
Semantics and Encoding of the kell-m Calculus

Rolando Blanco and Paulo Alencar
David R. Cheriton School of Computer Science

University of Waterloo

Technical Report CS-2011-01

Abstract

We present kell-m, an asynchronous higher-order process algebra with hierarchical localities. The main focus
of this report is on the operational semantics and behavioural equivalences for kell-m. The operational semantics
determine how systems represented using kell-m evolve; the behavioural equivalences determine what it means for
two kell-m processes to behave similarly. We also present and encoding of kell-m into MMC�, the variation of the
�-calculus as implemented in the Mobility Model Checker (MMC).

1 Introduction
Kell-m is a process algebra where computations are modelled as processes executing in parallel. As it is traditional
in process algebras, processes communicate with each other via channels. Channels are a kind of a more general
construct, called names. A name is an identifier, and it is only useful for comparing for identity with other names [10].

In a communication on a particular channel one of the processes writes to the channel and another process reads
from the channel. As part of the communication names and processes can be transmitted from the writer process to the
reader process. Because processes can be transmitted in communications, kell-m is a higher-order process algebra.

Kell-m is derived from the Kell calculus [16, 15, 3]. The Kell calculus was created for studying component-based
distributed programming. Built around a �-calculus core, in the Kell calculus processes execute in localities called
kells, where kells are identified by names. The term kell was chosen by the creators of the Kell calculus in a loose
analogy with biological cells. Kells can be dynamically created, stopped, deleted, and the process running within a kell
can be replaced or composed with other processes.

Because kells are themselves processes, they can be localized within other kells, forming a tree containment hier-
archy. In the traditional Kell calculus, direct communication among processes can occur only if the communicating
processes are separated by at most one kell boundary. This is in contrast with kell-m, where we allow communication
among processes independently of their kell location. Because of this deviation from the original Kell calculus, we
name our calculus the kell-m calculus. By convention, we do not capitalize the k in kell-m, unless we are starting a
sentence.

We start the presentation of kell-m with its syntax in Section 2. We formalize the operational semantics of kell-m in
Section 3. In Section 4 we present k�, a modal logic used for property specification of systems modelled using kell-m.
An encoding of kell-m into MMC� is presented in Section 5. MMC� is an extension of the �-calculus as specified in
[1, 17] and implemented in the Mobility Model Checker (MMC). An encoding for k� is presented in Section 6. We
conclude the report in Section 7.

2 Syntax
Every process in the kell-m calculus follows the syntax specified in Figure 1. P represents a kell-m process, 0 is the
null process (a process that does not perform any actions), and j is parallel composition of processes. A write action on
channel a is specified a(ew), where ew is the sequence of names and processes being written on channel a. It is possible
for a write action to transmit no values as part of the communication: a(). For a channel a, when no values are passed

1

P ::= 0 j P jP j a(ew) j � . P j new a P j K[P] j x j p(ew)
� ::= a(ev) j K[x]
v ::= c j x
w ::= c j P

p(ec) def
= P

Figure 1: Kell-m Syntax

in the channel, we sometimes write a for a(). Note the calculus is asynchronous: a write operation cannot be followed
by a process.

A read action is specified using triggers. A trigger has the form � . P , where � is called a pattern, and P is the
process to execute after the read. The pattern determines the channel on which the read will occur. For example, in
a(ec) . P , the pattern a(ec) specifies a read on channel a. When the read expression in a trigger pattern is matched to
a write expression, the result of the communication is the process specified in the trigger, P in previous the example,
with the names in ec replaced by the values passed by the writer process. Therefore,

a(d) j (a(e) . P)! Pfd=eg

where Pfd=eg represents the process P after all occurrences of name e have been replaced by d. For a match to occur,
the number of values passed in the write expression must match the number of values expected by the read expression.

The construct new a P is called name restriction, and it is used to specify a private name a, to be used in P . For
example, assume processes:

P1 : a(d) P2 : a(c) . R P3 : a(e) . Q

When composed in parallel, P1 can communicate with either P2 and P3. To guarantee the communication happens
only between P1 and P2, a restriction on name a for P1 and P2 can be specified:

new a (P1 j P2) j P3

A private name is also called a restricted name. In the example, processes P1 and P2 are said to be within the scope of
the restricted name a.

We write new a,b,c P to represent new a new b new c P , and new ec P to represent new c1; c2; : : : ; cn P whenec = c1; c2; : : : ; cn.
Processes can execute inside kells, where a kell is just another kind of name (recall channels are also names). K[P],

specifies a process P running inside kell K. When K[P], we say that process P is located in kell K. For a given
process, we refer to its kell structure as the containment relationships between kells in the process.

There is no restriction in the use of uppercase or lowercase letters; we typically use uppercase for kell names and
processes, and lowercase for channels and process variables.

Trigger patterns can also specify kells. For example, K[x] . R matches kell K[P]. The process variable x in R is
replaced by P after the match:

(K[x] . R) j K[P]! RfP=xg

When a kell is matched by a trigger, we say that the kell is passivated. Passivation can be used to alter the process
running within a kell:

(K[x] . K[Rjx]) j K[P]! K[RfP=xgjP]

Passivation can also be used to move a process from one location to another:

T[P j K[Q]] j L[R j K[x] . K[x]]! T[P] j L[R j K[Q]]

In the previous process, K[P] was moved from kell T to kell L.
p(ew), represents a process invocation, where p is the name of the process, and ew are the invocation parameters.

The process must have been previously defined: p(ec) def
= P . An invocation p(ew) is equivalent to Pf ew=ecg.

Since triggers are consumed when there is a match between a write action and the read action specified in the
trigger pattern, recurrent triggers are introduced. A recurrent trigger is specified using � instead of .. For example:

(a(c) � P) j a(d)! (a(c) � P) j Pfd=cg

2

In the previous example, the process a(d) is matched with the pattern specified by the recurrent trigger a(c) � P . The
resulting process after the match is Pfd=cg, and the trigger is not consumed. Hence, the trigger can be matched to any
number of write operations on channel a.

Similarly to other algebras derived from the Kell calculus, recurrent triggers are derived expressions in kell-m,
since they can be expressed in terms of regular triggers [16, 15, 3]. For triggers specifying reads on channels, � is
defined as the following fixed point [16]:

a(ec) � P � new t (Y (a;ec; P; t) j t(Y (a;ec; P; t)))
with,

Y (a;ec; P; t) def
= t(y) . (a(ec) . (P j y j t(y)))

Hence,
a(ec) � P � new t (Y (a;ec; P; t) j t(Y (a;ec; P; t)))

� new t (t(y) . (a(c) . (P j y j t(y))) j t(Y (a;ec; P; t)))
! a(ec) . (P j Y (a;ec; t) j t(Y (a;ec; P; t)))

If a(ed) j a(ec) . (P j Y (a;ec; P; t) j t(Y (a;ec; P; t))), we obtain:

Pfed=ecg j Y (a;ec; P; t) j t(Y (a;ec; P; t))) � Pfed=ecg j (a(ec) � P)

Similarly, for trigger patterns specifying kells:

K[X] � P � new t (Yk(K;X;P; t) j t(Yk(K;X;P; t)))

with,
Yk(K;X;P; t)

def
= t(y) . (K[X] . (P j y j t(y)))

For example, a process stop(K) � (K[x] . 0) receives in channel stop the name K of a kell; it matches the kell K’s
process to x, and reduces the kell to the null process 0. Such a process is useful to stop the execution of a kell:

T [a(b)] j stop(T) j (stop(K) � (K[x] . 0))
! T [a(b)] j (stop(K) � (K[x] . 0)) j (T [x] . 0)
! (stop(K) � (K[x] . 0)) j 0

In the previous example, the kell T[a(b)] is terminated by the process stop(T).
The symbol j has lower precedence than, both, � and .. new has lower precedence than � and ., but higher than j.

Associativity of j, �, and . is left-to-right. For example,

new e a(c) . c(d) . P j a(d)

is equivalent to:
(new e (a(c) . (c(d) . P))) j a(d)

3 Operational Semantics
Names in process expressions can be bound or free. Recall channels and kells are names. A free name is visible to any
process. A bound name is visible only to the process expression where it is bound. The functions fn and bn, defined in
Figure 2, produce the sets of free and bound names for kell-m processes.

Communication can happen between any two processes independently of their kell location. If a bound name is
output via a channel, the name becomes visible to the receiving process. The term scope extrusion is used to specify
this situation. For example, in the process expression:

(new c a(c)) j a(d) . P

there is scope extrusion because the bound name c is output via channel a to a process a(d) . P , where c is not bound
before the process receives c.

3

bn(0) = ; fn(0) = ;
bn(x) = ; fn(x) = fxg
bn(new a P) = fag [bn(P) fn(new a P) = fn(P) n fag
bn(a(ew)) = bn(ew) fn(a(ew)) = fag [fn(ew)
bn(K[P]) = bn(P) fn(K[P]) = fKg [fn(P)
bn(ew) =

S
wi2 ew

bn(wi) fn(ew) =
S
wi2 ew

fn(wi)
bn(a(ec) . P) = fecg [bn(P) fn(a(ec) . P) = fn(P) n fecg
bn(K[x] . P) = fxg [bn(P) fn(K[x] . P) = fn(P) n fxg
bn(P j Q) = bn(P) \ bn(P) fn(P j Q) = fn(P) [fn(Q)

bn(p(ew)) = bn(Pdf ew=ecg) fn(p(ew)) = fn(Pdf ew=ecg); with p(ec) def
= Pd

Figure 2: Bound and Free Names in kell-m Processes

P j 0 � P P j Q � Q j P (P j Q) j R � P j (Q j R)

P � Pfec=edg;with ed 2 bn(P) and ec =2 fn(P) new a, b P � new b, a P

new a 0 � 0
a =2 fn(Q)

(new a P) j Q � new a (P j Q)

Figure 3: Structural Equivalences for kell-m

When a name c is bound in a process P , all occurrences of c can be replaced by b, written Pfb=cg, if b =2 fn(P).
In terms of classical process theory, c is alpha converted to b [7]. The behaviour of P is not affected by the alpha
conversion. In Section 3.3, we formally define what it means for P and Pfb=cg to have the same behaviour but, for
now, the idea is that a process Q cannot differentiate whether it is interacting with P or Pfb=cg. An interaction can be
either a channel communication or a kell passivation.

Structural equivalences determine the processes for which their behavioural equivalency follows immediately from
their structure [11]. We write R � S when processes R and S are structurally equivalent. Alpha conversion is an
example of a structural equivalence. The structural equivalences for the kell-m calculus are specified in Figure 3:
parallel composition of processes is commutative and associative, and the null process is its neutral element; restriction
of a name in a null process is equivalent to the null process; and the scope of name restriction can be extended to the
parallel composition if the restricted name is not free in the composed process.

3.1 LTS Semantics
We use a labelled transition system (LTS) to give the operational semantics of kell-m. The LTS describes the possible
evolution of a process. Actions performed during the transitions can be: a(ew), a(ec), K[P], K[x], and � :

� a(ew) represents an output action on channel a.

� a(ec) represents an input action, via a matching trigger a(ec) . R, on channel a.

� K[P] represents an active kell with name K and process P .

� K[x] represents the input of the process of kell K, via a matching trigger K[x] . Q.

� � represents the matching of input and output actions on the same channel, or a kell passivation. A kell passiva-
tion corresponds to actions K[P] and K[x] matching for the same kell K.

The transitions for kell-m are specified in Figure 4. The function names in the figure produces, for a process P , the
set of free and bound names in P : names(P) = bn(P) [fn(P).

Rule STRUCT, specifies that, if a process P transitions with action � to process R, any process Q, structurally
equivalent to P , can also transition to R with action �.

4

P
�
�! R; P � Q

STRUCT

Q
�
�! R

a(ew)
a(ew)
���! 0 OUT a(ec) . P a(ec)

��! P IN

K[P]
K[P]
���! 0 KELLOUT K[x] . P

K[x]
���! P KELLIN

P
�
�! Q; c =2 bn(�)

RESTRICT

new c P �
�! new c Q

P
�
�! Q; K =2 bn(�)

ADVANCE

K[P]
�
�! K[Q]

P
�
�! Q; bn(�) \ fn(R) = ;

PAR

P jR
�
�! QjR

Pdf ew=exg �
�! Q; p(ex) def

= Pd
PROC

p(ew)
�
�! Q

P
a(ew)
���! Q; c 2 names(ew); c 6= a

OPEN

new c P
a(ew0)
���! Q; with ew0 = ewfnew c =cg

P
a(ec)
��! P 0; Q

a(ew)
���! Q0

L-REACT

P j Q
�
�! P 0f ew=ecg j Q0

P
K[x]
���! P 0; Q

K[R]
���! Q0

L-SUSPEND

P j Q
�
�! P 0fR=xg j Q0

P
a(ed)
���! P 0; Q

a(ew)
���! Q0; ec � ew; (new c) 2 ew if c 2 ec

L-CLOSE

P j Q
�
�! new ec (P 0f ew=ecg j Q0)

Figure 4: Labelled Transition System Semantics for kell-m

Rules OUT, IN, KELLOUT, and KELLIN, specify transitions due to basic communication actions. In terms of classical
process theory [7], both a(ew) and K[P] correspond to concretions. Trigger matching expressions a(ec) and K[x] in
triggers a(ec) . P , and K[x] . P correspond to abstractions.

Rule RESTRICT specifies that a transition � occurs in P and new c P , if c, the name restricted, is not bound in the
transition action. Since bn was defined for process expressions (cf. Figure 2), not for transition actions, here we are
abusing its definition. Hence, we extend bn to deal with transition actions as follows:

bn(a(ec)) = fecg
bn(K[x]) = fxg
bn(a(ew)) = bn(ew)
bn(K[P]) = bn(P)

Rule ADVANCE specifies that if a process P can transition to a process Q, the same process P , when within a kell K,
can also transition with the same action �. This is the case when a kell is not passivated: the process located within the
kell can transition (advance). Once the process has advanced, it can, again, be passivated or advance.

Although not obvious at this point of the presentation, the rules KELLOUT and ADVANCE provide an intuitive notion
for the semantics of kells in kell-m. These two rules specify that every active kell K[P] can be seen as a higher-order
processes that, non deterministically, either outputs P on a channel named K, or advances in the evolution of P . Later
in this report (cf. Section 5), we make use of this intuitive notion to encode kell-m using a variation of the �-calculus.
We also show that this intuition is valid, in the sense that an observer is not able to distinguish between a kell-m process
and its �-calculus encoding.

5

When the bound names in action � do not occur free in process R, and a process P transitions with action � to
process Q, the rule PAR specifies that the process resulting from the parallel composition of P and another process R,
can transition with the same action � to process QjR. The condition bn(�) \ fn(R) = ; guarantees that free names in
R are not, inadvertently, captured in an alpha conversion after a communication, as illustrated by the following sample
processes:

P : a(c) . 0 R : b(c) T : a(e)

Because of rule IN, P
a(c)
��! 0, and because of rule OUT, T

a(e)
��! 0. If bn(�) \ fn(R) = ; is not required in PAR, then

P jR
a(c)
��! 0jR. Because of rule L-REACT:

P jR
a(c)
��! 0; T

a(e)
��! 0

L-REACT

(P jR) j T
�
�! (0jR)fe=cg j 0

But, since c 2 fn(R), c is captured by the alpha conversion (0jR)fe=cg, resulting in (0jb(e)), which is incorrect.
Processes can be parameterized using the syntax p(ex) def

= Pd. Rule PROC, deals with these definitions. The rule
specifies that a process invocation p(ew) can transition to Q, if the process definition Pd, when the parameters ex have
been replaced by the values ew, can also transition to Q.

The rule OPEN deals with scope extrusion. If a restricted name c is output on an channel, the list of output values ew
is modified by replacing c with new c. The rule L-CLOSE specifies what happens when the restricted name is received:
the name must continue to be restricted and its scope now reaches the reader and writer processes.

Rules L-REACT and L-SUSPEND specify the cases when a communication occurs on a channel, and when a passi-
vation occurs. R-* transition rules can be trivially deduced by first using the STRUCT rule, and then the corresponding
L-* rule. When illustrating transitions for process expressions, we sometimes write the name of the channel involved
in a communication action right after the � , e.g., P

�;a
��! Q.

We refer to rules *-REACT, *-SUSPEND and *-CLOSE as the communication rules. These are the rules where ab-
stractions and concretions are matched. The transitions in these rules are decorated with � .

To illustrate the use of the transition rules, consider the process P defined as:

P : stop(K) . (K[x] . 0) j T[t(x) . x j stop(F)] j F[f(x) . x j stop(T)]

Any process received on channel t or f is executed. If channel t is used, channel f is discarded, and vice versa.
Such a process is useful to represent conditionals. In Figure 5, we show that 0 j 0 j T[Ptj0] j 0 can be inferred from
t(Pt) j P . In Figure 5 we have rearranged the process expressions to facilitate the drawing of an inference tree; process
expressions involved in the transitions are double-underlined.

We use the notation Kn[P] to specify a kell K and its process P when the kell is embedded within n � 1 other
kells:

K1[P] when K[P]
K2[P] when 9K1 : K1[K[P] � � �]
� � �
Kn[P] when 9K1; :::; kn�1 : K1[K2[� � �Kn�1[K[P] � � �] � � �] � � �]

We call n the depth-level of kell K, and write K�[P] to specify a kell-m process at any depth-level. In particular, we
write K0[P] when P is not within a kell.

For notational convenience, we introduce generalized versions of the communication rules *-REACT, *-SUSPEND

and *-CLOSE as specified in Figure 6 (only the left-hand versions are shown, right-hand versions are similarly defined).
The generalized rules are equivalent to applications of the PAR and ADVANCE rules, before using the communication
rules.

3.2 Reduction Semantics
Reduction semantics are an alternative to LTS semantics. In reduction semantics, reduction rules are used to describe
the operational semantics of kell-m. The reduction rules for kell-m are listed in Figure 7. With reduction rules the
communication between processes is inferred, directly, from the syntax of the processes instead of from transitions
where abstraction and concretion actions occur.

6

stop(K) . (K[x] . 0) j t(Pt) j T[t(x) . x j stop(F)] j F[f(x) . x j stop(T)]

K[x] . 0 0 x 0

x j stop(F)

T[x j stop(F)]

0 j T[Pt j stop(F)]

0

Pt j 0

T[Pt j 0]

0 j T[Pt j 0]

F[x] . 0 j 0 j T[Pt j 0]

0

0 j 0 j T[Pt j 0]

0 j 0 j T[Pt j 0] j 0

IN; stop(k) OUT; t(Pt) IN; t(x) KELLOUT
F [f(x) . x j stop(T)]

PAR; t(x)

ADVANCE; t(x)

R-REACT; �; t

OUT; stop(F)

PAR; stop(F)

ADVANCE; stop(F)

PAR; stop(F)

L-REACT; �; stop

KELLIN;F[x]

PAR;F[x]

SUSPEND; �; F

Figure 5: Sample Process Evolution Using LTS Semantics

7

P
a(ec)
��! P 0; Q

a(ew)
���! Q0

L-REACT

K�[P] jM�[Q]
�
�! K�[P 0f ew=ecg] jM�[Q0]

P
K[x]
���! P 0; Q

K[R]
���! Q0

L-SUSPEND

K�[P] jM�[Q]
�
�! K�[P 0fR=xg] jM�[Q0]

P
a(ed)
���! P 0; Q

a(ew)
���! Q0; ec � ew; (new c) 2 ew if c 2 ec

L-CLOSE

K�[P] jM�[Q]
�
�! new ec (K�[P 0f ew=ecg] jM�[Q0])

Figure 6: Generalized Communication Rules for kell-m

L-REDUCTREACT

a(ec) . P j a(ew)� Pf ew=ecg j 0 L-REDUCTSUSPEND

M[x] . P j M[PM]� PfPM=xg j 0

P � P 0
REDUCTRESTRICT

new c P � new c P 0
P � P 0

REDUCTINKELL
K[P]� K[P 0]

P � P 0
REDUCTPAR

P jQ� P 0jQ

P 0 � P; P � Q; Q � Q0
REDUCTSTRUCT

P 0� Q0

Pdf ew=ecg� Q; p(ec) def
= Pd

REDUCTPROC

p(ew)� Q

P j Q� P 0 j Q0
REDUCTOUTKELL

K�[P � � �] jM�[Q � � �]� K�[P 0 � � �] jM�[Q0 � � �]

(new ec P) j Q� new ec (P 0 j Q0)
L-REDUCTEXTRUSION

K�[new ec P � � �] jM�[Q � � �]� new ec (K�[P 0 � � �] jM�[Q0 � � �])
Figure 7: Reduction Rules for kell-m

As shown in rule REDUCTOUTKELL, reactions and suspensions can occur within kells. In this rule, � � � are used to
represent zero or more (bound name set, kell-m process)-pairs composed in parallel.

In the reduction rules, we assume there are no name conflicts for bound names. As we discuss at the beginning of
Section 3 when presenting the structural equivalences for kell-m, since K[new a P] 6� new a (K[P]), name restrictions
within kells need to be treated with care. The reduction rule L-REDUCTEXTRUSION explicitly handles name extrusion
from kells.

When illustrating reductions of process expressions, we sometimes write the name of the channel involved in a
communication action, e.g., P � aQ.

R-* reduction rules can be trivially deduced by first using the REDUCTSTRUCT rule, and then the corresponding L-*
rule.

For example, a process P defined as:

P : K[new a, b (c(a(b)) j a(d) . Q)] j c(x) . x

can be reduced as follows:

P � c new a, b (K[0 j a(d) . Q] j a(b)) L-REDUCTEXTRUSION

�
a new a, b (K[0 j Qfb=dg] j 0) REDUCTOUTKELL

8

VJ 0 K def
= fg

VJ x K def
= fg

VJ new a P K def
= VJ P K n fag

VJ a(ew) K def
= fag

VJ K[P] K def
= fKg [VJ P K

VJ a(ec) . P K def
= fag

VJ K[x] . P K def
= fKg

VJ P jQ K def
= VJ P K [VJ Q K

Figure 8: Visibility Predicates for kell-m

When dealing with higher-order expressions, the scope extrusion occurs for any name in the expression that is bound
when the expression is output via a channel (c(a(b)) in the example).

As observed in [11], although in process algebras reduction rules are simpler than LTS semantics in the sense that
there are typically less reduction rules than LTS transition rules and the reduction rules are unlabelled, there is loss
of information when compared to LTS transitions. For example, consider the process a(w). This process cannot be
reduced. It, nevertheless, has the potential to communicate with another process via the channel a. Such potential for
communication is manifest in the OUT LTS transition, but is lost when using reduction semantics. As we will see in
Section 3.3, this lost information is somehow recovered when assuming a global observer capable of sensing, at a given
time, which channels are capable of communication.

3.3 Behavioural Equivalences
We are interested in knowing if two kell-m processes exhibit the same behaviour. As proposed by Sangiorgi when
dealing with higher-order calculi [12], we assume a global observer capable of sensing the communication actions that
are enabled on a given channel. One can think of the global observer as another process trying to interact with the
observed process.

We write P #a (similarly, P #a) to specify that a concretion (similarly, abstraction) is enabled on channel a. P #a
and P #a are called visibility predicates, and we frequently write P #� to indicate an arbitrary visibility predicate.

The visibility predicates for kell-m are determined by the function V , defined in Figure 8. According to V’s

definition, P #�, if � 2 VJ P K. Hence, a 2 VJ P K if exists P 0, such that P
a(ec)
��! P 0 or P

a[x]
��! P 0. Both, a(ec) and

a[x], are abstractions representing patterns in trigger expressions. a(ec) matches a write on channel a, and a[x] matches

a kell named a. Similarly, a 2 VJ P K if P
a(ew)
���! P 0 or P

a[Q]
���! P 0. Both, a(ew) and a[Q] are concretions. a(ew)

represents a write on channel a, and a[Q] represents a kell a[Q].
Notice restricted names (names in new ... expressions) are not visible. Also notice that � is not included as a

visibility predicate. The reason is that � actions in the observed process are actions internal to the process and cannot
be sensed by the global observer.

3.3.1 Barbed Bisimulation

Using P k to represent the class of kell-m processes, and based on Sangiorgi’s behavioural equivalences for higher-
order process calculi [12], a barbed simulation for the kell-m calculus is any relation S such that S � P k � P k, and
(P;Q) 2 S if:

1. P �
�! P 0, then 9Q0 : Q �

�! Q0, and (P 0; Q0) 2 S, and

2. If P #�, then Q #�

Alternatively, using the reduction rules instead of the LTS semantics, condition 1 in the definition of barbed simulation
relations can be replaced by:

1. P � P 0, then 9Q0 : Q� Q0 (P 0; Q0) 2 S, and

9

P : a(b() j b() . 0) j a(x) . x
VJ P K = fa; ag

P1: 0 j b() j b() . 0
VJ P1 K = fb; bg

P2: 0 j 0 j 0
VJ P2 K = fg

Q: new h (h() . (b() j b() . 0) j a(h) j a(c) . c())
VJ Q K = fa; ag

Q1: new h (h() . (b() j b() . 0) j 0 j h())
VJ Q1 K = fg

Q2: new h (b() j b() . 0) j 0 j 0)
VJ Q2 K = fb; bg

Q3: new h (0 j 0) j 0 j 0)
VJ Q3 K = fg

simulated by

simulated by

simulated by

�

�

�

�

�

Figure 9: Example of Weak Barbed Simulation in kell-m

condition 2 remains unaltered.
The reason why barbed simulation can be defined with the communication transitions �

�! or using the reduction
relation, is that the reduction relations represent, the �

�! transitions of the labelled transition semantics, except for the
differences accounted by structural equivalences [9].

A relation S is a barbed bisimulation, if both S and S�1 are barbed simulations. Weak definitions of the barbed
simulation and bisimulations are obtained by replacing ! with) in the definitions, where) is the reflexive and
transitive closure of! (or� if using the reduction relation).

A process P is said to be barbed similar to a process Q if there is a barbed simulation S such that (P;Q) 2 S.
Similarly, P and Q are barbed bisimilar if there is a barbed bisimulation S such that (P;Q) 2 S.

For example, consider processes P and Q defined as:

P : a(b() j b() . 0) j a(x) . x
Q : new h (h() . (b() j b() . 0) j a(h) j a(c) . c())

Intuitively, Q and P have the same behaviour: the potential for communication on a is visible in both process, and
later, the potential for communication on b is visible. The communication transitions and visibility predicates for each
one of the processes are illustrated in Figure 9.

Notice in Figure 9 Q is not barbed similar to P . The reason is the transition from Q1 to Q2 which is not matched
in P . A weak barbed simulation S for P and Q is f(P;Q); (P1; Q2); (P2; Q3)g. S is represented in the figure by the
dotted arrows.

Even when two processes are barbed bisimilar, their behaviour may not be the same when used along other pro-
cesses. For example, consider the following processes:

P : a(c) j b(u) j b(l) . 0
Q : a(d) j b(u) j b(w) . 0

A barbed bisimulation for them is:

S = f(P;Q); (a(c) j 0 j 0; a(d) j 0 j 0)g

But when used along the process R : a(e) . e(), the visibility predicates of P jR and QjR are different. After P and R
interact, the visibility predicate is fc; b; bg; if Q and R interact, the visibility predicate is fd; b; bg.

10

To define behavioural similarity under any use, it is necessary to introduce contexts C. Assuming arbitrary kell-m
processes R and P , P can be used in the following contexts C:

C ::= P j new a P j a(P) j P jR j RjP j a(ec) . C j K[C] j K[x] . C

Two processes P and Q are barbed congruent if they are barbed bisimilar under all contexts. When two processes
are barbed congruent, they can be used interchangeably. Showing that two processes are barbed congruent requires
showing that there is no context under which the processes behave differently. A differentiating context may be easy to
find for some processes that are not congruent, but proving that such a context does not exist for processes suspected
congruent can be a difficult task [14]. Although we were unable to find in the literature an actual result for the
complexity of this task, Davide Sangiorgi has this to say [14]:

Context-based behavioural equalities like barbed congruence suffer from the universal quantification on
contexts, that makes it very hard to prove process equalities following the definition, and makes mechanical
checking impossible.

We conclude the presentation of barbed bisimulation in kell-m by demonstrating that barbed congruent processes
have the same kell structure. Recall the kell structure of a process determines the containment relationships between
kells in the process. By contradiction, let us assume processes P and Q are barbed congruent but they do not have the
same kell structure. If P and Q do not have the same kell structure, it is because one of the following cases:

� There is at least a kell K in one processes and not in the other. Without loss of generality, let us assume K is in
P and not in Q. A differentiating context is C1 : K[x].0. This is because P jC has at least one transition labelled
� due to the passivation of K. That transition does not occur in QjC. Moreover, K is in the visibility predicate
for P jC but not for QjC.

� A kell K is located in another kell L in one of the processes but not in the other. Both processes P and Q have
kells K and L, otherwise the previous case applies. Without loss of generality, let us assume kell K is located in
kell L in P but not in Q. A differentiating context in this case is C2 : L[x] . K[y] . 0. With this context, QjC has
an extra transition labelled � , corresponding to the passivation of K, that does not occur in P jC. The reason is
that in P jQ, because K is located in L, the passivation of K cannot occur once L is passivated.

In both cases we were able to exhibit differentiating contexts. Hence, if P and Q are barbed congruent, then they have
the same kell structure.

Besides C1 and C2 above, other differentiating contexts may exist for particular processes P and Q. For example,
consider:

P : K[a(c) . 0] j T[0] j a(w)
Q : K[T[a(c) . 0]] j a(w)

Processes P and Q are barbed bisimilar: a barbed bisimulation for them is:

S = f(P;Q); (K[0] j T[0] j 0;K[T[0]] j 0)g

A differentiating context is T[x] . 0. P jC produces K[a(c) . 0] j 0 j a(w), while QjC produces K[0] j a(w). These
resulting processes are not barbed bisimilar.

3.3.2 Bisimulation up to Kell Containment

We are interested in verifying if two processes have the same kell structure. As discussed at the end of the previous
section, an avenue is to check if they are barbed congruent. Although, because of its difficulty, relying on barbed
congruence should be avoided. Moreover, barbed congruency is a sufficient, but not a required, condition for kell
structure similarity. For example, consider:

Q : K[T[a(c) . 0]] j a(w)

Processes Qjb(e) and Qjb(l) are not barbed congruent. A differentiating context in this case is C: b(r) . r(). They
have, nevertheless, the same kell structure.

11

Using P k to represent the class of kell-m processes, a simulation up to kell containment for kell-m is any relation
S such that, S � P k � P k, and (P;Q) 2 S if:

P
K[:]
��! P 0; then 9Q0 : Q

K[:]
��! Q0; and (P 0; Q0) 2 S

The dot is used to indicate that we are not interested in the contents of the concretion.
A relation S is a bisimulation up to kell containment, if both S and S�1 are barbed simulations up to kell contain-

ment. As with the regular barbed bisimulations, weak definitions of the barbed simulation and bisimulations up to kell
containment are obtained by replacing! with) in the definitions, where) is the reflexive and transitive closure of
!.

Two processes have the same structure if and only if they are bisimilar up to kell containment. We first show
that if processes P and Q are bisimilar up to kell containment, then they have the same kell structure. We argue by
contradiction. Let us assume that P and Q are bisimilar up to kell containment but they do not have the same kell
structure. The possible situations under which P and Q do not have the same kell structure are:

� There is a kell K in one of the processes but not in the other. Without loss of generality, let us assume K is in P

but not in Q. Because of rule KELLOUT (cf. Figure 4), a possible transition for P is P
K[R]
���! P 0, where R is the

process located in K. Since K is not in Q such transition does not exist in Q and, by definition, P and Q cannot
be bisimilar up to kell containment.

� A kell K is located within a kell T in one of the processes but not in the other. Without loss of generality we
assume kell K is located in kell T in P but not in Q. Both kells, K and T , are in Q, otherwise the previous case

applies. Because of rule KELLOUT, P can transition to P
T [U]
���! P 0 where R is the process located in T . By

the definition of bisimilarity up to kell containment, Q can also transition to Q0: Q
T [U]
���! Q0. Since T has been

passivated, and because of our assumption about the location of K in P , K is not in P 0. Because our assumption

of the location of K in Q, K has not been passivated in Q0, and Q0 can transition to Q0
K[U 0]
����! Q00, which is

a transition that cannot be matched from P 0. Therefore, by definition, P and Q cannot be bisimilar up to kell
containment.

We now show that if processes P and Q have the same kell structure, then they are bisimilar up to kell containment.
Again, by contradiction, let us assume that P and Q have the same kell structure but they are not bisimilar up to kell
containment. If P and Q are not bisimilar up to kell containment this is because one of the following reasons:

� There is a transition from P
K[R]
���! P 0 that is not matched from Q. This means a kell K is in P and not in Q.

Therefore P and Q do not have the same kell structure.

� There is a transition from Q
K[R]
���! Q0 that is not matched from P . The argument is the same as the previous

case.

� P and Q have matching transitions up to processes P 00 and Q00 at which point there is a transition from P 00 that
cannot be matched from Q00. That transition represents a kell that is in P and not in Q. Therefore P and Q do
not have the same kell structure.

� P and Q have matching transitions up to processes P 00 and Q00 at which point there is a transition from Q00 that
cannot be matched from P 00. The argument is the same as the previous case.

Hence, to verify if two processes have the same kell structure, a bisimulation up to kell containment has to be
produced.

3.4 Extended Semantics
It is useful not only to check if two processes have the same kell structure, but also to have the ability to verify kell
containment conditions. For example, one may be interested in checking if a given action occurs, or does not occur,
within a given kell. Based on the operational semantics for kell-m we have presented so far, there is no simple way to
check such kell containment conditions.

12

P
�
�! R; P � Q

XSTRUCT

Q
�
�! R

a(ew)
a(ew);fg
�����! 0 XOUT a(ec) . P a(ec);fg

����! P XIN

K[P]
K[P];fg
�����! 0 XKELLOUT K[x] . P

K[x];fg
�����! P XKELLIN

P
�;�
��! Q; c =2 bn(�)

XRESTRICT
new c P

�;�nfcg
�����! new c Q

P
�� ;�a;�c������! Q

XRESTRICTTAU
new c P

�� ;�anfcg;�cnfcg)
������������! new c Q

P
�;�
��! Q; K =2 bn(�)

XADVANCE
K[P]

�;�[fKg
������! K[Q]

P
�� ;�a;�c������! Q

XADVANCETAU
K[P]

�� ;�a[fKg;�c[fKg
�������������! K[Q]

P
�
�! Q; (� = (�; �))) (bn(�) \ fn(R) = ;)

XPAR
P jR

�
�! QjR

Pdf ew=exg �
�! Q; p(ex) def

= Pd XPROC
p(ew)

�
�! Q

P
a(ew);�
����! Q; c 2 names(ew); c 6= a

XOPEN

new c P
a(ew0);�nfcg
�������! Q; with ew0 = ewfnew c =cg

P
a(ec);�a
����! P 0; Q

a(ew);�c
�����! Q0

XL-REACT
P j Q

 !a (ew);�a;�c
��������! P 0f ew=ecg j Q0

P
K[x];�a
�����! P 0; Q

K[R];�c
�����! Q0

XL-SUSPEND

P j Q
 !
K [R];�a;�c)
��������! P 0fR=xg j Q0

P
a(ed);�a
�����! P 0; Q

a(ew);�c
�����! Q0; ec � ew; (new c) 2 ew if c 2 ec

XL-CLOSE

P j Q
 !a (ew);�a;�c
��������! new ec (P 0f ew=ecg j Q0)

Figure 10: Kell-m Extended Labelled Transition System Semantics

Recall the LTS semantics for kell-m, presented in Section 3.1 and listed in Figure 4. We now extend kell-m’s LTS
operational semantics with kell containment information, and expose the concretion and abstraction actions matched
in � communications. The rules for the extended LTS semantics are listed in Figure 10. Specifically, the changes are:

� For abstraction and concretion actions, a set � is included with the names of kells where the action is located.

� � transitions are decorated with the name of the channel or kell involved in the communication, the parameters
of the communication, and the kell containment sets for the matched abstraction and concretion.

� To further differentiate � actions from abstraction and concretions, channel and kell names in the communication
are decorated with an over double arrow, e.g., !a (ew),

 !
K [P].

� � in the transitions represents abstractions (i.e., a(ec), K[x]), concretions (i.e., a(ew), K[P]). �� represents � actions
(i.e., !a (ew),

 !
K [P])

� � is used to represent any kind of transition. Therefore, � depicts a triple (�� ; �a; �c) for � actions, and a pair
(�; �) for abstractions and concretions.

� To differentiate the new rules from the rules in Section 3.1, we prefix the new rules with the letter X.

We will assume XR-*, similar to the communication rules XL-REACT, XL-SUSPEND, and XL-CLOSE, but with the
order of the reader and writer processes inverted. The XR-* are obtained by applying the XSTRUCT rule, and then the
corresponding XL-* rule.

XRESTRICT removes restricted names from the kell containment set. When a process is located within a kell, if the
process can advance with concretion or abstraction actions, rule XADVANCE adds the kell to the kell containment set.

Using extended semantics, Figure 11 shows the possible evolution of a processes Q : K[T[a(c) . 0]] j L[a(w)].
The extended LTS semantics are the basis of k�, our logic for the specification of properties in systems modelled

using kell-m (k� is presented in Section 4 below). When � actions expose the information of the abstraction and

13

K[T[a(c) . 0]] j L[a(w)]

K[T[0]] L[0]

K[T[0]] j L[0]

a(c); fK;Tg a(w); fLg

 !a (w); fK;Tg; fLg

Figure 11: Example of Process Evolution with Extended LTS Semantics

F ::= tt j ff j :F j C:F j F ^ F j F _ F j h�i:F j [�]:F j N(ep)
C ::= a op b j a 2 ew j jKj = n j a 2 K j :C j C ^ C j C _ C
� ::= ' j � ' j S j � S
' ::= (�;
) j (�� ;
;
)

 ::= � j K j � K j * K j I
N(ep) ::= Ffep=exg with N(ex) def

= F
op ::= = j 6= j > j < j � j �

Figure 12: k� Syntax

concretion actions being matched, they are no longer invisible to an observer. With k�, this allows the specification
of properties that can impose conditions at the time processes communicate. For example, one may be interested in
specifying a condition such as process in kell K1 communicates with process in kell K2 using channel a.

Also, using extended semantics it is possible to encode both the LTS and reduction semantics into a single tool.
In reduction semantics, only � transitions are considered. In LTS semantics, abstraction and concretion transitions are
considered, and � transitions are not inspected for matching abstraction and concretion information.

4 Property Representation
Once a system has been modelled using kell-m, the operational semantics of kell-m can be used to study the evolution
of the system. In particular, we are interested in being able to specify properties that must hold as a system evolves.

In this section we present k�, a formalism for the specification of properties of systems represented using kell-m.
k� is a modal temporal logic based on the extended operational semantics for kell-m. For a given kell-m process,
formulas specified in k� impose conditions on the labelled transition system for the process. Conditions may specify
kell containment requirements that must hold during transitions, and further k� conditions that must hold after channel
communications or kell passivations.

4.1 Syntax
Properties in k� are formulas F with the syntax specified in Figure 12. The syntax is inspired by the language imple-
mentation of the ��-calculus in the Mobility Model Checker [17]. Along with the term k� formula, we also use the
term k� condition when referring to a k� property.

tt represents true, ff represents false, :F is used to negate a condition specified by a formula. a and b represent
names, n represents a number. C specifies comparison of values passed in communications, containment conditions on
lists of names, containment conditions on kell sets, or checks on the size of a kell containment set.

Diamond h'i and box expressions ['] impose conditions on transitions, where ' is an action condition. Diamond
expressions are used to specify in at least one transition where ' conditions; while box expressions are used to specify

14

in every transition where ' conditions. Hence, path quantification in k� is implicit: existential for h : i modalities and
universal for [:] modalities.

' is a condition on a concretion or abstraction transition when ' is a pair (�,
), and � represents an abstraction
(i.e., a(ec), K[x]), or a concretion (i.e., a(ew), K[P]).
 represents a kell containment condition on the action �. Com-
munication parameters in � (i.e., ec, ew, x, and P) can be variables and names. If they are names, they must match the
names of the parameters in the transitions; if variables, they are instantiated with the corresponding parameter. For
example, using uppercase for variables and lowercase for names, when � is a(n, w), the only matched transitions in the
LTS are those labelled with output on channel a of names n and w. When � is a(V1; V2), the matched LTS transitions
are those which output two values on channel a, irrespectively of the actual values output. More examples will be
provided once we introduce kell containment conditions and the other ' expressions.

' is a condition on a � transition when ' is a triple (�� ,
,
), and �� represents � actions (i.e., !a (ew),
 !
K [P]).

Recall from Section 3.4, !a (ew) specifies the matching of channel abstraction a(ec) and concretion a(ew), and
 !
K [P]

specifies the matching of kell abstraction K[X] and concretion K[P]. The first
 in the triple is the kell containment
condition for the abstraction; the second
 is the kell containment condition for the matching concretion.

We refer to kell containment conditions as any for �; exactly for K; at least for � K; except for * K; and
instantiation for I , where I is a variable.

For an action �, kell containment condition � does not impose any requirements on the location of the action. Let
us now assume � is located in a process P such that:

K1[K2[� � �Kn[P] � � �]]

And � is not inside a kell in P . WithK, a set of kell names,K holds if fK1;K2; :::;Kng = K. For example, fK1;K2g
holds if � occurs in R with K1[K2[R]] or K2[K1[R]]. The same condition does not hold in K3[K1[K2[R]]]. � K
holds if K n fK1;K2; :::;Kng = ;, and * K holds if K \ fK1;K2; :::; Kng = ;. If a variable I is specified as a kell
containment condition, the condition succeeds and I is instantiated to fK1;K2; :::;Kng.

Consider the LTS shown in Figure 13 for a process P . Because we are using kell-m’s extended LTS semantics, for
every label �i in the LTS, �i may be: a pair �i; �i, with �i an action and �i its kell containment set; or (�� ; �i; �

0
i),

with �� specifying the channel or kell involved in the communication, �i the kell containment set for the abstraction,
and �0i the kell containment set for the concretion.

Let us assume a boolean function cs, able to decide if a sequence of parameters in � or �� expressions is compatible
with the actual parameters of an action specified in a LTS transition. cs will be formally defined in Section 4.2.
Intuitively, a sequence of parameters ew in � or �� is compatible with the actual parameters ed of an action if both
sequences have the same number of values and, positionally, every name in ew is matched in ed.

Condition ha(ew); fTgi:F holds for P if there is at least one transition from P labelled with communication action
a(ed), the action is located only within kell T , names in ew match names in ed, cs(ew; ed), and, after the transition, the

formula Ffed= ewg holds for the resulting process expression. Formally, ha(ew); fTgi:F holds if 9Pi : P
�i�! Pi, such

that �i = (�i; �i), with �i = a(ed), cs(ew; ed), �i = fTg, and Ffed= ewg holds at Pi.
Conditions on transitions representing abstractions are similarly specified. For example ha(ec); fTgi:F holds if

9Pi : P
�i�! Pi, such that �i = (�i; �i), with �i = a(ee), cs(ec; ee), �i = fTg, and Ffee=ecg holds at Pi.

A condition on a � transition, for example h !a (ew); fKg; fTgi:F , holds if 9Pi : P
�i�! Pi, such that �i =

 !a (ed); �a; �c, with �a = fKg, cs(ed; ew), �c = fTg, and Ffed= ewg holds at Pi. A � action on a kell holds when
the specified kell is passivated, for example because the process in the kell is being adapted. In such case a property
specifying that a kell K is being passivated while executing in Lc by a process executing in La is written as follows:

h
 !
K (X); fLag; fLcgi

Such a property holds for the following process:

Lc[Q j K[P]] j La[R j K[X] . K[P 0]]

[a(ew); ;]:F holds if, for every transition labelled with action a(ed) not located within any kell,Ffed= ewg holds for the
process expression after the transition. Formally, [a(ew); ;]:F holds when 8Pi : P

�i;�i���! Pi, if �i = a(ew), cs(ed; ew),
and �i = ;, then F holds at Pi.

15

P

P1

Pi

Pn

� � �

� � �

� � �

� � �
�1

�i

� � ��
n

Figure 13: LTSs for h : i and [:] Examples

Similarly, a condition [!a (ew); fKg; ;]:F , holds when 8Pi : P
�i�! Pi, if �i = [!a (ed); �a; �c], cs(ed; ew), and both,

�a = fKg and �c = fg, then F holds at Pi.
A property requiring adaptation of processes to occur only within certain localities is:

[
 !
K (X); fLag; fLcg]

If a kell K is passivated, the previous property requires the passivation to occur always while the passivated process
executes within Lc by a process executing within La.

The use of variables as kell containment conditions is useful when requiring two different transitions to have the
same kell containment conditions, without the need for knowing the actual kells. Hence ha(ew); Ii:hc(ee); Ii holds when

there are consecutive transitions P
a(ed);�
����! Q

c(eg);�
����! R. Notice the kell containment conditions � are the same in both

transitions.
The other possible h : i and [:] modalities deal with negation and sets of ' transition conditions. Having a process

P and a set of communication condition pairs S, h�'i:F holds if there is at least one transition from P , for which '
does not stand, after which F holds. hSi:F holds if there is at least one transition from P , for which a ' 2 S stands,
after which F holds. h�Si:F holds if there is at least one transition from P , for which a ' =2 S stands, after which F
holds. [�']:F holds if F holds after every transition from P for which a '0 with '0 6= ' holds. [S]:F holds if F holds
after every transition from P for which ' 2 S holds. Similarly, [�S]:F holds if F holds after every transition from P
for which a condition ' =2 S holds. We write h�i:F for h�fgi:F , and [�]:F for [�fg]:F .

Formulas can be named and parameterized using the syntax N(ex) def
= F , where ex are the formula parameters. N(ep)

is an actual use of a named formula, where ep are the values passed as formula parameters. Values can be channel and
kell names, variables, and other named formulas. Naming of formulas allows recursive definitions. For example, the
following formula has parameters C and K, and holds if, eventually, there is a read on given channel C within given
kell K:

ReadInKell(C;K)
def
= (hC(ec);� fKgi:tt) _ h�i:ReadInKell(C;K)

Finally, notice there are no explicit quantifiers over variables. In the ��-calculus it is possible to express conditions
8c:F requiring F to hold for every name c. In k� variables are quantified implicitly depending on whether a diamond
or box modality is used. Like paths, variables are existentially quantified in h : i and universally quantified in [:].
For example, C is existentially quantified in ha(C); �i:F and universally quantified in [a(C); �]:F . Since variable
quantification is implicit in k�, and only for values read or written, it is not possible to express conditions such as
8A : [A(C); �]:F , meaning F holds after every channel read. However, variables can be used in place of channels
and kells when the variables have been previously instantiated. For example, in the following property, variable Rc is
instantiated with the third value passed in the communication on channel subscribe. The actual value corresponds to a
channel on which a communication occurs right after the communication on channel subscribe:

h
 ����!
subscribe(Filter, Callback, Rc)i:h

 !
Rc(S)i

16

P j=V tt always
P j=V :F if P 6j=V F
P j=V C:F if C ^ P j=V F
P j=V F1 ^ F2 if P j=V F1 ^ P j=V F2

P j=V F1 _ F2 if P j=V F1 _ P j=V F2

P j=V h�� ;
a;
ci:F if 9Q : P
�0� ;�a;�c������! Q ^ cmp(�� ; �0�) ^

kc(
a; �a) ^ kc(
c; �c) ^ Q j=V F 0

P j=V h�;
i:F if 9Q : P
�0;�
���! Q ^ cmp(�; �0) ^

kc(
; �) ^ Q j=V F 00

P j=V [�� ;
a;
c]:F if 8Q : P
�0� ;�a;�c������! Q, (cmp(�� ; �0�),

(kc(
a; �a) ^ kc(
c; �c)))) Q j=V F 0

P j=V [�;
]:F if 8Q : P
�0;�
���! Q,

(cmp(�; �0) ^ kc(
; �))) Q j=V F 00

P j=V h�(�;
)i:F if 9Q : P
�0;�
���! Q ^

(:cmp(�; �0) _ :kc(
; �)) ^ Q j=V F 0, or
if 9Q : P

�� ;�a;�c������! Q ^ Q j=V F 0

P j=V h�(�� ;
a;
c)i:F if 9Q : P
�0� ;�a;�c������! Q ^ (:cmp(�� ; �0�) _

:kc(
a; �a) _ :kc(
c; �c)) ^ Q j=V F 0, or
if 9Q : P

�;�
��! Q ^ Q j=V F 0

P j=V hf'1; '2; :::; 'ngi:F if P j=V h'1i:F _ P j=V h'2i:F _ � � � _
P j=V h'ni:F

P j=V h�Si:F if 9' : P j=V h'i:F ^ ' =2 S
P j=V [�']:F if P j=V [�f'g]:F
P j=V [;]:F always
P j=V [f'1; '2; :::; 'ng]:F if P j=V ['1]:F ^ P j=V ['2]:F ^ � � � ^

P j=V ['n]:F
P j=V [�S]:F if P j=V [']:F , with ' =2 S

Figure 14: k� Semantics

4.2 Semantics
For a k� formula F , an interpretation V of formula parameters is a total function V : V ! NK [NF [NV . V
are the parameter names in F , Nk are kell-m names (of channels and kells), NF are named formulas, and NV are
property variables, including variables in kell containment conditions. For simplicity we will assume no name clashes:
NK \ NF \ NV = ;. Given a process P , a formula F , and interpretation V of parameters in F , we write P j=V F
when F holds in P . Based on the LTS for P according to the extended semantics of kell-m (cf. Section 3.4), j=V is
defined inductively in Figure 14.

Because of property variables in the � and
 expressions, once a transition has occurred the resulting formula needs
to be alpha-converted according to the instantiation of variables. Two kinds of instantiations can occur, depicted as F 0

and F 00, both specified in Figure 15. F 0 is used for � transitions, while F 00 is used for abstractions and concretions.
Auxiliary functions used in the specification of the k� semantics are defined in Figure 16. kc is a boolean function

that, given a kell containment condition
 and kell containment set �, decides if the kell containment condition holds.
cmp is a boolean function able to decide if a condition action in a property formula applies to an action in a LTS
transition. cmp uses boolean formula cs in its definition. cs determines if a sequence of parameter names and variables
specified in a transition condition is compatible with a sequence of values specified in a LTS transition action. Finally,
overloaded function ps extracts the list of parameters in an action condition or an action in a LTS transition.

Fixed point conditions are expressed using recursive formulas. For example, one may be interested in specifying

17

F 0 =

8>><
>>:
Ffps(�0�)=ps(��)g if
a =2 Nv;
b =2 Nv

Ff�a; ps(�0�)=
a; ps(��)g if
a 2 Nv;
b =2 Nv

Ff�c; ps(�0�)=
c; ps(��)g if
a =2 Nv;
b 2 Nv

Ff�a; �c; ps(�0�)=
a;
c; ps(��)g if
a 2 Nv;
b 2 Nv

F 00 =

�
Ffps(�0)=ps(�)g if
 =2 Nv

Ffps(�; �0)=ps(
; �)g if
 2 Nv

Figure 15: Variable Instantiation in k� Formulas

condition eventually, there is a write on channel a:

F def
= (ha(ew);anyi:tt) _ h�i:F

Which corresponds to the following least fixed-point definition:

�y:(ha(ew);anyi:tt _ h�i:y)

Similarly, an example of a greatest fixed-point is condition it is always possible to read on channel a:

A def
= ha(ec); (anyi:tt) ^ h�i:A

Which corresponds to:
�y:(ha(ec);anyi:tt ^ h�i:y)

Another least fixed-point condition is deadlock, specified as:

deadlock def
= [�]:ff _ [�]:deadlock

An example of a deadlocked process is new a a(c) . P . This process is deadlocked because it is waiting for commu-
nication on a private channel a no other process knows.

5 Encoding kell-m
In this section we show how to encode kell-m into MMC�. MMC� is an extension of the �-calculus as specified
in [1, 17] and implemented in the Mobility Model Checker (MMC). MMC is a tool for the verification of systems
specified using MMC�. MMC is written in XSB Prolog [2], a Prolog implementation with tabled evaluation [4].
Although not shown in the report, having an encoding of kell-m into MMC� allows the development of a kell-m model
checker using MMC. The syntax of MMC� is as follows:

P ::= 0 j new a P j P jP j P+P j a(ec):P j a(ec):P j P (ec) j [a = b]P

ec represents zero or more names. The choice operator +, represents a non-deterministic choice between two processes.
[a = b]P behaves as P if a and b are the same, otherwise it behaves as 0. P (ec) is process invocation, where P has
been defined as P (ed) def

= Pd. Recursion is allowed in process definitions. Because recursion is allowed, there is no
replication operation !P (in the �-calculus, P !

def
= P j !P , [8]).

To encode the kell-m calculus in MMC� two main issues need to be addressed: the semantics of kells, and the
higher-order nature of the kell-m calculus.

As established by the semantics of kell-m (cf. Figure 4, and Section 3.1), at a given point, a kell may be non-
deterministically passivated by a trigger, or it may continue its execution. When encoding kell-m in MMC�, we use
the name of the kell as a communication channel where the kell’s own process is output. For example, a kell K[P] is
represented as:

choice(K(P);K[advance(P)])

Where choice behaves as the �-calculus non-deterministic choice between two processes, and advance advances the
execution of a process.

18

kc(�; �) always
kc(K; �) if (� = K)

kc(� K; �) if (K n � = ;)
kc(* K; �) if (� \ K = ;)

kc(V; �) always

cmp(a(ec); g(ee)) if a = g ^ cs(ec; ee)
cmp(a(ew); g(ed)) if a = g ^ cs(ew; ed)
cmp(K[x]; T [z]) if K = T ^ cs(x; z)

cmp(K[x]; T [P]) if K = T ^ cs(x; P)

cmp(!a (ew); !g (ed)) if a = g ^ cs(ew; ed)
cmp(

 !
K [x];

 !
T [P]) if K = T ^ cs(x; P)

cs(ew;ec) if j ewj = jedj = 0
cs(ew;ec) if ew = w; ew0 ^ ec = c;ec0^

(w 2 V _ (w 2 Nk ^ w = c)) ^ cs(ew0;ec0)
ps(a(ew)) � ew
ps(a(ec)) � ec

ps(K[x]) � x
ps(K[P]) � P

ps(!a (ew)) � ew
ps(
 !
K [P]) � P

Figure 16: Auxiliary Functions in k� Semantics Definition

5.1 Higher-Order Expressions
To deal with higher-order expressions in kell-m we could try Sangiorgi’s approach, originally proposed to reduce
higher-order �-calculus expressions to behaviour equivalent first-order �-calculus expressions [12, 13]. In Sangiorgi’s
approach, higher-order expressions are replaced by names we call higher-order references. Every higher-order expres-
sion is then composed in parallel and activated by a higher-order reference. The resulting first-order expression, could
then be converted to a �-calculus expression.

Comparing with traditional programming languages, one can think of Sangiorgi’s approach as the passing of func-
tion pointers instead of the function code itself. For example, consider the following higher-order kell-m process:

a(b(c)) j a(x) . (x j x)

The process is equivalent to a kell-m expression where b(c) is replaced with a fresh name h, and the higher-order
expression is factorized into a process activated by channel h:

new h (a(h) j h() . b(c) j h() . b(c)) j a(x) . (x() j x())

The fresh name h is, in essence, a reference to the factorized higher-order expression it replaced. Unfortunately, this
approach is not compatible with kell semantics. Consider the following kell-m expression E1, where P is a kell-m
process:

E1 � a(P) j a(x) . K[x]

Such an expressions is higher-order because process P is being output on channel a. Assuming Sangiorgi’s approach
applies to kell-m, such an expression would be equivalent to E2:

E2 � new h (a(h) j h() . P)ja(x) . K[x()]

19

After there is a match between a(h) and a(x) in E2, kell K causes the activation of P by executing x(). P then executes
outside kell K. In the original expression a(x).K[x] the intention is to execute the received kell-m expression P inside
kell K. Because P executes inside K, another process can use a trigger K[y] . Q to suspend K in the middle of P ’s
execution. In E2 there is no way to suspend the execution of P once it has been activated via h. The behaviour in E2

is that of remote code invocation, whilst the behaviour in E1 is similar to code migration and local execution of the
received code.

Another interesting feature related to the higher-order nature of the kell-m calculus is the scope extrusion of re-
stricted names when kells are passivated. A process expression, being sent from one kell to another, may have restricted
names that must remain restricted at the receiving kell. For example, in:

K1[new c,d a(c(d)jc(e) . 0)] jK2[a(x) . x]

when (c(d)jc(e) . 0) is received by K2, names c and d should remain restricted. This scope extrusion is explicitly
represented by the reduction rules *-REDUCTEXTRUSION presented in Section 3.2.

We call the process context of a higher-order process expression P , the set of restricted names for P at a given
time. When there is code-shipping, the context of a given higher-order expression may vary depending on what code
is actually received. For example, in:

a(P) j a(Q) j a(x) . a[x]

The context of the expression a[x] depends on which one of P and Q is matched by a(x). For some executions it may
be P , for others it may be Q. Only until one analyses a specific execution it is possible to determine which context the
expression a[x] took during the execution.

When code is not migrated but referenced, as it is the case in Sangiorgi’s approach, there is no scope extrusion since
the higher-order code is factorized into a process expression that shares the same context as the writing expression:
a(P) is converted into new h (a(h) j h() � P). When h(), P executes within the same context as a(h).

Because of the issues with higher-order expression inside kells, and the need to carry-over processes along with
their contexts when they are transmitted via channels, we present a runable interpretation of kell-m expressions as
MMC� expressions. We call it runable, because the resulting MMC� expression is equivalent to a specific execution
of the kell-m expression. We will show that the MMC encoding of a kell-m process simulates the kell-m process.

Our solution to deal with higher-order expressions in the MMC interpretation, is to replace the higher-order ex-
pressions with fresh names we call higher-order indicators. When a higher-order indicator is received by a trigger, the
higher-order indicator is replaced by its associated kell-m expression. For example, in the following process:

a(b(c)) j a(x) . x

b(c) is replaced with a fresh name h:

a(h) j HJ a(x) K . x! HJ xfh=xg K � b(c)

Fresh name h is a higher-order indicator, and its relation to b(c) is remembered. When there is a communication, and
the process reduces to xfh=xg � h, h is then replaced by b(c). We call this process instantiation of higher-order
indicators, and useHJ � K for its representation.

5.2 Fresh Names and Higher-Order Mappings
Before we define the MMC� runable interpretation of kell-m processes, we introduce some auxiliary definitions.
FJ P K is defined in Figure 17. When Prolog variables are used care must be taken with expressions such as:

new c ((new c a(c)) j b(c))

Notice the c in a(c) is a different name than the c in b(c). If only one Prolog variable is used to represent c, when either
a(c) or b(c) is instantiated, for example as part of a communication, the other c is instantiated as well. This problem is
avoided by guaranteeing MMC� expressions passed to MMC do not have name collisions.

Assuming H , the set of higher-order mappings in process expressions (initially empty), HJ P K is defined as the
instantiation of the higher-order indicators in a kell-m process P :

HJ P K � Pf ew=ehg with j ewj = jehj; and
�

wi = pi; if 9pi : (hi; pi) 2 H
wi = hi; otherwise

H is defined recursively in Figure 18.

20

FJ 0 K def
= 0

FJ x K def
= x

FJ new a P K def
= new v FJ Pfv=ag K with v a fresh name

FJ a(ew) K def
= a(FJ ew K)

FJ ew K def
= FJ w1 K; :::;FJ wn K where ew � w1; :::; wn

FJ K[P] K def
= K[FJ P K]

FJ a(ec) . P K def
= a(ev) . FJ Pfev=ecg K with jevj = jecj and vi 2 ev all fresh names

FJ K[x] . P K def
= K[v] . FJ Pfv=xg K with v a fresh name

FJ P j Q K def
= FJ P K j FJ Q K

FJ P (ew) K def
= P (FJ ew K)

Figure 17: Introduction of Fresh Names

HJ 0 K def
= 0

HJ h K def
=

�
Q if (h;Q) 2 H
h otherwise

HJ new a P K def
= new aHJ P K

HJ a(eb) . P K def
= a(eb) .HJ P K

HJ K[x] . P K def
= K[x] .HJ P K

HJ K[P] K def
= K[HJ P K]

HJ a(w1; :::; wn) K def
= a(w1; :::; wn)

HJ P (ew) K def
= HJ Pdf ew=eyg K with P (ey) def

= Pd
HJ P j Q K def

= HJ P K j HJ Q K

Figure 18: Instantiation of Higher-Order Indicators

5.3 Kell Passivation
To implement kell-m extended semantics, it is necessary to keep track of kell containment information. A set Ks of
kells is used for this purpose. When a kell-m abstraction or concretion is to be encoded in MMC, the input or output
parameters are extended with the kell containment information.

A kell K[P] can be passivated by a matching trigger K[x] . Q, or it can advance its execution. The choice between
passivating the kell and advancing the execution of its process is non-deterministic. A kell K[P] itself may be nested
within another kell-m process. For example, consider R = K1[K2[K[P]]].

We specify SJ R;B;K[P];Ks K as the MMC� process corresponding to the passivation of a kell K[P] nested in
process R, executing within kells Ks, and with restricted names B (cf. Figure 19).

Hwrite replaces higher-order expressions in a channel output with higher-order indicators. For example,
Hwrite(a(b(c):0):0) produces the expression new h (a(h):0), where H := H [f(h; b(c))g.
IJ B;P K, to be defined later, is the MMC �-calculus interpretation of P when B represents the set of restricted

names at the time P is interpreted.
Since higher-order process expressions can be output on channels, we need to include the restricted names in the

process expressions as well. As previously mentioned, we refer to these restricted names, as the context of the process
expressions output. Here we are abusing the notation by writing the set of kells Ks and restricted names B directly.
Alternatively, one can assume an arbitrarily large number of names being passed in the concretions and being received
in the abstractions. The first names would correspond to the elements of Ks and B, the rest of the names would be
special names used to specify when a position is not being used. For notational convenience, we specify the set of kells
and bound names directly. We extend this abuse of notation to kell-m channel abstractions and concretions. Therefore,
we write a(ew;Ks) and a(ec;Ks), with Ks kell containment sets.

Kell-m concretions a(ew) are encoded as MMC� expressions a(ew;Ka;Kc; B). As we will show later, abstractions
a(ec) are encoded as a(ec;Ka;Kc; B). If a concretion, Kc is the kell containment set for the action and Ka is a Prolog
variable which is instantiated at the time of a � transition involving the channel a. If an abstraction, Ka is the kell

21

SJ R;B;K[P];Ks K def
= Hwrite(K(P;Ks); IJ B;Rf0=K[P]g K; B n fKg)

+

�
SJ R;B; P;Ks [fKg K if R 6= 0
SJ K[P]; B; P;Ks [fKg K otherwise

SJ R;B; P j Q;Ks K def
= SJ R;B; P;Ks K + SJ R;B;Q;Ks K

SJ R;B; P;Ks K def
= 0 if P 6= Q j R; and P 6= K[Q]

Hwrite(a(ew;Ks); Q;B)
def
= Hconv(a(ew;Ka;Ks; B):Q; j ewj; 1), with Ka a variable

Hconv(P; n; i) def
=

8>>>><
>>>>:

P if i � n
Hconv(new h (Pfh=wig); n; i+ 1); with h fresh and

H := H [f(h;wi)g
if wi is not a name

Hconv(P; n; i+ 1) otherwise

Figure 19: Encoding of Kells

containment set, and Kc and B are variables instantiated at � transitions. Hence, we are taking advantage of Prolog’s
unification for exposing kell containment information of both, concretions and abstractions.

Consider the kell-m process:
K1[K2[K3[a(ec) . 0] j a(ew)]]

S generates MMC� code allowing the passivation of any of the three kells. Let Q = K2[K3[a(ec) . 0] j a(ew)], R =
K3[a(ec) . 0] j a(ew), and P = K1[Q]. By S’s definition, the process is encoded as shown in Figure 20. In the resulting
process expression, the passivated kell, if any, is replaced by the null process in P . If � transitions, Ka, K 0a, and K 00a in
Figure 20, are variables to be instantiated with kell containment sets of matching kell passivation triggers.

5.4 Advancing Kell Processes
If a kell K[P] is not passivated, its process advances its execution as defined byAJ K[P] K in Figure 21(a). As mentioned
at the beginning of Section 5 kell abstractions are converted to channel abstractions. For concretions and abstractions on
channels (a(ew), a(ec)), and abstractions on kells (K[x]), a kell containment set, initially empty, is added to the parameters
of the communication. For kell concretions (K[P]), the kell containment set is added when the code allowing the kell
passivation is generated by SJ . K.

Notice the re-invocation of A in the definition for AJ K[L[P]] K. The other, alternate but incorrect, definition is:

AJ K[L[P]] K def
= K[AJ L[P] K]

In the case of nested kells, this definition may cause the interruption of one of the kells before the execution has
advanced. In other words, we want to lift the abstraction and concretion operations from nested kells in one single step.
For example, consider the process:

K1[K2[K3[a(ew)]]]

By A’s definition,
AJ K1[K2[K3[a(ew)]]] K � a(ew; fK1;K2;K3g)

If the alternate incorrect definition for A is used, we obtain:

AJ K1[K2[K3[a(ew)]]] K � K1[K2[a(ew; fK3g)]]

As we will see later, when we define I, this alternate definition would allow the passivation of kells K1 and K2 at
this point, at which time the kell processes do not correspond to the original ones (K3[a(ew)] in the case of K2, and
K2[K3[a(ew)]] in the case of K1).

Assuming no name collisions,AJ K[P jQ] K is defined in Figure 21(b). The assumption of no name collisions is im-
portant to avoid unintended capturing of names when lifting the name restrictions outside the kells (AJ K[new c P j Q] K).

Notice there is no definition of AJ x K, with x a process variable. This is because the execution of a kell process
can only advance when process variables have been replaced by their corresponding process expressions.

22

SJ 0; B; P;Ks K � Hwrite(K1(Q;Ks); IJ B; 0 K; B n fK1g) + SJ P;B;Q;Ks [fK1g K
� new h1 K1(h1;Ks;Ka; B n fK1g):IJ B; 0 K

+ Hwrite(K2(R;Ks [fK1g); IJ B;K1[0] K; B n fK2g)
+ SJ P;B;R;Ks [fK1;K2g K, with H := H [f(h1; Q)g

� new h1 K1(h1;Ks;Ka; B n fK1g):IJ B; 0 K
+ new h2 K2(h2;Ks [fK1g;K 0a; B n fK2g):IJ B;K1[0] K
+ SJ P;B;K3[a(ec) . 0];Ks [fK1;K2g K
+ SJ P;B; a(ew);Ks [fK1;K2g K,
with H := H [f(h2; R)g

� new h1 K1(h1;Ks;Ka; B n fK1g):IJ B; 0 K
+ new h2 K2(h2;Ks [fK1g;K 0a; B n fK2g):IJ B;K1[0] K
+ Hwrite(K3(a(ec;Ks [fK1;K2g) . 0); IJ B;K1[K2[0 j a(ew)]] K;

B n fK3g)
+ SJ P;B; a(ec) . 0;Ks [fK1;K2;K3g K + 0

� new h1 K1(h1;Ks;Ka; B n fK1g):IJ B; 0 K
+ new h2 K2(h2;Ks [fK1g;K 0a; B n fK2g):IJ B;K1[0] K
+ new h3 K3(h3;Ks [fK1;K2g;K

00
a ; B n fK3g):

IJ B;K1[K2[0 j a(ew)]] K
+ SJ P;B; a(ec) . 0;Ks [fK1;K2;K3g K + 0,
with H := H [f(h3; a(ec) . 0)g

� new h1 K1(h1;Ks;Ka; B n fK1g):IJ B; 0 K
+ new h2 K2(h2;Ks [fK1g;K 0a; B n fK2g):IJ B;K1[0] K
+ new h3 K3(h3;Ks [fK1;K2g;K

00
a ; B n fK3g):

IJ B;K1[K2[0 j a(ew)]] K
+ 0 + 0

Figure 20: Sample Encoding of Nested Kells

5.5 MMC� Calculus Interpretation of kell-m Processes
The runable MMC �-calculus interpretation of a kell-m process Pk is defined as:

Interpret(Pk)
def
= IJ fg;FJ Pk K K;where fn(Pk) = ;

fn is the set of free names in a process. FJ P K is process P with fresh names. IJ B;P K is the MMC �-calculus
interpretation of P when B represents the set of restricted names at the time P is interpreted.
IJ B, P K is defined in Figure 22. By passing the context along with the process expressions (see the definition for

IJ B; a(ew) K above) we guarantee any restricted names in the process expressions remain restricted at the receiving
end of the communication. To avoid unintended capture of free names on the receiving process, F is used every time
a process is invoked and every time there is communication.

Similarly to the definition ofA, kell containment sets are added for concretions and abstractions on channels (a(ew),
a(ec)), and for abstractions on kells (K[x]). In our tool ; is represented as an empty Prolog list [].

Recall Hwrite replaces higher-order expressions in a channel output with higher-order indicators. The resulting
MMC� expression corresponds to the channel output with higher-order expressions replaced by higher-order indicator
names, plus the process scope, followed by a given MMC� (0 in the definition for IJ B; a(ew) K).

It is in the definition for IJ B; a(ec) .P K, that we make use of the MMC �-calculus extension code(Op, P). As
previously mentioned, process expression code(Op, P) performs the Prolog predicate Op, and then behaves like P.
In the case of the kell-m encoding, code(inst(P, ec, bnd, P�),P�), the arguments received in the channel (if
any), are used in the replacement of higher-order indicators.

When the process being encoded is the parallel composition of two processes within a kell (IJ B;K[QjR] K), we
assume, non-deterministically, either one can advance. Hence we are using extensional (interleaved) concurrency: we
model concurrent behaviour by, non-deterministically, interleaving the actions of parallel processes [6].

23

AJ K[0] K def
= 0

AJ K[new c P] K def
= new c AJ K[P] K

AJ K[a(ew)] K def
= AJ K[a(ew; ;)] K

AJ K[a(ew;Ks)] K def
= a(ew;Ks [fKg)

AJ K[a(ec) . P] K def
= AJ K[a(ec; ;) . P] K

AJ K[a(ec;Ks) . P] K def
= a(ec;Ks [fKg) . K[P]

AJ K[L[x] . P] K def
= L(x; ;) . K[P]

AJ K[L[P]] K def
= AJ K[AJ L[P] K] K

AJ K[P (ew)] K def
= AJ K[Pdf ew=eyg] K where P (ey) def

= Pd

(a) Simple Process

AJ K[0 j Q] K def
= AJ K[Q] K

AJ K[new c P j Q] K def
= new c AJ K[P j Q] K

AJ K[a(ew) j Q] K def
= AJ K[a(ew; ;) j Q] K

AJ K[a(ew;Ks) j Q] K def
= a(ew;Ks [fKg) j K[Q]

AJ K[(a(ec) . P) j Q] K def
= AJ K[(a(ec; ;) . P) j Q] K

AJ K[(a(ec;Ks) . P) j Q] K def
= a(ec;Ks [fKg) . K[P j Q]

AJ K[(L[x] . P) j Q] K def
= AJ K[(L(x; ;) . P) j Q] K

AJ K[L[P] j Q] K def
= AJ K[AJ L[P] K j Q] K

AJ K[P (ew) j Q] K def
= AJ K[Pdf ew=eyg j Q] K where P (ey) def

= Pd

(b) Composed Process

Figure 21: Advancing the Execution of a Non-passivated Kell

Notice there is a definition for IJ B, x K, with x a process variable. A MMC� expression cannot be produced for a
process variable until the variable has been instantiated with a higher-order indicator, and the higher-order indicator has
been replaced by its associated process expression. Higher-order indicators are determined when the writer and receiver
processes communicate on a channel, via a � transition. If higher-order indicators associated to process variables are
not known, the result of the interpretation is the null process. For example, the kell-m expression a(x) . x is encoded
as a(x):0.

We now need to show for a kell-m process P : (a) the result of IJ fg, P K, is a MMC �-calculus process (cf. 5.6);
and (b) a global observer cannot distinguish P from IJ fg, P K.

5.6 IJ fg, P K is a MMC� Expression
As in Section 5, we will abuse the notation and write a(ew;Ks) and a(ec;Ks), with Ks kell containment sets. Moreover,
we will consider these expressions valid kell-m expressions, even though kell containment sets should be represented
using sequences of names.

Recall a MMC� expression is a �-calculus expression extended with code(Op, P). Both names and variables
can be transmitted in communications. We will use induction on the structure of P and assume no name collisions in
P (i.e., F has been invoked). If P � 0, by definition of I, IJ B; 0 K def

= 0, and 0 is trivially a MMC� process. Similarly,
if P is a process variable x, by definition of I, IJ B; x K def

= 0, and 0 is trivially a MMC�process. The other possible
cases for P are:

� new a Q, by definition IJ B; new a Q K def
= new a IJ B [fag; Q K. By induction IJ B;Q K is MMC�. IJ B [

fag; Q K is also a MMC� because, I does not impose conditions on B, and adding a name to the set of restricted
names B, only affects the tuple of names input and output during channel actions (see the I definitions for a(ew)
and a(ec) . R above). Finally, since restriction of a MMC� is a MMC�, then IJ B, P K is a MMC�.

24

IJ B; 0 K def
= 0

IJ B; x K def
= 0

IJ B; new a P K def
= new a IJ B [fag; P K

IJ B; a(ew) K def
= IJ B; a(ew; ;) K

IJ B; a(ew;Ks) K def
= Hwrite(a(ew;Ks); 0; B n fag)

IJ B; a(ec) . P K def
= IJ B; a(ec; ;) . P K

IJ B; a(ec;Ks) . P K def
= a(ec;Ks;Kc; bnd):code(inst(P;ec; bnd; P�); P�)

with inst(P;ec; bnd; P�) :- P� = IJ B [bnd;FJHJ P K K K
and Kc a variable

IJ B;K[P] K def
= SJ 0; B;K[P]; ; K

+

�
IJ B;AJ K[QjR] K K + IJ B;AJ K[RjQ] K K if P � QjR
IJ B;AJ K[P] K K otherwise

IJ B;K[x] . P K def
= IJ B;K(x; ;) . P K

IJ B;P (ew) K def
= IJ B;FJ Pdf ew=eyg K K where P (ey) def

= Pd
IJ B;P j Q K def

= IJ B;P K j IJ B;Q K

Figure 22: Encoding of kell-m Processes into MMC’s �-calculus

� a(ew), by definition IJ B; a(ew) K def
= Hwrite(a(ew; ;); 0; B0), with B0 = B [fag. Since Hwrite(a(ew; ;); 0; B0) def

=
Hconv(a(ew;Ka; ;; B0):0; j ewj; 1) with Ka a variable, we need to show Hconv(a(ew;Ka; ;; B0):0; j ewj; 1) is a
MMC�. By induction on the length of ew:

– j ewj = 0, by Hconv’s definition, Hconv(a(Ka; ;; B0):0; 0; 1) = a(Ka; ;; B0):0. Since Ka is a variable, ; is
modelled as an empty list (cf. Section 5), and there are only names in B0, a(Ka; ;; B0):0 is a MMC�.

– We now assume Hconv(a(w1; w2; :::; wn;Ka; ;; B0):0; n; 1) is a MMC�. Such a process looks as follows:

new hj (
new hj�1 (
� � � (new h1 (a(ey;Ka; ;; B0):0)) � � �

)
)

Assuming in (w1; :::; wn) there are j higher order expressions, and being ey the resulting output names after
higher order expressions have been replaced. We have jeyj = n, and

yi =

8<
:

wi if wi is not higher-order
hm with m � j and (hm; wi) 2 H

and 6 9l : l � n; l 6= i; wl = hm; otherwise

By induction, such a process is a MMC�. We need to show for a new wn+1,
Hconv(a(w1; w2; :::; wn; wn+1;Ka; ;; B0):0; n + 1; 1) is a MMC� as well. If wn+1 is a name (i.e., not a
higher-order expression), then by the definition of Hconv, the resulting process is (changes with respect to
the process for n are double-underlined):

new hj (
new hj�1 (

� � � (new h1 (a(ey0; ka; ;; B0):0)) � � �
)

)

Notice the only difference between the resulting process, and the process for
Hconv(a(w1; w2; :::; wn;Ka; ;; B0):0; n; 1), is the use of ey0 instead of ey, where ey0 = y1, y2, :::, yn, wn+1.
Since this change only increases the number of names written by one, the resulting process is a MMC�. If

25

the new wn+1 is a higher-order expression, by the definition of Hconv, the resulting process is (changes are
double-underlined):

new h (

new hj (
new hj�1 (

� � � (new h1 (a(fy00;Ka; ;; B0):0)) � � �
)

)
)

Where fy00 = y1, y2, :::, yn, h, with h a fresh name used as a higher-order indicator and H = H [
f(h;wn+1)g. Since the changes only introduce a restriction new h and a name h to the output list, the
resulting expression is a MMC� expression, and therefore, the following is a MMC�:

Hconv(a(w1; w2; :::; wn+1;Ka; ;; B
0):0; n+ 1; 1)

We have shown Hconv(a(ew;Ka; ;; B0):0; j ewj; 1), for j ewj = 0 and j ewj = n+ 1 are both a MMC�; then by
induction on the length of ew, Hconv(a(ew;Ka; ;; B0):0; j ewj; 1) is a MMC� for all ja(ew)j = n. And be-
cause Hconv(a(ew;Ka; ;; B0):0; j ewj; 1) is a MMC�, then IJ B; a(ew) K is a MMC�, therefore IJ B;P K
is a MMC�. In general, Hconv(a(ew;Ka; ;; B0):R; j ewj; 1) is a MMC� if R is a MMC�. Therefore,
Hwrite(a(ew; ;); R;B fag) is a MMC� when R is a MMC�. We will make use of this observation when
showing that IJ B;K[Q] K is a MMC�.

� a(ew;Ks) with Ks a kell containment set. The argument is similar to that of a(ew), but with Ks instead of
;. When Hconv(a(ew;Ka;Ks; B

0):0; j ewj; 1) with Ka a variable, the resulting expression is MMC�, because
Ks is represented as a list. The only difference is Ks may not be empty, but in such a case Ks as part of a
communication is a valid MMC�.

� a(ec).Q, by definition IJ B; a(ec).Q K def
= a(ec; ;;Kc; bnd):code(inst(Q;ec; bnd; Q�); Q�) with Kc a variable.

Because ec is a sequence, possibly empty, of names and variables, ; is a valid value in MMC� communications,
and bnd is a variable, an expression a(ec; ;;Kc; bnd):P is a MMC�, if P is a MMC�.

code(Op, R) is a MMC extension of the �-calculus. It is defined as performing the predicate Op, and
then behaving as R. In our case, Op is inst(Q;ec; bnd; Q�), and R is Q� . We need to show that after
evaluating inst(Q;ec; bnd; Q�), Q� is a MMC�. By definition, inst(Q;ec; bnd; Q�) :- Q� = IJ B [
bnd;FJHJ Q K K K: Recall HJ Q K replaces higher-order indicators found in Q with their corresponding associ-
ated process expressions in H . The result of the instantiation is a kell-m process, which is then processed by F ,
so that fresh names are used. The result of the fresh-names processing is again a kell-m process.

We will show HJ Q K is a kell-m process for any kell-m process Q. Similarly, FJ Q K can be shown to be a
kell-m process (we omit the proof). Based on Q andH’s definition, the possible transformations made to Q are:

– Q = 0, by definitionHJ 0 K def
= 0, and 0 is trivially a kell-m process.

– Q = x, if x is a higher-order indicator, by definitionHJ x K def
= P 0, where P 0 is the kell-m process associated

to x in H . Since P 0 is a kell-m process thenHJ h K is a kell-m process. If x is not a higher-order indicator,
then x is a process variable, and process variables are kell-m processes.

– Q = d(eb) . R, by definition HJ d(eb) K . R)
def
= d(eb) .HJ R K. By structural induction, assuming HJ R K is

a kell-m process, then d(eb) .HJ R K is also a kell-m process.

– Q = K[x] . R, by definition HJ K[x] . R K def
= K[x] .HJ R K. Assuming, by structural induction, if HJ R K

is a kell-m process, then K[x] .HJ R K is also a kell-m process.

– Q = K[R], by definitionHJ K[R] K def
= K[HJ R K]. Assuming, by structural induction, thatHJ R K is a kell-m

process, then K[HJ R K] is also a kell-m process.

– Q = d(eb), trivially a kell-m process, since by definition there is no modification of the kell-m process d(eb):
HJ d(eb) K def

= d(eb).
26

– Q = R(ev), by definition HJ R(ev) K def
= HJ Rdfev=eyg K when R(ey) = Rd. Since Rd is a kell-m process, by

structural inductionHJ Rdfev=eyg K is also a kell-m process.

– Q = R j T , by definition HJ RjT K def
= HJ R K j HJ T K. By structural induction, assuming HJ R K and

HJ T K are kell-m processes, then their parallel composition is also a kell-m process.

Because FJHJ Q K K is a kell-m process, by structural induction, IJ B [bnd; FJHJ Q K K K is a MMC� if:

� a(ec;Ks) . Q, with Ks a kell containment set, possibly empty. The argument is the same as for a(ec) . Q above.
Notice a(ec;Ks;Kc; bnd):P is a MMC� if P is a MMC�.

� K[Q], by I’s definition IJ B;K[Q] K def
= SJ 0; B;K[Q]; ; K + IJ B;AJ K[Q] K K if Q is not the parallel composi-

tion of processes R and T ; otherwise,

IJ B;K[Q] K def
= SJ 0; B;K[Q]; ; K + IJ B;AJ K[RjT] K K + IJ B;AJ K[T jR] K K

First we will show when Q = 0, then IJ B;K[Q] K is a MMC�. By definition, IJ B;K[0] K def
= SJ 0; B;K[0]; ; K

+ IJ B;AJ K[0] K K. By S’s definition:

SJ 0; B;K[0]; ; K def
= Hwrite(K(0; ;); IJ B; 0f0=K[0]g K; B n fKg)

+ SJ K[0], B, 0, fKg K
� Hwrite(K(0; ;); IJ B; 0 K; B n fKg) + 0
� Hwrite(K(0; ;); 0; B n fKg) + 0

By A’s definition, IJ B;AJ K[0] K K � IJ B; 0 K � 0. Therefore:

IJ B;K[0] K � Hwrite(K(0; ;); 0; B n fKg) + 0 + 0

We have already shown Hwrite(K(0; ;); 0; B n fKg) is a MMC�. Finally, the choice of Hwrite(K(0; ;); 0; B n
fKg), 0, and 0 is trivially a MMC�.

For the general case, we need to show SJ 0; B;K[Q]; ; K is a MMC�, then we will show AJ K[Q] K produces a
kell-m process. We will argue, by structural induction, that IJ B;AJ K[Q] K K is therefore a MMC�.

By S’s definition, SJ 0; B;K[Q]; ; K def
= Hwrite(K(Q; ;); IJ B; 0f0=K[Q]g K; B n fKg) + SJ K[Q], B, Q, fKg K.

Since IJ B; 0f0=K[Q]g K � IJ B; 0 K def
= 0, then

SJ 0; B;K[Q]; ; K � Hwrite(K(Q; ;); 0; B n fKg) + SJ K[Q], B, Q, fKg K. Because Hwrite(K(Q; ;); 0; B n
fKg) is a MMC�, we just need to show:

SJ K[Q], B, Q, fKg K is a MMC�.

The possible cases for Q are:

– Q is not a kell G[R] or a parallel composition of two processesRjT , then by S’s definition, SJ K[Q]; B;Q; fKg K
def
= 0, and 0 is trivially a MMC�.

– G[R], by S’s definition:
SJ K[Q]; B;Q; fKg K def

= Hwrite(G(R; fKg); IJ B; K[0] K; B n fGg) + SJ K[Q]; B;R; fK;Gg K
We have already shown IJ B;K[0] K is a MMC� therefore, Hwrite(G(R; fKg); IJ B;K[0] K; BnfGg) is a
MMC� (recall, Hwrite(a(ew;Ks); T; B) is a MMC� if T is a MMC�). Still to show is that SJ K[Q]; B;R; fK;Gg K
is a MMC�. Interesting cases occur when R is the nesting of multiple kells, possibly composed in parallel.
For example K1[K2[:::Kn[T]:::] jKu[W]], where T and W are not parallel composition of processes or
another kell. In such cases, the result of S looks as:

new hu Ku(hu; fK;G;K1g):IJ B;K[G[K1[K2[:::Kn[T]:::] j 0]]] K
+ new h1 K1(h1; fK;Gg):IJ B;K[G[0]] K
+ new h2 K2(h2; fK;G;K1g):IJ B;K[G[K1[0 jKu[W]]]] K
+ � � �
+ new hn Kn(hn; fK;G;K1; :::;Kn�1g):
IJ B;K[G[K1[K2[:::0:::] jKu[W]]]] K

27

With
H = H [f (hu;W);

(h1;K2[K3[:::Kn[T]:::]] jKu[W]);
(h2;K3[K4[:::Kn[T]:::]] jKu[W]);
:::;
(hn; T)g

Names hs are higher-order indicators. The channel outputs Ki(hi;Ks) are MMC� expressions. For the
expressions,

IJ B;K[G[K1[K2[:::]]]] K

I’s definition uses the advance function A:

IJ B;K[G[K1[K2[:::]]]] K def
= IJ B;AJ K[G[K1[K2[:::]]]] K K

AssumingA produces a kell-m process (we will show this later), by structural induction, the encoding I of
such process is a MMC�. Therefore, SJ K[G[R]]; B; G[R]; fKg K, is the composition, via the �-calculus
choice operator +, of MMC�s. The choice of MMC�s is trivially a MMC�.

– RjT , by S’s definition, SJ K[Q]; B;R j T K def
= SJ K[Q]; B;R; fKg K +

SJ K[Q]; B; T; fKg K. By structural induction on S, both SJ K[Q]; B;R; fKg K and SJ K[Q]; B; T; fKg K
are a MMC�, and the choice of two MMC�s is trivially a MMC�.

We will now show the result of AJ K[Q] K is a kell-m process. By structural induction on A, the cases for Q are:

– 0, by A’s definition AJ K[0] K def
= 0, and 0 is a kell-m process.

– new c R, by A’s definition AJ K[new c R] K def
= new c AJ K[R] K. By structural induction, AJ K[R] K is a

kell-m process, and the restriction of a kell-m process is a kell-m process.

– a(ew) by A’s definition AJ K[a(ew)] K def
= a(ew; fKg), and a(ew; fKg) is a kell-m process.

– a(ew;Ks) byA’s definitionAJ K[a(ew;Ks)] K def
= a(ew;K 0s), with K 0 = Ks[fKg, and a(ew;K 0s) is a kell-m

process.

– a(ec).R, byA’s definitionAJ K[a(ec).R] K def
= a(ec; fKg).K[R]. This is a kell-m channel trigger expression.

– a(ec;Ks) . R, by A’s definition AJ K[a(ec;Ks) . R] K def
= a(ec;K 0s) . K[R] with K 0s = Ks [fKg. This is a

kell-m channel trigger expression.

– L[x].R, byA’s definitionAJ K[L[x].R] K def
= L(x; fKg).K[R]. This is a kell-m channel trigger expression.

– L[R], by A’s definition AJ K[L[R]] K def
= AJ K[AJ L[R] K] K. By structural induction, AJ L[R] K is a kell-m

process. A eliminates kells with null processes, and lifts name restrictions (new c), channel concretions
(a(ea)) and abstractions (a(ec) . U , K[x] . U) from nested kells outwards. The invocation AJ K[AJ L[R] K] K
just lifts to the outside of K whatever expression was, in turn, lifted from L[R]. The expression being
lifted has the form 0, AJ K[0] K, new c R, a(ec) . R, or L[x] . R. We have already shown that the result of
advancing on such expressions is also a kell-m expression.

– R(ew), by A’s definition AJ K[R(ew)] K def
= AJ K[Rdf ew=eyg] K where R(ey) def

= Rd. By structural induction
AJ K[Rdf ew=eyg] K is a kell-m process.

– RjT , R can be one of:

� 0, by A’s definition AJ K[0 j T] K def
= AJ K[T] K, and by structural induction, AJ kkKT K is a kell-m

process.

� new c U , byA’s definitionAJ K[new c U jT] K def
= new c K[U jT]. A restriction of a kell-m process is a

kell-m process.

� a(ew), by A’s definition AJ K[a(ew) j T] K def
= a(ew; fKg) j K[T]. Parallel composition of kell-m pro-

cesses is a kell-m process.

� a(ew;Ks), by A’s definition AJ K[a(ew;Ks) j T] K def
= a(ew;Ks [fKg) j K[T]. Parallel composition of

kell-m processes is a kell-m process.

28

� �0

� �(concr;Ka;Kc) with concr concretion, Ka;Kc kell cont. sets
a(ew) a(ew0;Ka;Kc; B) with Ka variable, Kc kell cont. set
a(ec) a(ec;Ka;Kc; bnd) with Ka kell cont. set, Kc variable
K[P] K(new hP ;Ka;Kc; B) with Ka variable, Kc kell cont. set
K[x] K(x;Ka;Kc; bnd) with Ka kell cont. set, Kc variable

Table 1: Kell-m and Corresponding MMC� Actions

� a(ec) . U , by A’s definition, AJ K[(a(ec) . U) j T] K def
= a(ec; fKg) . K[U j T]. Trigger expressions that

match channel outputs are kell-m processes.

� a(ec;Ks) . U , by A’s definition, AJ K[(a(ec;Ks) . U) j T] K def
= a(ec;Ks [fKg) . K[U j T]. Trigger

expressions that match channel outputs are kell-m processes.

� L[x] . U , by A’s definition AJ K[(L[x] . U) j T] K def
= L(x; fKg) . K[U j T]. Trigger expressions that

match kells are kell-m processes.

� H[U], byA’s definitionAJ K[H[U] j T] K def
=AJ K[AJ H[U] K j T] K. By structural inductionAJ H[U] K

is a kell-m process. AJ H[U] K has the form 0, AJ K[0] K, new c R, a(ec) . R, or L[x] . R. We have
already shown that advancing the execution of such an expression, composed in parallel with another
kell-m expression, is also a kell-m expression. Hence, the result of AJ K[H[U] j T] K is a kell-m
process.

� U(ew), by A’s definition AJ K[U(ew) j T] K def
= AJ K[Udf ew=eyg j T] K where U(ey) def

= Ud. By structural
induction AJ K[Udf ew=eyg j T] K is a kell-m process.

Without loss of generality, AJ K[T jR] K is also a kell-m process.

Since both SJ K[Q]; B;K[Q]; fKg K and IJ B;AJ K[Q] K K are a MMC�, then their composition via the �-
calculus choice operator is also a MMC�. Therefore IJ B;P K is a MMC�. In the case of Q being the par-
allel composition of processes R and T , we have also shown IJ B;AJ K[RjT] K K and IJ B;AJ K[T jR] K K are
MMC�, therefore, IJ B;K[Q] K is a MMC�.

� K[x] . Q, by I’s definition IJ B;K[x] . Q K def
= IJ B;FJ K(x; ;) . Q K K. Because F only performs alpha-

conversions, the kell-m process resulting of FJ K(x; ;) . Q K will have the form K(x0; ;) . Q0, and we have
already shown that the result of IJ B;K(x0; ;) . Q0 K is a MMC�, therefore IJ B;P K is a MMC�.

� Q(ew), by I’s definition IJ B;Q(ew) K def
= IJ B;FJ Qdf ew=eyg K K where Q(ey) def

= Qd. Because, F only performs
alpha-conversions, by structural induction, IJ B; FJ Qdf ew=eyg K K is a MMC�, therefore IJ P K is a MMC�.

� Q j R, by definition IJ B;QjR K def
= IJ B, Q K j IJ B, R K. By induction both IJ Q K and IJ R K are MMC�s, and

because the parallel composition of MMC�s is a MMC�, then IJ P K is a MMC�.

We have shown that the result of the interpretation of a kell-m process is a MMC �-calculus process.

5.7 P is Indistinguishable from IJ fg, P K
We want to show that when a kell-m process P transitions to Q, its encoding IJ B;P K, transitions to Q’s encoding: if

P
�
�! Q, then IJ B;P K �0

�! IJ B0; Q K.
As shown in Table 1, the names involved in the actions � and �0 are the same, but the actual parameters of the

actions may differ.ew0 is ew with higher-order expressions replaced by higher-order indicators, and hP is the higher-order indicator
associated with P . The sets and variables used to expose kell containment information and bound names are included
in the MMC� actions. Because the names of the channels in communications do not change, an observer will not
notice a change in the visibility predicates between P and its encoding, nor between Q and its encoding.

We start by defining in Figure 23 VM , the visibility predicates for MMC. We do not specify a visibility predicate

29

VM J 0 K def
= fg

VM J new a P K def
= VM J P K n fag

VM J a(ew):P K def
= fag

VM J a(ec):P K def
= fag

VM J P jQ K def
= VM J P K [VM J Q K

VM J P +Q K def
= VM J P K [VM J Q K

VM J code(Op, P) K def
= VM J P K

Figure 23: Visibility Predicates for MMC�

for [a = b]P since such expressions are not generated by our encoding of kell-m processes. V the visibility for kell-m
is defined in Figure 8, Section 3.3.

Using structural induction we will show the visibility predicates for P and its MMC� encoding IJ fg; P K are the
same. For 0 and x the visibility predicates are trivially the same: both empty for P and IJ fg; P K. The other cases are:

� new a Q, by the definition of V , VM and I we have VJ new a Q K def
= VJ Q Knfag, VM J new a IJ B[fag; Q K K

def
= VJ IJ B[fag; Q K Knfag. By structural induction, VJ Q K = VJ IJ B[fag; Q K K, therefore, VJ new a Q K =
VM J IJ B; new a Q K K.

� a(ew), by I’s definition, IJ B; a(ew) K def
= Hwrite(a(ew; ;); 0; Bnfag). Recall Hwrite replaces higher-order expres-

sions in ew with higher-order indicator names, and keeps track of those names inH . By VM ’s and Hwrite’s defini-
tion: VM J Hwrite(a(ew; ;); 0; B nfag) K def

= fag. Since, VJ a(ew) K def
= fag, then VJ a(ew) K = VM J IJ B; a(ew) K K.

� a(ec) . Q, by V’s definition VJ a(ec) . Q K def
= fag. By VM ’s and I’s definition:

IJ B; a(ec) . Q K def
= a(ec;Ks;Kc; bnd):code(inst(Q;ec; bnd; Q�); Q�)

VJ a(ec; bnd):code(inst(Q;ec; bnd; Q�); Q�) K def
= fag

Then VJ a(ec) . Q K = VM J a(ec; bnd):code(inst(Q;ec; bnd; Q�); Q�) K

� K[x] . Q, by V’s definition VJ K[x] . Q K def
= fKg. By I’s and VM ’s definitions:

VM J IJ B;K[x] . Q K K
= VM J IJ B;FJ K(x) . P K K K
= VM J K(x,bnd):code(inst(Q; x; bnd; Q�); Q�) K
= fKg
= VJ K[x] . Q K

� Q(ew), by V’s definition VJ Q(ew) K def
= VJ Qdf ew=eyg K, whereQ(ey) def

=Qd. By structural induction, VJ Qdf ew=eyg K
= VM J IJ B;FJ Qdf ew=eyg K K K.

� K[Q], by V’s definition, VJ K[Q] K def
= fKg [VJ Q K. By I’s definition IJ B;K[Q] K def

= SJ 0; B;K[Q]; ; K
+ IJ B;AJ K[Q] K K if Q is not the parallel composition of processes R and T ; otherwise,IJ B;K[Q] K def

=
SJ 0; B;K[Q]; ; K + IJ B;AJ K[RjT] K K + IJ B;AJ K[T jR] K K. We need to show that when Q is not RjT :

VM J SJ 0; B;K[Q]; ; K + IJ B;AJ K[Q] K K K def
=

VM J SJ 0; B;K[Q]; ; K K [VM J IJ B;AJ K[Q] K K K =
fKg [VJ Q K

If Q � RjT , we need to show:

VM J SJ 0; B;K[RjT]; ; K + IJ B;AJ K[RjT] K K + IJ B;AJ K[T jR] K K K def
=

VM J SJ 0; B;K[RjT]; ; K K [VM J IJ B;AJ K[RjT] K K K [
VM J IJ B;AJ K[T jR] K K K = fKg [VJ T jR K

30

Notice:
VM J SJ 0; B;K[Q]; ; K K def

=
VM J Hwrite(K(Q; ;); IJ B; 0f0=K[Q]g K; B n fKg) + SJ K[Q]; B;Q; fKg K K =
VM J Hwrite(K(Q; ;); IJ B; 0 K; B n fKg) K [VM J SJ K[Q]; B;Q; fKg K K =
VM J Hwrite(K(Q; ;); 0; B n fKg) K [VM J SJ K[Q]; B;Q; fKg K K =
fKg [VM J SJ K[Q]; B;Q; fKg K K

Assuming Q is not RjT , left to show, is then:

fKg [VM J SJ K[Q]; B;Q; fKg K K [VM J IJ B;AJ K[Q] K K K = fKg [VJ Q K

If Q is not a kell, then, by S’s definition, VM J SJ K[Q]; B;Q; fKg K K def
= VM J 0 K def

= fg. So, for such a Q, we
need only to show: VM J IJ B;AJ K[Q] K K K = VJ Q K. The possible cases for Q are:

– 0, then, AJ K[Q] K = 0, and therefore, VM J IJ B;AJ K[Q] K K K = VM J IJ B; 0 K K = fg = VJ Q K.

– a(ew), then, AJ K[Q] K = a(ew; fKg), and

VM J IJ B;AJ K[Q] K K K = VM J IJ B; a(ew; fKg) K K
= VM J IJ B; a(ew; fKg) K K
= VM J Hwrite(a(ew; fKg); 0; B n fag) K
= fag
= VJ a(ew) K

– a(ec) . R, then AJ K[Q] K = a(ec; fKg) . K[R], and

VM J IJ B;AJ K[Q] K K K = VM J IJ B; a(ec; fKg) . K[R] K K
= VM J a(ec; fKg;Kc; bnd):

code(inst(R;ec; bnd; R�); R�) K
= fag
= VJ a(ec) . R K

– L[x] . R, then AJ K[Q] K = L(x; fKg) . K[R], and

VM J IJ B;AJ K[Q] K K K = VM J IJ B; L(x; fKg) . K[R] K K
= VM J L(x; fKg;Kc; bnd):

code(inst(R; x; bnd; R�); R�) K
= fLg
= VJ L[x] . R K

– R(ew), and AJ R(ew) K def
= AJ Rd(f ew=eyg) K, where R(ey) def

= Rd. By structural induction, we assume that:

VM J IJ B;AJ R(ew) K K K
= VM J IJ B;AJ Rd(f ew=eyg) K K K
= VJ Rd(f ew=eyg) K

– new a R, thenAJ K[new a R] K = new a AJ K[R] K; assuming that R is not of the form new c :::, we have:

VM J IJ B;AJ K[new a R] K K K = VM J IJ B; new a AJ K[R] K K K
= VM J new a IJ B [fag;AJ K[R] K K K

Assuming R is not a process with a kell, nor a parallel composition of kell-m processes, we have already
shown VM J IJ B;AJ K[R] K K K = VJ R K in these cases, then:

VM J IJ B;AJ K[new a R] K K K
= (fKg [VM J IJ B [fag;AJ K[R] K K K) n fag
= (fKg [VJ R K) n fag
= fKg [VJ new a R K

31

When Q is the parallel composition of processes R and T , and these processes are not kells, it can also be shown
the kell passivation code S generates the null process 0, and the only interesting remaining process is the advance-
kell execution process. In such a case, showing that VM J IJ B;AJ K[RjT] K K K [VM J IJ B;AJ K[T jR] K K K
= VJ Q K, requires computing the visibility predicates for the composed processes in Q. The procedure to follow
is similar to the one just followed, and hence we skip it.

When Q has the form new a1 new a2 :::new an R, the restricted names are lifted from within the kell, and the
resulting visibility expression is:

VM J IJ B;AJ K[new a1; :::; an R] K K K
= VM J IJ B; new a1; :::; an AJ K[R] K K K
= VM J new a1; :::; an IJ B [new a1; :::; an ;AJ K[R] K K K
= (fKg [VJ R K) n fa1; :::; ang
= fKg [VJ new a1; :::; an R K

We still need to show that when Q is itself a kell, then

fKg [VM J SJ K[Q]; B;Q; fKg K K [VM J IJ B;AJ K[Q] K K K = fKg [VJ Q K

We argue that in the case of nested kells, the suspend kell S definition generates null processes for each non-kell
subprocess, and a concretion for each subkell, plus the result of advancing the execution of the kell. We will
see that the resulting visibility predicates match. Let us assume P = K[K1[:::[Kn[R]]:::]], with R a non-kell
process (i.e., R has a form different than L[:]). In such a process, we have Q = K1[:::[Kn[R]]:::], and:

fKg [VM J SJ K[Q]; B;Q; fKg K K [VM J IJ B;AJ K[Q] K K K =
fKg [VM J Hwrite(K1(K2[K3[:::[Kn[R]]:::]]; fKg):IJ B;K[0] K; B n fK;K1g) K

[VM J Hwrite(K2(K3[:::[Kn[R]]:::]; fK;K1g):
IJ B;K[K1[0]] K; B n fK;K1;K2g) K

[� � �
[VM J Hwrite(Kn(R; fK;K1;K2; :::;Kn�1g):

IJ B;K[K1[K2[:::[Kn�1[0]]:::]]] K; B n fK;K1; :::;Kng) K
[VM J IJ B;AJ K[K1[:::[Kn[R]]:::]] K K K =

fKg [fK1g [fK2g [� � � [fKng [VM J IJ B;K[K1[:::[AJ Kn[R] K]:::]] K K

The expression IJ B;K[K1[:::[AJ Kn[R] K]:::]] K, by I’s and S’s definitions, takes the result ofAJ Kn[R] K and,
on each recursive invocation of A, moves the expression one kell outwards. For example, if R = a(c) . R0:

A inv. Expression
0 AJ K[AJ K1[AJ K2[:::[AJ Kn�1[AJ Kn[a(c) . R0] K] K]:::] K] K] K
1 AJ K[AJ K1[AJ K2[:::[AJ Kn�1[a(c; fKng) . Kn[R

0]] K]:::] K] K] K
2 AJ K[AJ K1[AJ K2[:::[a(c; fKn;Kn�1g) . Kn�1[Kn[R

0]]]:::] K] K] K
::: :::
n+ 1 a(c; fKn;Kn�1; :::;K1;Kg) . K[K1[K2[:::[Kn[R

0]]:::]]]

Therefore:
VM J IJ B;K[K1[:::[AJ Kn[R] K]:::]] K K

= fK;K1;K2; :::;Kng [VM J AJ Kn[R] K K
Finally, by V’s definition:

VJ K1[K2[:::[Kn[R]]:::]] K = fK1;K2; :::;Kng [VJ R K

We have previously shown, for non-kell processes R, VM J IJ B;AJ Kn[R] K K K = VJ R K. Now, we have all
the pieces:

fKg [VM J SJ K[Q]; B;Q; fKg K K [VM J IJ B;AJ K[Q] K K K
= fKg [fK;K1; :::;Kng [VM J AJ Kn[R] K K
= fK;K1; :::;Kng [VM J AJ Kn[R] K K
= fKg [VJ K1[K2[:::[Kn[R]]:::]] K

With this, the last case for K[Q], we have shown that VJ K[Q] K = VM J IJ B;K[Q] K K.

32

� QjR, then VJ P jQ K def
= VJ P K [VJ Q K. By I’s and VM ’s definitions, we have IJ B;QjR K def

= IJ B;Q K j
IJ B;R K, and VM J IJ B;Q KjIJ B;R K K def

= VM J IJ B;Q K K [VM J IJ B;R K K. Finally, by structural induc-
tion, VJ Q K = VM J IJ B;Q K K, and VJ R K = VM J IJ B;R K K; therefore, VJ P jQ K = VM J IJ B;QjR K
K.

We have shown that, initially, P and its encoding IJ fg; P K have the same visibility predicates. By using LTS
semantics, we will now show that if P ! P 0, then IJ B;P K ! IJ B00; P 00 K, with P 00 structurally equivalent to P 0:
P 00 � P 0. For the kell-m calculus we will use the LTS semantics specified in Section 3.1. For MMC� we use the LTS
semantics from Section 5.6. We will only show the L-* version of the transition rules.

In the discussion below, Kc and Ka may be used for kell containment sets and for variables. If an abstraction Ka

is the kell containment set for the abstraction and Kc is a variable, to be instantiated with the kell containment set of
a matching concretion in � transitions. In concretions Kc is the kell containment set of the concretion and Ka is the
variable.

� OUT. The encoding for a(ew) is:

IJ B; a(ew) K def
= Hwrite(a(ew; ;); 0; B n fag)

� new eh a(ew0;Ka; ;; B n fag):0

With eh the higher-order indicators for the higher-order expressions in ew. ew0 is ew with higher-order expressions
replaced by their higher-order indicators hi 2 eh. The kell-m transition is:

a(ew)
a(ew)
���! 0

�PRE is the corresponding MMC� transition:

new eh a(ew0;Ka; ;; B n fag)
0;a(ew00;Ka;;;B

0)
�����������! 0

ew00 is ew0 with higher-order indicators hj replaced by new hj ; and B0 is B n fag with all bi 2 B n fag replaced
by new bi. Therefore, trivially:

IJ B; a(ew) K
0;a(ew00;Ka;;;B

0)
�����������! IJ B; 0 K

� IN. The encoding for a(ec) . Q is:

IJ B; a(ec) . Q K def
= a(ec; ;;Kc; bnd):code(inst(Q;ec; bnd; Q�); Q�)

� a(ec; bnd):IJ B [bnd;FJHJ Q K K K

The result of the kell-m transitions is:
a(ex) . Q a(ec)

��! Q

The corresponding MMC� transition is, once again, �PRE:

a(ec; ;;Kc; bnd):IJ B [bnd;FJHJ Q K K K
0;a(ec;Kc;;;bnd)
����������!

IJ B [bnd;FJHJ Q K K K

Since there is no communication yet, HJ Q K = Q. F is used to avoid unintended capturing of names in
process expressions. The result of F on a process is structurally equivalent to the original process, therefore,
FJHJ Q K K � Q, and:

IJ B; a(ec) . Q K
0;a(ec;;;Kc;bnd)
����������! IJ B [bnd; Q K

� KELLOUT. The encoding for K[Q], assuming Q is not the parallel composition of processes T and R, is:

IJ B;K[Q] K def
= SJ 0; B;K[Q]; ; K + IJ B;AJ K[Q] K K
� (new hQ K(hQ;Ka; ;; B n fKg):0) +
SJ K[Q]; B;Q; fKg K + IJ B;AJ K[Q] K K

33

Where hQ is the higher-order indicator for Q. The transition for kell-m is:

K[Q]
K[Q]
���! 0

Notice, in MMC�, K(h) is a concretion, and by �SUM:

(new hQ K(hQ;Ka; ;; B n fKg):0) + SJ K[Q]; B;Q; fKg K +

IJ B;AJ K[Q] K K
0;K(new hQ ;Ka;;;B

0)
���������������! 0

B0 is B n fKg, with bi 2 B n fKg replaced by new bi . Since IJ B; 0 K � 0, then:

IJ B;K[Q] K
0;K(new hQ ;Ka;;;B

0)
���������������! IJ B; 0 K

When Q � RjT , we have:

IJ B;K[Q] K def
= SJ 0; B;K[Q]; ; K + IJ B;AJ K[RjT] K K+
IJ B;AJ K[T jR] K K

� (new hQ K(hQ;Ka; ;; B n fKg):0) + SJ K[Q]; B;Q; fKg K+
IJ B;AJ K[RjT] K K + IJ B;AJ K[T jR] K K

Again, by �SUM,

IJ B;K[Q] K
0;K(new hQ Ka;;;B

0)
���������������! IJ B; 0 K

� KELLIN. The encoding for K[x] . Q is:

IJ B;K[x] . Q K def
= IJ B;K(x; ;) . Q K
� K(x; ;;Kc; bnd):IJ B [bnd;FJHJ Q K K K

The transition for kell-m is:

K[x]
K[x]
���! Q

Using the �PRE transition for MMC� we obtain:

K(x; ;;Kc; bnd):IJ B [bnd;FJHJ Q K K K
0;K(x;;;Kc;bnd)
����������!

IJ B [bnd;FJHJ Q K K K

Since no communication has taken place, Q � FJHJ Q K K, therefore,

IJ B;K[x] . Q K
0;K(x;;;Kc;bnd)
����������! IJ B [bnd; Q K

� RESTRICT. We have Q �
�! R, and we will assume, by structural induction, IJ B;Q K M;�0

���! IJ B;R K. We need

to show that IJ B; new c Q K M;�0

���! IJ B; new c R K, with c =2 bn(�0). By I’s definition:

IJ B; new c Q K def
= new c IJ B;Q K

By �RES, when c =2 names(M;�0),

new c IJ B;Q K M;�0

���! new c IJ B;R K

And, since new c IJ B;R K � IJ B; new c R K, we have

IJ B; new c Q K M;�0

���! IJ B; new c R K

34

� PAR. We have Q �
�! R and, by structural induction, assume IJ BQ; Q K M;�0

���! IJ BR; R K. We need to show

that IJ BQ; QjQ0 K
M;�0

���! IJ BR; RjQ0 K when �0 =2 fn(Q0). By �PAR:

IJ BQ; Q K j IJ BQ; Q
0 K M;�0

���! IJ BR; R K j IJ BR; Q
0 K

By I 0s definition, IJ BQ; Q K j IJ BQ; Q
0 K � IJ BQ; QjQ0 K. Therefore,

IJ BQ; QjQ
0 K M;�0

���! IJ BR; RjQ
0 K

� OPEN. We have Q
a(ew)
���! R, and we have already shown:

IJ BQ; Q K
0;a(ew00;Ka;Kc;B

0)
������������! IJ BR; R K

By �OPEN:

new c IJ BQ; Q K
0;a(eu;Ka;Kc;B

0)
�����������! IJ BR; R K

With eu as ew00, but with c replaced by new c . By I’s definition, we have new c IJ BQ; Q K� IJ BQ;new c Q K,
therefore,

IJ BQ;new c Q K
0;a(eu;Ka;Kc;B

0)
�����������! IJ BR; R K

� L-REACT and L-CLOSE. We have Q
a(ec)
���! Q0 and R

a(ew)
���! R0. By structural induction we assume,

IJ BQ; Q K
M;a(ec;Ka;Kc;bnd)
������������! IJ B0Q; Q

0 K

and,

IJ BR; R K
N;a(ew00;Ka;Kc;B

0)
������������! IJ B0R; R

0 K

By �COM and �CLOSE, depending on whether or not there are restricted names or higher-order indicators being
passed in the communication, we have:

IJ BQ; Q K j IJ BR; R K
M[N;�
�����! new ed (IJ B0Q; Q

0 Kf(ew00; B0)=(ec; bnd)g j IJ B0R; R
0 K)

where ed are the restricted names being passed in the communication (if any). Finally, by I’s definition, we have:

IJ BQ [BR; QjR K
M[N;�
�����! IJ B0Q [B

0
R;new ed (Q0f(ew00; B0)=(ec; bnd)g j R0) K

Note by I’s definition, IJ B0Q; Q
0 K has the form IJ B0Q;FJHJ ::: K K K. This guarantees that, on communica-

tion, higher-order indicators are replaced by their associated higher-order expressions.

� L-SUSPEND. We have Q
K[x]
���! Q0 and R

K(T)
���! R0, where T is the process inside kell K. By structural induction

we assume,

IJ BQ; Q K
M;K(x;Ka;Kc;bnd)
������������! IJ B0Q; Q

0 K

And,

IJ BR; R K
N;K(new hT ;Ka;Kc;B

0)
�����������������! IJ B0R; R

0 K

Where hT is the higher-order indicator for T . Since we use channels to represent kells, using �CLOSE we obtain:

IJ BQ; Q K j IJ BR; R K
M[N;�
�����! new hT ; ed (IJ B0Q; Q

0 Kf(hT ; B0)=(x; bnd)g j IJ B0R; R
0 K)

35

Where ed are the restricted names, with the exception of hT , being passed in the communication (if any). Using
I’s definition, we obtain:

IJ BQ [BR; QjR K
M[N;�
�����! IJ B0Q [B

0
R;new hT ;ec (Q0f(hT ; B0)=(x; bnd)g j R0) K

As with rules L-REACT and L-CLOSE, by I’s definition, IJ B0Q; Q
0 K has the form IJ B0Q;FJHJ ::: K K K, guar-

anteeing that the higher-order indicator hT is replaced by its associated higher order expression T .

� ADVANCE. When Q �
�! R, then K[Q]

�
�! K[R]. By structural induction, we assume

IJ B;Q K M;�0

���! IJ B0; R K

As we have seen,

IJ B;K[Q] K � K(hQ;Ka; ;; B n fKg):0 + SJ K[Q]; B;Q; fKg K+
IJ B;AJ K[Q] K K

Or,
IJ B;K[Q] K � K(hQ;Ka; ;; B n fKg):0 + SJ K[Q]; B;Q; fKg K+

IJ B;AJ K[U jT] K K + IJ B;AJ K[T jU] K K

If Q � U jT . In general, Q can have one of the following forms:

– a(ec) . R:
(new hQ K(hQ;Ka; ;; B n fKg):0) + SJ K[Q]; B;Q; fKg K+
IJ B;AJ K[Q] K K
� (new hQ K(hQ;Ka; ;; B n fKg):0) + SJ K[Q]; B;Q; fKg K+
IJ B; a(ec) . K[R] K

� (new hQ K(hQ;Ka; ;; B n fKg):0) + SJ K[Q]; B;Q; fKg K+

a(ec; fKg;Kc; bnd):IJ B [bnd;FJHJ K[R] K K K
0;a(ec;fKg;Kc;bnd)
������������!

IJ B [bnd;FJHJ K[R] K K K

Since no communication has yet taken place, FJHJ K[R] K K � K[R]. Therefore,

IJ B;K[Q] K
0;a(ec;fKg;Kc;bnd)
������������! IJ B [bnd;K[R] K

– a(ew). In this case R = 0, and

(new hQ K(hQ;Ka; ;; B n fKg):0) + SJ K[a(ew)]; B; a(ew); fKg K+
IJ B;AJ K[a(ew)] K K
� (new hQ K(hQ;Ka; ;; B n fKg):0) + SJ K[a(ew)]; B; a(ew); fKg K+
IJ B; a(ew) K

� (new hQ K(hQ;Ka; ;; B n fKg):0) + SJ K[a(ew)]; B; a(ew); fKg K+

new eh a(ew0; ;; B n fag):0 0;a(ew00;Ka;fKg;B
00)

�������������! 0

With eh the higher-order indicators for the higher-order expressions in ew. ew0 is ew with higher-order ex-
pressions replaced by their higher-order indicators hi 2 eh. ew00 is ew0, with the higher-order indicators, hi,
replaced with new hi ; finally, B00 is Bnfagwith all bi 2 Bnfag replaced by new bi. Since IJ B; 0 K � 0:

IJ B;K[a(ew)] K
0;a(ew00;Ka;fKg;B

00)
�������������! IJ B [bnd;K[0] K

36

– L[x] . T . In this case R = T , and

(new hQ K(hQ;Ka; ;; B n fKg):0) + SJ K[L[x] . T]; B;L[x] . T K+
IJ B;AJ K[L[x] . T] K K
� (new hQ K(hQ;Ka; ;; B n fKg):0)+
SJ K[L[x] . T]; B;L[x] . T; fKg K + IJ B; L(x) . K[T] K

� (new hQ K(hQ;Ka; ;; B n fKg):0)+
SJ K[L[x] . T]; B;L[x] . T; fKg K+

L(x; fKg;Kc; bnd):IJ B [bnd;FJHJ K[T] K K K
0;L(x;fKg;Kc;bnd)
������������!

IJ B [bnd;FJHJ K[T] K K K

Since no communication has yet taken place, FJHJ K[T] K K � K[T], and:

IJ B;K[L[x] . T] K
0;L(x;fKg;Kc;bnd)
�������������! IJ B [bnd;K[T] K

– L[T]. In this case R = 0, or R = L[U]. If R = 0 we have:

(new hQ K(hQ;Ka; ;; B n fKg):0) + SJ K[L[T]]; B;L[T]; fKg K+
IJ B;AJ K[L[T]] K K
� (new hQ K(hQ;Ka; ;; B n fKg):0)+

(new hT L(hT ;Ka; fKg; B n fLg):IJ N;K[0] K)+
SJ K[L[T]]; B; T; fK;Lg K + IJ B;AJ K[L[T]] K K
0;L(hT ;Ka;fKg;B

00)
�������������! IJ N;K[0] K

Where hT is the higher-order indicator for T , and B00 is B n fLg with all bi 2 B n fLg replaced by new bi.
Since T = 0

IJ B;K[L[T]] K
0;L(hT ;Ka;fKg;B

00)
�������������! IJ B;K[T] K

If R = L[U] we have instead, L[T] �
�! L[U]. This is the case where a subkell in T is suspended, or L[T]

advances its execution. Let us assume that a subkell Ki in T is suspended, and T being composed of n
subkells K1;K2; :::;Kn. The encoding of L[T] is a process with the following structure:

new h1 K1(h1; fKg; B n fK1g):IJ ::: K+
new h2 K2(h2; fK;K1g; B n fK2g):IJ ::: K+
:::+
new hn Kn(hn; fK;K1;K2; :::;Kn�1g; B n fKng):IJ ::: K + :::

Where hi is the higher-order indicator for the process inside the i-th subkell. By �SUM, we have:

IJ B;K[L[T]] K
0;Ki(hi;Ka;fK;K1;K2;:::;Ki�1g;B

0)
�����������������������! IJ B;K[U] K

If L[T] is advancing its execution we need to show:

IJ B;AJ K[L[T]] K K M;�0

���! IJ B;K[L[U]] K

NoteA lifts concretions and abstractions from the inner kells towards the outside kells, eventually obtaining
expressions a(ec) .K[:::], a(ew)jK[:::], and K 0[x] .K[:::]. Once the concretion or abstraction corresponding
to � is outside K, the resulting process is encoded into a MMC� expression on which, as we have shown,
a corresponding MMC� transition can be applied.

– U jT , with U or T having one of the forms already considered. Let us assume U is the process transitioning

from U to U 0. We have already shown IJ B;U K M;�0

���! IJ B;U 0 K. Since T stays the same, we have:

IJ B;U jT K def
= IJ B;U KjIJ B; T K M;�0

���! IJ B;U 0 KjIJ B; T K

37

Since IJ B;U 0 KjIJ B; T K � IJ B;U 0jT K, then

IJ B;U jT K M;�0

���! IJ B;U 0jT K

The other case is when there is a communication between U and T . In this case �0 = � , and R is U 0jT 0.
We have already shown for L-REACT, L-SUSPEND, and L-CLOSE:

IJ B;U jT K M;�
���! IJ B0; U 0jT 0 K

When K[U jT], A non-deterministically advances the execution of U or T . Eventually, the interacting
actions are lifted outside K, where they communicate.

6 Encoding k�
the syntax of k� is inspired by the implementation of the ��-calculus for the Mobility Model Checker (MMC) [17].
Systems are modelled in MMC using a variation of the first-order �-calculus. Since there is no locality in the �-
calculus, the main difference between MMC and k�, is the lack of kell and kell containment modalities in MMC.
Also, because the first-order nature of its modelling formalism, properties in MMC can only be verified for first-order
processes.

Formulas in MMC have the syntax specified in Figure 24. Possible actions � in MMC� have the form � , a(ec),
or a(ec). S is a set of �-calculus actions, V is a set of names, N is a set of formula names, and Z is a set of formula
variables. Formulas can be named using the syntax fDef(N (eV);F). Recursion is allowed in the definition of named
formulas.

Diamond and box modalities are specified with fDiam(S;F) and fBox(S;F). Set, set minus, and not-action box
and diamond modalities have similar syntax. Only named formulas can be negated neg form(N (eV)). pred is used
to compare names.

F ::= tt j ff j neg form(N (eV)) j pred(Cond;F) j fAnd(F ;F) j fOr(F ;F) j
fDiam(�;F) j fDiamMinus(�;F) j fDiamSet(S;F) j
fDiamSetMinus(S;F) j fBox(�;F) j fBoxMinus(�;F) j fBoxSet(S;F) j

fBoxSetMinus(S;F) j fDef(N (eZ);F) j form(N (eV))
Figure 24: Syntax of Property Formulas in the Mobility Model Checker

As it is the case with k�, in MMC� process evolution paths are implicitly quantified. The quantification if for
all paths labelled with action in the case of box modalities, and in at least one path labelled with action for diamond
modalities.

For notational convenience we write F ^ F and F _ F instead of fAnd(F ;F) and fOr(F ;F). Similarly we
write :N (V) for neg form(N (V)); N (eZ)

def
= F for fDef(N (eZ);F); h�i:F for fDiam(�;F); and [�]:F for

fBox(�;F). Idem for set diamond and set box modalities.

6.1 Kell Containment Conditions
A kell containment condition
 in k� has one of the following forms, where I is a variable and K is a set of kells (cf.
Section 4.1) :

 ::= � j K j � K j * K j I

We start by defining, in Figure 25, function Ep for the translation of kell containment conditions. To avoid confusion
with the functions defined in Section 5, the functions defined for the encoding of k� have a suffix p.

The function has as arguments a k� kell containment condition
 and a list of kells Ks. Ks is the actual set of kells
where a communication action is executing. The return value is a MMC formula of the form tt or pred(Cond, tt).

When a variable I is specified it is instantiated with the set of kells Ks. The other possible values are directly
deduced from the k� semantics (cf. Section 4.2 and Figure 16).

38

Ep(I; �)
def
= pred(I := �;tt)

Ep(�; �)
def
= tt

Ep(K; �)
def
= pred(K = �;tt)

Ep(� K; �)
def
= pred(K n � = ;;tt)

Ep(* K; �)
def
= pred(K \ � = ;;tt)

Figure 25: Encoding of Kell Containment Conditions

Ap(a(ew))
def
= a(ew;Ka;Kc; B)

Ap(a(ec)) def
= a(ec;Ka;Kc; B)

Ap(k[h])
def
= k(h;Ka;Kc; B)

Ap(k[x])
def
= k(x;Ka;Kc; B)

Ap(
 !a (ew))

def
= �(a(ew;Ka;Kc; B))

Ap(
 !
k [h])

def
= �(k(h;Ka;Kc; B))

Figure 26: Encoding of Actions

For readability we use set operators in the definition. The implementation of Ep in the kell-m checker has the set
operations, shown as arguments to predicate pred, replaced with the corresponding Prolog set predicates.

6.2 Actions
In Figure 26 we define Ap, a function for the translation of kell-m actions into MMC� actions. The function receives
as its only argument an action, � or �� , and returns the corresponding MMC action. Recall � represents abstraction
and concretion transitions; �� represents � transitions (e.g., !a (ew)).

Because kells are encoded in MMC using regular channels (cf. Section 5), kell abstractions and concretions in
kell-m correspond to channel concretions in MMC. � transitions are encoded as MMC � transitions extended to expose
the channel or kell involved in the communication and the parameters of the communication. In all MMC actions, kell
containment sets Ka and Kc are included in the parameters of the communication as well as the set of bound names
B. Sets are implemented as lists in the encoding.

For abstractions, Kc and B correspond to Prolog variables, and Ka to the set of kells where the abstraction is
executing. For concretions Ka is a Prolog variable, Kc is the set of kells where the concretion is located, and B
contains the bound names of the process.

When � transitions, all Ka, Kc and B are sets. Ka is the kell containment set of the matching abstraction; Kc is
the kell containment set of the matching concretion; and B is the set of bound names of the concretion.

As we show later, depending on the type action, the sets Ka and Kc are used as parameter Ks in E , the encoding
of kell containment conditions.

6.3 Formulas
Tp, defined in Figure 27, is the encoding of k� formulas into MMC formulas.

Diamond and set modalities may receive an action condition or a set of action conditions. Action conditions, � in k�
have the form (�;
) or (�� ;
;
). � and �� identify the actions of interest;
 impose kell containment requirements
on the location of the actions specified by � and �� .

In MMC it is only possible to identify actions of interest. Therefore the k� encoding lifts the kell containment
conditions from the transitions into the formulas being checked. Notice, in Figure 27, the
� , corresponding to the
MMC encoding of kell containment conditions
, occurs in the formulas following the diamond and box modalities.

Kell-m actions and kell containment conditions are translated into MMC by AEp. Kell containment sets are spec-
ified in the result of Ap. The sets are used by Ep in the encoding of kell containment conditions. Name a is used

39

to represent channel actions and name k is used to represent kell actions. When encoded in MMC, both a and k are
represented as channel actions. Since MMC is first-order, name h is used as parameter in kell concretions to indicate a
higher-order indicator (cf. Figure 18).

To prove the encoding is correct, it is necessary to demonstrate, for any k� formula F : (a) the result Tp(F) of the
encoding is a MMC property; and (b) if P j=V F for an interpretation of formula parameters V , then IJ ;; P K j=
Tp(F). (a) and (b) can be proved by structural induction.

We informally argue about the correctness of the encoding of h�;
i:F . A similar argument can be made for
the other types of k� formulas. Notice the actions returned by Ap are MMC� actions, and therefore valid action
specifications in diamond and box modalities within MMC properties. Ep returns either tt or a pred specification,
both valid MMC properties. The MMC encoding of h�;
i:F is, by definition:

Tp(h�;
i:F)
def
= h��i:(
� ^ Tp(F)), with AE((�;
)) = (��;
�)

Assuming, by structural induction, that Tp(F) is a valid MMC property formula, then h��i:(
� ^ Tp(F) is a valid
MMC property formula.

According to k� semantics, the meaning of h�;
i:F is:

P j=V h�;
i:F when 9Q : P
�0;�
���! Q ^ cmp(�; �0) ^ kc(
; �) ^ Q j=V F

00

cmp, defined in Figure 16, decides if an action specification in a k� formula matches an action in the extended LTS.
kc decides if a kell containment condition holds for a given kell containment set. F 00 is F after alpha converting
(replacing) any parameters in � with actual values used in the communication. In the MMC encoding we require a
transition P�

����! Q� after which both, the kell containment condition
� and the encoding of F , must hold. P� is the
MMC process corresponding to P and Q� to Q.

Let us assume the formula holds in kell-m but not in MMC. This means there is no transition P�
����! Q� after

which Q� 6j= (
� ^ Fp). This may happen only if there is no P�
����! Q� , or if (
� ^ Fp) does not hold at Q� .

Because a kell-m process and its MMC encoding are behaviourally equivalent (Appendix 5.7), such a transition
P�

����! Q� must exist. Therefore the only possibility is (
� ^ Fp) does not hold at Q� . This could happen if
� does
not hold at Q� , or if Fp does not hold at Q� . Let us assume
� does not hold at Q� . This implies the kell containment
set, built for the action in the encoding, does not match the kell containment set as specified in the extended LTS
semantics for P .

For kell abstractions and channel abstractions and concretions, A builds the kell containment set. For kell concre-
tions S builds the kell containment set. Every time an action is lifted from a kell, A adds the action to the associated
kell containment set (cf. Figure 21). When the passivation code for a kell is generated (cf. Figure 19), the kell con-
tainment set for the kell concretion is updated with kell information as passivation code is generated from the external
kells to the nested kells. These kells are included as parameters in the actions when the actions are encoded in MMC.

Assuming the kell containment sets are properly built in the encoding, and also assuming the kell containment sets
are available after the actions, the kell containment condition may still not hold if it is not properly encoded by Ep.
Since Ep implements kc of the k� kell containment semantics (cf. Figure 16), the kell containment condition must
hold. Consequently, the only remaining case is Fp not holding at Q� . But we argue, by structural induction, if F is not
a diamond modality, Q� j= Fp and P j=V h�;
i:F) P� j= Tp(h�;
i:F). If F is a diamond modality, we apply the
argument above as many times as necessary until the unfolding of F leads to a non-diamond formula, at which point
we can argue by structural induction.

Conversely, Tp(h�;
i:F) may hold for a process P� , but P 6j=V h�;
i:F , where P is the kell-m process corre-
sponding to P� . Because of the behavioural equivalence of kell-m processes and their MMC encoding, this can only
happen if the kell containment condition holds for a transition in the MMC process but not in the kell-m process, or
if F holds after the transition in the MMC process but not in the kell-m process. Assuming kell containment sets and
conditions are properly translated, if F is not a diamond modality we can argue, by structural induction, this cannot
occur and Tp(h�;
i:F)) h�;
i:F . If F is a diamond modality we need to, once again, unfold F until we get to a
non-diamond formula. During the unfolding of diamond formulas we argue the only way for the unfolded formula not
to apply is for the subformula, after the diamond modality, not to apply.

The encoding of h�(�;
)i:F holds if there is a transition with action different than �� after which the encoding
of F holds, or if there is at least one transition with action �� but
� does not hold and the encoding of F does. ��
is the MMC action corresponding to kell-m action �, and
� is the MMC kell containment condition corresponding to
kell-m’s
. Notice the encoding implements the semantics of h�(�;
)i:F as defined in Figure 14.

40

Tp(tt)
def
= tt

Tp(ff)
def
= ff

Tp(:F)
def
= neg form(F), with F def

= Tp(F)

Tp(C:F)
def
= pred(C; Tp(F))

Tp(F1 ^ F2)
def
= Tp(F1) ^ Tp(F2)

Tp(F1 _ F2)
def
= Tp(F1) _ Tp(F2)

Tp(h�i:F)
def
= h��i:(
� ^ Tp(F)), with AE(�) = (��;
�)

Tp(h��i:F)
def
= h���i:Tp(F) _ h��i:(Tp(F) ^ :
�), with AE(�) = (��;
�)

Tp(hSi:F)
def
=

8<
:
ff, if S = ;; otherwise:
Tp(h�1i:Tp(F)) _ Tp(h�2i:Tp(F)) _ � � � _ Tp(h�ni:Tp(F));
with S = f�1; �2; :::; �ng

Tp(h-Si:F)
def
=

8<
:
h�i:Tp(F), if S = ;; otherwise:
Tp(h��1i:Tp(F)) ^ Tp(h��2i:Tp(F)) ^ � � � ^ Tp(h��ni:Tp(F));
with S = f�1; �2; :::; �ng

Tp([�]:F)
def
= neg form(F), with F def

= h��i:(
� ^ neg form(F 0));
F 0

def
= Tp(F);AE(�) = (��;
�)

Tp([��]:F)
def
= Tp([�f�g]:F)

Tp([S]:F)
def
=

8<
:
tt, if S = ;; otherwise:
Tp([�1]:Tp(F)) ^ Tp([�2]:Tp(F)) ^ � � � ^ Tp([�n]:Tp(F));
with S = f�1; �2; :::; �ng

Tp([-S]:F)
def
=

8<
:

[�]:Tp(F), if S = ;; otherwise:
Tp([��1]:Tp(F)) ^ Tp([��2]:Tp(F)) ^ � � � ^ Tp([��n]:Tp(F));
with S = f�1; �2; :::; �ng

Tp(F (ep)) def
= form(F 0), with F 0 def

= Tp(Fdfep=ecg), having F (ec) def
= Fd

Where,

AEp(�)
def
=

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(Ap(�); Ep(
;Kc)), if � � (�;
) and

8<
:
Ap(�) = a(ew;Ka;Kc; B)
or
Ap(�) = k(h;Ka;Kc; B)

(Ap(�); Ep(
;Ka)), if � � (�;
) and

8<
:
Ap(�) = a(ec;Ka;Kc; B)
or
Ap(�) = k(x;Ka;Kc; B)

(Ap(��); Ep(
a;Ka) ^ Ep(
c;Kc));

if � � (�� ;
a;
c) and

8<
:
Ap(��) = �(a(ew;Ka;Kc; B))
or
Ap(��) = �(k(h;Ka;Kc; B))

Figure 27: Encoding of k� Formulas in MMC

41

We use a well known modality equivalence for the encoding of [�]:F [5]: [�]:F � :(h�i::F). The encoding of the
other formulas follow from Figure 14.

7 Conclusions
In this report we presented kell-m, a higher-order, asynchronous process algebra with hierarchical localities. Systems
are represented in kell-m as processes executing in parallel. Processes communicate via channels and processes can
be located within kells. Kells themselves can be located within other kells forming a kell containment hierarchy. Both
channels and kells are identified by name. Names and processes can be transmitted as part of a channel communication.

Two kinds of process concretions are supported in the algebra: writes on channels (a(ew)), and executing kells
(K[P]). The corresponding abstractions are channel patterns (a(ec)) and kell patterns (K[x]) in triggers (� . P). When
a channel concretion and channel abstraction match, a channel communication occurs, and the values written to the
channel are received by the trigger where the abstraction is specified. When a kell concretion and kell abstraction are
matched, the kell is passivated, and its process is available, via a variable, to the trigger where the kell abstraction is
specified.

We presented the operational semantics for kell-m. These semantics specify how processes evolve as they commu-
nicate and are passivated. We defined two LTS and one reduction semantics, and used them to specify the behavioural
equivalences for kell-m.

In this report we also presented k�, a modal temporal logic formalism for specifying conditions on the LTSs
obtained using the extended kell-m semantics presented in Section 3.4. k� is an extension of the ��-calculus, a logic
with �-calculus modalities.

We also presented and encoding of kell-m processes as MMC� processes. MMC� is the process algebra im-
plemented by the Mobility Model Checker (MMC). A callback feature in MMC allows us to deal with higher-order
expressions in kell-m. k� formulas are encoded using MMC’s formalisms for property specification.

References
[1] Mobility Model Checker. http://www.cs.sunysb.edu/˜{}lmc/mmc/, 2003. The Logic-Based Model

Checking Project. 1, 18

[2] The XSB Logic Programming System, Version 3.2 (Kopi Lewak). http://xsb.sourceforge.net/,
March 2009. XSB Research Group. 18

[3] P. Bidinger, A. Schmitt, and J.-B. Stefani. An Abstract Machine for the Kell Calculus. In M. Steffen and G. Zavat-
taro, editors, 7th IFIP Internaional Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS), volume 3535 of Lecture Notes in Computer Science, pages 31–46. Lecture Notes in Computer Sci-
ence, Springer-Verlag, 2005. 1, 3

[4] W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic Programs. Journal of the ACM,
43(1):20–74, 1996. 18

[5] M. Dam. Proof Systems for Pi-Calculus Logics. In R. J. de Queiroz, editor, Logic for Concurrency and Syn-
chronisation, pages 145–212. Kluwer Academic Publishers, 2003. Trends in Logic – Studia Logica Library.
42

[6] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science. Lecture
Notes in Computer Science, Springer-Verlag, 1980. 23

[7] R. Milner. Communicating and Mobile Systems: the �-Calculus. Cambridge University Press, Computer Labo-
ratory, University of Cambridge, 1999. 4, 5

[8] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Part I. Technical Report ECS-LFCS-89-85,
Computer Science Department, University of Edinburgh, 1989. 18

[9] R. Milner and D. Sangiorgi. Barbed Bisimulation. In ICALP ’92: Proceedings of the 19th International Collo-
quium on Automata, Languages and Programming, pages 685–695, London, UK, 1992. Springer-Verlag. 10

42

http://www.cs.sunysb.edu/~{}lmc/mmc/
http://xsb.sourceforge.net/

[10] R. M. Needham. Names. In S. Mullender, editor, Distributed Systems, pages 89–101. ACM Press, 1989. 1

[11] J. Parrow. An Introduction to the Pi-Calculus. In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of
Process Algebra, pages 479–543. Elsevier, 2001. 4, 9

[12] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD thesis,
University of Edinburgh, Scotland, UK, 1992. 9, 19

[13] D. Sangiorgi. From pi-calculus to Higher-Order pi-calculus - and Back. In TAPSOFT ’93: Proceedings of the
International Joint Conference CAAP/FASE on Theory and Practice of Software Development, pages 151–166,
London, UK, 1993. Springer-Verlag. 19

[14] D. Sangiorgi. Bisimulation: From the Origins to Today. In H. Ganzinger, editor, Proceedings of the Nineteenth
Annual IEEE Symp. on Logic in Computer Science, LICS 2004, pages 298–302. IEEE Computer Society Press,
July 2004. Invited Talk. 11

[15] A. Schmitt and J.-B. Stefani. The Kell Calculus: A Family of Higher-Order Distributed Process Calculi. In
C. Priami and P. Quaglia, editors, Global Computing, volume 3267 of Lecture Notes in Computer Science, pages
146–178. Springer-Verlag, 2004. 1, 3

[16] J.-B. Stefani. A Calculus of Kells. In In Proceedings 2nd International Workshop on Foundations of Global
Computing, volume 85. Electronic Notes in Theoretical Computer Science, Elsevier, 2003. 1, 3

[17] P. Yang, C. R. Ramakrishnan, and S. A. Smolka. A Logical Encoding of the Pi-Calculus: Model Checking
Mobile Processes Using Tabled Resolution. In VMCAI 2003: Proceedings of the 4th International Conference on
Verification, Model Checking, and Abstract Interpretation, pages 116–131, London, UK, 2003. Springer-Verlag.
1, 14, 18, 38

43

	Introduction
	Syntax
	Operational Semantics
	LTS Semantics
	Reduction Semantics
	Behavioural Equivalences
	Barbed Bisimulation
	Bisimulation up to Kell Containment

	Extended Semantics

	Property Representation
	Syntax
	Semantics

	Encoding kell-m
	Higher-Order Expressions
	Fresh Names and Higher-Order Mappings
	Kell Passivation
	Advancing Kell Processes
	MMC Calculus Interpretation of kell-m Processes
	I "444A471 {}, P "544B479 is a MMC Expression
	P is Indistinguishable from I "444A471 {}, P "544B479

	Encoding k
	Kell Containment Conditions
	Actions
	Formulas

	Conclusions

