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Abstract

In this report we use the kell-m process algebra to develop three models for Distributed Event-Based Systems
(DEBSs). The first model is of the DEBS API standard proposed by Pietzuch et al. The second model is for the
hierarchical structuring mechanism for components in the REBECA DEBS. The third model is for the internal struc-
ture of administrative components in the NaradaBrokering DEBS. These models support the specification of DEBS
properties previously proposed in the area using other formalisms. We also show how new properties, based on the
locality features provided by kell-m and the ability to passivate kells, can now be specified.

1 Introduction

Distributed Event-Based Systems (DEBSs) are middleware supporting the interaction of publisher and subscriber com-
ponents via events. DEBSs are typically implemented as networks of distributed brokers. Brokers are administrative
components in charge of the routing of events from publishers to interested subscribers.

In DEBSs, the subscribers to be notified when an event is announced are decided at run-time without requiring
publisher components to know the name or locations of the subscribers, nor the subscribers to know the name or
locations of the publishers. This weak coupling between components makes DEBSs suitable for applications with a
large or unpredictable number of autonomous components.

In this report we use kell-m to model DEBSs. Kell-m is an an asynchronous higher-order process algebra with
hierarchical localities [8]. Three models for DEBSs are presented. The first model is of the DEBS API standard
proposed by Pietzuch et al. [35]. The main reason for the use of the standard API is that it can be supported by well-
known DEBSs with little effort [35]. With this model we show: how event-related features previously characterized
for DEBSs are supported by the model; how properties previously specified for DEBSs can still be specified; and how
new properties not specifiable before can now be specified. The new properties expressible with our work impose
requirements on the location of the actions occurring in a DEBS or its applications, and on how processing within
locations adapts as the system evolves.

In the second model we represent a hierarchical structuring mechanism for components in the REBECA DEBS
[19, 20, 18]. This model showcases the use of kell-m to represent a non-traditional feature proposed for DEBSs.
Specifically, in REBECA publishers and subscribers can be grouped. A group is called a scope, and a component can
belong to multiple scopes. A subscriber is only notified of events published by a component within the same scope as
the subscriber.

In the third model, we show how kells, a locality feature in kell-m, can be used to model the internal structure
of administrative components in NaradaBrokering [34]. NaradaBrokering is a DEBS used in diverse applications
including earthquake modelling, environmental monitoring, and video conferencing and virtual environments [3]. This
case study showcases the use of kell-m to represent non-event related features in a DEBS.

The models are specified using a sugared version of kell-m, called hl-kell-m for high-level kell-m. hl-kell-m pro-
vides basic control and modularization constructs and, in general, makes kell-m models more readable. We also present
hl-ku, a sugared version of k. ks is the formalism used for the specification of properties of systems represented using
kell-m [8].
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Figure 1: Kell-m Syntax

We start with the presentation of hl-kell-m in Section 2, and hl-ky in Section 3. In Section 4 we model the DEBS
API standard of Pietzuch et al. In Section 5 we model scopes as implemented in REBECA. In Section 6 we show how
kells can be used to model the hierarchical structure of NaradaBrokering. Related work is presented in Section 7, and
we conclude the report in Section 8.

2 High-Level kell-m

In this section we show how basic control and modularization constructs are represented using kell-m, and introduce
hl-kell-m. hl-kell-m is syntactic sugar that makes the modelling of systems using kell-m less laborious. Although not
DEBS-specific, these constructs will help us in the specification of DEBS functionality and makes the DEBS models
more readable.

We start with a quick introduction to kell-m. For detailed semantics of kell-m, refer to [8]. Processes in the kell-m
calculus have the syntax specified in Figure 1. 0 is the null process (a process that does not perform any actions), and |
is parallel composition of processes.

A write action on channel a is specified @a(w), where @ is the sequence of names and processes being written on
channel a. A read action is specified as a(¢) > P, where a is the channel where the action takes place, ¢ is a list of
names to be instantiated with the values passed by the writing process, and P is the process to execute after the read.

An expression a(r) > P is called a trigger. Upon communication, a new trigger is required if more read actions
are wanted on channel a. Hence, a special kind of trigger, a(r) ¢ P, is used to avoid the need to specify the same
trigger multiple times. Notice the use of the symbol ¢ instead of > in the trigger. A trigger where © is used is called
a recurrent trigger. Upon communication on channel a, a process Qa(e) | a(r) ¢ P, evolves to the process expression
P{e/r}|a(r)oP.

The construct new a P is called name restriction, and it is used to specify a private name a, to be used in P. A
private name is also called a restricted name. We write new a,b,c P to represent new ¢ new b new ¢ P, and new ¢ P
to represent new c1, ¢y, ...,c, Pwhen¢ =cy,ca,...,cCp.

Processes can execute within localities called kells. Kells are identified by name. A process P executing within a
kell K is specified as K[P]. Because a kell is itself a process, a kell can be within another kell: K3 [K>[P]]. Sometimes
we refer to the kells where a process executes as the locations of the process. Hence, P in the previous example is
located within kells K and K.

Another type of trigger, called a passivation trigger, is introduced to control the execution of kells. Passivation
triggers have the form K[x] > @), where K is the name of a kell, = is a variable, and () is a process. The result of
composing a passivation trigger with a kell having the same name as the kell specified in the trigger is Q{P/z}:
K[P] | K[x] > Q@ — Q{P/zx}. In the previous example we say the kell K[P] was passivated by the trigger. Q{P/z} is
the process resulting from replacing all occurrences of z in () with P. Passivation triggers can also be specified using
¢ instead of >, in which case the trigger is a recurrent passivation trigger.

2.1 Fresh Names

Although new restricted names can be created using the new construct, there is no corresponding construct to create
new unrestricted names. Hence, we introduce the syntax:

fresh ci,co,...,c, P

for,
fresh(cy) > fresh(cg) > - - - > fresh(cy,) > P



and assume the existence of a process waiting on channel fresh for fresh name requests. Such a process returns a
different name every time it is contacted. Assuming names d;, ds, ds, ..., the fresh name generator is specified as
follows:

fresh(dy) | fresh(ds) | fresh(ds) | ---

To guarantee the delivered name is fresh, names d; must not occur in any other process. There must be as many writes
fresh(d;), as requests for fresh names are expected. If there are not enough writes, the process requesting a fresh name
will be deadlocked. Intuitively, a process in kell-m is deadlocked if it is waiting for communication on a channel no
other process will ever write to.

Fresh names can be used instead of restricted names when the newly created name should be visible by every
process. Because it is not possible to predetermine the number of required fresh names, when modelling and verifying
systems represented using hl-kell-m. This is done only as a convenience since, as previously shown, a provider of fresh
names can be constructed natively in kell-m.

2.2 Variables and Procedural Abstractions

A process for creating variables with names received on channel vrame and values received on channel value can be
represented as:
var(vname, value) o vname(r, u) >new R,U,c (
R] r(rc) > stop(U) | 7¢(value) | c(vname, value)] |
U[ u(newval) > stop(R) | ¢(vname, newval)] |
c(n,val) > var(n,val)

When composed in parallel with the previous process, var(v, a) makes channel v a variable with value a. A variable
is then a channel that, when provided a read channel » and an update channel u, and based on which of these two
channels is used, returns the value of the variable or instantiates the variable with a new value.

We introduce the following syntax for the declaration of variables; initialization values are optional:

var vy := val;, ..., v, = val,

If no initialization value is provided, we assume the variable has a null value represented by the name null. The previous
variable declaration is equivalent to process:

var(vy,valy) | -+ | var(vp, valy)

Generic, set and get processes can be defined:

set(vname, newval) o new ru (viame(ru) | u(newval))
get(vname, rc) o new ru (vname(ru) | 7(rc))

The following process illustrates how to retrieve, on channel rc, the value of a variable vname:
get(vname, rc) | re(value) > - - -

By convention, if we will be using a channel to read the value returned by another process, we typically name the
channel rc, for return channel.
The following type of process invocation is frequently used:

fresh rc (¢(ps, rc) | re(vs) -+ )

where ps represents zero or more parameters written to ¢, and vs are the values returned on channel rc. Parameters
passed can be names an processes. For these invocations we write: @Qc(ps)(vs) > - - . For example,

fresh rc (get(name, rc) | rc(val) > P)

can be written:
Qget(name)(val) > P



The use of a fresh name instead of a restricted name makes the return channel visible and allows the specification of
properties on actions performed on the channel.

Note val is bound in P and no return channel is specified. A name is to be bound in P in it is visible to P only
(a formal definition of bound names is presented in [8]). We write @Q¢(ps) for ¢(ps), when no channel in ps is used to
return values. When the values returned on a channel are immediately used as inputs for another channel, for example:

@get(va)(val) > set(vy, val)

We write instead:
@set(vy, Qget(vs))

In the previous process, we are setting the value of variable vy to the value stored in vs. We further add syntactic
sugar by writing this process as: v; := *v2. In general, Qser(v, val) is written v := val, and *v is syntactic sugar
for @Qget(v)(*v). The *v is just a name. Hence, if the value of a variable v is a channel, *v(w) is valid, as well as
*p(w) > P, *v(w) o P, and a(*v).
Sometimes it is desirable to know when the value of a variable has been changed before it is read. Assuming a
variable v, one could try:
v := newval | *v(val) > P

However there is no guarantee the variable will be read after its value has been set to newval. Hence, we extend the
definition of variables with a synchronous update. In a synchronous update, an extra channel uc is received along with
the new value for the variable. When the update has been completed, a write is performed on channel uc:

var(vname, value) o vname(r, u, s) >new R,U,S,c (
R[ r(rc) v stop(U) | stop(S) | 7c(value) | ¢(vname, value)] |
U u(newval) > stop(R) | stop(S) | ¢(vname, newval)] |
S| s(newval, uc) > stop(R) | stop(U) | ¢(vname, newval) | uc()] |
¢(n,val) > var(n,val)

)

set and get are redefined as:

set(vname, newval) o new ru,s (viame(ru,s) | u(newval))
get(vname, rc) o new ru,s (vname(ru,s) | 7(rc))

And a synchronous set is introduced:
syncset(vname, newval, uc) o new ru,s (viiame(ru,s) | s(newval,uc))
Then, in the process expression:
new uc (Qsyncset(v, newval, uc) | uc() > *v(val) > P)

val is instantiated with newval. Introducing a synchronous assignment :=,, we write the previous process expression
as:
(v :=5 newval) > *v(val) > P

A process P may need to wait for a variable to be created before continuing its execution, var(v, a) | *v(b) > P. In
such cases we write:
varv:=ain P

Finally, when defining a process, pname(ps) o P, we write:

process pname(ps) { P }



2.3 Conditionals

Consider the following process:
casetf(t, Pr, f, Pr) onew T, F (
T(i() > (Pr | 570p(F))] |
FIf() > (Pr | stop(T))]

If there is a write on channel ¢, then process Py is executed. If the write is on channel f, process Pp is executed
instead. The result is not predictable if there are simultaneous writes on both ¢t and f. A process wanting to execute
Pr would be:

new t,f(casetf(t, PT: f: PF) | i())

Similarly, to execute Pg: .
new t,f(casetf(t, PT: f: PF) |f())

Based on this process, we write:
if Qcond(ps) then Py else Py fi

to represent a process:
Qcond(ps)(t, f) > casetf(t, Pr, f, Pr)

If process Pr is 0, we write:
if Qcond(ps) then Py fi

if elsif ... elsif else fi statements can be constructed using the basic if then else fi process.
Booleans are represented by processes at channels frue and false. Each of the processes receives two channels ¢
and f. The process waiting on true always writes on ¢; the process waiting on false always writes on f:

true(rc) o fresh t.f (7e(t, f) | 1))

false(rc) o fresh t,f (7e(t, f) | A))

A process at channel not implements negation:

not(t, f, rc) o 7e(f; 1)

We write:
(not Qcond(ps))(t, f)>---

for,

Qcond(ps)(t', f') > Qnot(t', f') (1, H > - - -

This allows us to write the following expression:
if (not Qcond(ps)) then Py fi

Boolean operators or, and are similarly defined.

2.4 Lists

Inspired by the implementation of lists in [26, 29], a list receives two channels e and c. If the list is empty, the list
writes to e, without passing any values back on e. If the list is not empty, it writes to c the list’s header s and tail ss:

empty(rc) o fresh [ (7¢(1) | {(e,c) o €())
cons(s,ss,rc) o fresh [ (7¢(1) | I(e,c) © T(s,ss))

An empty list [ is obtained by executing:
@empry() (1)

And a list [, with element a, is constructed by:

Qcons(a, @empty())(1)



car and cdr are defined with their usual meaning:

car(l, rc) o new e,c (Z(e,c) | c(s,s5) >7C(s))
cdr(l, re) onew e,c (I(e,c) | c(s,s5) > 7(ss))
Also, we introduce ::, and [; - - - ;] as used in OCaml [2]:
[] Qempty()

[a] = Qcons(a, Qempry())
[a; b; ¢] = Qcons(a, Qcons(b, Qcons(c, Qempty())))

S
M1

The symbol :: is therefore a shorthand for cons. Commas can be used instead of semicolons when specifying lists:
[a,b,c] = la;b;c] = Qcons(a, Qcons(b, Qcons(c, Qempty())))

As well, we introduce:
match [ with

[1 > Pempty
ors:ss b P,

to represent:
if Qisempty(I) then P,,p, else Qht(1)(s, ss) > Peons fi

where isempty is defined as:

isempty(l, rc) onew e, ¢, T, F fresh ¢, f .
re(t, f) | (e, c) | Tle() > () | stop(F)] | Fle(s, ss) > () | stop(T)]

We also specify ht which returns, both, the head and tail of a list:

ht(l, rc) o new e (I(e,rc))

If [ is empty, €() will be written, but no process will be waiting for input on e. Hence, it should only be invoked on
non-empty lists.
Other usual list functionality can be represented in kell-m as follows:

Soldr(p, v, I, rc) o (
match [ with
] > ()
or s ::ss > 7¢(@p(s, @Qfoldr(p, v, ss)))
)
copy(l, rc)kpore(Qfoldr(cons, [ ],1))
pos(l, n, rc) o (
match [ with
150
or s ::ss > if (n = 1) then 7¢(s) else pos(ss, n — 1, rc) fi

)

For simplicity, we assume support for numbers in kell-m. For ways to represent numbers in process algebras refer to
[29].

The process at channel del in the following process expression deletes all occurrences of m in list [. We assume the
existence of the = operator, which is able to decide if two names are the same.

append(ly,lo,rc) o 7e(Qfoldr(cons,la, 1))
reverse(lrc) o (
match [ with

[1 > 7e((])

or s :: ss > 7¢(@Qappend(Qreverse(ss), [s]))

)
del(Lm,rc) < re(Qfoldr(d,[],1))



where,
d(s, 1, rc) o if s = m then 7c(l) else 7¢(s :: 1) fi
To represent sorted lists we require a channel cmp, that given two elements, decides if the first element should be
before the second one in the sorted list:

consg(h, hs, cmp, rc) o (
match hs with
[] > (@cons(h,[ )
ors:ss > (
if @Qcmp(h,s) then 7¢(h :: hs) else 7c(Qcons(s, Qconsg (h, ss))) fi

)
)
A parallel map iterator can be implemented by:
map(l, p) < (
match / with
[1>0

ors::ss > (
| Qp(s) | @map(ss, p)

We write:
foreach ¢ in s do P; done

for,
fresh p ((p(2) o Py) | map(l, p) )
A sequential version of the iterator can be implemented if process Py writes to a donec channel when done:

donec() | foreach t in ts do (donec() > P;) done

2.5 Modules

We encapsulate variables and processes into modules, a construct similar to OO classes but without inheritance and
other OO features. A module is declared with the following syntax:

module name {
Var vy, ..., Up;
c1(psy) > Pr;
Cz(Pvag) > Py;

cn(]ﬁ;) > Pp;
}

The module encapsulates variables v, ..., vy, , and implements operations at channels ¢y, ..., ¢,. We call these channels
the methods of the module.
A module declaration corresponds to the following kell-m expression:

name(rc) ¢ fresh vy, ..., vy, (

var(vy, null) | -+ | var(vp,, null) | 76([v1; ...; vm))
) |
name__vars(self,rc) o (

@pos(self, 1)(vy) > @pos(self, 2)(vz) b - - - > Qpos(self, n)(vy) > Fc(v1, ..y Uy)
)|
name__c (self,ps;) © (Qname_vars(self)(v1,...,v,) > P1) |
name__cs (self, ps,) o (Qname__vars(self)(vy,...,v,) > P2) |

|

name__cy, (self, ps,) © (@name_vars(self)(vy, ...,v,) > Pp)



An instance of a method corresponds to an array of variables, one per variable in the method specification. A process
waits on channel name__c; for requests to execute method c;. The first parameter passed is always a module instance.
An extra method name__vars is defined for each module and returns the variables in the given array of variables. This
extra method is invoked for every other module method causing references for module variables in P; to be bounded
to the variables of the given instance passed as parameter self.

An instance inst of module name can be created with:

Q@name() (inst) > - - -
The - - - indicates the creation of an instance is a read. Alternatively, we write:
inst:name >
The following process illustrates how to execute the method ¢; in the newly created instance:
inst:name > Qinst: :name.c;(ps;)(vals) > - - -
If method ¢; does not return any values, the process to execute is:
inst:name > Qinst: :name.c; (ps;)

As illustrated by the previous examples, when invoking a method, the instance must be cast with the name of the
module. Variable indirections *v are not allowed in place of module names.

A module can receive parameters to be used as initial values for the variables or within the methods in the module.
The syntax for a module declaration with parameters used to initialize variables is:

module name(valy ,vals, ..., val,,) {
var vy = valy, ...,V = valy;
c1 (psy) > Pr;

cn(ps,) > Py;
}

which corresponds to the kell-m process:

name(valy,valy, ..., val,,, rc) o fresh vy, ..., vy, (
var(vy,valy) | -+ | var(vm,, valy,) | 7€([v1; -..; Um])
) |

name__vars(self,rc) o (
@pos(self, 1)(v1) > Qpos(self, 2)(va) > - - - > Qpos(self, n)(vy,) > Fe(v1, ..., V)
) |

name__c; (self,ps;) © (Qname_vars(self)(v,...,v,) > P1) |
name__cs (self, ps,) o (Qname__vars(self)(vy,...,v,) > P2) |
- |

name__cy (self, ps,)) ¢ (Qname_vars(self)(vy,...,v,) > Py)

For example, the following module temperature is used to store the temperature for a given latitude and longitude
location. Set and get methods are specified for all variables in the module.

module temperature(t, lt,n) {
var temp = t, lat .= It, lon := It
gettemp(rc) > 7c(*temp);
settemp(ntemp) > temp := ntemp;
getlat(rc) > 7e(*lat);
setlat(nlat) > lat := nlat;
getlon(rc) > 7¢(*lon);
setlon(nlon) > temp := nlon;
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Figure 2: ku Syntax

We create a temperature instance ¢ for a temperature of 22°C at location (43°, 80°) by invoking:
t:temperature(22,43,80) > - - -

To avoid the need to specify set and get methods for variables in a module, these methods are always provided.
Moreover, we write *(t::temperature.temp) for:

@r: :temperature.gettemp() (val)
And, t::temperature.temp := newtemp for:
Qr: :temperature.settemp(newtemp)

Since module variables are regular variables, only get methods are required. Once a variable method has been
returned by the get method, its value can be set as a regular variable.

3 High-Level kp

Properties in ky are formulas F with the syntax specified in Figure 2. The syntax is inspired by the language imple-
mentation of the 7p-calculus in the Mobility Model Checker [44]. Along with the term ku formula, we also use the
term ky condition when referring to a kyu property.

tt represents true, £ f represents false, =.F is used to negate a condition specified by a formula. a and b represent
names, n represents a number. C specifies comparison of values passed in communications, containment conditions on
lists of names, containment conditions on kell sets, or checks on the size of a kell containment set.

In the extended labelled transition semantics of kell-m, as specified in [8], transitions are decorated with the channel
or kells involved in a communication, as well as the location where the abstractions (reads) and concretions (write)
actions are taking place. An actual communication is called a 7 transition, and is labelled as ‘@’ (@) or K [P]. A T
transition labelled <7(15) corresponds to a communication between a reader process and a writer process on channel
a. A T transition labelled <?[P] corresponds to a kell passivation on kell K. In general a transition has one of the
following two forms:

e R 2% , with o having the form of an abstraction (a(¢) or K[x]) or a concretion (@(@) or K[P]). Abstraction
a(c) indicates that process R is able to read on channel a. Concretion a(w) indicates that process R is able
to write on channel a. Abstraction K[x] indicates that process R is able to passivate kell K. Concretion K[P)]
indicates that kell K[P] is executing in R. @ is the resulting process after the transition, and « is the kell
containment set for the process (the locations where the action is taking place).

o R 2"y ) with ar having the form @’ (@) or ?[P] This transition is a 7 transition and represents the

matching of an abstraction and concretion. «, is the kell containment set for the process where the abstraction
is executing, and k. is the kell containment set for the process where the concretion is executing.

Formulas in ku have the form (¢).F, [¢].F, (—p).F, [-¢].F, (—{¢1, p2, ...}).F, and [-{¢1, p2, ... }].F, with F
a formula, and ¢ a condition on a transition. Conditions on transitions specify the action being executed by the process
and, optionally, a kell containment condition restricting the location of the process executing the action. When ¢ is
negated, —¢, the ku formula applies to transitions where the transition condition ¢ does not hold.



When the condition ¢ on a transition is within a diamond modality, (¢).F, the formula holds if there is at least one
transition from the current process such that the transition meets the conditions imposed by ¢, and formula F holds for
the resulting process. When within a box modality, [¢].F, F must hold for every process for which a transition from
the current process meets the conditions imposed by ¢.

For sets of transition conditions, ({1, 2, ...}).F is equivalent to {p1).F V {(p2).F V ..., and [{p1, ¢2,...}].F is
equivalent to [¢1].F A [pa] F A ...

( is a condition on a concretion or abstraction transition when ¢ is a pair (a, ), and « represents an abstraction
(i.e., a(¢), K[x]), or a concretion (i.e., @(w), K[P]). v represents a kell containment condition on the action o.. Com-
munication parameters in « (i.e., ¢, w, x, and P) can be variables and names. If they are names, they must match the
names of the parameters in the transitions; if variables, they are instantiated with the corresponding parameter.

¢ is a condition on a T transition when ¢ is a triple (-, 7, 7), and o, represents T actions (i.e., ‘@ (@), (?[P]).

Kell containment conditions 7y are any for %, when no condition is imposed on the location of the action; exactly
for KC, when the action must occur within and only within C; at least for D K, when the action must occur in X and
optionally in other locations as well; except for ,@ IC, when the action cannot occur in K; and instantiation for I, where
I is a variable, when the location condition is later specified in a C expression.

We introduce a few sugared constructs for ku. The intention is to improve the readability of ku properties. As
usual, implication 7 = F is defined from —F and F V F. We use inert to specify [-].££. inert holds when, in the
LTS, there are no more transitions from the current state.

We also introduce the following process definitions:

future(N) £ [=].(N V (—inert A future(N)))
N) = (=).(N V future,(N))
N) £ NV future(N)

) £ NV future,(N)

future
Eventually
Eventually,(N

(
e
(
(
Weuse F(N),F.(N),E(N), E.(N) as shorthand notations for future(N ), future, (N ), Eventually(N ), and Eventually,(N ).
When no kell containment condition is specified, * (any) is assumed. For example, we write (a(c)).F for (a(c), *).F.
Moreover, if no formula is specified after a (. ) and [ . ] modalities, tt is assumed. Therefore condition {(a(c), *).tt
can be written as {a(c)).
Kell containment conditions for 7 transitions are also optional, and * is assumed for both abstraction and concre-
tion. If only one kell containment condition is specified for a 7 transition, it is assumed the condition applies to the
abstraction, and * any is assumed for the concretion. Therefore,

(_<)<7(C)> = (z(c),*,*).tt
(‘a’(c),yy = (a(c),7,%).tt
(@), 707) = ((@(0), 70 7e)-tE

When specifying properties for methods in modules, communication channels can be specified as module.method
and inst::module.method. Recall method modules are represented on channels named module__method, and receive as
first parameter a method instance corresponding to a list of module variables (cf. Section 2.5). For example, we write
(module.method(ps)) for (module__method(ps)), and (inst::module.method(ps)) for (module__method(inst, ps)).

Finally, property naming PropName(ps) < F, can be written as:

property PropName(ps) { F }

4 Common API

Although there is no standard DEBS API supported by each DEBS, a Common API has been proposed by Pietzuch et
al. [35]. This Common API consists of two other APIs: a Core API, and an Optional API. DEBSs following the Core
API are referred to as simple DEBSs [19, 20, 35]. The Core API contains the basic calls required in the subscription
and announcement of events. The Optional API extends the Core API by providing calls for DEBSs requiring the
advertisement of the events to be published.

The APIs only list the calls, parameters, and returned values. No data types or implementation details are specified.
How the calls are implemented in a specific DEBS determines the event model provided by the system. As shown by
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process coreapi_debs(subscribe, unsubscribe, publish, deliver) {
fresh sem (
sem() |
var subsc := [ ] in (
subscribe(filter, callback, ttl, rc) o (
fresh s (
subscription(s, filter, callback, ttl)
|
sem() > (subsc ;=5 Qcons(s, *subsc)) > (7c(s) | sem())
)
)
|

unsubscribe(s) o (
sem() > (subsc ;=5 Qdel(*subsc, s)) > sem()
)

publish(e) ¢ (
foreach s in *subsc do @Qs(deliver, ¢) done
)

)
)

Figure 3: Core API Specification

Pietzuch et al., the APIs can be supported by well-known DEBSs with little effort. This is the main reason for our use
of the APIs: in this report we model DEBSs as systems providing a DEBS API and behaving according to a DEBS
event model.

The calls in the Core API are:

subscribe(filter,callback,ttl) — subscription
unsubscribe(subscription)
publish(event)

filter is an expression determining the events of interest to a component. When an event of interest has been
published, it is communicated to the interested component via a callback routine. ttl is a time-to-live or ex-
piration date determining for how long a subscription should be kept in the system. A subscribe call returns a
subscription which, depending on the system, could be an object or handle.

The process coreapi_debs in Figure 3 represents generic functionality for DEBSs supporting the Core API. The
process takes as arguments channels subscribe, unsubscribe, publish, and deliver. With the exception of the deliver
channel, the other channels correspond to the calls in the API.

The list subsc in coreapi_debs stores the active subscriptions managed by the DEBS. sem is a binary semaphore
(implemented as a channel), used to guarantee exclusive access when the list of subscribers is being modified.

Assuming a subscription process, specified in Figure 4, when a subscription request is received a subscription s is
created, returned, and added to subsc. The synchronous variable assignment (:=4, cf. Section 2.2) is used to be able
to release the semaphore after the list has been updated. An unsubscribe request removes the given subscription from
subsc.

Features that typically vary among different systems are parameterized in the coreapi_debs model. For example,
implementation details with regards to the routing of events between brokers in the DEBS middleware. Because
of our process-based approach to the specification of DEBSs, the parameterization of features is done by assuming
processes at predetermined channels model specific details for a system of interest. In coreapi_debs, delivery of events
is parameterized via a delivery channel. The specification of the process at the delivery channel depends on the actual
system being modelled. A trivial delivery process is:

deliver(callback, event) o Qcallback(event)
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process subscription(notify, filter, callback, ttl) {
notify(deliver, event) ¢ (
if (Qfilter(event) and Qzt/()) then
Q@deliver(callback, event)
fi

Figure 4: Subscription Process for Core API

Other possible delivery process specifications are discussed in [6].

When an event is published, each subscription must decide if the event is to be delivered to the subscriber. Given
our process-based approach, filter is a channel where a process, capable of identifying if a published event should be
delivered to a component, is waiting for filtering requests. Similarly, callback is a channel where a subscriber process
is waiting for event notifications. f#/ is a channel representing a time-to-live or expiry time for the subscription. event
is a channel where a process representing an event can be accessed.

A model for a specific system can then be produced by composing the specification of a DEBS API compatible
with the event model of the DEBS of interest, and processes specifying the functionality parameterized in the DEBS
API model. These processes model functionality specific to the DEBS of interest:

coreapi_debs | SystemSpecificFeature, | SystemSpecificFeature,, | - -

4.1 Safety and Liveness Properties

We show how basic safety and liveness properties, previously proposed for DEBSs [31, 20], can be specified when the
coreapi_debs process is used as the model of a DEBS. We specify two safety properties: events are not delivered to
uninterested subscribers, and delivery of an event to a subscriber never occurs prior to the subscription and publication.
We also specify a liveness property requiring published events to be notified of all subscribed components.

We start by specifying a property holding when a time-to-live for a subscription is still active:

property c_active(Ttl) { Ee((ﬁ(Rc)).returns,true(Rc)) }

We use uppercase for variables. E., existential eventually, was defined in Section 3, and holds if the formula received
as its only parameter holds in at least one transition from the current process, or in the future as the process evolves.

For a subscription, c_active holds if the process at Tt/ returns true. Recall from Section 2.3, booleans in kell-m
are represented by two channels. If communication occurs on the first channel, true is assumed, and if communication
occurs on the second channel, false is assumed instead. In returns_true, the channel corresponding to true is represented
with variable T

property returns_true(Re) { E.((Re(TF).E((T O))) }

Properties c_active and returns_true require actual communications to occur in the process. Actual communications
correspond to 7 transitions in the LTS representing the evolution of the process. Potential for communication corre-
sponds to LTS transitions for abstractions and concretions. The following property uses potential for communication
to specify the condition under which a time-to-live is active:

property [_active(Ttl) { E.((Ttl(Rc)).l_returns_true(Rc)) }
where [_returns_true is defined as:
property [_returns_true(Rc) { E.((Rc(T, F)).E.((T()))) }

We now specify a property c_interested, holding when a given event Event is of interest to a subscription filter
Filter:
property c_interested(Filter, Event) { E,((Filter(Event, Rc)).returns_true(Rc)) }
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The following safety property holds if the system cannot evolve such that an event is delivered to an active sub-
scription without interest in the event:

property of-interest_only() {
—E, ((subscribe(Filter, Callback, Ttl, Rc)).
E.((Filter(Event, Rc)).
E.((RC(T, F).
E. ((? ().E.(deliver(Callback, Event)))

)
)
)}

We assume the callback and filter channels are unique to each subscription.
The following property should not hold on processes representing DEBSs. It specifies an event delivery occurring
before a subscription to the event:

propert.y c_delivery_before_subsc() {
(deliver(Callback, Event)) V
(—subscribe(Filter, Callback, Ttl, Rc)).c_delivery_before_subsc()

}

— —
A modality (—subscribe(Filter, Callback, Ttl, Rc)).F holds for a process P if 3Q) : P S, Q, a # subscribe(Filter, Callback, Ttl, Rc),
and F holds for Q.
Similarly, a delivery of an event cannot happen before the publication of the event:

property c_delivery_before_pub() {
(deliver(Callback, Event)) V
( —publisZ(Event)) .c_delivery_before_pub()

}

When an event is published, DEBSs attempt to notify all subscribed components. The following safety property
holds if the publication of an event and the interest of a subscription on the event imply the event is delivered to the
subscriber, unless the subscriber unsubscribes or the time-to-live for the subscriber is exceeded:

property all_notified() {
—E. ((subscribe(Filter, Callback, Ttl, SubRc)).EJ(W(S)).
E. ((@(Event)) .
E. ((Filter (Eyent, ROVE((RA(T, F))E((T ()).~(
E. ({(deliver(Callback, Event)))
EA(gsubscribe(S))) \Y% o
E, (T (TrRe)) K, (FIRE(T, ) E((F 0)))

}

4.2 Unordered Delivery

Few DEBSs guarantee events are notified in the same order they are delivered [7]. The following property specifies
events may not be delivered in the order they are published:

property c_unordered notification() {
Ee(<publisZ(E1)>.
Ee((publisZ(EQ».
: E. ({deliver(Cs, E)).E. ({(deliver(C1, E1))))

)
}
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A DEBS does not provide ordering guarantees if the publication of E; followed by the publication of E, may be
followed by the delivery of E, prior to the delivery of Ej.

4.3 Kell Containment Properties

It is possible to use kells and kell containment conditions when formalizing features of interest in a system. For
example, one may be interested in guaranteeing events of a certain kind are only published by components executing
on a certain location. Using kells to model locations, such a property can be specified as:

property c_from_site_only(Site, Event) {
[publisiz(Event),Kr,Kw].(Site € Ky) A [—].cfrom_site_only(Site, Event)
}

Or,
property c_from_site_only(Site, Event) { ﬁEe((publisZ(Event), K,, ¢ {Site})) }

For example, c_from_site_only(waterloo, event) holds if all events event are only published by components within
kell waterloo. In c_from_site_only, instead of specifying:

[publisZ(Event), K,, K,).(Site € K,,)
one may be tempted to write:
[publisZ(Evenl), * D {Site}]

which is equivalent to:

[publiszt(Event), * D {Site}].tt

But such a condition just establishes that tt must hold for every event published at Site, not that every event Event
should be published at Site.
In general, when it is required that every process performing an action o within a kell K must meet a condition F
the formula to specify is:
[, %, D {K}].F

When every action a must occur within a kell K, the condition to specify is:
[, * k). (K € Ky).
A site may be forbidden from publishing events. Such a property would be specified as:

property c_not_at_site(Site) {
[publisz(Evem),K,,,Kw].(Site ¢ K,) A [—].cnot_at_site(Site)

Publishing components not at Sife may need to meet extra condition J:

property c_extra_cond_if-not_site(Site) {
[publish(Event), K, L {Site}].F A [—].c_extra_cond_if-not_site(Site)

Event dependency conditions can also be specified based on location. For example, consider the case when publications
of Ej at Site are always followed by a publication of event Es:

property chained_events(E, , Es, Site) {
ﬁEe((publisZ(El), K, D {Sit€}>."E(([)Mbll'SZ(EQ»))
}
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When events are structured, sometimes it is necessary to include kell-m expressions exposing the data in the events.
This allows properties such as c_from_site_only above to identify events of interest. For example, a kell-m process
exposing the data for temperature events represented as instances of a temperature module (cf. Section 2.5) is:

process expose_temp(T, Rc) {
Rc(*T::temperature.temp, *T: :temperature.lat, *T: :temperature.lon)
}

Such a process needs to be invoked for every temperature event published. In general, one can modify the publish
call to receive the event and a channel able to expose the event’s data. Alternatively, a unique process able to expose
the data for all events in the system can be assumed. This generic process could be invoked by the process at channel
publish. The actual approach will depend on the system being specified and the properties to verify.

Once the model has been modified to expose event information, a property temp_at_location can identify, given an
event, locality requirements for the publishing process:

property femp_at_location(T, Lt, Lg? {
E. ({expose_temp(T, Rc)).E.({Rc(Temp, Lat, Lon)).(Lat = Lt A Lon = Ln)))

A more accurate check for location can be done calculating distances based on the given latitude and longitude coordi-
nates. For simplicity, in this example we check for exact latitude and longitude coordinates.
We then modify property c_from_site_only to receive as parameter the coordinates of interest:

property c_from_site_only(Kell, Event, Lat, Lon) {

[publisZ(Event), K, , K,).(temp_at_location(Event, Lat, Lon) = Kell € K,,) A
[—]-c_from_site_only(Kell, Event, Lat, Lon)

}

Similar properties can be specified to restrict the location of subscribed components.

4.4 Kell Passivation Properties

Besides the ability to specify properties imposing conditions on the locations of the actions, another novel aspect of our

work is the ability to specify properties on the passivation of kells. For example, one may be interested in specifying

that after a given event is received by a subscribed component, the subscribed component is passivated and moved to

another location. Such a property is useful when specifying services that migrate based on the availability of resources.

A service may receive an event indicating that the resources at its current location (for example a computer) are running

low. The reaction of the subscribed event is then to migrate to another computer where resources are available.
Consider the following property:

property service_migration(Callback, Service, Event) {
[Callback(Event), D {Service, Computer, }, *].(

E((§ervice[X], D {Computer, }, x).(Computer, # Computer.))
) A [—].service_migration(Callback, Service, Event)

}

where Service is the kell for the migrating service and Callback is the callback registered by the service for the noti-
fication of events representing low resources. For simplicity we assume the value provided in the property parameter
Event matches such events.

The property service_migration holds for systems where the service Service is notified of a low resource event
Event while executing at computer Computer; and its reaction is to move to a computer Computer,. Notice the

action Service[X] in the property corresponds to the passivation of the service Service. The passivation is performed at
computer Computer.,.

In the previous example the services themselves decide when to migrate. Some systems may perform forced
migration where a monitoring component migrates the services as reaction to events received. The event themselves
may include information of which service to migrate.
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Consider the following property,

property forced_migration(Callback) {

[CallbacZ(System)] . (E((§ervice [X], { Computer, }, {Computer,}))) A
[—].forced_migration(Callback)

}

Callback is the channel at which the process performing the migrations receives the events. For simplicity, we assume
the system to be migrated is received as the event itself. Property forced_migration holds when systems are migrated
from one computer to another one after the event triggering the migration is received. Computer; is the computer
where service Service is running, Computer,, is the computer to which the service is migrated.

In some systems a number of servers may be dynamically adjusted according to the number of client requests. For
example a web server may spawn web server processes when the number of http requests increases. When the number
of http requests decreases, a number of servers may be killed. A property specification in this case is:

property reduce_servers(Callback) {
[Callbac (WebServer)].(E((W)(Web&erver».E((WebServer[X])))) A

[—]-reduce_servers(Callback)

}

Callback is the channel where the process in charge of killing web servers is waiting for the events. Again, for
simplicity we assume the event itself is the web server to kill.

Passivation is not restricted to stopping or changing the location of a process. Passivation can also be used to
alter the process executing within a kell. For example, consider the following process specification where the features
provided by a process in a kell K are adjusted after an event e is received:

process adjust_features() { callback(e) > (K[X] > K[P]) }

In the example, the process for kell K is changed to P when an event e is received in the callback channel. Such an
specification may be useful for applications executing in handheld devices. When running low on battery, one may
be interested in having the applications in the handheld adapt by providing a reduced set of features. Assuming a
low-battery event, P in the previous specification corresponds to the reduced features of application K available when
the device is running at low battery. A kyu property can be specified requiring the passivation after such events are
received:

property change features() {

([callbacZ(Event)].E((?[X]))) A [—].change_features()
Event in the property corresponds to the low-battery event.

4.5 Optional API

Knowing the kinds of events that will be published allows DEBSs to optimize the routing of events to subscribers.
Hence, several DEBSs require publishers to advertise events prior to publication (e.g., Hermes [36] and Siena [12];
details in [8]). For these systems, the core API is extended with event advertisement and the ability to update the
time-to-live of both subscriptions and advertisements. Specifically, the Optional API extends the Core API with the
following calls:

advertise(filter,ttl) — advertisement

unadvertise(advertisement)

renew_sub(subscription,ttl)

renew_adv(advertisement,ttl)

A filter in an advertisement is an expression determining the events being advertised; tt1 determines how long
should the advertisement be kept in the system.

Based on the specification for the Optional API [35], when an event is published there is no way to guarantee the
announcer of the event is the same component which advertised the event. In practice, DEBSs identify the component
either explicitly because a parameter is passed to the call identifying the component ([e.g., 12, 36]), or implicitly
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process subscription(notify, renew_subsc, filter, callback, ttl) {
var vitl := tl in (
notify(deliver, event) < (
if (Qfilter(event) and Qrtl()) then
Qdeliver(callback, event)
fi

)
|

renew_subsc(nittl) o (
vitl := nttl

)
)
}

Figure 5: Subscription Process for Optional API

because the API implementation attaches identifying information to the requests when communicating with the system
([e.g., 31]). In any case, to simplify the representation of advertisements we alter the publish call in the API by
adding as parameter the advertisement. Notice without this extra parameter we would need to keep a list of advertise-
ments and, upon event publication, search in the list for a matching advertisement.

Compared to the Core API, support for advertisements in the Optional API is the most relevant feature addition.
Therefore, we further simplify our representation of the Optional API by excluding time-to-live renewal calls. The
calls require the ability to update time-to-live values. For subscriptions, a possible specification is shown in Figure 5.

A kell-m model representing generic functionality of a DEBS supporting the Optional API with our simplifications
is shown in Figure 6. The subscription process is the same as the one for coreapi_debs (Figure 4). The advertise
call in the API is modelled as channel advertise receiving the filter, time-to-live, and a return channel. The return
channel is used to return a newly created advertisement a.

When an event is published and before notifying subscribers, a process at a checks if the event being published is
accepted by the advertised filter. The actual notification is specified in the advertisement process depicted in Figure 7.

Safety and liveness properties specified for the Core API in Section 4.1 apply to the Optional API as well.
Safety properties c_of-interest_only and c_delivery_before_subsc can be used without modification. The property
c_delivery_before_pub needs to be modified to include the advertisement when events are published:

propert'y o_delivery_before_pub() {
(deliver(Callback, Event)) V
(—{publish(Adv, Event), subscribe(Filter, Callback, Ttl, Rc})).o_delivery_before_pub()

The following safety property, exclusive to the Optional API, requires published events to match their advertise-

ments:
property o_matches_adv() {

Ee((publisZ(Adv, E))) =
E. ({advertise(Filter, Ttl, Rc)).Ee((E)(Adv)).c,interested(Filter, E)))

Liveness property c_all_notified needs to be modified to take into consideration the possibility of unadvertisements.
First we specify an auxiliary property holding when an advertisement is created and an event of interest to a subscriber
is published using the advertisement:

property o_adv_sub_pub(FilterA, TtlA, Filter, Callback, Ttl) {
S
E. ({(advertise(FilterA, TtA, RcA)).Ee((m(Adv) ) A
E. ((subscribe(Filter, Callback, Ttl, SubRc)).E.({(SubRc(S)))) A
Ee((publisZ(Adv, Event)).(c_interested(Filter, Event) A c_interested(FilterA, Event)))

}
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process optapi_debs(subscribe, unsubscribe, advertise, unadvertise, publish, deliver) {
fresh sem (
sem() |
var subsc := [ ] in (
subscribe(filter, callback, ttl, rc) o (
fresh s(
subscription(s, filter, callback, ttl)
|
sem() > (subsc :=, Qcons(s, *subsc)) > (7¢(s) | sem())
)
)
|

advertise(filter, ttl, rc) o (
fresh a(
rc(a) | advertisement(a, filter, ttl)
)

)

publish(a, e) o (
Qa(subsc, deliver, e)

)

|

unsubscribe(s) ¢ (

sem() > (subsc 1=, Qdel(*subsc, s)) > semy()
)
|

unadvertise(a) o 0

Figure 6: Optional API Specification

process advertisement(advnotify, filter, ttl) {
advnotify(subsc, deliver, event) < (
if (Qfilter(event) and Qrtl()) then
foreach s in *subsc do @Qs(deliver, event) done
fi

Figure 7: Advertisement Process for Optional API
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FilterA and TtlA are the advertisement’s filter and time-to-live. Filter, Callback, and Ttl are the parameters of the
subscription. The liveness property can now be specified as:

property o_all_notified() {
o_adv_sub_pub(FilterA, TtlA, Filter, Callback, Ttl) =

(E. ((deliver(Callback, Event))) V

E. ((unsubscribe(S))) V

E. ((imadvertise(Adv))) V

E. ((ﬁ (TtlRc)).—returns_true(TtIRc)) V
E. ((m (TtIRA)).—returns_true(TtRcA)))

The kell containment and kell passivation properties specified for the Core API also apply to the Optional API.
Properties where actions on the publish channel are specified (e.g., c_from_site_only, c_not_at_site) need to be adjusted
to include the advertisement.

5 REBECA

Most DEBSs readily support the Common API, or can be easily modified to support it [35]. An example is REBECA,
also known as the Rebeca Event-Based Electronic Commerce Architecture. Developed by Gero Miihl [31], REBECA is
a DEBS originally proposed for the study of event routing algorithms [30, 32, 31, 33]. REBECA provides content-based
event subscriptions with event replaying capabilities.

The calls in the API provided by REBECA are:

voidpublish(Event e)

void subscribe(Subscription s,EventProcessor proc)
void unsubscribe(Subscription s)

void advertise(Advertisement a)

void unadvertise(Advertisement a)

Subscriptions and advertisements are instances of classes Subscription and Advertisement. These classes are
subclasses of a Filter class. Each filter instance implements a match method, able to identify if a given event is
of interest. Parameter proc in the subscribe call is an instance of EventProcessor, and provides a callback
process method to be invoked when an event is notified.

Comparing REBECA’s API with the Optional API presented in the previous section, subscriptions and advertise-
ments in REBECA correspond to filters in process optapi_debs, and event processors correspond to callbacks. Since
REBECA does not have time-to-live support, REBECA’s subscription call can be modelled with optapi_debs’s subscribe
call, specifying true as time-to-live. Recall from Section 2.3, a process at true, always returns two other channels, ¢
and f, and writes on the first one.

Later releases of REBECA support scopes, a hierarchical structuring mechanism for DEBSs [19, 20, 18]. The
specification of scopes in this section showcases the use of kell-m to represent advanced features proposed for DEBSs.

A scope is a group of publishers, subscribers, and other scopes. Publishers and subscribers are called simple
components, whilst scopes are called complex components. Formally, with C the set of simple components, S the set of
scope (complex) components, and £ a binary relation over C' = C U S, the scope hierarchy is modelled by a directed
acyclic graph G = (C, E).

To support scopes, REBECA’s API is extended with the following calls:

void joinScope(Component c,Scope s)
void leaveScope(Component c,Scope s)

Class Scope is a subclass of Component. joinScope and leaveScope allow a component to join and leave
scopes.

Key to the concept of scopes, is the fact that visibility of events is limited to the components enclosed within
a scope. Formally, visibility v is a reflexive and symmetric relation over C. Having super(X) = X'|(X,X') € E
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Figure 8: Sample Scope Hierarchy

denote the set of parents of X in the scope hierarchy, two components X and Y are visible to each other, v(X,Y"), if
they both are part of a common superscope:

v(X,Y) e X =Y VoY, X) Vo(X',Y) with X’ € super(X)

When a component publishes an event, the event is delivered to all subscribed components visible to the publisher
component.

For example, consider the scope hierarchy depicted in Figure 8. Boxes are used to represent scopes, and circles
to represent simple components. Dashed arrows represent the propagation of an event published by C4. Propagation
occurs only to visible components: S3, Sa, Cy and Cs. If interested, these are the only components notified of such an
event. An event published by () is visible to all components, and an event notified by C} is only visible to S; and Cs.

5.1 Specification of Scopes and Event Visibility

Because a component in REBECA can belong to more than one scope, kell containment cannot be used to model scope-
containment relationships. Hence, we model the scope hierarchy as a list of pairs [S, C], indicating that component C'is

in scope S. The representation of the scope hierarchy for Figure 8 is [[S1, C1], [S1, Cs],[S2, C2], [S2, Cs], [S3, S2], [S3, C4]]-

Given a component and the scope hierarchy shchy, the following process at channel super returns the list of parent
superscopes for the component:

super(c, shchy, accum, rc) o (
match shchy with
[1 > 7e(accum)
or s :: ss > if (Qmember(c, @Qpos(s, 2))) then
super(c, ss, Qcons(Q@pos(s, 1), accum), rc)
else

super(c, ss, accum, rc)

)

Partial results are stored in parameter accum. For example, when super(Cs, shchy, [ ], rc), the list returned in channel
rcis [Sl, Sg]
The visibility v, between two components ¢; and cs, is determined by the following process at channel v:

v(e1, e, shchy, rec,re) o (
if (¢; = ¢z or (rec = 0 and Qv(cs, ¢1, shchy, 1,rc))) then
fresh ¢, f (7¢(¢, f) | 1))
else
W(@Super(cla shchy, [ ])7 C2, shchy, VC)
fi
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Notice the process at channel v closely follows the definition of visibility v(X, Y') previously presented. Parameter rec
is used to flag the invocation where components ¢; and ¢, have been swapped. Otherwise, the recursion may never end.
At channel vsuper, the following process checks for visibility between a component c and a list of scopes supscopes.
Parameter shchy represents the scope hierarchy:

vsuper(supscopes, ¢, shchy, rc) ¢ (
match supscopes with
[] > fresht, f (re(tf) [ ()
or s ::ss > if (Qu(s, ¢, shchy, 0)) then

fresh ¢, f (7e(t.f) | 1())
else
vsuper(ss, ¢, shchy, rc)
fi
)

Using the previous processes, the specification for a DEBS with support for scopes is depicted in Figure 9. Because of
the need to know the components involved in the interactions, most of the methods are extended with a parameter rep-
resenting the component. Since REBECA does not support time-to-live, this feature is excluded from the specification
to simplify the model.

Besides subsc, the list of subscribers used in the to previous models presented in this section, a list shchy storing the
scope hierarchy is now used. Two semaphores are used as well, sem_s is used to guarantee exclusive access to subsc,
and sem_h for shchy. The scope hierarchy is maintained by the processes at channels joinscope and leavescope.

The actual check for visibility is modelled in the subscription process as shown in Figure 10. Notice the extra
parameter passed to the notify channel in the subscription process. It corresponds to the publishing component. An
event is delivered if it is of interest and if the subscriber and publisher components are in a common scope.

The advertisement module, as shown in Figure 11, receives the component for which the advertisement was created,
and passes that information as a parameter when communicating with subscription processes.

5.2 Safety and Liveness Properties for Scoped DEBSs

Safety properties specified for simple DEBSs specified in Section 4.1 also apply to scoped DEBSs but require modifi-
cation to include the new parameters for component and to exclude time-to-live conditions:

property s,of,m.terest,only() { .
—E, ((subscribe(Component, Filter, Callback, Rc)).
(B ({deliver(Callback, Event))) A —c_interested(Filter, Event))

}

propert.y s_delivery_before_subsc() {
(deliver(Callback, Event)) V
(—subscribe(Component, Filter, Callback, Rc)).s_delivery_before_subsc()
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process scoped_debs(subscribe, unsubscribe, advertise, unadvertise, publish,

Jjoinscope, leavescope, deliver) {
fresh sem_s, sem_h (
sems() | sem_h() |

var subsc := [ ], shchy .= []in (
subscribe(component, filter, callback, rc) o (
fresh s(

subscription(s, component, filter, callback)

|
: sem_s() > (subsc :=4 Qcons(s, *subsc)) > (7c(s) | sem=s())
)
|

advertise(component, filter, rc) o (
fresh af(
rc(a) | advertisement(a, component, filter)
)

)
|
publish(a, e) o (
Qa(subsc, shchy, deliver, e)
)

unsubscribe(s) o (
sem_s() > (subsc :=; Qdel(*subsc, s)) > sems()

)
|
unadvertise(a) o 0
J'oinscope(component, scope) o (
sem_h() > (shchy :=4 Qcons([scope, component], *shchy)) > sem_h()
)
|

leavescope(component, scope) o (
sem_h() > (shchy :=, Qdel(*shchy, [scope, component])) > sem_h()
)
)
)

Figure 9: Scoped DEBS Specification

process subscription(notify, component, filter; callback) {
notify(deliver, pubcomponent, event) ¢ (
if (Qfilter(event) and Qv(component, pubcomponent)) then
Qdeliver(callback, event)
fi

Figure 10: Subscription Process for Scoped DEBSs
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process advertisement(advnotify, pubcomponent, filter) {
advnotify(subsc, shchy, deliver, event) o (
if (Qfilter(event)) then
foreach s in *subsc do @Qs(deliver, pubcomponent, event) done
fi

Figure 11: Advertisement Process for Scoped DEBSs

An extra property, specific to scoped DEBSs, requires delivery of events to visible components only:

property s_scoped_delivery() {
Ee((W(Callback, Event))) = (
E. ({(subscribe(Component, Filter, Callback, Rc))) A
E. ({(advertise(PubComponent, FilterA, RcA)).
E. ((ReA(Adv)).
E. ({publish(Adv, Event)).s_visible(Component, PubComponent))

)
)
)
}

Property s_visible is specified as:
property s_visible(Cy, C) { (V' (C, Cs, Shehy, N, Rc)).returns_true(Rc) }

The liveness property for scoped DEBSs requires notification of all visible and interested components. We start by
specifying an auxiliary property holding when an advertisement is created and a subscribed and interested component
is visible:

property s_adv_sub_pub visible(Component, PubComponent, FilterA, Filter, Callback) {
E. ({(advertise(PubComponent, FilterA, RcA)).E.({RcA(Adv)))) A
E. ((subscribe(Component, Filter, Callback, SubRc)).E.({SubRc(S)})) A
Ee((publisZ(Adv, Event)).(c_interested(Filter, Event) A c_interested(FilterA, Event)\
s_visible(Component, PubComponent)))

}

An event should be delivered unless the component unsubscribes, the publisher unadvertises, or the publisher and
subscriber no longer see each other:

property s_all_notified() {
s_adv_sub_pub visible(Component, PubComponent, FilterA, Filter, Callback) =

(Ec((deliver(Callback, Event))) V
E. ((unsubscribe(S))) V
E.((unadvertise(Adv))) V

—s_visible(Component, PubComponent))

Kell containment and kell passivation properties specified in Section 4.3 apply to scoped DEBSs and do not require
adjusting. The unordered delivery property just needs to be modified to include scope-specific parameters:

property s_ordered_delivery() {
—(E. ({publish(Advy, E1)) .E.({publish(Advs, E»)))) =

E. ({deliver(C1, E\)).E. ({deliver(Cs, E2)})))
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Figure 12: NaradaBrokering Broker Network Creation

6 NaradaBrokering

With the exception of properties imposing locality constraints via kell containment and kell passivation conditions (cf.
Section 4.3), the use of kells in the models presented so far is concealed in the sugared constructs of hl-kell-m used in
the specifications (e.g., variables, control structures, list support). In this section we show how kells can be explicitly
used to model structural aspects of DEBSs. In particular we look at NaradaBrokering, a DEBS where components are
organized in a hierarchical structure [34].

Besides publishers and subscribers, in NaradaBrokering there is a special group of components called brokers.
Brokers are in charge of routing the events across the system from publishers to subscribers. Brokers are grouped in
clusters, clusters are grouped in super-clusters, and super-clusters are grouped in super-super-clusters. By default the
cluster containment hierarchy has four levels. Using NaradaBrokering’s terminology, brokers are at leaf level, clusters
are at level O, super-clusters at level 1, and so on. A broker can only be in one cluster. The term broker network is used
to refer to the complete broker hierarchy.

At least one broker is required when NaradaBrokering is started. Brokers in the network provide a join (level)
operation that can be invoked by other brokers wanting to join the network. As shown in Figure 12, when level is 0,
the requesting broker (B') joins the same cluster where the contacted broker (B) is located. When level is 1, a new
cluster is created and the requesting broker becomes the only member of the cluster. The new cluster is located in the
same super-cluster as the cluster where the contacted broker is located. If 1evel is 2, a cluster and super-cluster are
created. Assuming the default four levels in the cluster containment hierarchy, the maximum allowed value for level
is 3.

Brokers running on a computer register a network port number at the computer. Once a broker has registered, other
brokers can obtain a communication link with the broker by knowing the computer where the broker runs and the port
where the broker is waiting for requests. This setup is typical in applications using network sockets for communication.
We model this operation with the host process specified in Figure 13.

A list of brokers is kept at each host. Elements in the list are pairs (p, j) with p a port number and j a join channel.
Join channels are the channels at which brokers wait for requests from other brokers wanting to join the broker network.
As previously mentioned, ports correspond to a destination network port on the host being modelled. When the host
receives a connection request on a particular port, it looks for the join channel of the broker associated to the port.

6.1 Representation of the Broker Network

We model NaradaBrokering broker networks using kells. Specifically, brokers, clusters, super-clusters and so on
execute within kells that match the structure of the broker network. A broker network is setup by a process at channel
brokernw in the process narada depicted in Figure 14. A process at channel cluster is used to represent the functionality
of clusters and all groupings higher up in the hierarchy.

Given a number of clustering levels, and a channel for communication with the parent cluster for coordination
of join operations, the process at channel brokernw returns a process with as many nested kells as one less than the
number of levels specified. Inside each kell there is a cluster process as returned by the process at cluster. Notice
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process host(addbroker, connect) {
fresh sem (
sem() |
var brokers := [ ] in (
addbroker(joinc, port) o (
sem() > (brokers :=4 Qcons([port, joinc], *brokers)) > sem()
)

connect(port, rc) o (
match *brokers with
[1 > 7e(null)
or p :: ps > if (Qpos(p, 1) = port) then

7e(Qpos(p, 2))
else

@connect(ps, rc)

Figure 13: Host Representation for NaradaBrokering

two return channels are used at brokernw. rj is used to return a communication channel where the cluster at level 0
can be contacted for join requests; rc is used to return the actual process modelling the broker network. As done in
NaradaBrokering, a join request is first received by a broker which in turn forwards the request to its cluster which, if
necessary (i.e., level > 0), forwards the request up the broker network until it is received by the process in charge of
the requested join level.

At each level, a process (as returned by the process at channel cluster) waits for join requests at channel join. The
first argument in the communication at join is the name of the kell where the broker wishing to join is executing. If the
request is for level 0, the broker is transported to the cluster using kell passivation: K[X] > K[X]. When a broker joins
the broker network it receives as return value the join channel of the cluster where it has been placed, 7¢(join).

If the requested level is higher than the level of the cluster, the request is handed to the parent of the cluster in the
cluster containment hierarchy. Notice the parent’s own join operation is available at the pjoin channel. If the requested
level is not 0 and matches the cluster’s own level, new cluster groupings are created as previously illustrated in Figure
12, and the join request is handed to the new cluster at level O in the newly created branch.

A broker is modelled using the following process:

process broker(bjoin, cjoin) {
bjoin(kell, level, rc) < cjoin(kell, level, rc)
}

The process receives the join channel where the broker will wait for join requests, and the join channel for the cluster
where the broker has been placed.

25



process narada(brokernw, cluster) {
brokernw(levels, pjoin, rj, rc) o (
if (levels >= 0) then
fresh K, join (
Qcluster(join, levels, pjoin)(pcluster) > (
@brokernw(levels — 1, join, rj)(sclusters) > 7c(K|pcluster|sclusters))
)

else)
72(0) | rj(pjoin)
fi
)
|

cluster(join, level, pjoin, crc) o (
cre(
join(K, blevel, rc) o (
if (blevel = 0) then
K[X] » K[X] |
7c(join)
elsif (blevel > level) then
pjoin(K, blevel, rc)
else
fresh SK, njoin, rj (
Q@brokernw(level — 1, njoin, rj)(sclusters) > (
SK][sclusters] | @rj(sjoin) > sjoin(K, 0, rc)
)

)

fi

Figure 14: Model for NaradaBrokering Broker Network

Initially, a broker network of four levels and a single broker is setup by the following process:

narada(brokernw, cluster) | host(addbroker, connect) |
fresh rj (
Q@brokernw(3, null, rj)() > (
ri(cjoin) > (
fresh bjoin, B; (
By [Qcjoin(By,0)(cj) > (broker(bjoin, cjoin) | addbroker(bjoin, 1025) - - - )]
)
)
)
)

The join channel for the only cluster at level O is cjoin. A new channel bjoin and kell B, are created. Within kell B;
the only broker sets its join operation using broker(bjoin, cjoin) and registers itself as a broker on its host at port 1025.
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If a second broker knows there is a broker on the host at port 1025, it can join the broker network as follows:

fresh bjoin, Bs(
Bs[@Qconnect(1025) (joinc) > Qjoinc(Bs, 0)(cjoin) > (
broker(bjoin, cjoin)|addbroker(bjoin, 7070))
]

)

In the example the new broker registers itself at port 7070. Because the broker requested a level 0 join, no new clusters
are created.

6.2 Safety Property for Broker Network

Since the structure of the broker network is specified in model narada using kell containment, when a broker joins a
cluster, the process modelling the cluster must be within levels of other kells, where levels is the number of levels in
the clustering containment hierarchy (four for the broker networks depicted in Figure 12):

property cluster_nesting(levels) {
E. ((cluster(join, O, pjoin, crc)).
E. ((]Wl(brokerjcell, 0, rc)).
E((Zroker,keZI[X], Kr, Kw).(|Kr| = levels))))
}

Property cluster_nesting specifies a communication representing the creation of a cluster process at level zero (the
cluster level), followed by a broker join request, always followed by the passivation of the broker’s kell. The passivation
of the broker’s kell occurs when the broker is included into the broker network. The property requires the broker’s
passivation to be within levels kells.

6.3 Adaptation of Broker Network

Although not currently supported in NaradaBrokering, the brokering network could adapt by adding brokers as the
load of the network increases and by reducing the number of brokers as the load decreases. In Figure 15 we show a
model based on the narada process representing the addition of a broker every time a “high-load” event is received.

A variable port is used to keep track of the ports where brokers have already being assigned. A semaphore sem
is used to guarantee exclusive access to the port variable. Once the broker is created (brokernw) and the first broker
has been setup, a subscription to events “high-load” is obtained. We assume a DEBS with no time-to-live support for
subscriptions.

Channel loadcb is registered as the callback in the event subscription. Upon reception of an event the process
at channel loadcb creates a new broker, adds the broker to the broker network, and registers the broker at the next
available port.

The following property specifies the creation of a broker after each “high-load” event is notified:

property add_broker() {
—E, ({cluster(Join, 0, Pjoin, Crc)).(
Ee((zoach(E».—'E(( oin(NewBroker, 0, Rc))))))))

After a cluster is created, every time an event is received in channel loadcb, the join channel of the cluster is used to
create a new broker at level 0.

For simplicity we assume in this example all brokers are added on the current server, and all broker additions occur
at level 0. In a real-world application, a process such as the one described would be running on each server hosting
brokers. Also, as the load decreases, brokers should be removed from the network.
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process narada_adapt {
narada(brokernw, cluster)

host(addbroker, connect)
|
var port :=4 1024 in (
fresh rj @brokernw(3, null, rj)() > (
sem()
|
rj(cjoin) > (
fresh bjoin, B (
B[Qcjoin(B,0)(cj) > (broker(bjoin, cjoin) | addbroker(bjoin, 1024) - - - )]
)
|
Q@subscribe(loadfilter, loadcb)(s) > (
loadfilter(e, rc) o (
fresh t, f (7¢(t,f) | if (e = “high-load”) then () else f() fi)
)

loadcb(e) < (
sem() > (
port :==¢ *port +1 > (
var p := *port in (
sem() | fresh nbj, NB (
NB[Qcjoin(NB, 0)(cj) > (
broker(nbj, cjoin) | addbroker(nbj, *p)
)]
)
)
)

Figure 15: Adaptation of Broker Network
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6.4 Adaptation of Broker Behaviour

We now illustrate how the behaviour of brokers can be adapted when they join the broker network. Specifically, we
assume functionality related to the services that all brokers provide within the broker network is injected into each
broker upon joining the network.

In Figure 14 a broker being added into the broker network is represented by the action K[X] > K[X], where K is the
name of the kell corresponding to the broker being added. Assuming P is the functionality that is added to each joining
broker, the only required change in the narada model is to replace the previous action with K[X] > K[X|P]. This new
action indicates not only a broker being moved into the network via a kell passivation, but also the adaptation of the
process within the broker.

Further, if there is at least one action in P that is observable, we can specify a property requiring all brokers to
exhibit the observable action from P once they join the broker network. For simplicity we will assume the observable
action is a communication on channel a where the abstraction part of the communication is executed by the broker:

property adapt_broker() {
E. ({cluster(join, O, pjoin, crc
E. ((Jm(brokerjcell, 0,rc
E((broker kell[X]).E((‘@ (), D {broker_kell},*)))

))-
))-

)
)
}

The previous property specifies that, once a cluster at level O is created, join requests for the cluster are followed by
the observable action. The abstraction part of the action on a must be located within kell broker_kell indicating that the
abstraction must have executed within the broker. Similar properties can be specified for other observable actions in P.

7 Related Work

In this section we first describe representative models proposed for general implicit invocation systems (IISs) and
discuss their applicability to DEBSs [16, 17]. We then describe models proposed specifically for DEBSs [31, 4, 10].
Besides the specification of the DEBS event model and the behaviour exhibited by the DEBS middleware, ku can
be used to specify the behaviour of components as it pertains to the reaction and generation of events (i.e., application
behaviour). At the end of this section we review formalisms proposed for the specification of component behaviour.

7.1 Model for Synchronous Implicit Invocation

Dingel et al. propose a formal model for the compositional verification of synchronous implicit invocation systems
[16]. In their model, a system S consist of a set of methods M = {my, ma, ..., m,} with one of the methods in M
being a distinguished dispatcher method disp. The dispatcher method disp stores and delivers events e from a set of
events . A binding set B C E x M, associates events with the methods to be triggered when an event is announced.
A method m; is a UNITY program [13], and it is represented as a 4-tuple m; = (V;, E;, P;, S;) where V; is the set of
variables m; accesses; E; is the set of events m; announces; P; is a boolean expression over V;, describing the initial
states of m;; and S; is a set of guarded statements of the form g % 2 := exp. Guard g is a boolean expression over V;.
If g holds in the current state, then action a is executed, and the value of the variable x € V; is set to the expression exp
over V;. Assuming event e and predicate p, an action a can be any UNITY action, plus the following communication
actions for sending and receiving messages:

e (e, p)!, send event e to dispatcher if p holds
e (v,p)?, an event can be received on variable v if p holds
e (e,p)?, event e can be received if p holds

Communication is achieved by matching announcing ({e, p)!) and consuming actions ({(v,p’)? or (e, p')?). On commu-
nication a silent action 7 occurs and, if the input action was (v, p')7, event e is assigned to variable v. The dispatcher
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decides which methods should receive the event by looking at the binding B C E x M. It is not clear from [16], if it
is possible to alter binding B while the system is in operation, as it is required by the DEBS event model.

An environment method m g, non-deterministically chooses and executes an action from a set of communication
actions {ay, ..., a, }. First-order linear-time temporal logic is used to specify the ongoing behaviour of the system.

In order to define the semantics on an event, the environment is constrained to be a method that just announces
the event. The focus is not on issues related to delivery policies and event distribution guarantees. It is not clear if by
considering each event in isolation, the behaviour exhibited by the system can be fully specified. This is related to the
fact that in the work of Dingel et al. an event cannot cause the announcement of other events. Another issue is the
assumption of synchronicity by the subscriber: a subscriber is blocked until an event is published and sent to it.

7.2 Implicit Invocation Language

Although not proposed specifically for applications that follow the DEBS event model, in [45], Zhang et al. develop
an Implicit Invocation Language IIL, and a set of source transformation tools for generating applications verifiable in
the Cadence SMV model checker [27]. Properties to verify are expressed using linear temporal logic. Event bindings
in IIL are static and explicitly specified. An event binding determines the components that need to be notified of the
occurrence of an event. Since DEBSs support dynamic event binding (bindings between events and components that
react to the events can be established or terminated dynamically), representation of DEBS-specific functionality using
IIL is not supported. Specifically, the ability in DEBSs for components to introduce new types of events at run time,
dynamically subscribe to and unsubscribe from events, and dynamically advertise and unadvertise events.

7.3 Logic of Event Consumption and Publication

Fenkam et al. provide operational semantics for an event based system using what the authors call LECAP: Logic of
Event Consumption And Publication [17]. In this model, functional components interested in events are invoked by
the system and execute only when an event of interest is published. A component P is specified by using the following
syntax:

P ::=x:=val | Py ; P» |if cond then P; else P, fi |
while cond do P, od | P, || P> | announce (e) |
skip | await cond do P; od

Where P, P;, and P> are components. The functional components triggered by the publication of an event of interest
are part of the component that published the event: the transitions of the triggered components are internal transitions
of the publisher component. This is the main limitation of this model, with respect to its applicability in DEBSs. There
is no way to specify always running reactive components: execution of the reactive components occur only while
reacting to an event, and within the context of the publishing component.

7.4 Traces

Miihl proposes a DEBS model based on execution traces [31]. A trace of a system is a sequence a = S1, 0p1, S2, 0P2, S3, -.-

where s; is the state of the system in step ¢, and op; is the operation taken in step ¢ which results in the system going to
state s;11. A specification S is a set of traces. A system is correct with respect to S, if the system exhibits only traces
that are in S.

The sets of traces that a DEBS must exhibit are defined by using predicates for the DEBS operations, quantifiers 3,
V, logical operators A V = —, and temporal operators O (always), ¢ (eventually), and o (next).

The model proposed by Miihl assumes instantaneous notification of events, no communication failures, and requires
components to be active (connected to the system) in order to be notified of events.

Another work based on traces is by Baldoni et al. [4]. In this work, and in contrast to [31], notifications are not
assumed to run instantaneously. Instead of a global trace, a local trace is kept for each component in the system. Each
operation in a local trace is tagged with the time, from a global clock, at which the operation is executed. The global
trace H for the DEBS is defined as the collection of local traces ( hy, ho, hs, ... ). A subscription interval [(X, F'),
for a component X and a filter F', is defined as the sequence of all time-tagged operations (Op(X,Y), ) in trace hx
executed between subscription (Subs(X, F), s) and unsubscription (Unsub(X, F'),u), with s < ¢t < u. Hence, the
time between s and u represents, for the subscriber, the time the subscription was active.
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Works based on traces allow the specification of properties based on the order in which the operations should
appear in the traces. With kell-m and ky it is possible to specify conditions on the location of the actions as well as the
passivation of kells. Such conditions cannot be expressed using only traces.

7.5 Other Models

In more recent work [10], Dingel et al. model the behaviour of STENA [12], a particular DEBS. The purpose of the
model is to verify already developed DEBS applications. The model itself is specified in BIR, the input language for
the model checker Bogor [38]. Two data structures are used in the model: a FIFO communication channel between
clients and the DEBS, and an event set to store the events before they are delivered. The event set is used, instead of
an event queue, to model the fact that in STENA there are no order guarantees in the order of delivered events. Only
subscribe, unsubscribe and publish operations are supported. No attempts are made in this work to generalize the event
model of DEBSs, nor to present a formal specification of the SIENA event model itself.

In contrast, we specify formal models that support, not only the verification of ordering guarantees but also the
specification and verification of liveness and safety properties previously identified in the area, the specification and
verification of kell containment and kell passivation properties and, in general, application-level properties expressible
in terms of communication actions occurring in the modelled systems.

7.6 Application Behaviour

Besides the formalisms reviewed above for modelling DEBS (the middleware), other formalisms have also been pro-
posed to model the application level behaviour exhibited by the publisher and subscriber components. In particular we
look at event-condition-action rules and automata-based formalisms.

Event-Condition-Action Rules

As proposed in Rapide [37, 25, 24], and widely used in active databases [43], reactive behaviour can be modelled by
ECA rules. An ECA rule specifies input events, possible composite, that must occur for the rule to be triggered. When
triggered, a condition on local variables, also part of the rule is then evaluated. Based on the result of the evaluation, an
action may be executed. When modelling behaviour using ECA rules, languages must be provided for specifying the
input events that trigger the rule, the rule condition, and its actions. The specification of the input events is typically
based on event algebras [22, 11], whilst some process calculus formalism may be used to specify the rule actions. In
the case of Rapide, specification of temporal conditions in the event part of the rule is supported. Also, it is possible
to specify if the events generated by the actions in a rule are independent of each other or not. To be able to decide
if two or more components can be composed into a complex component, or to coordinate the interaction of several
components, it is necessary to verify that the ECA rules describing the behaviour of each component are composable,
and that their actions obtain the target behaviour of the composition.

Interface Automata

Interface automata, proposed by Alfaro and Henzinger [14], have been used to describe the behaviour of reactive
systems [40, 41]. Interface automata are specified in an automata-based language. This language is used to capture
both, input assumptions about the order in which a component reacts to events, and output guarantees about the order
in which the component generates events. Interface compatibility is decided based on an optimistic approach. In
a traditional, pessimistic approach, two components are compatible if they can be used together in all systems. In
the optimistic approach proposed with Interface automata, a helpful environment is assumed: two components are
compatible if they can be used together in at least one design. The advantage of the optimistic approach is a simpler
model. Interface automata interact through the synchronization of input and output events. Internally, actions of
concurrent automata are interleaved asynchronously.

Events are not queued in interface automata: the arrival of a message while in an state not prepared to handle the
message, indicates an incompatibility between the environment and the automaton. This is in contrast to DEBSs where
events are typically queued until the receiving component is in a state ready to handle the message. Similarly to the
DEBS behaviour, in kell-m a write (i.e., concretion) on a channel is only matched to a read (i.e., abstraction) when both
actions are ready for the communication.
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Finite State Machines

In [9], Bultan et al. analyze component composition by looking at the conversations between the components. A
conversation is the concatenation of all the events exchanged by the components being composed. The behaviour of
the components themselves is represented by Mealy machines [28]: finite state machines where output actions can
be specified in the transitions. A component is then viewed as a Mealy machine that decides, based on the received
events and the events already sent, if a new event should be sent. In contrast to interface automata, Mealy machines
interact asynchronously. But in order to perform the analysis of the compositions, it is required to have a global watcher
that keeps track of all events as they occur. The authors start by trying to deduce global behaviour by analyzing the
behaviour of the components. They find this bottom-up approach flawed and propose to perform a top-down approach
instead. Their argument is that given a conversation, it is not possible to find a regular language (global behaviour) as
its core. Bultan et al. argue this is because of the asynchronous nature of the interactions.

In the top down approach, on the other hand, they start with conversations that represent the intended global
behaviour of the system, and construct Mealy machines that realize that conversation. Similar to the research we
propose, the authors final goal is to understand component composition in distributed systems. Our approach diverges
from theirs since our focus is in the specification of functionality in DEBSs, instead of deducing a global (local)
behaviour based on a local (global) behaviour.

Statecharts

First proposed by Harel [21], a statechart is a graphical representation used to model reactive systems. Since Harel’s
original work, multiple variations, both in semantics and structure, have been proposed. UML statecharts [1] is cur-
rently the most used variation. Statecharts are, fundamentally, Mealy machines with state entry and exit reactions,
hierarchical states, and parallelism. States represent processing stages of the artifact being modelled. Transitions
between states are triggered by the reception of events and the evaluation of an optional condition. Actions can be
executed as part of the transition. States can be represented by a substatechart or two or more substatecharts operating
in parallel.

Harel statecharts assume instantaneous event processing: the reaction to an event occurs in zero time, upon no-
tification of the event. This is not the case when dealing with DEBSs, where events take time to reach subscribed
components. Another issue is the assumption that only one event may happen at a time. UML statecharts do not have
this restriction, providing instead a queue of events. Both Harel and UML statecharts assume broadcasting of events,
where events are globally visible to all components in the system. In contrast, in DEBSs events are only notified to sub-
scribed components. These differences between the DEBS event model and the statechart event model make the use of
statecharts to model behaviour in DEBSs and DEBS applications inadequate. Specifically, event interactions in DEBS
cannot be directly specified using statechart event interactions since they are semantically different. This problem is
not unique to DEBSs and arises when dealing with any IIS that has an event model incompatible with the statechart
event model. The effect of these differences between event models has been the proposal of multiple, different, and
sometimes incompatible, statechart variations when using them to model complex IISs ([e.g., 42, 23, 15, 5, 39]).

8 Conclusions

DEBSs provide an Application Programming Interface (API) for the interaction with components. Publisher and
subscriber components use the calls in the API to announce events and to indicate to the system the events of interest.
Although there is no standard DEBS API supported by most DEBSs, there is a proposal for a Common API. The
Common API itself is composed of two other APIs: a Core API and an Optional API. The Core API specifies calls for
the publication and subscription of events. The Optimal API extends the Core API with calls for the advertisement of
events and for the renewal of subscriptions and advertisements.

Since most existing DEBSs can be easily modified to support this Common API, in this report we developed a model
for generic DEBSs that follow these APIs. The model parametrizes features typically varying among different DEBS
implementations such as filtering and event delivery capabilities. We showed how properties previously identified for
DEBSs can be specified in the model. We also showed how the model support the specification of properties beyond
the ones previously identified. In particular, we provided examples on how kells can be used in the model to specify
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application-level properties that deal with locality of publishers and subscribers, as well as kell passivation. These new
properties were not expressible using the formalisms previously proposed in this area.

We modelled REBECA, a particular research DEBS extended with scopes. Scopes are used to structure components
in DEBSs. This model showcases the use of kell-m to model an extension to the basic DEBS features.

The previous models represent behaviour exhibited by DEBSs as it pertains to the publication, subscription, and
notification of events. To showcase the use of kell-m to model other, possibly implementation-specific, features of
interest that may not be exposed to publishers and subscribers, we modelled the structure of administrative components
in NaradaBrokering, a particular DEBS. In NaradaBrokering specialized components, called Brokers, are in charge of
the communication within the system. Brokers are grouped in hierarchical clusters. In the model, kells are used to
represent such a hierarchy.
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