
Autonomous Thermal Control System

Omid Ardakanian
David R. Cheriton School of Computer Science

University of Waterloo
Technical Report CS-2010-16

Abstract

Building heating and cooling accounts for nearly 18-24% of
all energy usage. Building energy management can reduce
both its operating costs and its carbon footprint. We propose
the use of a factored Partially Observable Markov Decision
Process (POMDP) to model and efficiently control a commer-
cial building heating system. We use supervised learning and
ground truth data to capture the parameters of the POMDP.
We show that our solution outperforms the HVAC system in
terms of energy efficiency.

1. Introduction
Energy consumption of residential and commercial
buildings currently accounts for about 30-40% of
global energy use (UNEP 2007). About 60% of this en-
ergy is used for space heating (or cooling), 18% for wa-
ter heating, and only 3% is used for lighting. In high-
and middle-income countries, energy is mostly gener-
ated from fossil fuel, directly contributing to global cli-
mate change. Our work, therefore, uses decision mak-
ing techniques to reduce inefficiencies in space heating
and cooling. Specifically, we use decision making to
control the temperature of a building according to the
activity pattern of its occupants. We believe that plan-
ning is useful in optimizing the thermal control prob-
lem because it takes time to warm up a house.

2. Related Work
Energy resource monitoring and activity recognition
have been extensively studied in the literature. The
SpotLight system (Kim et al. 2008) monitors a user’s
energy usage profile using wireless sensors, assuming
that user proximity is the cause of measured energy
usage. The ACme (Jiang et al. 2009) system mon-
itors household power consumption in real time at a
power outlet to help occupants understand their elec-
tricity usage pattern. It does not monitor user activity.
The HydroSense (Froehlich et al. 2009) system, simi-
larly, monitors home water usage. Finally, the ViridiS-
cope (Kim et al. 2009) project monitors power usage
indirectly by sensing signals emitted by an electrical
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Figure 1: Sound and light measurement for a day

appliance. Our work differs from these projects in two
respects. First, we study space heating and cooling,
which account the bulk of energy usage in most build-
ings. Second, we use an automated decision making
system to optimize thermal control.

3. Overview
We propose a fully autonomous decision-making sys-
tem to optimally control a building heating system. Our
main goal is to not expend energy on heating or cool-
ing a space in the building if there is no occupant cur-
rently present; although, in the initial model we only
tackle the space heating problem. We say that a room
in a building is active if it has an occupant. To pre-
serve privacy, we do not directly observe if a room
is occupied. Instead, we use measurements of sound
and light levels to infer activity. For instance, Figure 1
shows the sound and light level we measured in a typi-
cal room over the period from midnight to midnight on
a typical day. We see that sound levels increase per-
ceptibly at around 9am and drop off at 7:30pm, resum-
ing at around 11:30pm. Light levels also show a sim-
ilar trend. We verified that these correspond to room
activity by students and by custodial staff. This sug-
gests that a control system based on these measure-



ments would make good decisions.
We define a policy to be the sequence of decisions

that control the temperature of a room in a building
based on the control system’s belief about current and
past activity patterns. We use a POMDP to find opti-
mal thermal control policies of a single room. This is a
substitute for the traditional thermostat devices, which
are oblivious to activity, and therefore likely to be inef-
fective in practice.

3.1 Model
Figure 2 is the model of the system. The state variables
are the activity in a room (SA), its temperature (ST ),
and the half-hour interval of time within a day (SC).
To keep the model tractable, temperature and clock
state variables are discretized. In our model, the
domains of these state variables are defined as follows:
Dom(SA) = {Active, Inactive}
Dom(ST ) = {10, 10.5, 11, ..., 29, 29.5, 30}
Dom(SC) = {0 : 30, 1 : 00, ..., 23 : 30, 24 : 00}

The belief of being in a certain activity state is
updated based on the value of two observation
variables: sound and light levels, denoted by OS and
OL respectively. Although our sensors can measure
sound and light levels with high precision, we find it
sufficient to define only three values for sound level:
high, normal and low and two values for light level:
On and Off.

We define only two possible actions A: blocking
the heating vent and unblocking the vent. Blocking a
vent decreases energy consumption and is assumed to
change the temperature by a value δ (corresponding to
heat loss or gain) in one time step. Symmetrically, un-
blocking the vent increases energy consumption and is
assumed to change the temperature by δ′ in one time
step. Given fixed parameters such as the size of the
room, the difference between indoor and outdoor tem-
peratures, and the capacity of the heating system, we
can compute δ and δ′ from analytic models. To this
end, we use the monthly average outdoor temperature
to compute δ and δ′ for possible values of the indoor
temperature.

Finally the reward function R is defined as a func-
tion both of the comfort of the occupants and of the
energy consumed. If a room is active, then the reward
is |Tpreferred − T | × C, where Tpreferred is the pre-
ferred temperature of the room, T is the determinis-
tically measured temperature, and C is the weight of
user’s satisfaction. If a room is inactive, the reward is
|T − Tsetpoint| × C ′ where Tsetpoint is the minimum
temperature of the room and C ′ is the weight of en-
ergy saving. Since heating increases the temperature
of the room, optimizing the energy consumed for heat-
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Figure 2: POMDP model

ing is equivalent to finding the optimized temperature
profile.

Determining the values of δ, δ′, C, C ′, Tpreferred
and Tsetpoint is discussed in section 3.3.

3.2 Learning Model Parameters
To learn standard transition and the observation func-
tions of the POMDP, we have deployed 24 Weather-
Duck v2 sensors measuring the ambient temperature,
humidity, light level, sound level, and air flow. Sen-
sors are attached to serial ports of a subset of 40 Linux-
based embedded systems deployed in offices, labs and
public areas in the Davis Center at the University of
Waterloo (Ahmed and Ismail 2009). We poll sensors
every two seconds and collect data from these sensors
into a controller weekly. To gather ground truth data,
we have recorded occupancy of one of the monitored
labs using a log sheet; filled out voluntarily by the lab
members.

Using the occupancy record of 15 days, we have
computed the transition probability for the activity state
variable, SA. This is the probability of transition to an
active/inactive state given that the previous clock state
was T and we have been in active/inactive state. So the
transition probability will be described by these proba-
bilities at different time slices during a day:
P (SA

t+1 = Active | SA
t = Inactive, SC

t = T )

P (SA
t+1 = Inactive | SA

t = Active, SC
t = T )

P (SA
t+1 = Active | SA

t = Active, SC
t = T )

P (SA
t+1 = Inactive | SA

t = Inactive, SC
t = T )

Figure 3 shows the first two probabilities over time.
Since the prior probability is zero at some time slices
(for instance, during the night) we assigned reasonable
values to the transition probability during these peri-
ods. More specifically, we used 0.05 for staying in the
active state and 0.95 for the transition to the inactive
state from the active state during the night.
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(a) Probability that the state of the room is changed to active
from inactive
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(b) Probability that the state of the room is changed to inactive
from active

Figure 3: Learning the transition function

We have computed the observation function by in-
tegrating the sensor measurement and the activity data
recorded by using the log sheet. Then we marginal-
ized out the clock state and computed probabilities as
shown in Table 1.

3.3 Variations of the Problem
To see the effect of the temperature change rate and
user’s satisfaction and energy saving weights on the op-
timal policy, we have defined four different problems.
Table 2 summarizes configuration of these problems.
Different values are used for the weight of user’s sat-
isfaction , C, the weight of energy saving, C ′, and the
temperature change in half an hour, δ and δ′.

Values of δ and δ′ are experimentally determined by
measuring the temperature change in an office at the
University of Waterloo during February 2010 when the
average daily temperature was reported −2◦C and the
indoor temperature was 21◦C. These values are used in
CICA10 and CI10CA25 problems where we assumed
that δ and δ′ are fixed for all indoor temperatures.
However, in CICA10MD and CI10CA25MD problems
these values are assumed to be a function of the dif-
ference between indoor and outdoor temperatures. We
set the value of Tpreferred to be 23◦C according to the

On and High given Active 0.00944
On and Medium given Active 0.41881
On and low given Active 0.57170
Off and High given Active 0.00000
Off and Medium given Active 0.00003
Off and low given Active 0.00002
On and High given Inactive 0.00014
On and Medium given Inactive 0.00692
On and low given Inactive 0.00978
Off and High given Inactive 0.00031
Off and Medium given Inactive 0.27339
Off and low given Inactive 0.70946

Table 1: The observation function

Problem C C ′ δ δ′

CICA10 10 10 -0.5 1
CI10CA25 25 10 -0.5 1

CICA10MD 10 10 -1 if ST ≥ 21
-0.5 otherwise

1 if ST ≥ 21
1.5 otherwise

CI10CA25MD 25 10 -1 if ST ≥ 21
-0.5 otherwise

1 if ST ≥ 21
1.5 otherwise

Table 2: Configuration of different variations of the problem

ASHRAE standard 55 (ASHRAE 2004). We also set
the value of Tsetpoint to be 15◦C.

4. Experimental Results
In this section we briefly explain three different algo-
rithms that we have used to solve the POMDP with
3936 states. Then we compare optimal value functions
of these algorithms with the upper bound value func-
tion (MDP value function).

To solve the factored POMDP using the Perseus al-
gorithm, we have used the Symbolic Perseus pack-
age (Poupart). This package solves POMDPs using the
symbolic version of the Perseus algorithm which uses
the Algebraic Decision Diagram (ADD) for compact
representation.

Additionally, we made use of the ZMDP pack-
age (Smith) to solve the equivalent flat POMDP using
two heuristic value iteration algorithms. More specifi-
cally, we have used the FRTDP and HSVI2 algorithms
for solving the thermal control problem.

4.1 Focused Real-Time Dynamic Programming
Focused Real-Time Dynamic Programming
(FRTDP) (Smith and Simmons 2006) is an asyn-
chronous value iteration algorithm that updates most
relevant states more often. In this algorithm, the
selected node for value update is the one that is visited
in the forward exploration of the search tree accord-
ing to a heuristic. In other words, the graph search



algorithm for finding the optimal policy is limited to a
subset of the search graph, called the explicit graph.
Then the explicit graph is extended by adding some
nodes that have higher relevance to the policy. The
relevance of a state is defined by the priority value of
that state. This value represents the benefit of directing
the search to that state. In FRTDP, a node with the
largest contribution to the uncertainty of the optimal
value function has the highest priority.

To find the optimal value function, two admissible
bounds (the upper and lower bounds) for the value
function are used. Therefore, the approximate value
function can be found by squeezing these bounds. The
value iteration algorithm is terminated when the differ-
ence between the higher bound and the lower bound is
less than a value ε or when the search depth is higher
than a maximum depth. FRTDP maintains the maxi-
mum depth adaptively.

FRTDP’s convergence is guaranteed under a set of
conditions. It is shown that FRTDP converges faster
than other heuristic value iteration algorithms for find-
ing optimal policies in MDP.

4.2 Heuristic search value iteration algorithm

Computing the exact value functions in different itera-
tions of the Bellman’s equation is not practical for large
size problems. Moreover, it is practically observed that
performing fast approximate updates often results bet-
ter than few exact updates. This is the intuition be-
hind updating the value function approximately. Point-
based value iteration algorithms generate a single α
vector that is maximal at a belief point b.

Heuristic search value iteration algorithm
(HSVI) (Smith and Simmons 2004) is a point-based
value iteration algorithm that maintains both upper and
lower bounds on the optimal value function and selects
the action and observation heuristically. According
to the IE-MAX heuristic, an action with the largest
upper bound is selected. The observation selection is
enhanced by the weighted excess uncertainty heuristic.
This heuristic helps to focus on the child node which
has the greatest contribution to excess uncertainty at
the parent.

HSVI makes a local update at a specific belief. These
beliefs are chosen by exploring the search tree accord-
ing to the aforementioned heuristics. The upper bound
is updated by adding a point to the point set and ap-
plying the max-project operator on the point set. The
lower bound update is done as before by adding a vec-
tor. HSVI2 (Smith and Simmons 2005) is the lat-
est implementation of HSVI which uses tighter initial
bounds, avoids solving linear programs and makes bet-
ter use of sparsity.
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Figure 4: Optimal value function of different problems using
different algorithms

4.3 Symbolic Perseus and the ADD
representation

Perseus (Spaan and Vlassis 2005) is a point based value
iteration algorithm. The value iteration is performed
by doing partial point-based backups at reachable be-
lief states. A point based backup computes the best
α-vector for each point in a set of witness belief states.

The Algebraic Decision Diagram representation ex-
ploits the context-specific independence to compactly
represent a function defined over a set of variables.
Therefore, representing the transition, observation and
reward functions using ADDs, results in an efficient
implementation of matrix operations. To tackle large
scale POMDPs, we can integrate the Perseus algorithm
with ADD representation (Poupart 2005).

4.4 Computing the Optimal Value Function
Figure 4 represents the average expected reward for
500 runs. We did not plot the run-time of these algo-
rithms because it is almost the same for all of them.
Moreover, the POMDP should be solved once a month
in an off-line fashion. Therefore, we do not have any
time constraints.

The Perseus algorithm seems to be closer to the up-
per bound of the value function (the MDP value func-
tion.) Furthermore, value functions of the FRTDP and
HSVI2 algorithms are similar in all variations of the
problem.

4.5 Tracing an Optimal Policy
To have a better sense of the efficiency of optimal poli-
cies, we plotted the 24-hour temperature change that is
the outcome of performing a sequence of actions se-
lected by the Perseus+ADD algorithm. To this end, we
traced optimal policies that are found by this algorithm.
We continued tracing the optimal policy until we found
the steady state; where the initial temperature is equal
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Figure 5: Comparison of fixed rate temperature change
problems with the optimal and measured temperature pro-
files

to the final temperature. We also plotted the 24-hour
temperature change of the optimal thermal control pol-
icy as well as the monitored temperature of the room.
The monitored temperature shows that the HVAC sys-
tem keeps the temperature almost stable regardless of
the occupancy of the room. The optimal thermal con-
trol policy is the most energy efficient temperature pro-
file for the recorded activity data in the case where we
assign the highest weight to user’s satisfaction when
the room is occupied and the highest weight to energy
saving when it is empty.

Figure 5 shows the 24-hour temperature change
of the optimal policies of CICA10 and CI10CA25
problems. Similarly, Figure 6 shows the 24-hour
temperature change of optimal policies of variable
rate temperature change problems; CICA10MD and
CI10CA25MD. Increasing the weight of user’s satis-
faction, our system starts warming up the room earlier
than the case with equal weights. It also stops warming
up the room (by blocking the vent) later than the other
case. This is exactly consistent with our expectation.

It should be mentioned that we optimize the tem-
perature instead of energy consumption of the heat-
ing system. However, it is possible to estimate energy
consumption from the operation time and nameplate
power of the heating system. Specifically, it is equal to
the duration of the time that the temperature curve has
positive slope (assuming that the outdoor temperature
is higher than the indoor temperature.) With this as-
sumption, it turns out that in variable rate temperature
change problems; CICA10MD and CI10CA25MD, en-
ergy consumption of the proposed system is equal to
62.5% of the HVAC system’s energy consumption.
Therefore, the widespread implementation of our so-
lution would greatly reduce carbon emissions.

0

5

10

15

20

25

30

Te
m
p
e
ra
tu
re
 (
C
)

HVAC vs. Autonomous Thermal Control System ‐Multiple Delta

0

5

10

15

20

25

30

Te
m
p
e
ra
tu
re
 (
C
)

Time of the day

HVAC vs. Autonomous Thermal Control System ‐Multiple Delta

Temperature profile with equal weigths

Temperature profile with a higher weigth given to users' satisfaction

Measured temperature

Optimal temperature profile with a higher weigth given to users' satisfaction

Figure 6: Comparison of variable rate temperature change
problems with the optimal and measured temperature pro-
files

5. Future Work

Extending this work to the cooling system is one of
the future directions. To this end, the reward model
should be changed to be a function of energy consump-
tion rather than temperature. Based on the result of this
work, we plan to refine the model. We want to study
sensitivity of our results to the level of discretization,
the length of time steps and the setpoint temperature.

Another possible extension is to learn the weekly
schedule instead of the daily schedule. Since occu-
pancy of a building do relate to the day of week as well
as the time of the day, learning the weekly schedule
would increase the accuracy of our prediction and the
optimality of the selected policy.

We are also interested in computing the total cost of
heating a room up to a temperature under different con-
figurations of the problem. We would also like to find
the answer of the following question: what should be
the ratio of user’s satisfaction weight to energy saving
weight in limited budget scenario?

Moreover, it is known that the standard tempera-
ture of a room depends on the culturally-induced cloth-
ing norms of its occupants (Fountain, Brager, and de
Dear 1996). Therefore, borrowing some ideas from the
Multi-agents context, we plan to find dominant strate-
gies of the occupants of a building (agents) when they
can set the temperature of the building and also change
the clothing condition. It is also interesting to ana-
lyze the game where goals of government energy agen-
cies, power generators and householders are in con-
trast. Finding Nash Equilibria of this game is of high
interest too.



6. Conclusion
We presented the use of POMDPs to model and solve a
real world problem; measurement-based building ther-
mal control. We believe that the use of a sophisticated
decision-making approach combined with a large-scale
sensor deployment and field measurements will allow
us to moderate energy consumption of the heating sys-
tem.
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