Hersh and Hickam,
1995; Miiller et al., 2004; Diaz-Galiano et al., 2009; Castells et al., 2007] provides the finest gran-
ularity for recognizing the basic units. This is mostly achieved by tokenizing the documents, per-
forming linguistic stemming, providing part-of-speech (POS) tags, importing additional tags (e.g.,
bibliographic tags) and so on. As the most widespread way to annotate a corpus, full word-based
annotation enables retrieval algorithms to access every composing units in the corpus, however, it
requires heavy, costly preprocessing on large volume of data. Word level annotation gives rise to a
collection in shortage of semantic information, an big disadvantage for it being used in semantics-
oriented applications. Term-based annotation, where every document is characterized as a set of
pairs (7;, w;), specifies a term occurring in the document with its association degree, e.g., [Kim and
Kim, 1990]. Because of its computation intensity and syntactic nature, term-based (bag-of-words)
annotation is considered on the word level. Detailed discussion on word-based annotation can be
found in other literature, e.g., [Manning et al., 2008].

Named Entities Expert users, instead of entering topical queries, opt for more objective informa-
tion pieces, e.g., names of people, organizations, and so on, in formulating their queries [Markey,
2007; Dalvi et al., 2009]. Such information pieces correspond to the named entities, a subset of the
entities defined in Def. 2. The usual notion of entities in the literature, e.g., [DeRose et al., 2007;
Cheng et al., 2007], is more suitable for named entities in this paper. Consequently, a coarser level
of annotation, compared to word-level annotation, may only identify certain kinds of entities in
documents. In some systems, e.g., [Dumais et al., 2003], entities were especially prevalent in query
logs, hence the extraction of named entities like people, locations, etc. are essential for information
retrieval. Such systems may only identify named entities from within the boundaries of specific doc-
ument entities like noun phrases, e.g., [Bast et al., 2007]. The main advantage of such a restriction
is that the granularity of entity annotation is easy to manage. Corpus of certain types of documents
may favor particular kinds of entities, for example, news articles are mainly concerned with named
entities in the stories, which can be automatically recognized by tools as in [Dakka and Ipeirotis,
2008]. Castells et al. [2007] required additional document properties (authors etc.) be extracted.
The types of named entities to be extracted rely on the corpus and the aimed tasks.



Jing and Croft [1994] showed that among different types of words nouns contribute most to
improving retrieval results. The most popular way for named entity recognition is based on noun
phrases, a kind of collocations [Manning and Schiitze, 1999, Chap. 5]. For instance, [Aronson, 2001;
Jing and Croft, 1994; Aronson et al., 1994; Wollersheim and Rahayu, 2005b] split text fields into
noun phrases for identification and normalization. In [DeRose et al., 2007; Miiller et al., 2004] a
lexicon of commonly seen names of interest is manually maintained for recognizing entities. Bast
et al. [2007] computed for each word or phrase the most probable entities, based on [Dill et al.,
2003]. Noun phrase identification on the word level is very costly for large collections, but it may be
relatively easier for some data sources like DBLP and medical data collections, where a document
is normally organized by fields [Wollersheim and Rahayu, 2005b; Nadkarni et al., 2001].

Concepts Concepts are more abstract than named entities, though named entities may also be
counted as concepts, e.g., the named entity people is a suitable concept. In the literature, the term
concept may be used interchangeably with named entities [Dalvi et al., 2009]. In general, named
entities are primarily concerned with instances, e.g., an individual person, while concepts describes
a class of such instances.

Concept recognition, more challenging than noun phrase recognition, is beneficial to ontology-
based query expansion because of the rich semantics with concepts. There are different approaches
for concept identification in documents. By extending noun phrase identification, simple concepts
in phrases can be extracted, e.g., [Aronson, 2001]. The downside of this simple extension is that
some contextual information may be missing due to the small units of text used, e.g., noun phrases.
Alternatively, larger units of text like sentences can be used [Hersh and Hickam, 1995; Hersh et al.,
1992], but this approach, being more computationally intensive, tends to produce more false pos-
itives than the phrase-based one, because more concepts clutter in a larger unit of text, e.g., a
sentence, such that concepts that would not have been implied in a smaller context may be gen-
erated [Nadkarni et al., 2001]. Identification of concepts within documents can also be realized by
other techniques, e.g., explicit semantic analysis in [Egozi et al., 2008], rule-oriented approaches
[DeRose et al., 2007], etc. Nevertheless, several challenges exist for these techniques, for example,
the concepts generated are noisy and ambiguous. For instance, Brauer et al. [2010] reported that
98% of the matches were ambiguous. To handle such problems, assigning concepts to documents
manually was used in [Biswas et al., 1987], while Brauer et al. [2010] selected the longest concept
that matches the textual entities to reduce ambiguity.

Document Feastures The least detailed annotation that analyzes a document as a whole cor-
respond to document classification, i.e., generation of facets for documents. Such annotation are
feature based. For instance, Grootjen and van der Weide [2006] used an automatic indexer to assign
attributes (words or short expressions) to every document.

Document features” are a special kind of concepts. Such features, normally as mutually exclusive
document descriptors, provide more contextual information for query expansion. Particularly, inter-
active systems may prompt users to choose a subject for query expansion [Greenberg, 2001b; Miiller
et al., 2004; Navigli and Velardi, 2003] based on other sources (e.g., using ProQuest Thesaurus in
[Greenberg, 2001b]); non-interactive systems can classify documents to generate document features
[Yang, 1994; Wollersheim and Rahayu, 2005a; Crouch and Yang, 1992]. An example is Chang et al.

7 Document features are document descriptors, which are not to be confused with features/attributes that
depict properties of objects. The term facet is used as a synonym for document features in this paper.



[2006], where salient concepts, generated from selected documents by feature extraction, are con-
sidered the main topics of those documents to further reformulate the user queries.

Some corpora, e.g., bibliographics datasets like DBLP, have built-in facets like authors, titles
and so on. It is also common to extract features from documents, e.g., Biswas et al. [1987] relied
on human experts to divide the document space into several facets. Castells et al. [2007] required
that every ontology have a facet as one of the main base classes to annotate documents. The
recognized facets come from the documents or ontological concepts, which can form taxonomy for
query expansion [Dakka and Ipeirotis, 2008]. An example given in [Castells et al., 2007] is that the
term Irises is more relevant to the concept Painting for Van Gogh’s work instead of Flower, given
the word appears in a document under the topic of Art. Therefore, facets reduce term ambiguity
by narrowing down searches to a more restricted context. The readers can find more approaches on
recognizing facets in the literature, e.g., [Chakrabarti et al., 1998].

4.2 Corpus Indexing

Corpus indexing, specifically used as a reference to document entities, is an implementation of the
mapping between ontologies and corpora. Indices, which may be consulted in query annotation
to identify the possible query concepts, are largely utilized in the process of term selection. It is
thus important to have well-built indices to achieve better performance. There are two fundamental
aspects of corpus indexing, one of which is indexing erhaustivity that measures the number of terms
collected in indices, the other being specificity on the level of indexing detail.

Studies on indexing specificity showed controversial results, as there is no agreement on what
is the optimal way to index document contents: words, concepts or both [Hersh et al., 1992]. It
appeared that word-based automated indexing dominates the indexing approaches, nevertheless,
other studies, for example Aronson et al. [1994]; Yang and Chute [1993], supported the use of
ontologies for concept indexing. Nadkarni et al. [2001] argued that concept indexing takes advantage
of semantics of text, but accuracy remains a problem, which restrains the use of concept indexing
on large collections of documents. After all, Srinivasan [1996a] empirically demonstrated that the
most successful document-indexing strategy is to combine document indices and concept indices for
retrieval. Despite all the controversies, indexing documents for IR is mostly done on the syntactic
level, e.g., by statistically indexing on words. Though a few systems index concepts appearing
in documents, e.g., Hersh and Hickam [1995]; Nadkarni et al. [2001], word-based approaches have
been prevalent. In [Voorhees, 1994; Srinivasan, 1996¢; Jarvelin et al., 2001; Srinivasan, 1996b; Farfan
et al., 2009] the documents are fully indexed on words. Farfan et al. [2009] also computed the tf-idf
score, and Srinivasan [1996¢,b] further parameterized indices for term frequency, inverse document
frequency and the length of a document to test the impact factors on retrieval effects of different
indexing strategies. Srinivasan [1996b] showed that indexing strategies without inverse document
frequency decreases performance compared to the others. Interestingly, we observed that a synthesis
of word-level indexing and concept-level indexing has been reported as well, e.g., [Bai et al., 2007],
where the TREC-8 test collection was indexed in words and in concepts and less improvement was
gained for concept-based retrieval.

Indexing exhaustivity is less exposed to questions. As long as the indices are not too large to
cause performance issues, the more terms used in indices the better. Therefore, a full-text indexing
is satisfactory for collections in small size. If entities in a corpus are already identified, Kiryakov
et al. [2004] suggested that indexing documents in the corpus with respect to entities allows more
accurate searches for queries that place constraints on entities.



4.3 Applying Semantic Markups

When mapped to an ontology, words or terms in the text are annotated with semantic mark-ups
(i.e., tags) from the ontology. The difficulty lies in how to accurately attach tags to entities in
documents. Fully automatic process of semantic annotation is very challenging, although [Castells
et al., 2007; Kiryakov et al., 2004] provide a scheme for semi-automatic annotation to link ontological
terms to texts in documents. For instance, Kiryakov et al. [2004], during information extraction,
mapped each entity reference in the text onto the specific instance together with the most specific
concepts in ontologies.

The annotation process chronologically may take several steps including variant generation,
ontological candidates identification and matching, depending on the accuracy requirement.

Variant Generation To generate variants of simple noun phrases, other lexicons or knowledge bases
may be used to initially identify synonyms, abbreviations, acronyms and so on. Variant generators
also take advantage of predefined morphological rules for computing inflections, spelling variants
and others [Buckley et al., 1994b; Aronson et al., 1994; Aronson, 2001; Croft, 1986]. In [Miiller et al.,
2004], regular expressions were used as a substitute for rules to obtain terms of variable forms. To
keep track of the generation of variants, a distance value capturing the adjacency information can
be computed between every variant and its history phrase to generate similar variants.

Mapping Candidates An ontological candidate must meet certain conditions, e.g., it contains at least
one of the variants [Aronson, 2001; Aronson et al., 1994]. To quantify this evaluation, a similarity
value between a text phrase and a candidate can be computed in terms of a number of factors, e.g.,
candidate coverage, distance values, and so on [Aronson, 2001], in order to measure how much of
a candidate matches the original term. A list of ranked candidates can then be produced and used
for constructing the mapping. Observe that ambiguity may arise during this process. Exploiting
contextual information for the purpose of word sense disambiguation can reduce the number of
incorrect mappings [Rindflesch and Aronson, 1994], but the solution to this linguistics problem is
still open.

4.4 Corpus Structure

The data format of the corpus in question has a direct impact on ontology based query expansion
efficacy and the retrieval results. The data models used to organize information in a domain vary,
and can be roughly categorized in terms of the tightness of relationship between entities. In this
paper, we distinguish different data models by identifying the features/attributes extracted for
representing documents. Fully structured data, in particular database relations, is a collection of
values of features defined in the schema. Structured data is easy to manipulate by machines, but
incomprehensible to humans. This paper focuses on semi-structured and unstructured data.

Unstructured Data Compared to data that strictly conforms to some data models like relations
in databases, unstructured data is not constrained by any structures but is simply free and human-
friendly text. The prominent unstructured data set is the web, which is distinct from other datasets
because of its size and unreliability of some data. Being structure-free, there exist no predefined
features or values in documents at all, and proses in the documents are difficult to parse or un-
derstand even by humans due to various linguistic reasons. In order to use techniques like query
expansion, annotating the documents to extract certain features is indispensable. For instance, the
TREC collection consists of english prose from various sources.



Semi-structured Data Semi-structured data does not follow specific formal structures but is
annotated with tags to highlight certain information in it, e.g., hierarchies of records, data fields
and so on. It is loosely structured to enable machine-readable, object-oriented information, where
a limited set of features exists to allow for easy access to some parts of the data. Without loss of
generality, features can be interchangeably used with tags here.

XML is a prominent example, where an XML document is composed of its content and markups.
For example, in the medical domain Clinical Document Architecture (CDA)® leverages the use of
XML. For keyword searches on XML documents, the keywords are matched to XML nodes that are
covered by a minimal tree to be returned to users. To exploit the rich annotations provided by XML
documents, ontological knowledge are employed to support domain-specific search, e.g. [Theobald,
2003; Farfan et al., 2009].

Bibliographic records are another semi-structured data example, where the document number,
title, authors and so on are typically tagged for every document in the collection, as can be seen in the
DBLP collection of data®. Particularly, there exist a large number of works that address ontology-
aided search on the MEDLINE collection, e.g., [Rada and Bicknell, 1989; Srinivasan, 1996¢,b].

5 On Domain Ontologies

Several ontology-aided query expansion systems [Kasneci et al., 2008; Castells et al., 2007; Bast
et al., 2007; Theobald et al., 2008; Dey et al., 2005; Vallet et al., 2005] assumed the availability
of full-fledged ontologies, as automatic construction of ontologies shows great difficulties due to
several factors, e.g., the inability of extracting taxonomy precisely as stated in [Cafarella et al.,
2007]. However, semi-automatic and manual creation of ontologies are feasible in many cases.

A domain ontology can be crafted regardless of the underlying corpus that the queries are
searched over. Otherwise, an ontology can be drawn from a particular corpus to enhance searching in
that corpus. Naturally, corpus independent ontologies are unaware of the corpus content, which are
more suitable for “static” document collections. Otherwise, corpus-dependent ontologies are indeed
necessary for documents that are frequently updated, because the vocabulary in the ontologies are
subject to changes as well. Yet, building ontologies dynamically for corpora under constant updates,
e.g., the Web documents, is challenging and costly.

It is the vocabulary used in a corpus and an ontology that matter, as discussed in Sect. 3.3.
Recall that traditional thesauri, as a form of controlled language, select a list of collection terms
from a corpus to provide a mediating interface between the documents and users. This section thus
addresses how to build the vocabulary of an ontology, the mediating interface, out of a corpus. We
explore some techniques in building ontologies from the underlying corpora. These techniques are
roughly categorized by the granularity of extraction, namely, the type and quantity of entities to
be chosen for the ontologies.

5.1 Corpus Independent Ontologies

We start our exploration with full-fledged ontologies independent of any corpora. WordNet has been
widely used in query expansion tasks, for example, Voorhees [1994] expands a query with words
that are lexically relevant to some keyword via WordNet. YAGO [Suchanek et al., 2007], a large

8 http://www.hl7.org/implement /standards/cda.cfm
9 www.informatik.uni-trier.de/"ley /db/



ontology built from Wikipedia pages and WordNet, serves as a domain-specific ontology as well
as a general ontology. Another large general purpose ontology is TAP used in [Guha and McCool,
2003].

There are mature ontologies designed by domain experts in some domains as well. Specifically,
well-founded biomedical ontologies emerge rapidly [Bodenreider, 2008]. For instance, [Rada and
Bicknell, 1989; Diaz-Galiano et al., 2009; Srinivasan, 1996¢,b] used the Medical Subject Headings
(MeSH) thesaurus'?; [Hersh et al., 2000; Aronson and Rindflesch, 1997; Wollersheim and Rahayu,
2005a] exploited the UMLS metathesaurus'*. SNOMED CT!2, considered “the most comprehensive,
multilingual clinical healthcare terminology in the world”, was referenced for ontological search in
[Farfan et al., 2009]; GO (the Gene Ontology*?®) focusing on gene and gene products is the core source
for the ontology used in [Miiller et al., 2004]. In addition to medical ontologies, LOIS, exploited in
[Schweighofer and Geist, 2007] for query expansion, is a set of multilingual lexical ontologies for the
legal domain. Likewise, Tuominen et al. [2009] utilized the library of, either specialized or general,
ONKI ontologies. In these domains, the domain vocabulary is well shared and receives consensus
in the community. Therefore, ontologies built on the vocabulary can be fully exploited by users.
Nevertheless, well-founded ontologies are inaccessible in many application domains. The advantage
of using a corpus-independent ontology is evident: it avoids domain corpus analysis and saves users
tremendous workload in ontology engineering. Despite that, employing a general-purpose ontology
suffers from the inability of capturing specialized knowledge since such an ontology may overlook
concepts like proper nouns and highly technical terms [Voorhees, 1994].

5.2 Corpus Dependent Ontologies

While some ontology based expansion approaches just assume the availability of domain ontologies,
there were attempts to construct corpus-dependent ontologies automatically (e.g., [Liu et al., 2009])
or through interaction with domain experts or users [Croft et al., 1989; Lee et al., 2008; Greenberg,
2001a].

Most existing approaches to automatic thesauri construction are based on the statistical co-
occurrence of words in the collection, which is difficult to measure low frequency terms (the terms
with very low document frequency). According to Zipf’s Law, infrequently occurred terms are, how-
ever, good discriminators for clustering documents into thesauri classes that can be used for indexing
[Crouch, 1990]. Note that these approaches to build thesauri are syntactic. A major disadvantage
of the statistical approaches is that thesauri that are dependent on the document collection may
need to be recomputed as the document collection changes.

Ontologies, on the contrary, take advantage of domain knowledge on a semantic level. While
terms are congregated in ontologies, they are immune to corpora change, as they are semantically
motivated and keep consistent meaning in different context. Qiu and Frei [1993] used a different
way to build a similarity thesaurus statistically, where the meaning of a term is represented by
a document vector space, in contrast to the traditional term vector space. Although retrieval ef-
fectivenss has been witnessed on small collections, the semantics of the domain knowledge is only

10 MeSH is a comprehensive controlled vocabulary used for indexing life science articles, like the MED-
LINE/PubMed database, and it also serves as an ontology.

Y http://www.nlm.nih.gov /research /umls/. Note that the metathesaurus of UMLS combines information
from various sources, the dominant one being MeSH.

12 http:/ /www.ihtsdo.org/snomed-ct /

13 http:/ /www.geneontology.org/



vaguely signified by a probabilistic QE model. Furthermore, (manual) construction of relational
thesauri has been studied in Wang et al. [1985], and enhanced performance over statistical thesauri,
since relational thesauri actually capture certain semantics of the corpora. From observations in
[Brewster and Wilks, 2004] we can also see that automatic construction of ontologies (relational
thesauri) is far more challenging than that of syntactic thesauri.

The Source for Authoring an Ontology Jing and Croft [1994] built an association thesaurus
for query expansion, and suggested that larger collections yield better association thesaurus per-
formance. The problem is the inefliciency of generating such thesaurus based on all the documents
for large collections. Hence, Jing and Croft [1994] instead employed a representative sample of its
collection. In fact, Miiller et al. [2004] showed that the abstracts of medical articles, compared to
the full text of those articles, yield higher overall recall but lower precision for keyword search,
since full text introduces more noises to produce false positives'®. Therefore, it might be desirable
to compromise the source corpus size to achieve efficiency and possibly lower degree of ambiguity.
Mandala et al. [2000] also concluded that constructing ontologies from a sample collection still
significantly improves search results in the whole collection. Chang et al. [2006] also discovered
that the construction of primitive concepts from the whole corpus is time-consuming, and “was
promising only for poorly performing queries”. Instead, [Chang et al., 2006; Grootjen and van der
Weide, 2006] generated concepts based on the set of retrieved documents. The disadvantages are,
borne of local analysis techniques, that concepts have to be rebuilt for every new query and that
the quality of the set of retrieved documents may be unreliable. In general, it remains to see how
to find the best sample collection for ontology construction. Liu et al. [2009] construct an ontology
from the corpus annotation and SNOMED CT, i.e., the fact assertions that connect the documents
with SNOMED CT are extracted and reasoned against SNOMED CT to infer new knowledge.

Terms that do not appear in the domain corpus may also be needed in a domain ontology.
External sources, such as existing mature ontologies, databases, thesaurus and search engines,
are all good sources for domain-dependent ontologies [Dakka and Ipeirotis, 2008]. For example,
YAGO provides various levels of domain knowledge to serve as a basis for building a domain-specifc
ontology. In [Miiller et al., 2004] GO ontological terms contribute around 80% to the lexicon in
the Textpresso ontology. Additionally, the Textpresso ontology was partly populated using terms
from other biological databases like PubMed. It should be noted that some general knowledge
may be missing in a corpus-dependent ontology. While refining user queries depends on domain
knowledge, it may be more effective to take general knowledge into consideration. This has been
studied in [Mandala et al., 2000], where three different types (one general-purpose Wordnet, the
other two being corpus-dependent with statistics on co-occurrence of terms and grammatical rules,
respectively) of thesauri for query expansion were combined. The problem for most domains is that
not many well-founded ontology may be available to serve as good sources.

An ideally expressive and informative domain ontology will contain the details of all concepts
in the corpus of interest. However, authoring such ontologies amounts to performing a complete
analysis on the corpus, often undesirable or infeasible. It is often worth considering the trade-off
between the efforts in ontology construction and the efficacy of exploiting the ontologies. A more
practical approach is to select only those salient terms from the corpus to populate the ontology,
manually [Nagypal, 2005] or automatically [Grootjen and van der Weide, 2006]. There is considerable

14 This may not happen in corpora where facts are expressed without complex structures, for example,
bibliographic data.



research on identifying terms and associations between them, e.g., [Biemann, 2005; Brewster and
Wilks, 2004].

Automatic ontology construction can in principle “reverse” the annotation methods discussed in
Sect. 4 to extract terms from a corpus. For instance, terms in a noun phrase can be extracted as an
ontological concept. Cafarella et al. [2007] exemplified such extraction mechanisms, where the Web
documents are extracted for facts (denoted as triples), types, and synonyms. Observe that the facts
and types correspond to role and concept assertions, respectively. However, no known automatic
techniques are available for extracting inclusion or functional dependencies so far. Several search
engines also provide automatic extraction services, e.g., Yahoo term extraction service'®.

5.3 Ontology Expressiveness

The quality of ontology was thought of as one of the most critical factors incluencing the retrieval
performance [Kim and Kim, 1990]. An ontology, in terms of its quality, can be evaluated by the
soundness (consistency), the representativeness of domain knowledge, reasoning effectiveness and
so on. The ontological representativeness of domain knowledge is related to ontology expressivity,
one of our main concerns in this paper. When an ontology is built, it is only an encapsulation of
the domain knowledge as only some chosen salient document units will participate in the ontology.
Furthermore, ontology development or maintenance tends to lag behind the knowledge evolvement.
For these reasons, it may be necessary that domain knowledge be query-relevant. In [Croft, 1986]
domain knowledge was acquired by system interaction with the users.

Though Navigli and Velardi [2003] suggested the importance of ontology expressivity, there is a
trade-off between the expressiveness of ontologies and the improvement of retrieval results. Indeed,
Kiryakov et al. [2004] argued that a light-weight ontology poor on axioms suffices for defining
essential domain entities and allows for more scalable management. Remarkably, a great number of
large-scale medical ontologies reside in the DL £L£ + +, which is sufficiently expressive to describe
most domain facts while deciding core reasoning problems in polynomial time!6.

The exploration of ontology is centered upon relationships, i.e., the association between entities.
The association corresponds to roles in the underlying DL terminology. It is therefore reasonable
to interpret ontology expressivity in terms of relationships here. The core set of relationship shared
by most existing works [Biswas et al., 1986; Wollersheim and Rahayu, 2005b; Navigli and Velardi,
2003; Croft, 1986; Jarvelin et al., 2001; Wollersheim and Rahayu, 2005a; Farfan et al., 2009; Wang
et al., 1985; Lee et al., 2008; Greenberg, 2001b; Fu et al., 2005; Greenberg, 2001a; Liu et al., 2009]
can be characterized as follows.

Relationships of our interest may belong to the open or closed class [Green, 2001]. The closed
class contains hierarchical relationships, e.g., the IS-A relations (hyperonymy and hyponymy),
meronymy, holonym, synonym, antonymy and so on. New relationships are rarely created in the
closed class, thus this class is enumerable. Most of relationships in the closed class receive general
consensus and their semantics is explicitly defined. WordNet is a representative ontology that fea-
tures the closed class of relationships: IS-A and part-of (meronym and holonym) relationships are
heavily exploited [Croft et al., 1989; Kim and Kim, 1990], sometimes the IS-A relation being the
dominant one [Voorhees, 1994]. Wang et al. [1985] also enumerated several groups of semantic rela-
tions for experiments. Nevertheless, the most effective relations are idiosyncratic to the particular
query and the target text collection [Greenberg, 2001a].

5 http://developer.yahoo.com/search/
6 http://www.w3.org/2007/OWL/wiki/Standalone_Profile: EL++



The open class of relationships typically involve associative relationships like cite, related-to, see-
also, provenance'” and other referencing relationships, typically seen in thesauri. The membership
of this class can not be entirely enumerated, as new relationships of this type can be coined. The
semantics of these relationships are normally undefined, relying on the the enumeration of their
participating entities to imply the meaning. Features (or attribute-value pairs) also belong to the
open class. For a particular corpus, this class of relationships may be more useful. For example, the
relationship cite was assumed to represent the strongest plausible relationships between documents
in [Croft et al., 1989]. Sihvonen and Vakkari [2004] demonstrated that related terms were productive
expansion terms as well.

Different levels of retrieval improvement were observed in the literature, not due to the ontology
expressiveness but because of the different expansion strategies; therefore, further research may
focus on how to fully exploit the rich semantics in ontologies [Wollersheim and Rahayu, 2005b;
Srinivasan, 1996¢]. We believe that ontologies within the logic ££++, where hierarchical relations,
transitive (e.g., [Dolby et al., 2009]) and inverse roles are included, are sufficiently expressive to
construct domain ontologies that most domain-specific query expansion strategies can apply to.
Other concept constructs may be used, e.g., the relations characterized in [Wang et al., 1985]
correspond to the DL ALCZ. Tt seems that cardinality restrictions on concepts (e.g., N, Q) and
nominals (O) seldom contribute to retrieval efficacy. In particular, most expansion strategies are
most concerned with roles, therefore, we conjecture that the expressiveness of ontologies will most
likely to benefit from adding more role constructors or role axioms instead of concept constructors.

6 Ontology-aided Query Expansion Algorithms

As mentioned in Sect. 5.3, how ontologies can be effectively exploited by an expansion algorithm
remains a cursorily studied question. Previous sections elaborate the query and corpus annotation.
In this section, we overview the state-of-the-art expansion algorithms to synthesize an algorithm
that can be commonly employed.

We assume the query concept(s) exist and will be used during query expansion. The most
straightforward way to expand a query is to traverse the ontological taxonomy along different
relationships [Croft, 1986; Hersh et al., 2000; Wollersheim and Rahayu, 2005b,a]. The process can be
roughly segmented into two phases, i.e., developing strategies to obtain sufficiently many candidate
terms, discussed in Sect. 6.1, and designing ranking schemes to determine the most promising terms,
discussed in Sect. 6.2.

6.1 Candidate Term Selection

The insufficiency of the traditional (syntactic) term selection strategies lies in that useful and useless
terms can not be distinguished based on term distributions [Cao et al., 2008]. To distinguish good
and bad terms in semantic approaches, we consider several criteria for term selection; therefore,
this section focuses on what entities can be potential candidates.

17 Provenance relationships express sources or origins. For instance, some Wine is related to Merlot by the
provenance madeFrom.



Term Selection Tactics Sect. 2.2 indicate that information specialists take advantage of a va-
riety of search strategies to obtain the desired information need. Presumably, an automatic query
expansion algorithm is more effective if it captures the strategies employed by human experts. In
this respect, rules for term selection, the core of query expansion algorithms, is set out in Table 1
to express the various tactics used by human experts w.r.t. the domain knowledge used.

Inflectional changes to terms, reorder the words in a

Transformation

term, etc.

Hierarchy Broader or narrower terms

. Synon related terms (either syntactically or

Neighbor ynonym, ( y y
semantically)

Contrary Antinomy
Additional terms from the source of already selected

Provenance

terms

Table 1. Term Selection Tactics

The fact that human experts favor specific tactics for a particular term depending its the context
indicates that the order and preference of applying the term selection rules are subject to change
for different queries. Such human behavior is approximated by the underlying query expansion
algorithm that select terms based on the prior information obtained from the queries.

Selecting Candidate Terms Candidate terms may be selected syntactically and/or semantically.
A typical keyword search engine tends to match keywords to the terms in documents with the use of
syntactic techniques based on term co-occurrence. What semantic selection strategies do is to draw
terms from the sources (both documents and ontologies) semantically. A combination of syntactic
and semantic approaches to obtain candidate terms is feasible, as shown in [Aronson and Rindflesch,
1997], as they are complementary, other than exclusive, to each other. In what follows we focus on
the semantic selection strategies.

Ontological Entity Selection This section describes how candidate terms can be drawn from
ontologies. Before an ontology is used in term selection, it must be processed by reasoners to make
implicit knowledge available. Reasoning may be computationally expensive, yet tractable reasoning
is possible for ontologies expressed in certain languages, e.g., ontologies in ££+4+, as discussed in
Sect. 5.3. EL++ ontologies can be handled efficiently by the CEL reasoner [Baader et al., 2006].

Schema Graph The otological knowledge is represented as a graph that the query expansion al-
gorithm can traverse to select terms. The graph built on the axioms in ontologies, named schema
graph, contains the intensional knowledge of the domain, each vertex corresponds to a concept and
each edge represents the relationship (roles) between concepts. For instance, an axiom of the form
A C JR.B is represented as a subgraph where both A and B are vertices related by the ISA



relationship. Note that this IS-A relationship is only accessible from A to B, not vice versa. The
inverse relationship HAS-A can be inserted from B to A to account for the other direction.

Tazxonomic Candidates Centrality, i.e., the distance to the original concepts, is a crucial factor for
determining candidate terms from ontologies, descended from the theory of spreading activation
[Collins and Loftus, 1975]. The spreading activation algorithm starts from one or more concept
nodes in a taxonomy, and activates all the nodes connected to each of them. When the spreading
stops, the concepts on all the activation paths are considered candidate terms.

User studies in [Jones et al., 1995] showed that users seldome chose terms with a conceptual
distance greater than 4. This fact serves as a reasonable stop condition for this query expansion
algorithm, i.e., the selection of candiate terms can be limited within some conceptual distances when
traversing the edges radiated from the central concepts [Rada and Bicknell, 1989; Croft et al., 1989;
Biswas et al., 1986; Voorhees, 1994; Wollersheim and Rahayu, 2005b; Jarvelin et al., 2001; Farfan
et al., 2009; Dey et al., 2005].

Intuitively, the spreading activation algorithm traverse all the IS-A and HAS-A relations to
move upwards and downwards hierarchically for superconcepts and subconcepts resp., and moves
sideways seeking neighboring terms, e.g., synonyms and related terms, within the schema graph.
Specifically, all the terms C7p, that are superconcepts or subconcepts of C' up to certain level
1 are considered candidate terms for C. Synonyms to C, i.e., terms on the same level as C' or
synset elements for WordNet concepts [Moldovan and Mihalcea, 2000], can also be added to the
set of candidate terms. This traversal algorithm is efficient, but it has the disadvantage of losing
the precise definitional information that makes the concept distinguishable, thus this traversal
algorithm may introduce noisy concepts to the candidate set. Considering the following simple
example, Chair C Professor M (3headO f.Department), where a chair can only be distinguished
from other professors by observing her administrative role specified by the existential quantification.
The traversal based on the above algorithm will expand the query keyword Chair with terms that
mention Professor and Department. This may give rise to potential false positives that mention
Professor and Department in a relation other than headOf, e.g., worksIn. To our knowledge,
only a few traversing algorithms take existential quantification into consideration, e.g., [Farfan
et al., 2009]. Furthermore, observe that universal quantification (V) is not exploited in existing
works, primarily because it is beyond the syntax of typical DLs employed to model most medical
ontologies, e.g., EL + +.

An adaptation of the above algorithm considers the quantified constraints. In the previous
example, the algorithm selects the role headOf as a candidate term. The rational behind such a
strategy is similar to adding context words [Bai et al., 2007]. It is easy to reveal that role names
are equally important as concepts. In this example, the concepts Professor and Department can
ideally be related by a third candidate term, the role name HeadOf or simply Head, to reflect the
distinction between a professor and the chair. Named roles (relations) can be accessed and evaluated
in many ways, according to the nature and characteristics of the relations, as discussed in Sect. 5.3.

In addition to explicit traversals on the schema graphs, negations can also be exploited, which
was used by human experts as well [Bates, 1979]. For instance, the term Speedy can be expanded
as the negation to the term Slow. In a Wordnet/thesaurus this type of expansion, as a form of
antonymy, is not uncommon, but such relationships in a DL represented ontology requires negations
explicitely, e.g., Speedy C —Slow. In fact, as empirically shown in [Wang et al., 1985], antonymy
degrades the retrieval effectiveness, while the taxonomical terms tend to enhance the results to some
extent.



Auziliary Ontological Candidates The previous discussion about taxonomy traversal shows that
named concepts and roles in the taxonomy can qualify as candidate terms. In addition to taxo-
nomical concepts, other entities in an ontology may also be exploited, depending on the logical
constructs allowed in the syntax of the underlying DLs of ontologies.

Firstly, the Abox instances constitute an instance graph, in addition to the schema graph built
on TBox axioms. Individual names can be leveraged to expand the queries using the same strategy
as for soliciting concepts, e.g, Dolby et al. [2009] instantiated query variables with individuals
in different patterns depending on the query concepts, and Liu et al. [2009] instantiated all the
concepts and store all the instances and relationship information in databases. A concrete example
follows. When the concept Canadian_-Prime_Minister occurs in the query, the individual name
Stephen_Harper may qualify as a candidate term because the individual instantiates the concept
Canadian_Prime_Minister in the ontology.

In spite of the possibility of using individual names, some technical issues pop up. First of all, the
size of instance graph, compared to the schema graph, can be enormously large, which requires more
efficient algorithms for traversing the graph. The exact number of instances for a particular concept
may not be known due to the lack of appropriate indexing, e.g., in the setting of the Web, thus, only
under very rare situations can a concept be instantiated to expand the query. If a concept has a large
quantity of instances, it may be better off to leave the concept uninstantiated due to the sheer size.
For example, instantiation of the query concept Student that enumerates all the students should
be avoided. Another issue is brought up by the concretization of relations. Relations in schema
graph express association between entity classes (concepts), while they denote associations between
specific entities (individuals) in an instance graph. To allow the use of the concretized relations,
the cardinality of relations, i.e., the number of participating members in both entity classes (for
binary roles) should be considered. For example, marriedTo is a one-to-one relation, hasFather
is a many-to-one relation, and hasAuthor is a many-to-many relation. Such considerations appear
more important in query answering systems, e.g., [Dolby et al., 2009; Liu et al., 2009; Pound et al.,
2010], that heavily take advantage of individuals.

Concrete domain entities may also be eligible for candidate terms. Specifically, feature-value pairs
that denote pivotal attributes of objects may be incorporated in query expansion. Semi-structured
data often involves a significant number of features, which play a key role in a successful semantics-
based query expansion. For instance, a publication record that has a list of authors can derive
meaningful coauthorship information for a sample query asking for collaborators of a particular
researcher. Features and values often suggest a precise contextual information for refining query
expansion.

Other Algorithms for Term Selection Earlier research that uses thesaurus like WordNet have spe-
cific algorithms for obtaining candidate terms. For example, Navigli and Velardi [2003] constructed
a semantic network for every keyword x; in the query and every synset of %; (i.e., every sense
of x; in WordNet). The creation of such semantic networks depends on the chosen relations, ei-
ther drawn directly from WordNet or other sources. Note that the choice of relations is critic as
some relations may introduce noises rather than useful candidates. For instance, gloss relations,
as reported in Navigli and Velardi [2003], sometimes digress the subject from the query intent.
Navigli and Velardi [2003] consequently provided two strategies to specify which keywords can be
expanded. For example, one strategy allows only monosemous keywords to be expanded, ensuring
a high precision, while the other allows keywords that closely relate to other keywords, in terms of
a threshold number of common nodes in synsets, to be expanded.



Expansion on spatial queries involving geographical locations can exploit footprints [Fu et al.,
2005] to select terms. That is, geographical locations in a query are translated into map coordinate
footprint, only terms that are in the proximity of the footprints will be considered candidates, which
avoids the introduction of possibly irrelevant query terms by conventional query expansion.

Non-ontological Entity Selection Existing query expansion strategies'® at large only consider
the ontologies as the sources of candidate terms [Diaz-Galiano et al., 2009; Moldovan and Mihalcea,
2000]. When the ontologies are drawn from the corpus, query expansion is in fact using part of the
document collection information as ontologies capture most salient terms in the documents. Some
salient terms residing in the documents may be missing in the ontologies, thus query expansion may
benefit from soliciting candidate terms from multiple sources, including the document collection
[Qiu and Frei, 1993; Grootjen and van der Weide, 2006] and the feedback data (discussed in Sect.
8). Indeed, Srinivasan [1996¢] described three solicitation strategies, i.e., adding document terms
to the original query, adding ontological concepts to the original query, and a combination of the
previous two strategies. In addition, it is possible to cluster the terms in the collection, consequently
a keyword only finds its candidates from the same cluster, as seen in [Wang et al., 2009; Grootjen
and van der Weide, 2006]. Every cluster can be viewed a concept, uniquely identified by the set of
terms in it [Grootjen and van der Weide, 2006]. Similarly, Google Sets'? identifies groups of related
items on the web based on the input of several terms. The advantage of Google Sets lies in its
utilization of the largest corpus (i.e., the Web) to derive related terms, so the accuracy is high on
average. The weakness also springs from the web: the generated terms may be related in a more
broad sense, bringing in noises for term suggestion in a specific domain.

As observed from the information specialists, the tactic provenance in Table 1 can be leveraged
in particular. That is, it may be more effective to use candidate terms generated from an initially
retrieved set of documents instead of the whole corpus [Chang et al., 2006; Grootjen and van der
Weide, 2006]%°. Retrieval feedback [Srinivasan, 1996c| uses a feedback-driven strategy to solicit
candidate terms. This strategy explores the top few documents returned by the original query, then
it treats all terms in these documents as candidate terms. As terms are generated from the initially
retrieved documents by the original query, the terms may not provide additional information that
the original query lacks. A solution presented in [Grootjen and van der Weide, 2006] to the above
weakness is to generate a formal concept derived from relevant documents in the whole collection.
Intuitively, this solution integrates global analysis into local analysis to minimize the side effect due
to local relevance feedback.

Quantity of Candidate Terms User participation in [Jones et al., 1995] indicates that it is
better to provide plenty of candidate terms for real users to choose from. A potential problem
of selecting as many terms as possible is that the time required for query evaluation increases as
well. Furthermore, some selected terms may be harmful or useless [Cao et al., 2008], especially for
automatic terms selection without human intervention.

Most experiments evaluated the effects of the quantity of terms added to a query under specific
situations. Empirical studies on relevance feedback suggest that “doubling the number of new terms

18 Ontology-based query answering systems [Dolby et al., 2009; Pound et al., 2010] only need to use onto-
logical entities.

19 http://labs.google.com/sets

20 However, a snag in [Chang et al., 2006] is that these terms were used for query reformulation, not for
query expansion.



will add a constant to the recall-precision measure” and the effectiveness ceases increasing after a
certain number of terms have been added [Buckley et al., 1994a]. Mandala et al. [2000] empirically
showed that retrieval improvement increases till more than 20 terms were added, then it levels off.
More added terms, say up to 50, tend to deteriorate the improvement for the collection in their
experiment setting. For concept-based query expansion, Qiu and Frei [1993] pointed out that adding
as much as 100 top-ranked terms seems “to be the safe way to go”, yet the number of candidate
terms is reduced to 20 when relevance feedback is used because of the smaller number of documents
returned by feedback. Jing and Croft [1994] concluded that the number of terms to be added to a
query depends on many factors involving the nature of the query and the candidate terms, the size
of the collection and so on. How to determine this number for any given query is not clear. According
to [Cao et al., 2008], the retrieval effectiveness with a reasonably small number of candidate term
decreased slightly, but still much higher than the baseline approaches. Consequently, it is better to
parametrize the quantity of selected terms to allow for efficient evaluation.

6.2 Ranking Candidate Terms

It is assumed that the “best” candidate terms used to expand the query will effectively improve
the retrieval results. The selection of the most promising one(s) from the set of candidate terms is
however not very obvious. Some ranking criteria can be devised to aid the seection. Ranking func-
tions may be subjective and can only be empirically verified, so far there is no universal ranking
functions for evaluating candidate terms in different domains and datasets. Informally, candidate
terms that are more similar to the query concepts are likely to capture the conceptual idea behind
the concept. For traditional keyword query expansion, the similarity between a candidate term
and one or more keywords is computed, while for concept based query expansion, the similarity
is calculated between a candidate term and the query concept [Qiu and Frei, 1993]. We think the
discrepancy in similarity computation is not very significant for the above two, and most measures
can be applied to both. In what follows, we elucidate some commonly applied measures for com-
puting the similarity between a candidate term and the original concept, which may compute the
structural similarity (syntactic measures), the semantic similarity (semantic measures), and other
contextual similarity. Regarding this paper, semantic similarity is more important for deciding the
similarity distances between terms.

Syntactic Measures A prevalent structural comparison between candidate terms and the origi-
nal concept is to check the syntactic difference, e.g., [Pu and Yu, 2008]. In simple cases, terms are
viewed isolated. For a term 7 and a query concept ¢, the edit distance, i.e., the minimum number
of operations needed to transform 7 to ¢, can be computed using existing algorithms, e.g., [Man-
ning et al., 2008, Chap. 3]. In addition, operations, e.g., insertion, deletion, replacing, etc., can be
weighted. More advanced algorithms make use of other techniques, for example, the k-gram index
method computes the overlap between the set of k-grams in 7 and in ¢ to reflect the distance
between 7 and c. If terms are considered context-sensitive, semantic measures are favored.
Traditional IR measures, e.g., df and tf-idf for rank-ordering documents, are also applicable for
computing term similarity. For instance, Farfan et al. [2009] viewed XML elements as documents to
apply df for computing the association degree of a node to a keyword. Qiu and Frei [1993] also used
these statistical measures with the roles of terms and documents interchanged. Wang et al. [2009]
adopted this idea by viewing ads as documents and bid phrases as terms. In addition to co-occrrence



based measures, other syntactic measures can be used, e.g., [Croft, 1986], where probability values
are attached to inference rule to rank the terms recognized by the rules.

Semantic Measures Semantic measures take advantage of the semantics existing in a knowledge
base, including commonly seen taxonomy-based measures and other advanced techniques. There
exist a corpus of literature on semantic similarity, e.g., [Collins and Loftus, 1975; Resnik, 1995; Rada
et al., 1989; Maguitman et al., 2005; Schenkel et al., 2005; Theobald, 2003; Hersh et al., 2000], for
interested readers. Observe that semantic similarity can be determined by collecting evidence to
exceed some positive or negative criterion [Collins and Loftus, 1975]. In most existing approaches,
the positive criterion is validated. Indeed the negative criterion typically concludes that a concept
is not similar to another.

Taxonomic Measures A classic metric for measuring semantic similarity is conceptual distance [Rada
et al., 1989], originated from spreading activation. Conceptual distance (a.k.a. centrality) suggests
how much is a destination concept removed from the origin concept(s) on the schema graph, and
the shortest path length is used to measure conceptual distance, as seen in [Tudhope et al., 2006;
Voorhees, 1994; Wollersheim and Rahayu, 2005b; Jarvelin et al., 2001; Farfan et al., 2009; Schenkel
et al., 2005; Lee et al., 2008]. Rada and Bicknell [1989] heavily relied on broader terms as real users
have the tendency to use them. Interactive studies in [Jones et al., 1995] showed that users prefer
narrower and related terms over broader terms for the specific test suite, contrary to the previous
findings. Jones et al. [1995] analyzed the user choices of terms in different conceptual distances,
and it seemed that candidate terms of shorter distances tend to contribute more to successful
query enhancement, which confirms the legitimate use of conceptual distance as a measure of term
importance.

To begin with the adapted spreading activation algorithm, the ontological entities matched to
the query terms are marked as origin concepts, known as the starting point of the algorithm. By
convention, the weight assigned to every candidate term is in the range [0,1]. Origin concepts are
assigned an initial weight of 1. To account for the conceptual distances, a decay factor is used to
reflect the weight reduction of the destination concepts in traversal. The value of the decay factor
may vary from application to application, dependent on the initial query and the schema graph.

Other than distance, the number of relations that relate other concepts to the target concept
also affect the target concept’s weight., i.e., the fan-in and fan-out of nodes in the schema graph,
as shown in [Wollersheim and Rahayu, 2005a,b; Farfan et al., 2009]. The intuition is that terms
with higher degrees, being more easily accessible than those with lower degrees, appear to be more
distracting and less useful.

The criteriality of relations reflects the significance of different relations instead of treating all
edges the same [Kim and Kim, 1990; Tudhope et al., 2006; Schenkel et al., 2005]. For example, IS-A
is likely to be assigned higher weight than the relation IS-NOT-A that indicates negative similarity
[Rada et al., 1989]. Though Jones et al. [1995] gave possible criteria for weight assignment, e.g., the
number of connections to the relevant term, the authors also pointed out that there is no influential
relationships for users to select terms, therefore there is little evidence to justify the different weights
of relationships. Indeed, as reported in [Kim and Kim, 1990], assigning weights to relationships was
subjective and difficult, and may cause inconsistency in a large-scale taxonomy.

Eq. 1 describes a possible ranking function for computing the weight w (D,,) of some concept
D,, based on the previous factors, where D,, is related to D,, by the relationship rel’ on path
1. It is assumed that there are k£ paths that start from some origin concept Dy leading to D, in



Eq. 1. Additionally, Decay and w,(rell) are the decay factor and the criteriality of relationship
respectively. A(k) is a function that measures the fan-in degree (k) of concepts, which can also take
other factors into consideration, e.g., the length of each fan-in path. Observe that the weight for
a candidate term can go beyond the range because of the additive property in weight computing.
Consequently, the set of n candidate terms should have their weight normalized, e.g., Eq. 2, where
w (+) is overloaded to represent the weight of all elements in the vector.

1 if m =0,
W (Dy) = {)\(k) . Ele w (D) X Decay x w,(rell)  otherwise; )
w(p) = 2D 2)

> i (w (Di))?

When entities in the schema graph carry weight (e.g., the certainty or confidence of the entities)
a prior, the final weight should reflect that weight as well [Rada and Bicknell, 1989; Kim and Kim,
1990]. Smoothness should be preserved under such circumstances (see Sect. 7.1), e.g., for any two
entities with (dis)similar prior weight, they also have (dis)similar final weight. Regarding computing
the differences between a positive concept A and a negation =B, Rada et al. [1989] considered the
conceptual distance as that between A and the set of concepts that are farthest from B in the
schema graph. Kim and Kim [1990] extended the idea, and defined the negation context subgraph
for =B, where the context for =B can be retained and a substitution set can be found for distance
computation. Details are available in [Kim and Kim, 1990].

Supplementary Semantic Measures As argued by Tversky [1977], object similarity, different from
dimensional or metric measures, can be computed by a feature-matching process. Functional roles
(denoted as F in DLs) can model the well-known attributes or features of entities, typically concepts.
Specifically, a linear combination of the common and distinctive features describing concepts or
terms offers similarity judgement.

ABox information, where applicable, can be utilized to compute similarity. For instance, if a
term corresponds with a concept that has instances in the knowledge base, the number of its
instances that also belong to the original concept partly suggest how related the term is to the
original concept [Pound et al., 2010]. Analogously, the facets (subjects) that a concept share in
common with others are another indicator of semantic similarity. Note that both the instances of a
concept and the facets that a concept belongs to can be thought of as features of the concept. More
advanced techniques, e.g., information-theoretic measures of similarity [Resnik, 1995; Maguitman
et al., 2005], are also applicable but beyond the scope of this paper.

Remarks on Similarity Measures Grootjen and van der Weide [2006] proposed that practically
human intervention is necessary to locate an optimal candidate concept for expansion. In their
approach the users have to navigate through the local thesaurus to determine the best concept,
which minimizes the query ambiguity but often has a negative effect on user experience.

In some cases, the ranking of candidate terms depends on the algorithm that selects them. For
instance in Navigli and Velardi [2003], senses, given the semantic networks, are intersected pairwise,
and the common nodes shared by both semantic networks in each intersection are totaled. Every
sense configuration (i.e., one sense per keyword for all keywords in a configuration) can now be
scored in terms of the number of common nodes. Candidate terms are drawn in the top-scored



configuration by five selection methods, for example, a keyword may be expanded by its synset in
the “best” configuration.

There also exist some general approaches for ranking. For instance, the use of search engines
may determine the rank order between terms. Sample queries consisting of the original concept
and a candidate term can be run in a search engine. The number of the returned webpage hits
suggests the association degree between the concept and the candidate term [Theobald, 2003]. Such
approach is independent of ontologies and domains, yet the domain knowledge is underspecified.

7 Post-processing

Given the selected candidate terms, we are generally concerned with the overall effects of the set
of terms, while overlooking the fact whether every individual term in the set is indeed useful for
improving retrieval. It might be the case that the global retrieval effectiveness can be enhanced
while a significant portion of the expansion terms is useless [Cao et al., 2008], given a particular
query. The robustness of query expansion may be degraded too, i.e., the number of queries whose
effectiveness are hurt due to the expansion may increase. There is consequently necessity to optimize
the candidate terms in order to minimize the negative impact by expanded queries. Existing works
[Metzler and Croft, 2007; Collins-Thompson, 2009] already attended to the robustness of query
expansion approaches, as discussed in Sect. 7.1. Once optimized, the set of refined candidate terms
is added to the original query, as shown in Sect. 7.2.

7.1 Optimization

The variables that affect the retrieval quality roughly fall into two dimensions. One is related to
single user profiles, e.g., the user goal, user search experience, the domain knowledge of a user and
so on. Individual context including the aforementioned factors is very challenging to extract from
implicit user feedback, e.g., user logs [Sihvonen and Vakkari, 2004; Bai et al., 2007; Duggan and
Payne, 2008]. Another observation is that the user profile may bias the queries unrelated to the
profile [Bai et al., 2007]. The other dimension focuses on the queries. The query-centric variables
are generally objective and easy to quantify. Table 2 describes the variables to be optimized for
terms obtained by ontology-based QE approaches. The two sets of variables in source coverage and
facet coverage are described in details, while the other variables are self-evident.

Source coverage typically reflects how a QE algorithm respond to all the available options.
Naturally, an algorithm should perform a global analysis (i.e., a collection of multiple evidences) of
all the options instead of choosing most terms from a particular source prematurely. Conversely, the
portion of candidate terms selected from a source indicates the influence of that source, allowing
for fine-tuning the weights of sources.

Facet coverage and facet focus are mutually exclusive. The former requires terms be balanced on
all facets, which aims to meet users’ information need by diversifying the term aspects. Contrarily,
the latter is biased towards certain facets. Some facets may convey much more of the query intent
than the others; some facets may be more obscure to the search engine than the others such that
the facets need more terms for elucidation. This was substantiated in [Sihvonen and Vakkari, 2004]
that the number of terms varied between facets for QE.



The ratio of the utilized sources to all the available
Source coverage sources; the ratio of the selected terms to all the
available terms in one source.

The selected terms should relate to the query concept,

Query intent . .
not individual query terms, to preserve query intent.

The selected terms spread over all the facets in query
Facet coverage intent; the selected terms focus more on articulating
certain facets in the query.

Quantity The number of selected terms to expand the query.

Table 2. Optimization Variables

Optimization Frameworks Every smoothing or optimization technique applied to the selected
terms has to balance between two aspects, one being the closeness of the optimized term weights
to the original ones and the other being the neighboring smoothness of term weights [Mei et al.,
2008]. A reliable and effective framework for optimizing candidate terms was presented in [Collins-
Thompson, 2009], where the variables in Table 2 can be defined as constraints for optimization. In
fact, all but the first set of variables in Table 2 were already used in [Collins-Thompson, 2009]. A
complete description of the optimization framework is beyond the scope of this paper.

7.2 Query Formulation

Expert users employ advanced techniques to formulate queries, when they have acquired a number
of additional terms for expansion. A successful expansion consequently also depends on the way the
candidate terms are arranged to expanded the original queries. When formulating a query, human
experts, on the one hand, want terms to be as specific as possible to eliminate a large part of a
corpus. On the other hand, experts exhaust the terms for expressing the query. Additionally, the
number of these terms is kept to a minimum to reduce noises. A similar strategy can be adopted
by an automatic QE system to formulate queries. Consider a boolean keyword search engine that
supports conjunctive (AND), disjunction(OR) and negation (NOT) operators. In general, terms added
in conjunction and negation with the original keywords tend to enhance precision [Greenberg, 2001b;
Lee et al., 2008], while terms added in disjunction lead to a higher recall, as in [Navigli and Velardi,
2003; Jarvelin et al., 2001; Chang et al., 2006; Greenberg, 2001a).

Because query expansion is normally implemented as a recall-enhancing technique, precision
may decrease due to the possible noises introduced by the expanded terms. For instance, Greenberg
[2001b] showed in the experiments that synonyms and subconcepts augmented recall with a slight
loss in precision. Superconcepts and related terms (e.g., via the relationship related_to) are also
useful when high recall is desired, but such terms have a significant detrimental effect on retrieval
precision.

Structured queries using conjunctions and disjunctions in a predetermined way for query for-
mulation is possible. For instance, [Sihvonen and Vakkari, 2004] provided boxes for facets such that
terms within a box form disjunctions and terms between boxes form conjunctions. Nevertheless,



the choice of the final form of an expanded query depends on the user’s specific information need.
Undoubtedly, an interactive environment is of great assistance to query formulation.

8 Discussion and Conclusions

Complementing the Search Strategy This paper proposes a synthesized plan for ontology-
based query expansion, that is, candidate terms are selected and ranked in both the syntactic
and the semantic dimensions. In Sect. 1.1, we already mentioned that ontology-based QE systems
can integrate other search tactics to obtain optimal retrieval results, as did [Srinivasan, 1996c;
Aronson and Rindflesch, 1997]. Indeed, Bates [1979] emphasized that in many cases “user feedback
during the search adds another dimension of complexity to the search.” This idea of exploiting user
feedback has been practiced by various approaches. Relevance feedback, as discussed in Sect. 1.1,
already showed great potential for enhanced retrieval. Moreover, White et al. [2005] established the
occasions when the utility of implicit relevance feedback is promising. A common approach is to
use both judgements in the search strategy, whereas the details are beyond the discussion of this

paper.

Document Ranking The classic vector space model, see [Manning et al., 2008, Chap. 6], is generally
employed for ranking retrieved documents. [Voorhees, 1994; Castells et al., 2007] computes the
weighted sum of a document vector of terms and an extended query vector of candidate terms.
Systems that integrate knowledge bases in document retrieval, e.g., [Biswas et al., 1987], rank
documents based on multple evidences that combine both statistical and semantic/knowledge-
based similarity measures. For example, Biswas et al. [1987] defined similarity measures based on
the Dempster-Shafer theory of evidence combination, which reflect the process of belief revision
and updating; Croft et al. [1989] combined term-based, nearest-neighbor and citation evidence to
assess the overall document relevance.

Relevance ranking involves subjective judgment. Given the same query, a relevant document to
one user may be irrelevant to another user. Consequently, research that exploits the user behavior
tend to complement document ranking as well.

Performance Evaluation Mandala et al. [2000] compared relevance feedback to ontology-aided query
expansion, and proclaimed that the later outperforms pseudo relevance feedback remarkably but was
slightly less effective than ideal relevance feedback. Srinivasan [1996¢| reported significant improve-
ments using different expansion strategies. It further showed that expansions that the strategies
using MeSH ontology yielded better improvements than those disregarding ontologies. However,
Hersh and Hickam [1995] mentioned that the benefit of using MeSH terms depends on the user:
only users well-trained in manipulating such domain terms contribute to improved retrieval results.

The experiments in [Wollersheim and Rahayu, 2005b] showed that the expansion algorithm that
used semantic content in the query achieved the best performance. Concept-based query expansion
yields more desirable results, but the downside is that the performance for queries of a single term
may be degraded. In addition, concept-based expansion algorithm does not work for word-based
queries, where most terms in a query are too semantically distant to form a concept. Aronson et al.
[1994] showed that an altered query with only concepts (i.e., the keywords that don’t correspond
to any concept are removed) had a detrimental effect on the retrieval results, yet expanded queries
retaining original keywords are more useful. The average precision improves over the plain text in
[Aronson et al., 1994] is only 4%.



Although various experiments have been carried out to show how ontologies can be exploited
to expand original queries and to enhance retrieval performance, the conclusions drawn from these
empirical studies were inconsistent, and mostly rule of thumb. Typically, we have not yet witnessed
any experimental system that employ ontologies for query enhancement to consistently improve
retrieval performance. A recommendation is that a synthesized query expansion plan (Sect. 3) that
absorbs previous experience (Sections 4 and 6) using a well-built domain ontology (Sect. 5) can
yield better retrieval performance.
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