
Universal Top­k Keyword Search over Relational Databases

Ning Zhang

n25zhang@uwaterloo.ca

Ihab F. Ilyas

ilyas@uwaterloo.ca

M. Tamer Özsu

tozsu@uwaterloo.ca

University of Waterloo

David R. Cheriton School of Computer Science

Waterloo, Canada

Technical Report CS­2011­03

January, 2011

ABSTRACT

Keyword search is one of the most effective paradigms for

information discovery. One of the key advantages of keyword

search querying is its simplicity. There is an increasing need

for allowing ordinary users to issue keyword queries without

any knowledge of the database schema. The retrieval unit of

keyword search queries over relational databases is different

than in IR systems. While the retrieval unit in those IR

systems is a document, in our case, the result is a synthesized

document formed by joining a number of tuples.

We measure result quality using two metrics: structural

quality and content quality. The content quality of a JTT

is an IR-style score that indicates how well the information

nodes match the keywords, while the structural quality of

JTT is a score that evaluates the meaningfulness/semantics

of connecting information nodes, for example, the closeness

of the corresponding relationship. We design a hybrid ap-

proach and develop a buffer system that dynamically main-

tains a partial data graph in memory. To reuse intermedi-

ate results of SQL queries, we break complex SQL queries

into two types of simple queries. This allow us to support

very large databases and reduce redundant computation. In

addition, we conduct extensive experiments on large-scale

real datasets to study the performance of the proposed ap-

proaches. Experiments show that our approach is better

than previous approaches, especially in terms of result qual-

ity.

Categories and Subject Descriptors

H.2 [Information Systems]: Database Management

General Terms

Algorithms, Experimentation, Performance

Keywords

top-k, keyword search, relational databases, information re-

trieval, ranking

1. INTRODUCTION

Commercial relational database management systems (DBMS)

generally provide querying capabilities for text attributes.

However, this search functionality requires queries to be

specified on an exact database schema. However, under this

model, (1) users need to know the schema; (2) users need

knowledge about full-text search functionality provided by

the particular system; and (3) users need to form a complex

structured query to synthesize meaningful results (records)

that contain required information. In many applications,

these restrictions significantly hinder usability.

For example, consider the personal information database

given in Table 1. One might want to search a person named

‘Joan’ who has a niece named ‘Caroline’. However, the

‘aunt-niece’ relationship is not a direct relationship in the

database. We can synthesize ‘aunt-niece’ relationship by

a corresponding four-way join SQL query shown in Fig-

ure 1. To compose such a SQL query, users need to know

the schema of table Person and the CONTAINS clause for

full-text search. Moreover, there are four joins involved in

(a) Person

rid identity number person name place of birth farther mother spouse Alma mater

h1 ID00000001 Joseph P. Kennedy p1 NULL NULL h2 e1

h2 ID00000002 Rose Fitzgerald Kennedy p1 NULL NULL h1 NULL

h3 ID00000003 John F. Kennedy p2 h1 h2 h4 e2

h4 ID00000004 Jacqueline Kennedy Onassis p3 NULL NULL h3 e3

h5 ID00000005 Caroline Kennedy p4 h3 h4 NULL e2

h6 ID00000006 Edward M. Kennedy p1 h1 h2 h7 e1

h7 ID00000007 Joan Bennett Kennedy p4 NULL NULL h6 e4

(b) Place

rid place name

p1 Boston, Massachusetts

p2 Brookline, Massachusetts

p3 Southampton, New York

p4 New York City, New York

(c) Institution

rid institution name

e1 Harvard College

e2 Harvard University

e3 George Washington University

e4 Manhattanville College

Table 1: a hypothetic personal information database

JTT-1: h7
spouse−spouse−−−−−−−−−−→ h6

child−father−−−−−−−−−→ h1
father−child←−−−−−−−−− h3

father−child←−−−−−−−−− h5

JTT-2: h7
place of birth−−−−−−−−−→ p4

place of birth←−−−−−−−−− h5

Figure 2: Possible results

SELECT *

FROM Person H1, Person H2, Person H3,

Person H4, Person H5

WHERE H1.spouse = H2.rid

AND H2.father = H3.rid

AND H4.father = H3.rid

AND H5.father = H4.rid

AND CONTAINS(H1.name, ‘Joan’, 1) > 0

AND CONTAINS(H5.name, ‘Caroline’, 2) > 0

Figure 1: An Oracle SQL Example

this complex SQL query. Keyword search over relational

databases has become an important alternative to tackle

this problem.

1.1 Background

One way to execute a keyword search query would be to

list all records (tuples or multiple tuple joined with some

join condition) that contain the given keywords. These

records are ranked according to a scoring function that re-

flects matches between keywords and results. A well-designed

scoring function will report more meaningful results first.

For example, the ‘aunt-niece’ relationship between Caroline

and Joan might rank in the top-k answers in the output of

a keyword search query on ‘Joan’ and ‘Caroline’.

Keyword search has been extensively studied within the

context of information retrieval (IR) systems. However, the

retrieval unit of keyword search queries in DBMSs is differ-

ent than that in IR systems. While the retrieval unit in IR

systems is a single (real) document, in our case, the result is

a logical (virtual) database record formed by joining a num-

ber of tuples. This is commonly referred to as a joining tree

of tuples (JTT) [6, 5] or a joined tuple tree [10]. Consider a

relational database schema R = {R1, . . . , Rn}. The schema

graph (SG) is a directed graph that captures relationships

between relations. SG has a node si for each relation Ri.

If there is a foreign key/primary key relationship from re-

lation Ri to relation Rj , then there is an edge from node

si to node sj in SG. In addition, we define the data graph

(DG) as follows. For each tuple t in the database, DG has

CN-1: Person
spouse−spouse−−−−−−−−−−→ Person

child−father−−−−−−−−−→ Person
father−child←−−−−−−−−− Person

father−child←−−−−−−−−− Person

CN-2: Person
place of birth−−−−−−−−−→ Place

place of birth←−−−−−−−−− Person

Figure 3: Corresponding CNs

a corresponding node dt. If ti has a foreign key referencing

tj , DG contains an edge from dti to dtj . For each node dt

in DG, there is a corresponding node in SG. For each edge

dti → dtj in DG, if ti ∈ Ri and tj ∈ Rj , there is a corre-

sponding edge si → sj in SG because ti 1 tj ∈ Ri 1 Rj . A

JTT is a connected acyclic subgraph (tree) of DG.

Some tuples in a JTT are information nodes that match

the given keywords while others help to connect the infor-

mation nodes. For example, in JTT-1 (Figure 2), tuple h7

(matching keyword ‘Joan’) and tuple h5 (matching keyword

‘Caroline’) are information nodes, while h6, h1 and h3 help

to connect them. All leaf nodes in a JTT are information

nodes.

The quality of a JTT depends mainly on two components:

the content quality and the structural quality. The content

quality of a JTT is an IR-style score that indicates how

well the information nodes match the keywords, while the

structural quality of JTT is a score that evaluates the mean-

ingfulness/semantics of connecting information nodes, for

example, the closeness of the corresponding relationship.

Consider the query above involving two keywords: w1 =

‘Joan’ and w2 = ‘Caroline’. This query result might contain

a single information node or two information nodes, one

matching w1 and the other matching w2, and there is a

close relationship between these two nodes. In the example

given in Table 1, there is no single tuple corresponding to

both keywords; however, there are two tuples: ⟨ h7, ::::
Joan

Bennett Kennedy ⟩ corresponding to w1 and ⟨ h5, :::::::
Caroline

Kennedy ⟩ corresponding to w2. A JTT can be generated

in two ways that join h7 and h5 to obtain the result; these

are shown in Figure 2.

Existing solutions to keyword search over relational databases

can be roughly classified into two categories: (1) the implicit

data graph model and (2) the explicit data graph model. For

example, DBXplorer [1], DISCOVER [6], DISCOVER2 [5],

SPARK [10], proposal in Liu et al. [9] belong to the first

class and BANKS [2], Kacholia et al. technique [8], and

BLINKS [4] belong to the second class.

Explicit data graph approaches materialize DG and keep

the entire DG in memory. These approaches can directly

access the tuple nodes during the search procedure. Start-

ing from nodes containing query keywords, they heuristically

expand the result from a single node to a Steiner tree [7] con-

taining all given keywords. Implicit data graph approaches,

however, leave the DG in the underlying DBMS and only

keep the SG in memory. Relevant parts of the graph are

accessed through invocation of multiple SQL queries.

1.2 Motivation

Most implicit data graph approaches measure the struc-

tural quality of a JTT by its size, defined as the number of

tuples in a JTT. For example, in Figure 2, the size of JTT-1

is five while the size of JTT-2 is three. Existing implicit data

graph approaches will rank JTT-2 higher than JTT-1 (be-

cause the size of JTT-2 is smaller). However, JTT-1 shows

that Caroline Kennedy is a niece of Joan Bennett Kennedy

while JTT-2 shows that these two people are born in the

same city ⟨p4,New York City, New York⟩. One can argue

that the aunt-niece relationship is much stronger than the

fellow-townsman relationship; therefore, JTT-1 should be

ranked higher than JTT-2.

In contrast, explicit data graph approaches capture the

importance of the JTT by measuring structural quality of

JTT as the sum of edge weights (reflecting the coherence

of the relationship between two tuples) in a JTT. On the

other hand, current implementations of explicit data graph

approaches have several restrictions in measuring content

quality. For example, these approaches require that the

content quality of JTT must be computed in a distributive

manner: IR-style scores for individual tuples in a JTT are

calculated separately and then summed up. With this re-

striction, they can use simple heuristics in a greedy fashion

to search a Steiner [7] tree connecting all keywords. This re-

striction improves efficiency but the content quality is com-

promised. For example, in Figure 2, JTT-1 consists of five

tuples, each corresponding to a person in the Kennedy fam-

ily. Suppose the query involves three keywords: w1 = ‘Joan’,

w2 = ‘Caroline’, and w3 = ‘Kennedy’. All five tuples in

JTT-1 match w3 once. The total score of all five occur-

rences of w3 is five times the score of a single occurrence.

The score for keyword w3 then dominates the final IR score.

Implicit data graph approaches do not impose this restric-

tion and the combining function can be more sophisticated

than simple summation.

In terms of run-time efficiency, explicit data graph ap-

proaches are better because they can access data directly

while implicit data graph approaches can only access data

indirectly through SQL queries, which may incur high I/O

cost. In terms of storage efficiency, implicit data graph ap-

proaches are better because they keep only SG in memory

while explicit data graph approaches keep the entire DG in

memory.

Considering the mentioned tradeoffs, there is no clear win-

ner between explicit data graph and implicit data graph ap-

proaches. Hence, we design a hybrid approach that incorpo-

rates a better structural quality measure similar to explicit

data graph approaches, and a better content quality measure

similar to implicit data graph approaches. We also develop

a buffer system that dynamically maintains a partial DG in

memory for better execution performance.

1.3 Outline of the Paper

In Section 2, we introduce the problem definition. In Sec-

tion 3, we present an overview of our solution. In Section

4, we study the structural quality of JTT. In Section 5, we

study the content quality of JTT. In Section 6, we intro-

duce our execution engine, including a non-redundant CN

generator, a revised version of Block Pipeline Algorithm, a

connection test algorithm, and a buffer system. In Section

7, we present experimental results to demonstrate the ef-

fectiveness and efficiency of our approach. In Section 8, we

summarize conclusions of our work.

2. PROBLEM DEFINITION

We begin with the database schema, schema graph (SG),

and data graph (DG) definitions given earlier. The retrieval

unit is a JTT. We formally define a top-k keyword search

query as follows:

Definition 1. A query consists of a set of keywords, Q =

{w1, w2, . . . , w|Q|}, and a parameter k indicating that a user

is only interested in top-k results ranked by scores associated

with each result.

We define the quality of a JTT as follows:

Definition 2. Given a query Q and a JTT T , the result

quality of T is measured by a ranking score

score(T,Q) = fstructural(T)× fcontent(T,Q)

, where fstructural(T) measures the structural quality of T

and fcontent(T,Q) measures the content quality of T . Higher

scores mean better quality.

We will formally define fstructure(T) and fcontent(T,Q) in

Sections 2 and 3, respectively.

Definition 3. For each node dt in a JTT T , there is

a corresponding node in SG. For each edge dti → dtj in

T , if ti ∈ Ri and tj ∈ Rj, there is a corresponding edge

si → sj in SG. Each JTT corresponds to a connected non-

simple subgraph of SG, which is referred to as the Candidate

Network (CN).

While JTTs are instance subgraphs in DG, CNs are schema

subgraphs in SG. Note that the same relation can appear

multiple times in a CN. For example in Table 1, two JTTs,

h1
father−child←−−−−−−−−− h3 and h3

father−child←−−−−−−−−− h5 both correspond

to CN: Person
father−child←−−−−−−−−− Person, which represents the

father-child relationship. Relation Person appears twice in

the CN.

Definition 4. The relations in the CN are also called

tuple sets. There are two kinds of tuple sets: those tuples

matching at least one keyword are called non-free tuple

sets RQ = {t|t ∈ R, t contains at least one keywordwi ∈

Q}, and others are called free tuple sets R{} = R. A non-

free tuple set in a CN corresponds to an information node

in a JTT.

Since all leaf nodes of a JTT are information nodes, all

leaf nodes of a CN are non-free tuple sets.

Finally, we formally define our problem as follows:

Definition 5. Given a query Q = {w1, w2, . . . , w|Q|} and

a parameter k, the answer of a top-k query is a list of the

k JTTs, T1, . . . , Tk, whose ranking scores (score(Ti, Q)) are

the highest.

3. OVERVIEW OF OUR SOLUTION

In this paper, we first define structural quality of JTT

as the coherence score of the corresponding CN (Section

2). We assign all JTTs corresponding to a CN the same

structural quality score since the structural quality depends

on the semantics of the CN that is shared among all JTTs.

We propose a novel IR-style score as content quality of

JTT (Section 3). Both Page-rank [3] style score and TF-

IDF style score are incorporated. We also adopt the idea

of the use of a single tuning parameter to inject AND or

OR semantics into the ranking formula [10], although we

define the tuning parameter in a different way. Our IR-style

scoring function is calculated for the whole JTT without

any assumptions, such as distributive property or assuming

that tuples matching a certain keyword are uniformly and

independently distributed in each relation.

In implicit data graph approaches, most intermediate re-

sults of SQL queries overlap, resulting in repeatedly comput-

ing the same intermediate result by different SQL queries.

We develop a buffer system that dynamically maintains a

partial data graph in memory and we only fetch data through

SQL queries when it is necessary (Section 4). In this way,

we can support very large databases and reduce redundant

computation. Our approach is more efficient than implicit

data graph model approaches and does not suffer from an

excessive I/O cost when the data size exceeds the memory

size.

4. PROPOSED STRUCTURAL QUALITY MET­
RIC

There is a common intuition behind all existing structural

quality definitions. They all try to define a “structural size”

of a JTT and then use the inverse of this “structural size”

to measure the structural quality. Many “structural size”

definitions have been proposed. For example, existing im-

plicit data graph approaches simply use the total number of

tuples in a JTT as the “structural size” and existing explicit

data graph approaches use the aggregate of edge weights as

the “structural size”.

There is a common underlying assumption: it is easier

to find a JTT matching all given keywords in a “larger”

CN. The “structural size” reflects how easily we can find a

JTT that matches given keywords in the given CN. So, the

“structural size” is an approximate measure of the proba-

bility of the existence of a JTT matching given keywords in

the given CN. That is why all existing approaches penalize

those answers with large “structural size”. Instead of defin-

ing a new “structural size”, we deal with the probability of

the existence of a JTT matching randomly picked keywords

in the given CN directly.

4.1 Coherence Score

As mentioned earlier, we assign all JTTs corresponding

to the same CN with the same structural quality score since

the structural quality depends on the semantics of the CN

that is shared among all corresponding JTTs. So, we de-

fine the structural quality of a JTT T (fstructural(T)) as

the coherence score of the corresponding CN, defined as

C(CN) = f(size(CN), NCS(CN)), where size(CN) is the

total number of tuple sets in CN and NCS(CN) is the

normalized connectivity score, which is defined as the nor-

malized score that reflects the probability of existence of a

JTT matching randomly picked keywords. A higher normal-

ized connectivity score implies a stronger connection among

tuples in a CN. We will discuss the formal definition of

NCS(CN) later.

We consider the range of coherence scores. The coherence

score for the closest relationship should be 1 because there

is no penalty for the structural quality. The coherence score

for the loosest relationship should be 1/size(CN).

Definition 6. The coherence score of a CN is defined as

follow:

C(CN) = max{1, 1

size(CN) · (1−NCS(CN))
}

4.2 Connectivity Score

Before introduce the definition of normalized connectiv-

ity score, we first introduce connectivity score. Recall that

there are two kinds of tuple sets: free tuple sets and non-free

tuple sets. Those tuples in the non-free tuple set match at

least one keyword. We define a random process that picks

non-free tuples at random from the non-free tuple sets of the

CN. The connectivity score is estimated by the probability

that the randomly picked non-free tuples are connected with

some free tuples, or, CS(CN) = Pr{∃a set of free tuples that

connects randomly picked non-free tuples}. More formally,

we define CS(CN) as follows.

Definition 7. Given a CN, which contains a set of non-

free tuple sets Ui = {ui,1, . . . , ui,|Ui|}, 1 ≤ i ≤ n and a set

of free tuple sets Vi = {vi,1, . . . , vi,|Vi|}, 1 ≤ i ≤ m, the

connectivity score, CS(CN) is defined as the probability that

the randomly picked non-free tuples u′
1 ∈ U1, . . . , u

′
n ∈ Un

are connected with some free tuples v′1 ∈ V1, . . . , v
′
m ∈ Vm.

For example in Table 1, there are two CNs— CN1: Person→

Institution← Person (alumni), and CN2: Person
child−father−−−−−−−−−→

Person
father−child←−−−−−−−−− Person (siblings). Then, CS(CN1) =

Pr{∃a tuple p0 ∈ Institution that connects p1 ∈ Person,

p2 ∈ Person while p1, p2 are randomly picked from Person}.

If we randomly choose two people, the probability that two

people go to the same school is much higher than the prob-

ability that two people have the same father. The alumni

relationship is more common than the sibling relationship;

therefore CN2 has a higher coherence score than CN1. As

a rule, a CN with a lower connectivity score is assigned a

higher coherence score for structural quality.

To calculate this connectivity score, we assume uniformity

and independency. For any two adjacent relations P,Q in

SG, P → Q, if we randomly choose two tuples p ∈ P , q ∈ Q,

the probability that p, q are connected (Pr{p→ q}) is 1/|Q|

(uniformity). For any three directly connected relations in

SG, P ↔ Q↔ R, if we randomly choose three tuples p ∈ P ,

q ∈ Q, and r ∈ R, the probability that p, q, r are connected

is Pr{p↔ q} × Pr{q ↔ r} (independence).

We propose a tree structure to recursively compute the

connectivity score. There is a node for each tuple set in the

CN and there is an edge from node i to node j if and only if

the corresponding tuple set i and j are directly connected in

the CN. We can choose any node as the tree root. Our com-

putation starts from the root and moves down to the leaves.

Details of the tree construction and recursive computations

are in Appendix.

For example in Table 1 (statistics are shown in Table 2),

CS(Person→ Institution← Person) = 1/|Institution| =

0.002, CS(Person
child−father−−−−−−−−−→ Person

father−child←−−−−−−−−− Person) =

1/|Person| = 0.000001. Based on our calculation, the sib-

ling relationship should get a higher coherence score for the

structural quality because it has a much lower connection

Relations # of tuples

Person 1000000

Place 50

Institution 500

Table 2: hypothetic statistics of the Personal Infor-

mation database

probability. If we can actually find a JTT corresponding to

the sibling relationship, which matches all given keywords,

it is very likely to be the answer because such a low proba-

bility event implies that it is very likely that the user knows

this exact relationship.

4.3 Normalized Connectivity Score

The connectivity score is a measure of connection strength

among a set of non-free tuple sets. Suppose there are n non-

free tuple sets, U1, U2, . . . , Un. We setup an ideal connectiv-

ity score for these tuple sets. Based on these n non-free

tuple sets, we construct a hypothetical CN by adding a hy-

pothetical connection node V that contains only one tuple

v. In addition, V has a foreign key referring to each non-

free tuple set Ui, 1 ≤ i ≤ n. The connectivity score of this

hypothetical CN is 1/(|U1| × · · · × |Un|). Since this hypo-

thetical CN has the most compact structure to connect all

given tuple sets, we take its connectivity score as the ideal

connectivity score. We can normalize the connectivity score

of a CN as follow:

Definition 8. Given a CN, which contains a set of non-

free tuple sets U1, U2, . . . , Un, the normalized connectivity

score is defined as

NCS(CN) =
log(CS(CN))

log(1/(|U1| × · · · × |Un|))

For a given JTT, we use the coherence score of its corre-

sponding CN to measure the structural quality. So, in our

formulation, structural quality is defined as:

Definition 9.

fstructure(T) = max{1, 1

size(CN) · (1−NCS(CN))
}

.

For example in Figure 3, CN1 (aunt-niece relationship) is

the CN corresponding to JTT-1 and CN2 (fellow townsman

relationship) is the CN corresponding to JTT-2. Using our

definition of coherence score, we have the following results:

C(CN1) = 0.4 and C(CN2) = 0.38. Hence, we rank JTT-1

higher than JTT-2 because the CN corresponding to JTT-1

has a larger coherence score, which implies a stronger rela-

tionship. As mentioned earlier, existing implicit data graph

approaches would rank JTT-2 higher than JTT-1 because

the number of tuples in JTT-2 is less than the number of

tuples in JTT-1. Our result is more reasonable because the

aunt-niece relationship is stronger than the fellow townsman

relationship.

5. PROPOSED CONTENT QUALITY MET­
RIC

Existing approaches to computing content quality of a

JTT use two basic IR-style scores: Page-Rank [3] and TF-

IDF. The Page-Rank score emphasizes the importance of a

tuple as a whole, while the TF-IDF score emphasizes key-

word matching.

There are two existing methods to calculate the global

TF-IDF score of a JTT: (1) the local TF-IDF style scores

for individual tuples in a JTT are calculated separately and

then combined as a global score (Figure 4); or (2) a JTT

is treated as a virtual document by concatenating the text

contents of tuples in the JTT and a TF-IDF score for the

virtual document is calculated by assuming tuples match-

ing a certain keyword are uniformly and independently dis-

tributed in each relation (Figure 5). Both methods have

drawbacks. Consider a query involving two keywords and a

JTT assembled by joining two tuples, and assume that each

tuple matches only one keyword. The first method does not

distinguish between matching one keyword twice (both tu-

ples match the same keyword) and matching two keywords

once (two tuples match different keywords). The assump-

tions about uniformity and independence are too strong for

the second method to work. For example in Table 1, ‘John’

is a person’s name and ‘University’ usually appears in the

name of an educational institution. Such keywords are not

uniformly and independently distributed in the Person and

the Institution relations.

We propose a novel IR-style score as content quality of a

JTT. Both Page-Rank style score and TF-IDF style score


t1
...

tn

 TF−IDF−−−−−−→


tfidf(t1, w1) . . . tfidf(t1, wm)

...
. . .

...

tfidf(tn, w1) . . . tfidf(tn, wm)


↓
∑

globalscore
combine←−−−−−


∑

tfidf(t1, wj)

...∑
tfidf(tn, wj)


Figure 4: method (1)


t1
...

tn

 concatenate−−−−−−−−→
∑

ti

↓ TF-IDF

globalscore
combine←−−−−−


tfidf(

∑
ti, w1)

...

tfidf(
∑

ti, wm)


Figure 5: method (2)


t1
...

tn

 TF−IDF−−−−−−→


tfidf(t1, w1) . . . tfidf(t1, wm)

...
. . .

...

tfidf(tn, w1) . . . tfidf(tn, wm)


↓
∑

globalscore
combine←−−−−−

(∑
tfidf(ti, w1) . . .

∑
tfidf(ti, wm)

)
Figure 6: our method

are incorporated in our scoring function without assuming

uniformity and independence.

Note that both methods described above obtain a local

score (
∑

tfidf(ti, w1) and tfidf(
∑

ti, w1)) for each tuple

before combining them as one global score. However, our

method does not obtain a numeric local score for each tuple.

Instead, we obtain a local score vector for each tuple to

calculate a numeric score for each keyword (Figure 6).

5.1 Local Score

We adopt the following basic TF-IDF ranking formula:

tfidf(t, wi) =

 0 tfwi(t) = 0
1+log(1+log(tfwi

(t)))

(1−s)+s t.dl
avdl

· log(idfwi) tfwi(t) > 0

The above function is the TF-IDF score of a single tu-

ple t according to keyword wi. If we concatenate all text

attributes first (method 2), the term frequencies and in-

verse document frequencies of an individual text attribute

are lost. Then, we have to estimate global term frequencies

and inverse document frequencies instead of using original

individual ones. As we mentioned earlier, keywords are not

uniformly and independently distributed in different rela-

tions. Since estimation error affects the global content qual-

ity score, it is better not to concatenate text attributes.

After applying the TF-IDF method, we can get a matrix of

TF-IDF terms. We have two choices — either combine terms

by row first or by column first. Existing approaches combine

TF-IDF terms by row first (method 1). As we mentioned

earlier, method 1 does not distinguish between matching

one keyword twice (both tuples match the same keyword)

and matching two keywords once (two tuples match different

keywords).

To overcome the drawbacks previously discussed, we can

compute the content score of a single tuple t as a vector

(tfidf(t, w1), . . . , tfidf(t, wm)). Our local score is an m-

dimensional vector. In addition, Page-Rank score PG(t),

which is query-agnostic, is also used in our local score.

Definition 10. The score vector of a tuple t (local score)

is defined as:

−−−−−−→
text(t, Q) = PG(t)

(
tfidf(t, w1), . . . , tfidf(t, wm)

)
=

(
PG(t)tfidf(t, w1), . . . , PG(t)tfidf(t, wm)

)
In this way, all TF-IDF information of an individual tuple

is preserved. However, comparing to numeric local score, the

trade-off is the complex vertex-form representation. Then,

we will define our global score based on local score vectors.

5.2 Global Score

Suppose there are l non-free tuples, t1, . . . , tl, in JTT T .

We have the following local scores:
−−−−−−−→
text(t1, Q), . . . ,

−−−−−−−→
text(tl, Q).

As we discussed, we sum up TF-IDF term by column first.

Definition 11. The global score vector of a JTT T is

defined as:

−−−−−−−→
text(T,Q) =

(−−−−−−−→
text(t1, Q), . . . ,

−−−−−−−→
text(tl, Q)

)
=

(∑l
i=1 PG(ti)tfidf(ti, w1), . . . ,

∑l
i=1 PG(ti)tfidf(ti, wm)

)
In this way, we group term frequency counts by corre-

sponding keyword. In contrast, existing methods group term

frequency counts by corresponding tuple. For content qual-

ity, we believe choosing corresponding keywords as primary

dimensions is more reasonable. After we obtain a global

score vector
−−−−−−−→
text(T,Q) with dimensions corresponding to

given keywords, we need to calculate a numeric global score

text(T,Q) from the score vector.

Definition 12. The global score of a JTT T is defined

as:

text(T,Q) =
(∑m

j=1

(∑l
i=1 PG(ti)tfidf(ti,wj)

) 1
p

m

)p

=
(∑m

j=1

(∑l
i=1 PG(ti)tfidf(ti,wj)

) 1
p

m

)p

where p is a tuning parameter [10].

Note that p can smoothly switch the completeness factor

biased towards the OR semantics to the AND semantics,

when p increases from 1.0 to ∞. If p is set to 1.0, matching

one keyword twice and matching two keywords once will

be treated equally. If p is set to ∞, it is not allowed to

miss any keyword in the result. Usually, a p value of 3.0 is

sufficient for almost all cases. Therefore, we use the global

score to measure the content quality. So, in our formulation,

fcontent(T,Q) = text(T,Q).

To apply top-k accelerating algorithms such as skyline

algorithms in the following sections, we need to provide a

monotonic upper bound for our global score.

For simplicity, we denote PG(ti)tfidf(ti, wj) by xi,j , where

PG(ti) is a term irrelevant to the query. Then,

text(T,Q) =
(∑m

j=1

(∑l
i=1 xi,j

) 1
p

m

)p

.

Let LSi =
∑m

j=1 xi,j . This can be computed locally for each

tuple ti.

Theorem 1.(∑m
j=1

(∑l
i=1 xi,j

) 1
p

m

)p

≤ m′p−1

mp

∑l
i=1 Si

m
, p ≥ 1

, where m′ is the number of matched keywords.

Proof: Let yj =
(∑l

i=1 xi,j

) 1
p .

(∑m
j=1

(∑l
i=1 xi,j

) 1
p

m

)p

=
(∑m

j=1 yj

m

)p

=
1

mp

(m∑
j=1

yj
)p
.

Since there are m′ matched keywords, there are only m′ non-

zero yj. For simplicity, we assume yj > 0, 1 ≤ j ≤ m′. So,∑m
j=1 yj =

∑m′

j=1 yj .

Then, we apply Jensen’s inequality. We have
∑m′

j=1 y
p
j

m′ ≥(∑m′
j=1 yj

m′

)p

= 1
m′p

(∑m′

j=1 yj
)p
. So, we have m′p−1 ∑m′

j=1 y
p
j ≥(∑m′

j=1 yj
)p
.(∑m

j=1

(∑l
i=1 xi,j

) 1
p

m

)p

=
(∑m

j=1 yj

m

)p

≤ m′p−1

mp

∑m′

j=1 y
p
j =

m′p−1

mp

(∑m
j=1

∑l
i=1 xi,j

)
= m′p−1

mp

∑l
i=1 LSi.

m′p−1

mp

∑l
i=1 LSi is a monotonic upper bound of our global

score.

Since m′ may be different for different JTTs, we define

the following uniform upper bound.

Definition 13. The monotonic upper bound of the global

score is defined as:

uppercontent(T,Q) =
mp−1

CN

mp

l∑
i=1

LSi

where mCN is the upper bound of m′ of all JTTs correspond-

ing to a given CN.

We can compute LSi for each non-free tuple separately

and then obtain a monotonic upper bound
m

p−1
CN
mp

∑l
i=1 LSi

for the global score.

6. EXECUTION ENGINE ISSUES

The structure quality and the content quality together de-

termine the effectiveness of keyword search which is cer-

tainly the most important factor. The efficiency problem is

Figure 7: Execution Flowchart

also very important to user experience. Generating all possi-

ble JTTs will induce prohibitively long query time for large

databases. So, we need to consider efficiency issues of the

execution engine. The general existing execution flowchart

is shown in Figure 7.

First, the CN generator generates all possible CNs. As-

sume that we can estimate an upper bound for the highest

result quality score of all JTTs corresponding to a CN. Each

time, the CN scheduler chooses the CN with the highest up-

per bound. So, we have an opportunity to find a JTT with

the highest result quality score, corresponding to the chosen

CN. Next, for the chosen CN, we enumerate possible JTTs

using efficient top-k algorithms (candidate enumerator). For

each set of candidates (non-free tuple sets), we then gener-

ate all corresponding JTTs by joining candidates together

with free tuples (JTT generator). For each generated JTT,

we update top-k results. The execution engine stops when

the highest CN upper bound is not higher than the current

top-k result scores.

In this section, we mainly discuss the following compo-

nents: the CN generator, the candidate enumerator, and

the JTT generator. The CN generator was originally pro-

posed in [6, 5]. However, we observe that we may generate

different but essentially isomorphic CNs based on original

criterion. So, we need to improve the CN generator to rule

out unnecessary isomorphic CNs. For the candidate enu-

merator, we modify the Block Pipeline Algorithm [10] to

incorporate our structural quality metric and the content

quality metric. In addition, our modified version also im-

proves the space efficiency. We also develop a buffer system

for the JTT generator to further explore the opportunity to

avoid redundancy of querying DBMS.

6.1 The CN Generation

The function of the CN generator is to generate all possi-

ble CNs. Completeness and non-redundancy are two main

issues to be considered. Existing CN generation algorithm

guarantees completeness. However, redundancy induced by

isomorphic CNs cannot be avoided. We briefly introduce

our generation algorithm here.

Several properties of a valid CN has been proposed in [6,

5]:

1. The number of non-free tuple sets in a CN does not

exceed the number of query keywords m. Otherwise,

we can always find a sub-tree of CN which contains all

keywords.

2. No leaf tuple sets of CN are free. Otherwise, we can

always find a sub-tree of CN which contains all key-

words.

3. CN does not contain a construct of the form R ←

S → R. Otherwise, all resulting JTTs would contain

the same tuple more than once.

First, we assume there are n non-free tuple setsRQ
1 , . . . , R

Q
n

and m free tuple sets R
{}
n+1, . . . , R

{}
n+m, and a pre-defined

maximum CN size. Initially, we have n valid size-1 CNs

RQ
1 , . . . , R

Q
n and we keep them in an expansion list. For ev-

ery iteration, we pick one CN from the expansion list. We

check its validity and try to expand its size by 1 if the current

CN size is smaller than the pre-defined maximum CN size.

We insert all expanded CNs into the list. Note that we ex-

pand the root node at most once. The procedure terminates

when the expansion list is empty.

There are several types of isomorphic situations to be con-

sidered since the same tuple set can appear multiple times

in a CN. Consider the following two CNs: (1) RQ
1 → RQ

2 and

(2) RQ
2 ← RQ

1 . These two CNs are identical. The difference

is that we pick different tuple sets as the root. To avoid this

kind of redundancy, we add the first restriction: if we pick

tuple set RQ
i as the root node, tuple sets RQ

j , 1 ≤ j < i are

not allowed to be picked as leaf nodes.

Consider the following two CNs: (1) RQ
2 ← RQ

1 → RQ
3

(RQ
1 is the root node) and (2) RQ

3 ← RQ
1 → RQ

2 (RQ
1 is

the root node). These two CNs are identical. The only

difference is that we either pick tuple set R2 first or we pick

tuple set R3 first. To avoid this kind of redundancy, we add

the second restriction: If we have already expanded a tuple

set Ri from a node node and we try to expand it again,

tuple sets Rj , 1 ≤ j < i are not allowed to be picked as a

new node.

Consider the following two CNs: (1) RQ
2 ← RQ

4 ← RQ
1 →

RQ
4 → RQ

3 (RQ
1 is the root node) and (2) RQ

3 ← RQ
4 ←

RQ
1 → RQ

4 → RQ
2 (RQ

1 is the root node). These two CNs

are identical. This kind of situation cannot be eliminated by

previous two restrictions. To avoid this kind of redundancy,

we need to do a post-check. Specifically, we use the smallest

representation of a CN tree to eliminate redundancy. One

possible solution is as follow:

1. For a leaf node, e.g. RQ
2 , its smallest representation is

a string “(R2)”.

2. If a subtree root RQ
k has l children and its children’s

smallest representations are rep1, rep2, . . . , repl. We

sort these children’s smallest representations in lexico-

graphic order, str1, str2, . . . , strl. Then, the smallest

representation of the subtree is “(Rk” + str1 + . . . +

strl + “)”.

3. The smallest representation of a CN can be computed

recursively in a bottom-up fashion.

Consider the situation mentioned above, the smallest rep-

resentation of CN: RQ
2 ← RQ

4 ← RQ
1 → RQ

4 → RQ
3 is

“(R1(R4(R2))(R4(R3)))” and the smallest representation of

CN:RQ
3 ← RQ

4 ← RQ
1 → RQ

4 → RQ
2 is also “(R1(R4(R2))(R4(R3)))”.

Based on the smallest representation, we know these two

CNs are essentially identical.

With the three restrictions above, we can eliminate re-

dundancy of CN generation.

6.2 The Candidate Enumerator

For a chosen CN, the candidate enumerator choose a can-

didate (a candidate is a set of non-free tuples) correspond-

ing to the given CN. Since the result quality, score(T,Q) =

fstructural(T) × fcontent(T,Q), where fstructural(T) is de-

termined by the chosen CN and fcontent is determined by

non-free tuples (candidate), score(T,Q) is fully determined

by the chosen candidate. Therefore, candidate enumerator

chooses the candidate with the highest possible score(T,Q),

which is also the score upper bound of the chosen CN.

To improve efficiency, top-k algorithms (for example, the

Skyline Sweeping Algorithm and the Block Pipeline Algo-

rithm) can be used in this component. Most top-k algo-

rithms work based on the following assumption: the result

quality score is a monotonic function of numeric local scores

of individual tuples. Note that definitions of local scores are

different in different existing approaches.

Suppose there are n non-free tuple sets RQ
1 , . . . , R

Q
n in a

CN. All non-free tuple sets are sorted by their local scores

in descending order, resulting n sorted lists, list1, . . . , listn.

Our enumeration space is SPACECN = list1 × . . . × listn.

Then, a candidate is an element in SPACECN . Suppose

candidate Ci = (ti1 , . . . , tin) ∈ SPACECN . We use res(Ci)

to denote the set of all corresponding results. Since the

result quality score is determined by the chosen candidate,

the result quality scores of all results in res(Ci) are the same.

Suppose Ci = (ti1 , . . . , tin), Cj = (tj1 , . . . , tjn). We define

a partial order on SPACECN : Ci ≤ Cj if i1 ≤ j1, . . . , in ≤

jn. Suppose the result quality score is monotonic. If Ci ≤

Cj , the result quality scores of all results in res(Ci) is not

lower than the result quality scores of all results in res(Cj).

So, we should choose candidates according to their partial

order. Therefore, skyline algorithms are useful in this case.

However, the result quality score is not monotonic due

to content quality is not monotonic. Fortunately, we have

a monotonic upper bound for the global score of content

quality (see Section 5.2). If Ci ≤ Cj , we can guarantee that

uppercontent(a,Q) ≥ uppercontent(b,Q), scorestructural(a) =

scorestructural(b) for any a ∈ ans(Ci), b ∈ ans(Cj). With

the monotonic upper bound of result quality, upper(T,Q) =

uppercontent(T,Q) × scorestructural(T), skyline algorithms

are still useful.

Then, we will briefly introduce our revised version of the

Block Pipeline Algorithm, which is originally proposed in

[10].

BP Block Pipeline Algorithm

input: all CNs and query; return: top-k answers

Queue← ∅

for all CNs do

b← the first block of CN

b.status← USCORE

Queue.push(b, calcuscore(b))

end for

while topk[k].score < Queue.head().getscore() do

head← Queue.pop max()

if head.status = USCORE then

head.status← BSCORE

Queue.push(head, calcbscore(head))

for all unvisited adjacent blocks b′ do

b′.status← USCORE

Queue.push(b′, calcuscore(b
′))

end for

else if head.status = BSCORE then

res← execute(b) ◃ enumerate/check candidate

for all result T ∈ res do

T.status← SCORE

Queue.push(T, calcscore(T))

end for

else

Insert head into topk

end if

end while

return topk

The intuition of Skyline Algorithms is that if there are two

candidates Tx and Ty from the same CN and upper(Tx, Q) ≥

upper(Ty, Q), Ty should not be enumerated unless Tx has

been enumerated. We define a dominant relationship among

candidates. Denote Tx.di as the order of candidate Tx on

the non-free tuple set RQ
i . If Tx.di ≤ Ty.di for each non-

free tuple set RQ
i , then upper(Ty, Q) ≤ upper(Tx, Q). After

we enumerate a candidate Tx, we push all other candidates

directly dominated by Tx into a priority queue by the de-

scending order of their upper bound scores. The algorithm

stops when the real score of the current top-kth result is not

less than the upper bound score of the head element of the

priority queue; the latter is exactly the upper bound score

of the entire unvisited enumeration space.

In our revised version of the Block Pipeline Algorithm, we

adopt the signature definition of a tuple t from the Block

Pipeline Algorithm ([10]). Denote the signature of a tu-

ple t as sig(t) = (tfw1(t), . . . , tfwm(t)), which is an or-

dered sequence of term frequencies for all the query key-

words w1, . . . , wm.

By replacing the document length term with the minimal

document length, we define tfidfB(t, wi) ≥ tfidf(t, wi) and

scoreB(T,Q) ≥ score(T,Q) as follows.

tfidfB(t, wi) =

 0 tfwi(t) = 0
1+log(1+log(tfwi

(t)))

(1−s)+smindl
avdl

· log(idfwi) tfwi(t) > 0

scoreB(T,Q) = C(CN)
(∑m

j=1

(∑l
i=1 PG(ti)tfidfB(ti,wj)

) 1
p

m

)p

Then, we define the signature of a candidate as a matrix

sig(T) = (sig(t1), sig(t2), , sig(tk)) which is different than

the original Block Pipeline Algorithm. For a given CN, the

partitioning of its non-free tuple sets naturally incurs a par-

titioning of all candidates. Each partition of candidates is

called a block. All candidates within the same block have the

same signature and the same non-monotonic upper bound

scoreB(T,Q).

Then, we define a new monotonic upper bound for the fi-

nal score upperB(T,Q) = C(CN)
m

p−1
CN
mp LSi

B ≥ upper(T,Q)

where LSi
B =

∑m
j=1 PG(ti) · scoreB(ti, wj) ≥ Si. If two

candidates have the same signature, they have the same up-

per bound upperB(T,Q). All candidates within the same

block have the same monotonic upper bound upperB(T,Q)

and non-monotonic upper bound scoreB(T,Q). So, we use

upperB(T,Q) as uscore(b,Q) of a block and we use scoreB(T,Q)

as bscore(b,Q) of a block in our revised version of the Block

Pipeline Algorithm.

Note that, in the worst case, the total number of blocks

can be very large. Suppose that each non-free tuple set can

be divided into x strata and the number of keywords is m.

The total number of blocks of a CN can be as large as xm.

Then, we have a problem: the maximum size of the priority

queue can be as large as O(|CN | · xm). We may not have

enough space to store the entire priority queue in the main

memory.

Note that there are three kinds of elements in the prior-

ity queue: USCORE, BSCORE, SCORE (the real result

quality socre). For all candidates, USCORE ≥ BSCORE ≥

SCORE. Among them, all USCORE elements are neces-

sary for correctness because we have to store the entire sky-

line of the chosen CN to guarantee that all unvisited candi-

dates are upper bounded. We only need to store k SCORE

elements because we only need top-k results. It is unnec-

essary to store a SCORE element if there exist k better

results. The number of BSCORE elements can be flexible.

The intention of the Block Pipeline Algorithm is to enumer-

ate (check) candidates in a lazy fashion. If we enumerate

(check) a candidate early, it will not affect correctness.

Note that the length of an arbitrary skyline is at most

xm−1. So, the maximum number of USCORE elements at

any time is |CN |·nm−1 which is much smaller than the total

number of blocks. To guarantee correctness, we must keep

all USCORE elements, k SCORE elements, and at least

1 BSCORE element. However, to improve efficiency, we

should keep as many BSCORE elements as possible.

We break the priority queue into three priority queues and

put different size restrictions on them. We may now check

the head element of the BSCORE priority queue to decrease

the queue size when the queue is full. Although we may

check more BSCORE elements, we can produce SCORE

elements faster and, hence, generate a higher bound for top-

k results. With a higher bound, we do not need to keep any

BSCORE less than the current bound. Hence, the space

problem can be controlled.

If the maximum number of USCORE elements is still

too large, we have the following compression method to

solve the space problem. We can combine a group of ad-

jacent strata into one super-stratum. For a given CN, the

partitioning of super-strata also incurs a partitioning of all

candidates. Each partition of candidates is called a super-

block. We assign the highest upperB(T,Q) in a super-block

as uscore(b,Q) of the super-block and we assign the highest

scoreB(T,Q) in a super-block as bscore(b,Q) of the super-

block. Therefore, the space problem is solved.

Note that the efficiency of the algorithm largely depends

on the quality of uscore(b,Q). If the bound of uscore(b,Q)

is too loose, the algorithm will enumerate all blocks and

calculate its bscore(b,Q). Therefore, the choice of scoring

function also affects runtime efficiency.

6.3 The JTT generator

The purpose of the JTT generator is to generate all pos-

sible JTTs according to a specific candidate (execute(b) in

the pseudocode). Existing implicit data graph approaches

will simply generate a single complex SQL query and throw

the question to the underlying DBMS.

It is very inefficient to issue a single SQL query for each

candidate because executing a SQL query and fetching its re-

sults require inter-process communications, and suffer from

DBMS internal overheads (for example, parsing and plan-

ning). Since join selectivity may be very low and, hence,

most of such probing queries will return an empty set, a

large number of probing queries will be sent to the underly-

ing DBMS to get top-k results. We can improve efficiency by

using range parametric queries. The Global Pipeline Algo-

rithm ([5]), the Skyline Sweeping Algorithm ([10]), and the

Block Pipeline Algorithm ([10]) all benefit from grouping

candidates into ranges and issue a single parametric query

to the database. However, improvements are possible.

Most candidates of the same CN partially overlap each

other. Consider the following example, two keywords ‘New

York’ and ‘Harvard’. Given a CN: PlaceQ ← Person{} →

InstitutionQ, we may have two candidates: (1) ‘Southamp-

ton, New York’ (rid = p3) and ‘Harvard University’ (rid =

e2); (2) ‘New York City, New York’ (rid = p4) and ‘Harvard

University’ (rid = e2). For these two candidates, existing

approaches will issue the following two SQL queries:

1. SELECT * FROM Place, Person, Institution

WHERE Place.rid = p3 AND Institution.rid = e2

AND Person.place_of_birth = Place.rid

AND Person.Alma_mater = Institution.rid

2. SELECT * FROM Place, Person, Institution

WHERE Place.rid = p4 AND Institution.rid = e2

AND Person.place_of_birth = Place.rid

AND Person.Alma_mater = Institution.rid

Since these two SQL queries partially overlap, we can

reuse the common intermediate result. We issue a single

query: SELECT * FROM Person WHERE Person.Alma_mater = e2.

Then we need to check each tuple’s place_of_birth at-

tribute, respectively.

We can improve efficiency by exploring reusability. Exist-

ing approaches communicate with DBMS at the JTT level

(one SQL query to retrieve a set of JTTs). In contrast, we

communicate with DBMS at the tuple level (one SQL query

to retrieve either one tuple or a set of tuples). We issue only

the following two types of simple SQL queries:

1. SELECT * FROM REL_A WHERE REL_A.A_id = XXX

2. SELECT * FROM REL_A WHERE REL_A.B_id = XXX

A type 1 SQL query will return exactly one result because

A_id is REL_A’s primary key. Type 2 SQL query may return

multiple results because B_id is a foreign key. Since we have

built hash indices on all primary keys and foreign keys, these

two types of SQL queries can be executed efficiently by the

underlying DBMS. We then discuss how to check existence

of JTTs efficiently by using these two types of simple SQL

queries.

Existing approaches throw the complex SQL queries to the

underlying DBMS. The optimizer of the DBMS will choose

an execution plan for a given SQL query and the optimizer

will choose the best execution plan for the current candidate.

However, the best execution plan for the current candidate

might not be the best plan for the entire CN if we take

reusability into consideration.

Consider the following example. Given a CN: AQ ←

B{} → CQ, suppose there are 100000 tuples in B, 10000

tuples in A, 20000 tuples in C, and A.aid, C.cid are pri-

mary keys. In addition, we have hash indices on A.aid,

B.aid, B.cid, and C.cid. We assume that each tuple in A is

referred by 10 tuples in B (A.aid = B.aid) and each tuple

in C is referred by 5 tuples in B (C.cid = B.cid).

We have two possible execution plans:

1:◃▹cid=cid

3:σcid=Y Y Y

C

2:◃▹aid=aid

B4:σaid=XXX

A

1:◃▹aid=aid

3:σaid=XXX

A

2:◃▹cid=cid

B4:σcid=Y Y Y

C

Because A.aid and C.cid are primary keys, node 4 and

node 3 will retrieve exactly one tuple. The I/O costs of

nodes 1, node 3, and node 4 are exactly the same. The only

difference is the I/O cost of node 2. It depends on how many

tuples will be retrieved on node 2. For a given candidate

(a : XXX, c : Y Y Y), the latter plan is better. However,

the latter plan might not be better than the former one for

the entire CN.

We assume that the size of non-free tuple set AQ is 10 and

the size of non-free tuple set CQ is 1000. If we can re-use

retrieved tuples, the total I/O cost for the entire CN will

be determined by the total number of tuples in B will be

retrieved. If we use the former plan, 10 × 10 = 100 tuples

in B will be retrieved in the worst case. If we use the latter

plan, 1000 × 5 = 5000 tuples in B will be retrieved in the

worst case. The former plan is much better than the latter

one. To test 10× 1000 = 10000 candidates, we only need to

retrieve 10× 10 = 100 tuples in B by issuing 10 simple SQL

queries (SELECT * FROM B WHERE B.aid = XXX). To choose

such an appropriate plan for generating JTTs according to

a given CN, we need a special optimizer beyond the DBMS.

One possible solution of the optimizer is discussed in the

appendix.

6.4 The Buffer System

The efficient JTT generation algorithm works based on

an assumption that we do not need to retrieve the same tu-

ple repeatedly. The support of a buffer system is necessary.

In addition, our buffer system gives us new opportunities

to improve efficiency. First, two different CNs may over-

lap (for example, the left part of the following two CNs are

the same: PersonQ father−child←−−−−−−−−− Person{} child−mother−−−−−−−−−→

PersonQ and PersonQ father−child←−−−−−−−−− Person{} spouse−spouse−−−−−−−−−−→

PersonQ). Second, two queries may partially overlap (for

example, two keywords query ‘Caroline’ and ‘John’ and two-

keywords query ‘Caroline’ and ‘Joseph’).

If the buffer pool is large enough, we should not issue the

same SQL query twice. We should check whether a SQL

query has been issued in an efficient way. Therefore, we or-

ganize our buffer pool as a large hash table. Since dynamic

memory allocation or re-allocation is time consuming, en-

tries of the hash table should have a fixed size.

Note that type 1 SQL queries (primary key) will return

exactly one tuple. However, type 2 SQL queries (foreign key)

will return a tuple set which may contain multiple tuples.

Since the size of entries is fixed, we cannot store the entire

result of a type 2 SQL query in a single entry. So, a type 2

SQL query may occupy multiple entries. Text attributes are

not necessary for JTT generation algorithms. We only need

to keep primary key and foreign keys of a tuple. Hence, a

tuple can be stored as an array of keys. We can store a type

1 SQL query in a single entry. Next, we discuss how to store

a type 2 SQL query.

A naive method is that we store a type 2 SQL in consec-

utive entries. First, we find the head entry and store the

size of result (the number of occupied entries) with the head

entry. We store the rest of the result in the following en-

tries. However, this organization is not good enough for the

following two reasons:

1. A consecutive allocation may induce many more colli-

sions. We may have the following situation: The total

free space of the buffer pool is large enough. However,

we cannot find a large enough consecutive free space.

2. A tuple may be stored multiple times in the buffer

pool. The maximum number of duplicates is the num-

ber of foreign keys.

These two problems harm the space efficiency of the buffer

system. We propose a new design for the buffer system: a

hash table with cursors. The intuition is that we only keep a

unique copy for each tuple in the buffer pool. The position

of the entry for a tuple can be uniquely identified by its

primary key. For example, a tuple TA ∈ A can be uniquely

identified by (A, TA.A id).

Given the result of a type 2 SQL query, the positions of en-

tries for the tuples are already determined by their primary

keys. We know where to store these tuples. In addition,

we do not require consecutive data space. However, there is

a new problem for retrieving the type 2 SQL query result

because these tuples are scattered in the buffer pool.

Originally, in each entry, we have an array of keys (pri-

mary key and foreign keys). We add an array of “head” cur-

sors. Consider the following type 2 SQL query: SELECT * FROM

A WHERE A.B_id = X. Let TB denote tuple (B,X). So,

TB .B id = X. Initially, we set TB .HEAD A = NULL. If

the result set is not empty and TA (A, TA.A id) is the first

tuple in the result set, we set TB .HEAD A = TA. If the

result set is empty, we set set TB .HEAD A = TB . There-

fore, we determine whether we have the result for the given

type 2 SQL query by the “head” cursor TB .HEAD A. If

the cursor points to NULL, we do not have the result in

our buffer pool. If the cursor points to TB itself, we know

the result set is empty. Otherwise, the cursor points to the

first tuple in the result set. Note that a tuple may have

multiple “head” cursors. The number of “head” cursors of a

tuple is equal to the number of relations which are referring

to the relation of the tuple.

Then, we add another array of “next” cursors to retrieve

the rest of the tuples in the result set. Consider the same ex-

ample: SELECT * FROM A WHERE A.B_id = X. Now, we can

find the first tuple in the result TA1 (A, TA1 .A id) by check-

ing the head cursor TB .HEAD A. Suppose the second tu-

ple is TA2 . We set TA1 .NEXT B = TA2 . Similarly, we

set TAi .Next B = TAi+1 if the next tuple is TAi+1 . We set

TAj .NEXT B = NULL if TAj is the last tuple. In this

way, all tuples in the result set are linked together (like a

linked list). We can retrieve them one by one through the

“next” cursors. Also note that a tuple may have multiple

“next” cursors. The number of “next” cursors of a tuple is

equal to the number of foreign keys of the tuple.

Therefore, based on the original array of keys (primary

key and foreign keys), we just need to add at most D cursors

(also keys), where D is the maximum degree of SG.

Note that the buffer pool might not be large enough to

store all retrieved tuples. We still need to choose a replace-

ment policy. The Least Recently Used replacement policy is

perfect for our purpose. Therefore, we keep a dynamic par-

tial data graph in the buffer pool. The dynamic partial data

graph is managed by our buffer system. We try to keep the

most recent “hot” tuples. Hence, these “hot” tuples can be

retrieved very fast (no communications with DBMS, no ex-

tra I/O cost). In the long run, our system can be as efficient

as those explicit data graph approaches. In addition, our

system also works on very large databases as those implicit

data graph approaches.

7. EXPERIMENT RESULT

We use the DBLP dataset to evaluate effectiveness and

efficiency of our approach and existing approaches. DBLP

dataset is a XML file. It is not a typical relational database.

So, we adopt the database schema used in [10] and convert

the DBLP XML database into a relational database. The

relation schemas and statistics of the dataset can be found

in Table 3.

We manually pick 9 sets of queries, which cover different

selectivity of keywords (some keyword only matches about

10 tuples and some keyword matches more than 5000 tu-

ples), different size of answers, different relationships (CN),

and different top-k settings.

We use PostgreSQL v8.3 with default configuration as

the underlying DBMS. We implement the Sparse Algorithm

(SP), the Global Pipeline Algorithm (GP), the Block Pipeline

Algorithm (BP), and our approach - the Universal Algo-

rithm (UA). We have improved the GP and the BP algo-

rithms by using range parametric query optimization. All

algorithms are implemented using GCC 4.3. All experiments

were run on a PC with an Intel Core2 Duo 1.83GHz CPU

and 3.00G memory running Ubuntu 8.04. The database

server and the client are on the same PC.

7.1 Effectiveness

We compare the following four approaches: the Sparse

Algorithm (Sparse), the Global Pipeline Algorithm (GP),

the Block Pipeline Algorithm (BP), and the Universal Al-

gorithm (UA).

Our experiment shows that the Sparse with OR-semantics,

the GP with OR-semantics can hardly produce any expected

results. In most cases, none of the top-k answers contains all

keywords. So, we force AND-semantics for these two algo-

rithms. For the BP algorithm, the default tuning parameter

Relation Schema # of tuples

Author(AuthorID, Name) 665827

InProceeding(InProceedingID, Title, ProceedingID) 675638

Proceeding(ProceedingID, Title, PublisherID, SeriesID) 11216

Series(SeriesID, Title) 86

Publisher(PublisherID, Name) 385

Writes(WID, AuthorID, InProceedingID) 1799039

Table 3: DBLP dataset

2.0 (used in [10]) is not large enough to produce good re-

sults. Hence, we choose the tuning parameter p = 64.0 for

the BP algorithm to improve effectiveness. For the UA, we

choose the default tuning parameter p = 3.0. Note that we

terminate an algorithm if it cannot produce answers in 2000

seconds.

7.1.1 Query 1: ‘tamer’ and ‘databases’, top­10 an­
swers

Results are shown in Table 4, Table 5, and Table 6. GP

exceeds the time limit (2000 seconds). The output of other

three approaches are acceptable and both keywords are matched.

Note that all answers correspond to the same CN: AuthorQ ←

Writes{} → InProceedingQ (an author ‘tamer’ writes some

paper about ‘databases’). All answers are acceptable.

7.1.2 Query 2: ‘nikos’ and ‘clique’, top­1 answer

Results are shown in Table 7. This test query was used

in [10]. The output of all four approaches are identical.

The only answer corresponds to the same CN: AuthorQ ←

Writes{} → InProceedingQ (an author ‘nikos’ writes some

paper about ‘clique’).

7.1.3 Query3: ‘tamer’ and ‘ihab’, top­5 answers

Results are shown in Table 8, Table 9, and Table 10.

The output of all four approaches are acceptable and both

keywords are matched. Although Rank-1 answers are not

the same, all Rank-1 answers correspond to the same CN:

AuthorQ ← Writes{} → InProceeding{} ← Writes{} →

AuthorQ (‘tamer’ and ‘ihab’ are co-authors). Therefore, all

answers are acceptable.

7.1.4 Query 4: ‘qagen’ and ‘in­network’, top­2 an­
swers

Results are shown in Table 11 and Table 12. BP and

UA output the same top-2 answers. The Rank-1 answer

corresponds to a CN: InProceedingQ → Proceeding ←

InProceedingQ. The Rank-2 answer corresponds to a CN:

InProceedingQ ← Writes{} → Author{} ← Writes{} →

InProceedingQ (two papers are written by the same au-

thor). Sparse and GP output a different Rank-2 answer cor-

responding to a CN: InProceedingQ → Proceeding{} →

Publisher{} ← Proceeding{} ← InProceedingQ (two pa-

pers are accepted by two different proceedings respectively

and these two proceedings are published by the same pub-

lisher). Obviously, BP and UA output a better Rank-2 an-

swer. So, on this test query, BP and UA are winners.

7.1.5 Query 5: ‘ihab’ and ‘sigmod’, top­10 answers

Results are shown in Table 13 and Table 14. Sparse ex-

ceeds the time limit (2000 seconds). The output of GP/BP

matches both keywords. However, there is no acceptable

answers. These answers all correspond to that the same CN:

AuthorQ ←Writes{} → InProceeding{} → Proceeding{} →

Publisher{} ← Proceeding{} ← InProceedingQ. There is

no meaningful relationship corresponding to this CN. All

these answers share a common postfix: → Publisher:ACM

← Proceedings of the ACM SIGMOD,SIGMOD 2008 ←

Corrigendum to . . . (proc.SIGMOD 03). Note that this com-

mon postfix contributes three matches of keyword ‘sigmod’.

This postfix seriously influenced these three algorithms.

In the DBLP database, there are six acceptable answers

(‘Ihab F. Ilyas’ has six papers accepted by ‘sigmod’). These

acceptable answers all correspond to the same CN: AuthorQ ←

Rank Top-10 Answers (Sparse)

1 Tamer Kahveci ← Writes → MAP: Searching Large Genome Databases

2 Tamer Kahveci ← Writes → Fast alignment of large genome databases

.

9 M. Tamer Özsu ← Writes → Experimenting with Temporal Relational Databases

10 M. Tamer Özsu ← Writes → DBFarm: A Scalable Cluster for Multiple Databases

Table 4: ‘tamer’ and ‘databases’: Sparse

Rank Top-10 Answers (BP)

1 Rank-1 of Sparse/GP

2 Rank-2 of Sparse/GP

.

9 M. Tamer Özsu ← Writes → Database Support for Document and Multimedia Databases

10 M. Tamer Özsu ← Writes → VisualMOQL: A Visual Query Language for Image Databases

Table 5: ‘tamer’ and ‘databases’: BP

Rank Top-10 Answers (UA)

1 Rank-1 of Sparse/GP

2 Rank-2 of Sparse/GP

.

9 M. Rank-10 of Sparse/GP

10 M. Tamer Özsu ← Writes → A Multi-Level Index Structure for Video Databases

Table 6: ‘tamer’ and ‘databases’: UA

Rank Top-1 Answer (Sparse / GP / BP / UA)

1 Nikos Mamoulis ← Writes → Constraint-Based Algorithms for Computing Clique Intersection Joins

Table 7: ‘nikos’ and ‘clique’: Sparse/GP/BP/UA

Rank Top-5 Answers (Sparse / GP)

1 Ihab Amer ← Writes → A Hardware-Accelerated Framework with IP-Blocks for Application in MPEG-4

← Writes → Tamer Mohamed

.

4 Ihab F.Ilyas ← Writes → FIX: Feature-based Indexing Technique for XML Documents

← Writes → M. Tamer Özsu

.

Table 8: ‘tamer’ and ‘ihab’: Sparse/GP

Rank Top-5 Answers (BP)

1 Rank-4 of Sparse/GP

2 Rank-1 of Sparse/GP

.

Table 9: ‘tamer’ and ‘ihab’: BP

Rank Top-5 Answers (UA)

1 Rank-1 of Sparse/GP

2 Rank-2 of Sparse/GP

.

Table 10: ‘tamer’ and ‘ihab’: UA

Rank Top-2 Answers (Sparse / GP)

1 In-network execution of monitoring queries in sensor networks → SIGMOD 2007

← QAGen: generating query-aware test databases

2 Optimization of in-network data reduction → Proceedings of the 1st Workshop on DMSN 2004

→ Publisher:ACM ← SIGMOD 2007 ← QAGen: generating query-aware test databases

Table 11: ‘qagen’ and ‘in-network’: Sparse/GP

Rank Top-2 Answers (BP / UA)

1 Rank-1 of Sparse/GP

2 In-network execution of monitoring queries in sensor networks ← Writes → M. Tamer Özsu

← Writes → QAGen: generating query-aware test databases

Table 12: ‘qagen’ and ‘in-network’: BP/UA

Rank Top-10 Answers (GP / BP)

1 Ihab F.Ilyas ← Writes → CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies

→ Proceedings of the ACM SIGMOD,2004 → Publisher:ACM ← Proceedings of the ACM SIGMOD,SIGMOD 2008

← Corrigendum to “efficient similarity search and classification via rank aggregation” (proc.SIGMOD 03)

2 Ihab F.Ilyas ← Writes → Rank-aware Query Optimization

→ Proceedings of the ACM SIGMOD,2004 → Publisher:ACM ← Proceedings of the ACM SIGMOD,SIGMOD 2008

← Corrigendum to “efficient similarity search and classification via rank aggregation” (proc.SIGMOD 03)

.

Table 13: ‘ihab’ and ‘sigmod’: GP/BP

Rank Top-10 Answers (UA)

1 Ihab F.Ilyas ← Writes → CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies

→ Proceedings of the ACM SIGMOD,2004

2 Ihab F.Ilyas ← Writes → Rank-aware Query Optimization → Proceedings of the ACM SIGMOD,2004

.

Table 14: ‘ihab’ and ‘sigmod’: UA

Writes{} → InProceeding{} → ProceedingQ. The Top-6

answers in the output of UA are exactly these acceptable an-

swers. Since our approach uses a more reasonable coherence

score for the structural quality, those meaningless CNs will

be assigned a relatively low coherence score and, hence, our

approach is less influenced by the long postfix. Therefore,

on this test query, UA is the only winner.

7.1.6 Query 6: ‘ihab’ and ‘query’, top­5 answers

Results are shown in Table 15 and Table 16. Spase and

GP both exceed the time limit (2000 seconds). None of the

top-5 answers in the output of BP are acceptable. There are

two kinds of CNs: AuthorQ and AuthorQ ← Writes{} →

InProceeding{} → Proceeding{} → Publisher{} ← ProceedingQ.

The former one cannot match both keywords and the latter

one is meaningless. The reason why BP chooses these two

kinds of answers is as follows. Since we have 13 matched au-

thors, 4909 matched papers, and 5 matched proceedings, the

inverse document frequency of AuthorQ and ProceedingQ

is much higher than InProceedingQ. Hence, BP tends to

match keywords AuthorQ and ProceedingQ. This problem

influences the ranking of BP.

All top-5 answers in the output of UA are acceptable an-

swers. Our approach can produce acceptable answers for the

following two reasons: (1) our global score for the content

quality penalizes answers which match only one keyword

properly; (2) our coherence score for the structural quality

penalizes meaningless CN properly. Therefore, on this test

query, UA is the only winner.

7.1.7 Query 7: ‘tamer’ and ‘ihab’ and ‘ning’, top­3
answers

Results are shown in Table 17 and Table 18. Sparse, GP,

and UA all output acceptable answers while BP output no

acceptable answers. All acceptable answers correspond to

the same CN (three co-authors). The size of this CN is

seven. Sparse and GP can produce acceptable answers due

to forcing AND-semantics (the cost is poor efficiency). Our

approach can produce acceptable answers because we iden-

tify the size-7 co-author relationship as a close relationship

based on its coherence score. So, on this test query, Sparse,

GP and UA are winners.

7.1.8 Query 8: ‘tamer’ and ‘indexes’ and ‘ihab’,
top­15 answers

Results are shown in Table 19 and Table 20. The Rank-

1 answer in the output of UA is the only acceptable an-

swer. However, we are searching for the top-15 answers. In-

evitably, there are a lot of unexpected answers in the output.

If we force AND-semantics, the system would exhaustively

search the whole database. Hence, Sparse and GP exceed

the time limit (2000 seconds). Observe that the Rank-1 an-

swer in the output of BP is the left half of the acceptable

answer and the Rank-2 answer in the output of BP is the

right half of the acceptable answer. However, no complete

acceptable answer in the output of BP. So, on this test query,

UA is the only winner.

7.1.9 Query 9: ‘succinct’ and ‘xbench’ and ‘multi­
scale’, top­2 answers

Results are shown in Table 21, Table 22, and Table 23.

UA output two acceptable answers. The Rank-1 answer

corresponds to the relationship: three papers are accepted

by the same proceeding. The Rank-2 answer corresponds

to the relationship: three papers are written by the same

author. Sparse, GP and BP only find one acceptable answer

(Their Rank-2 answers are meaningless). So, on this test

query, UA is the only winner.

7.2 Efficiency

We compare the following four approaches: Sparse (AND-

semantics), GP (AND-semantics), BP (p = 64.0), and UA

(p = 3.0). We use underlined numbers to denote the fastest

approach for each test query. Note that UA outperforms

other three approaches, especially on hard queries (Query

6, Query 7. Query 8).

7.3 Summary

Nine test queries can be divided into three levels: (1)

Query 1, Query 2, and Query 3 are two-keywords simple

queries; (2) Query 4, Query 5, Query 6 are two-keywords

hard queries; (3) Query 7, Query 8, Query 9 are three-

keywords queries.

For the first level, all four approaches output acceptable

answers. However, for the second level and the third level,

Rank Top-5 Answers (BP)

1 Ihab Amer

2 Ihab Hamadeh ← Writes → Toward a Framework for Forensic Analysis of Scanning Worms → ETRICS 2006

→ Publisher:Springer ← Flexible Query Answering Systems,7th International Conference,FQAS 2006

3 Ihab Hamadeh ← Writes → Toward a Framework for Forensic Analysis of Scanning Worms → ETRICS 2006

→ Publisher:Springer ← Flexible Query Answering Systems,6th International Conference,FQAS 2004

4 Ihab Hamadeh ← Writes → Toward a Framework for Forensic Analysis of Scanning Worms → ETRICS 2006

→ Publisher:Springer ← Flexible Query Answering Systems,Third International Conference,FQAS 98

5 Ihab Kazem

Table 15: ‘ihab’ and ‘query’: BP

Rank Top-5 Answers (UA)

1 Ihab F.Ilyas ← Writes → Rank-aware Query Optimization

2 Ihab F.Ilyas ← Writes → Rank-Aware Query Processing and Optimization

3 Ihab F.Ilyas ← Writes → Top-k Query Processing in Uncertain Databases

4 Ihab F.Ilyas ← Writes → Nile: A Query Processing Engine for Data Streams

5 Ihab F.Ilyas ← Writes → Estimating Compilation Time of a Query Optimizer

Table 16: ‘ihab’ and ‘query’: UA

Rank Top-3 Answers (Sparse / GP / UA)

1 M. Tamer Özsu ← Writes → XSEED: Accurate and Fast . . .← Writes → Ihab F.Ilyas

↑

Writes → Ning Zhang

2 M. Tamer Özsu ← Writes → InterJoin: Exploiting Indexes . . .← Writes → Ihab F.Ilyas

↑

Writes → Ning Zhang

3 M. Tamer Özsu ← Writes → FIX: Feature-based Indexing . . .← Writes → Ihab F.Ilyas

↑

Writes → Ning Zhang

Table 17: ‘tamer’ and ‘ihab’ and ‘ning’: Sparse/GP/UA

Rank Top-3 Answers (BP)

1 Ning Ning

2 SPIN-ning Software Architectures: A Method for Exploring Complex

3 Ihab Amer

Table 18: ‘tamer’ and ‘ihab’ and ‘ning’: BP

Rank Top-3 Answers (BP)

1 Ihab F.Ilyas ← Writes → InterJoin: Exploiting Indexes and Materialized Views in XPath Evaluation

2 M. Tamer Özsu ← Writes → InterJoin: Exploiting Indexes and Materialized Views in XPath Evaluation

.

Table 19: ‘tamer’ and ‘indexes’ and ‘ihab’: BP

Rank Top-3 Answers (UA)

1 Ihab F.Ilyas ← Writes → InterJoin: Exploiting Indexes . . .← Writes → M. Tamer Özsu

.

Table 20: ‘tamer’ and ‘indexes’ and ‘ihab’: UA

Rank Top-2 Answers (Sparse / GP)

1 Succinct Physical Storage Scheme . . .→ ICDE 2004 ← Multi-Scale Histograms for . . .

↑

XBench Benchmark and Performance Testing of XML DBMSs

2 Succinct Text Indexes . . .→ TAMC 2006 ← Time Series Predictions Using Multi-scale Support Vector Regressions

↓

Publisher: Springer ← VLDB 2002 Workshop EEXTT ← XBench - A Family . . .

Table 21: ‘succinct’ and ‘xbench’ and ‘multi-scale’: Sparse/GP

Rank Top-2 Answers (BP)

1 Rank-1 of Sparse/GP

2 Succinct Physical Storage Scheme . . .→ ICDE 2004 ← XBench Benchmark and Performance . . .

Table 22: ‘succinct’ and ‘xbench’ and ‘multi-scale’: BP

Rank Top-2 Answers (UA)

1 Rank-1 of Sparse/GP

2 Succinct Physical . . .← Writes → M. Tamer Özsu ← Writes → Multi-Scale Histograms for Answering Queries . . .

↑

Writes → XBench Benchmark and Performance Testing of XML DBMSs

Table 23: ‘succinct’ and ‘xbench’ and ‘multi-scale’: UA

Sparse (sec) GP (sec) BP (sec) UA (sec)

Query 1 13.29 > 2000 3.92 0.58

Query 2 5.72 291.10 2.31 0.48

Query 3 0.53 9.09 4.49 0.53

Query 4 33.81 37.54 2.49 0.52

Query 5 > 2000 1207.87 2.72 0.49

Query 6 > 2000 > 2000 9.62 0.53

Query 7 66.62 510.91 25.55 0.55

Query 8 > 2000 > 2000 28.47 0.55

Query 9 35.98 1026.36 4.17 0.64

Table 24: Execution time: Sparse/GP/BP/UA

the result quality of UA is much better than other approaches.

On Query 4, BP and UA are winners. On Query 7, Sparse,

GP and UA are winners. On Query 5, Query 6, Query 8,

and Query 9, UA is the only winner. So, UA is the best

approach in terms of effectiveness. In addition, UA is also

the fastest approach among all four approaches.

8. CONCLUSION

We thoroughly study the structural quality and the con-

tent quality of JTT. We analyze the influence of these two

different quality to the top-k ranking. By summarizing ad-

vantages and disadvantages of existing approaches, we adopt

insightful ideas from previous work and we also overcome the

drawbacks of existing approaches. Experiment result shows

that our scoring function is the best in terms of effectiveness.

To improve the runtime efficiency of existing implicit data

graph approaches and the space efficiency of existing explicit

data graph approaches, we design a hybrid architecture. We

improve runtime efficiency by reducing redundancy among

the processing of different candidates. To reuse intermedi-

ate results and avoid redundant computation, we develop a

buffer system to support our candidate enumeration algo-

rithm. In addition, we also choose an execution plan for the

entire CN to minimize the total I/O cost for the CN. Ex-

periments also show that our system is more efficient than

existing ones.

Our universal top-k keyword search system works effec-

tively and efficiently under a variety of settings.

9. REFERENCES

[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A

system for keyword-based search over relational

databases. ICDE, 2002.

[2] G. Bhalotia, A. Hulgeri, C. Nakhey, S. Chakrabarti,

and S. Sudarshan. Keyword searching and browsing in

databases using banks. ICDE, 2002.

[3] S. Brin, L. Page, R. Motwami, and T. Winograd. The

pagerank citation ranking: bringing order to the web.

ASIS, 1998.

[4] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks:

Ranked keyword searches on graphs. SIGMOD, 2007.

[5] V. Hristidis, L. Gravano, and Y. Papakonstantinou.

Efficient ir-style keyword search over relational

databases. VLDB, 2003.

[6] V. Hristidis and Y. Papakonstantinou. Discover:

Keyword search in relational databases. VLDB, 2002.

[7] F. K. Hwang, D. S. Richards, and P. Winter. The

steiner tree problem. Annals of Discrete Mathematics,

1992.

[8] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan,

R. Desai, and H. Karambelkar. Bidirectional

expansion for keyword search on graph databases.

VLDB, 2005.

[9] F. Liu, W. Meng, and A. Chowdhury. Effective

keyword search in relational databases. SIGMOD,

2006.

[10] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: Top-k

keyword query in relational databases. SIGMOD,

2007.

APPENDIX
A. CONNECTIVITY SCORE COMPUTATION

We first define a computation tree corresponding to a

given CN. We create a tree node for each tuple set and cre-

ate tree edges by ignoring all edge directions in SG. Then,

we select any one node as the root.

Next, we introduce the definition of types of tree nodes.

We recursively define the type of a tree node: single connec-

tion node/multiple connection node. There exists, at most,

one tuple in a single connection node connecting picked tu-

ples. There may exist more than one tuple in a multiple

connection node connecting picked tuples.

Definition 14. All nodes corresponding to non-free tu-

ple sets are single connection nodes. If the tuple set cor-

responding to a tree root has an in-edge from the tuple set

corresponding to a child node and the child node is a single

connection node, then the root is also a single connection

node. Otherwise, the root is a multiple connection node.

For example, there are two CNs: Institution← Person→

Place, Person
child−father−−−−−−−−−→ Person

father−child←−−−−−−−−− Person).

We can construct two corresponding computation trees as

follows (M: multiple, S: Single):

Person (M)

Place (S)Institution (S)

Person (S)

Person (S)Person (S)

Suppose the tuple set corresponding to the tree root is

R = {r1, r2, . . . , r|R|}. Then, CS(CN) is equal to the prob-

ability that r1 connects all given tuples, or r2 connects all

given tuples, . . . , or r|R| connects all given tuples. If R is a

single connection node, CS(CN) = |R|·Pr{ri ∈ R connects all

given non-free tuples}. Otherwise, CS(CN) = 1 − (1 −

Pr{ri ∈ R connects all given non-free tuples})|R|. Let CS(ri)

denote Pr{ri ∈ R connects all given non-free tuples} and

we recursively calculate CS(ri).

Suppose the tree root has l children. The corresponding

tuple sets are C1, C2, . . . , Cl. Then, the given CN can be di-

vided into l+1 parts, the tuple set corresponding to the root

and l subtrees. Therefore, Pr{ri ∈ R connects all given non-free

tuples} = Pr{ri connects c1,1, c1,1 connects all given non-free

tuples in the subtree or ri connects c1,2, c1,2 connects all given

non-free tuples in the subtree or . . . } ∗ . . . ∗

Pr{ri connects cl,1, cl,1 connects all given non-free tuples in the

subtree or ri connects cl,2, cl,2 connects all given non-free tuples

in the subtree or . . . }.

We use CP (ri, Cj) to denote the following probability:

Pr{ri connects cj,1, cj,1 connects all given non-free tuples in

the subtree or ri connects cj,2, cj,2 connects all given non-free

tuples in the subtree or . . . }.

There are the following six cases:

1. Cj is corresponding to a leaf node and Cj is referred

by the tuple set corresponding to the root (R→ Cj);

2. Cj is corresponding to a leaf node and the tuple set

corresponding to the root is referred by Cj (R← Cj);

3. Cj is corresponding to a single connection subtree root

node and Cj is referred by the tuple set corresponding

to the root (R→ Cj);

4. Cj is corresponding to a single connection subtree root

node and the tuple set corresponding to the root is

referred by Cj (R← Cj);

5. Cj is corresponding to a multiple connection subtree

root node and Cj is referred by the tuple set corre-

sponding to the root (R→ Cj);

6. Cj is corresponding to a multiple connection subtree

root node and the tuple set corresponding to the root

is referred by Cj (R← Cj).

For case (1), CS(ri, Cj) = 1/|Cj |. For case (2), CS(ri, Cj) =

1/|R|. For case (3), CS(ri, Cj) = CS(cj,k), where cj,k is a

randomly chosen tuple in Cj . For case (4), CS(ri, Cj) =
|Cj |
|R| · CS(cj,k), where cj,k is a randomly chosen tuple in

Cj . For case (5), CS(ri, Cj) = CS(cj,k), where cj,k is a

randomly chosen tuple in Cj . For case (6), CS(ri, Cj) =

1− (1− 1
|R| ·CS(cj,k))

|Cj |, where cj,k is a randomly chosen

tuple in Cj .

B. THE JTT GENERATOR OPTIMIZER

We have the following observations:

1. For any two adjacent tuple sets A ← B in the given

CN, the corresponding join condition is ◃▹(aid = aid),

where aid is the relation A’s primary key.

2. The sizes of all non-free tuple sets are already known.

3. For any two adjacent tuple sets A ← B, each tuple

a ∈ A is referred by size(B)
size(A)

tuples in B on average.

Our objective is to retrieve a minimal number of tuples

from DBMS. We have the following assumptions: (1) hash

indices have been built on all primary keys and foreign keys;

(2) we only use hash joins.

Since all non-free tuple sets are already given, we only

need to retrieve extra tuples from free tuple sets. For each

free tuple set A, we use SA to denote the set of necessary

tuples which should be retrieved from DBMS. Thus, each

tuple in SA must appear in at least one JTT. However, we

do not know SA in advance. We use RA denote the set of

tuples we will retrieve. We must guarantee that SA ⊆ RA

(completeness) and we want to minimize |RA|.

If there are n non-free tuple sets in the given CN, we divide

all join and selection conditions into n parts. Each part cor-

responds to a path to a non-free tuple set. The following CN

is an example: AQ ← B{} → CQ. We can divide join con-

ditions into two parts, RB
1 = {b ∈ B{}|∃a ∈ AQ s.t. b.aid =

a.aid} and RB
2 = {b ∈ B{}|∃c ∈ CQ s.t. b.cid = c.cid}.

RB
1 corresponds to a path to non-free tuple set AQ and RB

2

corresponds to a path to non-free tuple set CQ. Then, we

know that SB = RB
1 ∩ RB

2 . So, SB ⊆ RB
1 and SB ⊆ RB

2 .

Therefore, RB
1 and RB

2 are two different choices of RB . Note

that |AQ| and |CQ| are known. Based on observation (3),

|RB
1 | and |RB

2 | can be estimated easily along its correspond-

ing path. For each free tuple set A, we can choose RA
i with

minimal estimation size as RA. Then, we retrieve tuples in

RA along the corresponding path using type 1 and type 2

SQL queries.

Given a CN, an execution plan, and a block b, we want

to enumerate all JTTs corresponding to the given CN in

the block b. First, we retrieve each free tuple set separately

using two types of simple SQL queries. As mentioned, we

can divide the entire CN into n parts according to the chosen

path to one of the n non-free tuple sets. Then, we join

all parts together one by one. Each time we add a new

part, check the join condition, and filter out all unnecessary

tuples from each retrieved tuple sets. Finally, there is only

one merged connected component left and all retrieved tuple

sets only contain necessary tuples (a necessary tuple must

appear in at least one JTT). We then enumerate JTTs from

these tuple sets.

