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Abstract. Answer set programming (ASP) approach is an efficient ap-
proach for solving the maximum quartet consistency problem. We dis-
tinguish two factors that affect the efficiency of a recent ASP approach
for solving maximum quartet consistency problem; answer set program-
ming itself and a variety of preprocessing steps. In this paper, we propose
a method for applying one of the preprocessing steps used in the ASP
approach to an alternative algorithm. Our results show that the prepro-
cessing step gives the main contribution to efficiency of the ASP approach
for data sets with less than 20 taxa. We also identify an issue in the ASP
approach for solving the maximum quartet consistency problem.
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1 Introduction

An important question in computational biology is to determine the evolutionary
relationship of a set of taxa. There are different methods for phylogenetic recon-
struction, such as distance methods, parsimony, quartet, likelihood and Bayesian
approaches. Among these methods, quartet-based algorithms for reconstructing
phylogenies have received a considerable amount of attention in the last two
decades [1,2].

Given a taxon set S, each subset of four taxa of S is called a quartet of S.
A quartet topology is an unrooted phylogeny of a quartet. A common approach
in quartet methods is to estimate the phylogeny of each quartet and then infer
a global phylogeny from them. The ideal case is when all quartet topologies are
consistent with a single tree topology. In this situation, reconstructing the overall
phylogeny is not complicated and can be done in O(n4) time [3], where n is is
the number of the taxa. However, this is not always the case.

In practice, some quartets may be erroneous, so the whole set of quartet
topologies may not be mutually consistent. We must then construct the whole
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phylogeny based on inconsistent quartet topologies. One solution is to find a phy-
logeny that respects as many quartet topologies as possible: Maximum Quartet
Consistency (MQC) problem, which is the NP -hard [4]. The algorithms proposed
for MQC form two groups:

– Exact algorithms [5,6,1], which guarantee to find the phylogeny that is com-
patible with the maximum possible number of quartet topologies, but may
require super-polynomial runtime.

– Near-optimal algorithms, which do not offer this guarantee, but may have a
better efficiency.

Our focus in this paper is on exact algorithms that include a dynamic pro-
gramming algorithm by Ben-Dor et al. [5], a fixed-parameter method proposed
by Gramm and Niedermeier [6], and an Answer Set Programming (ASP) ap-
proach by Wu et al. [1]. There is also an approach using pseudo-boolean opti-
mization and other logic formulations [7].

ASP is one of the most efficient approaches for optimally solving the MQC
problem. ASP uses answer set programming [1], and the results show that it
outperforms previous algorithms considerably. It also employs some preprocess-
ing steps to make the algorithm more efficient. This strategy raises a question in
mind: Is it answer set programming that makes the ASP approach so efficient,
or is it the “magic” of the proposed preprocessing steps? In this paper, we an-
swer this question by applying one of the preprocessing steps presented by Wu
et al. to the Gramm and Niedermeier (GN) algorithm [6] (another algorithm for
solving the MQC problem). We find that employing the preprocessing step can
make the GN algorithm as efficient as the ASP approach. So, we can conclude
that this step should have the main contribution in the efficiency of the ASP
approach.

2 ASP Approach for Solving the MQC Problem

In this section, we briefly introduce the ASP approach proposed by Wu et al.
[1].

2.1 General Approach

The authors of the ASP method propose a new representation for MQC, where
solving the MQC problem becomes searching for the corresponding ultrametric
matrix that satisfies the maximum number of given quartet topologies.

An ultrametric phylogeny is a rooted tree in which each internal node is
labeled with a positive number, and on every path from the root to any leaf,
the labels are strictly decreasing. [8]. The corresponding ultrametric matrix (M)
is an n × n matrix for which M(i, j) is the label of the least common ancestor
(LCA) of taxa si and sj . The least common ancestor of two leaves, si and sj in
a tree is the common ancestor of si and sj farthest from the root.

Wu et al. prove the following theorem to show the correspondence of searching
for the phylogeny and finding the corresponding ultrametric matrix.
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Theorem 1. A quartet topology [si, sj |sk, sl] is consistent with a phylogeny T,
if and only if any ultrametric labeling scheme M of T satisfies:

min{M(i, k),M(j, l)} > min{M(i, j),M(k, l)}

They also note that from an ultrametric matrix, we can find its tree:

Theorem 2. Let M be an n× n ultrametric matrix, then there exists a unique
ultrametric phylogeny with a labeling scheme M; moreover, this phylogeny can be
constructed in O(n2) time [8].

Theorem 1 shows how to check the consistency of an ultrametric labeling with a
quartet. Theorem 2 shows that from the matrix, we can construct the phylogeny.

2.2 Answer Set Programming

Wu et al. formulate the problem of finding the ultrametric matrix in answer set
programming. In this section, we want to give a brief introduction to answer set
programming.

In answer set programming, we have a set of constrained Boolean vari-
ables, and the goal is to assign truth values to these variables in a way that
the constraints are satisfied. Answer set programming solves the problems in a
declarative way: the user specifies what constraints to be satisfied and the an-
swer set programming system is responsible for the efficient implementation.
The constraints in answer set programming are a set of rules of the form:
a← b1 · · · bm,not c1 · · · not cn, where a, bi and ci are atoms and not ci is called
a not-atom. An atom has two possible truth-values: true and false. Intuitively,
such a rule implies that, if all bis are true and all cjs are false in a solution, then
the atom a must be true in the same solution.

There are other types of constraint specification which can be used to ask for
optimal solutions, e.g., by specifying maximize[a1 = w1; · · · ; an = wn], where
wis are integers representing the weights of the atoms to their left. This rule
forces the generation of only those solutions in which the sum of the weights of
atoms ais is maximized.

In the MQC problem, our input is a set of n taxa and a set of quartet topolo-
gies. We also have n2 variables for the entries of the corresponding ultrametric
matrix M .

There are three groups of constraints: symmetry, ultrametricity, and quartet
consistency. The symmetry constraints require that M(i, j) = M(j, i). Remem-
ber that M(i, j) corresponds to the label of the least common ancestor of taxa
si and sj , and the labels are integers between 1 and n.

In an ultrametric matrix, for every triplet (i, j, k) of distinct values, where
i, j, among M(i, j), M(j, k), and M(i, k), there are two equal values that must
be greater than the third value. The ultrametricity constraints formulate this
property on every subset of three taxa from the given set of taxa.

The quartet consistency constraints encode our goal of finding an ultrametric
matrix consistent with the maximum number of quartets. Theorem 1 is used to
write the quartet consistency rules in the answer set program.
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The overall program has O(n4) constraints in O(n2) variables.

2.3 Edge Detection

In addition to their answer set programming, Wu et al. also propose three strate-
gies to make this computation more efficient. Our work has focused on one of
them, for detecting edges in the optimal solution before solving the answer set
program.

They first generate a set of candidate edges and then find edges certain to
be in the solution from the candidate edges. The candidate set is constructed
using the hypercleaning algorithm [9].

Hypercleaning is a polynomial-time algorithm for constructing a (polynomial-
sized) collection of bipartitions that are most strongly supported by quartet data.
In this procedure, each edge is presented as a bipartition. A phylogenetic tree T
contains the bipartition (X,Y ), if there is an edge e in T such that T −e consists
of two trees, where one contains the taxa in X and the other contains those in
Y .

Hypercleaning defines the following normalized metric to find out how much
the phylogeny disagrees with the set of quartet topologies if it includes the
bipartitions (X,Y ).

δ(Q, (X,Y )) =
4|(Q(X,Y ) −Q)|

|X|(|X| − 1)|Y |(|Y | − 1)
, (1)

In this metric, Q(X,Y ) is the set of quartet topologies of the form xx′|yy′ where
x, x′ ∈ X and y, y′ ∈ Y , and |(Q(X,Y ) − Q)| is the defined distance from a set
of quartets Q to a bipartition (X,Y ) [9]. Here, a large value of δ indicates a
bipartition in conflict with many quartets. Based on this metric, the following
set of edges can be computed by increasing m.

Best(Q,m) =
{

(X,Y ) | δ(Q, (X,Y )) <
2m
|X||Y |

}
(2)

By increasing m, the bipartitions chosen are less supported by the quartet data:
edges conflicting with no quartets will be in Best(Q, 0). Moreover, note that the
edges in Best(Q, 0) are also included in Best(Q, 1) based on their definitions.
Wu et al. use the edges in Best(Q, 1) as their candidate edge set.

The ASP paper also proves that for each edge in this set, if the following
equation holds, the edge must be included in the optimal solution.

2p1 + (l − 1)p2 + (n− l − 1)p3 6 (l − 1)(n− l − 1) (3)

Suppose that (X,Y ) is the corresponding bipartition of an edge with |X| =
l ≥ 2 and |Y | = n− l ≥ 2. QX,Y is defined to be the set of quartet topologies in
the form of [x, x′|y, y′], where x, x′ ∈ X and y, y′ ∈ Y . If the quartet topology
q ∈ Q for x, x′, y, y′ is not in the form of [x, x′|y, y′], then q is a quartet error
across the bipartition (X,Y ). The parameter p1 is the number of quartet errors
across the edge or the corresponding bipartition.
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Fixing three taxa from Y , the subset of l quartet topologies from Q, where
each quartet topology contains these three taxa and another taxon from X
is called an l-subset with respect to (X,Y ). For each l-subset, if ignoring the
difference of the taxa from X gives rise to one unique quartet topology, then
this l-subset is exchangeable on X; otherwise, it is nonexchangeable on X. The
parameters p2 and p3 are the number of nonexchangeable l-subsets on X and
the number of nonexchangeable (n − l)-subsets on Y , respectively. There is an
issue in using this equation to find the edges in the optimal solution. We will
discuss this equation, as well as the corresponding issue with it in more details
in Section 6.

3 The Algorithm by Gramm and Niedermeier

We now apply this edge detection strategy to the algorithm by Gramm and
Niedermeier [6], which we call the GN algorithm. In this section, we will give an
introduction to the GN algorithm.

The main idea of the GN algorithm is to consider local conflicts and try to
resolve them in order to construct the tree. A local conflict is a size-three set
of quartet topologies that involves only five taxa. For such a set of topologies,
if equation 4 does not hold, then it is not possible to construct a single tree
consistent with all of them, and they form a local conflict.

[ab|cd] ∈ QS ⇒ [ab|ce] ∈ QS or [ae|cd] ∈ QS (4)

Gramm and Niedermeier also prove that a local conflict must always exist if
a set of quartets are not consistent.

Lemma 1. If we are given a set S of taxa, some taxon f ∈ S, and a complete
set QS of quartet topologies that is not tree-consistent, then QS has at least one
local conflict involving f .

A set of quartet topologies Q is tree-consistent, if there exists a tree T such
that for the set QT of quartet topologies induced by T ; Q ⊆ QT [6]. Simply
speaking, the lemma says that it is sufficient to look for local conflicts involving
a special taxon. A trick is also introduced in [6] for finding the local conflicts
more efficiently.

The algorithm builds the conflict list C of local conflicts. By Lemma 1, it is
sufficient to build a list of local conflicts containing some arbitrarily chosen taxon.
Then, it uses a search tree to resolve local conflicts by searching through all the
possibilities, recursively. At each possible resolution, the algorithm updates the
conflict list. Whenever the conflict list is empty, we have found a solution, and
the output is the list of quartets that are consistent with each other.

4 Applying the Preprocessing Step to the GN Algorithm

In this paper, we want to study the algorithm presented by Wu et al., to see
the contribution of the different proposed ideas to its efficiency. We apply the
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preprocessing step to the GN algorithm. If application of the preprocessing step
to the GN algorithm makes its computation as efficient as the ASP method,
the preprocessing step plays the main role, not the answer set programming
approach.

We implemented the GN algorithm in Java using a hash table data struc-
ture to store the quartet topologies. We also implemented the hypercleaning
algorithm used in a preprocessing step by Wu et al.. We use a recursive proce-
dure proposed by Zhang [10] to implement the hypercleaning algorithm, so as
to return Best(Q, 1).

In each recursion step of the procedure, one taxon is added to all edges found
so far, and the base case of the procedure returns all possible bipartitions for a
tree with three taxa. So, the main idea is to start with the trivial tree of three
taxa and add one leaf at a time to all edges we have so far. For each edge, the
constraint for being included in Best(Q, 1) is also checked at the end of each
recursion. We then check each edge in Best(Q, 1) with equation 3 to find edges
guaranteed to be included in the optimal solution.

For an edge e found by this preprocessing step, we know that all quartets
inferred by this bipartition must be included in the optimal tree in the topology
required by the edge. For each such bipartition, we find all of its quartets and
change their topology in our database of quartet topologies for those that were
inferred incorrectly. We mark all these quartets as unchangeable by the search
procedure. So during the GN procedure for finding a set of consistent quartet
topologies, these quartet topologies are not changed. This idea can lead to reduce
the search space of the GN algorithm considerably.

Finally, we use the set of quartets at the end of the algorithm to construct
the correct tree, using PhyloQuart [3].

For testing the ASP approach [1], we used the source code that the authors
have made available. We used the code to generate the logic program for each
set of quartets. For computing the stable model of each logic program, we used
lparse and smodels [11].

Smodels is an implementation of the stable model semantics for logic pro-
grams. Smodels can be used either as a C++-library that can be called from
user programs or as a stand-alone program together with a suitable front-end.
The main front-end is lparse (http://www.tcs.hut.fi/Software/smodels/).

5 Results

We compared the results of the with the running time of the Gramm and Nieder-
meier algorithm with and without edge detection with that of the ASP approach.

5.1 Synthetic Data Generation

For the evaluation part of our study, we used synthetic data sets, using the
method introduced by Wu et al. [1].
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Given a set of n taxa, a phylogeny is generated by recursively joining ran-
domly selected subtrees (through one edge in each subtree). The subtrees are
selected from a set that initially contains only the one-node subtrees (each cor-
responding to one of the given taxa). When two subtrees are joined, they are
replaced in the set by the newly generated subtree. This procedure yields a
phylogeny on n taxa.

After generating a random phylogeny, the set of quartet topologies are derived

from the phylogeny. After that, p percent of the
(
n
4

)
quartets are picked and the

corresponding topologies are altered, so that we will have a set of quartets with

the number of quartet errors upper bounded by p
100

(
n
4

)
. The number of errors

is not necessarily equal to p
100

(
n
4

)
, since some quartet topology alterations

might give rise to a new compatible set of quartet topologies. Wu et al. [12] have
given an O(n4logn) algorithm that finds the MQC solution with high probability
in this error model; recently, Brown and Truszkowski have given an O(nlogn)
algorithm with similar guarantees [13].

Every generated data set has two parameters, n (the number of taxa) and
p (the percentage of altered quartet topologies). The error percentages that we
used in our research are p = 1% and 10% . For every pair of parameters (n, p),
we generated 10 data sets and reported the results as the average of running
time on all of them.

5.2 Computational Results

Table 1 shows the results of our study. The available source code for the ASP
paper does not work when the number of taxa is greater than 20 due to memory
faults.

(10,1%) (10,5%) (15,1%) (20,1%)

GN 13 sec 212 sec 31 min > 94 min

GN + Edge Detection 0.277 sec 0.39 sec 6.76 sec 8.199 sec

ASP 0.2 sec 0.31 sec 1.34 sec 22.121 sec

Table 1. Running time for the GN algorithm, our proposed procedure, and the
ASP approach

The results are in Table 1. It can be easily seen that the edge detection
strategy is key to success here: adding the preprocessing to the GN algorithm
reduces the running time considerably, especially as the number of taxa increases.
Indeed, the running time of our proposed procedure is near to the running time
of the ASP approach. Based on the data sets with fewer than 20 taxa, our
conclusion is that the main contribution of the ASP approach efficiency is the
edge detection strategy and not the answer set programming approach.
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6 Issue with the Edge Detection Strategy

During our research, we found an issue with the edge detection strategy em-
pirically that can be discussed theoretically too. Recovering the edges in the
optimal tree using equation 3 only works well for small numbers of taxa, i.e. less
than thirty taxa (with the error percentage of 1 percent). For large data sets,
hypercleaning will recover edges in the optimal solution only if the error rate is
very small compared to the number of quartets.

We can also investigate the problem from the the theoretical point of view.
As mentioned, an equation is presented in [1] for checking whether an edge must
be included in the optimal tree or not. For explaining the issue, we should review
the equation in more details.

2p1 + (l − 1)p2 + (n− l − 1)p3 6 (l − 1)(n− l − 1)

The constants p1, p2, and p3 increase by increasing the number of taxa and
their increase is related to the number of errors in the quartet set. In particular,
in the error model we use, the number of quartet errors for a given partition
increases as n4 (assuming that the two sides of the partition are not small).
However, the right hand side of the equation increases as n2, since it is the
multiplication of the sizes of two partitions. Therefore, for the large number of
taxa, the equation will only hold when the number of errors (not the percentage
of errors) is very small comparing to the number of taxa, or if n is very small.

Moreover, the reported results in [1] on recovered edges seem surprising: they
claim that by increasing the number of taxa, with the same error percentage,
more edges are recovered.

7 Conclusion

ASP, as proposed by Wu et al., is currently one of the most efficient approaches
for solving maximum quartet consistency problem. In this paper, we studied this
approach to see the contribution of different proposed ideas in its efficiency. We
distinguish two parameters in the efficiency of the ASP approach: answer set
programming and its preprocessing steps.

Our results show that for data sets with less than 20 taxa, the main factor of
the ASP approach efficiency is the edge detection strategy and not the answer
set programming. We also found an issue in the ASP approach empirically and
explained it theoretically.
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