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Abstract

In the last few years, multicore processors have become the dominant processor architec-
ture. While cache eviction policies have been widely studied both in theory and practice for
sequential processors, in the case in which various simultaneous processes use a shared cache
the performance of even the most common eviction policies is not yet fully understood, nor do
we know if current best strategies in practice are optimal. In particular, there is almost no
theoretical backing for the use of current eviction policies in multicore processors. Recently, a
work by Hassidim [14] initiated the theoretical study of cache eviction policies for multicore pro-
cessors under the traditional competitive analysis, showing that LRU is not competitive against
an offline policy that has the power of arbitrarily delaying requests sequences to its advantage.
In this paper we study caching under the more conservative model in which requests must be
served as they arrive. We perform a thorough all-to-all comparison of strategies providing lower
and upper bounds for the ratios between performances. We show that if the cache is partitioned,
the partition policy has a greater influence on performance than the eviction policy. On the
other hand, we show that sharing the cache among cores is in general better than partitioning
the cache, unless the partition is dynamic and changes frequently, in which case shared cache
strategies and dynamic partitions are essentially equivalent when serving disjoint requests.
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1 Introduction

Multicore processors have become the dominant processor architecture. Currently two, four and
eight core processors are generally available, and this number is expected to grow rapidly. While the
specific details of these architectures are still in flux all of them so far include a cache area shared
across multiple cores. The performance of this cache has been extensively studied within the field of
systems research e.g. [19, 1, 23] where they are known as Chip Multiprocessors (CMPs). Recently,
Hassidim initiated the theoretical study of paging strategies for shared caches in CMPs [14], where
in a system with p cores, a shared cache might receive up to p page requests simultaneously.
Hassidim’s work uses a somewhat unconventional model in which the paging strategy can schedule
the execution of threads. While in principle there is no reason why this cannot be so, historically
the operating system has kept the scheduling of execution and the paging tasks separate.

In this work we assume a more conservative model, in which cache algorithms are not allowed
to make any scheduling decisions but must serve all active requests. We study various algorithms
in the CMP model. We divide the family of algorithms in two: algorithms that completely share
the cache among cores, and algorithms that divide the cache among cores and serve the requests
of each core in each part. In the former, the algorithm is specified by the eviction policy. In the
latter, both an eviction policy and a partition strategy define the algorithms. Observe that the
partition strategy can be static or dynamic.

We compare the performance of various algorithms, and derive lower and upper bounds on the
worst case ratio between the number of faults between each pair of algorithms. We show that
partitioning the cache statically is not competitive against sharing the cache, even when requests of
different processors are disjoint. We also show that if a static partition is required, then the choice
of the partition has more impact than the choice of the eviction policy. On the other hand, we show
that when different processors request non-disjoint sets of pages, dynamic partitions can perform
arbitrarily badly when compared to a shared strategy. Even when restricted to disjoint sequences,
we show that dynamic partitions that do not make frequent changes are also not competitive
against shared strategies, while dynamic partitions that do, can match the performance of shared
strategies.

The rest of the paper is organized as follows. We review related work in Section 2. In Section 3
we describe the cache and cost models we use throughout the paper. In Section 4 we describe the
algorithms that we then compare in Section 5. We describe an algorithm to compute the optimal
static partition in Appendix D. We provide concluding remarks and future directions of research
in Section 6.

2 Related Work

The performance of the cache in the presence of multiple threads has been extensively studied, and
the research in the subject has increased notably since the appearance of multicore architectures.
A variety of works have studied cache strategies in practice, developing strategies to dynamically
partition the cache, or to manage cache at the operating system level.

In the context of one processor with multiple threads running either interleaved or by time
slices, [21] shows how to compute an offline optimal partition of the cache, and show that for
some examples LRU produces cache allocations that are close to optimal. They show as well
that a modified version of LRU that evicts only pages form other threads sometimes performs
better. Other works propose dynamic partition strategies for simultaneous multithreading systems
or CMPs with the goal of improving various performance measures, e.g. hit rates [22], throughput
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[17], fair speedup (a global performance fairness metric) [20], or both throughput and fairness [7].
Other works propose approaches to manage shared cache by the operating system through memory
address mapping [16] or combining process scheduling and data mapping [8]. [12] proposes an
operating system scheduling algorithm that adjusts the CPU time each thread gets to account for
unequal cache sharing aiming to minimize the effects of unfair cache sharing. [24] studies a cache
management approach that combines dynamic insertion and promotion policies to provide effects
similar to cache partitioning. Dynamic insertion policies [18] was further extended in [15].

A recent work [25] measures the influence of various factors related to the types of programs
(e.g. number of threads), operating system (e.g. assignment of threads to cores), and architecture
(e.g. number of cores) and shows that this influence is rather limited on a benchmark which is
representative of shared-memory programs for CMP [2]. They argue that a reason for this is the
mismatch between programs and compilers of multithreaded applications and CMP architectures,
and show experimentally that a series of cache-sharing-aware program transformations can improve
performance. These works motivate us to study the fundamental properties of programs running
in multiple cores, in our case with respect to cache efficiency, so that cache allocation and eviction
policies take advantage of the underlying architecture.

On the other hand, other works with a theoretical focus have addressed the cache performance
of multithreaded systems, mostly from the point of view of schedules and algorithms with good
cache performance. See, for example, [5, 3, 4]. The work in [13] proposes an analytical model
which predicts the performance of different cache replacement policies for a particular application,
and thus it can be used compare the performance of cache replacement policies, however, only in
an application-by-application basis. Our work aims to compare cache policies and strategies in
general, for arbitrary input sequences.

A recent paper by Hassidim [14] is the first to address cache eviction policies in the multicore
setting from the traditional competitive analysis point of view. This work shows that when serving
parallel disjoint requests in a single shared cache, Least-Recently-Used (LRU) performs badly with
respect to the optimal offline (see [6] for the definitions of common paging algorithms). More
specifically, the competitive ratio of LRU is Ω(τ/α), where τ is the ratio between miss and hit
times, and the offline optimal has a cache of size k/α.

However, Hassidim’s model assumes that an offline cache strategy has the power to serve se-
quences of some cores and delay others. In other words, the offline strategy is able to modify the
schedule of requests, and hence has extra advantage over regular cache eviction online algorithms.
We discard this possibility, assuming that the order in which requests of different processors arrive
to the cache is given by a scheduler over which the caching strategy has no influence. Given a
request, the cache must serve the request, and it cannot be delayed. Secondly, [14] studies only
sequences of disjoint pages. It should be no surprise that under this assumption the advantage of
a shared cache is diminished. We study and compare both the settings with shared and disjoint
pages.

The traditional measure for the performance of sequential paging algorithms is the competitive
ratio, in which algorithms are compared to the optimal offline algorithm. Several other measures
have been studied, many of which compare online algorithms directly to each other, as we do in
this work. (See e.g. [11], and [9, 10] for a survey of performance measures for online algorithms.)

3 The Cache Model

The model we use in this paper is broadly based on Hassidim’s model [14]. We have a multicore
processor with p cores {1, . . . , p}, and a shared L2 cache of size K pages. The input is a multiset
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of request sequences R = {R1, . . . , Rp}, where Rj = rj
1, . . . , r

j
nj is the request sequence of core j

of length nj . Let n =
∑p

j=1 nj , i.e., n is the total number of requests. We assume K ≫ p and

nj ≫ k, for all 1 ≤ j ≤ p. In particular, we assume that K ≥ p2, which can be regarded as a

CMP variant of the tall cache assumption. A request rj
i is a tuple (tji , σ

j
i ) where σj

i is the identifier

of the i-th page requested by processor j and tji indicates the earliest possible time at which the
request σi

j could be made shall there be no page faults on earlier requests of process j. Thus, at
any given time, the shared cache might receive up to p requests simultaneously. In practice, a
single instruction of a core can involve more than one page. We treat each request as a request
for one page, which models the case of separate data and instruction caches. Note also that the
above definition of requests accounts for the fact that not all processors request pages at all times.
To simplify analysis and notation, we assume that all processors do have requests at all times, but
that requests can be for an empty page ⊥, which does not have any effect on the cache. We then
describe requests in terms of the page components of each individual request r = (t, σ). Thus, for
processor j, we will specify Rj as Rj = σj

1 . . . σj
nj , where σj

i could be empty. When we talk about
the length of a sequence nj , this length includes empty pages. We say that a request R is disjoint
if

⋂p
j=1 Rj = ∅ and non-disjoint otherwise.
In our model, when a page request arrives it must be serviced. The only choice the paging

algorithm has is in which page to evict shall the request be a fault. A cache miss delays the
remaining requests of the corresponding processor by an additive term τ1. In other words, if
request σj

i∗ is a miss, then Rj is updated by making tji ← tji + τ , for all i > i∗.
To be consistent with [14], we adhere to the convention than when a page needs to be evicted

to make space, first the page is evicted and the cache cell is unused until the fetching of the new
page is finished. In addition, since we allow requests to the same page by different processors, we
use the convention that when there is a request by processor j, of a page that is currently in the
process of being fetched, then the sequence of processor j is only delayed until the page is fetched
into the cache τ units of time after the initial request. We also assume that cache coherency is
provided at no cost to the algorithms.

As in [14], we assume that a parallel request is served in one parallel step. This assumes that
requested pages from different cores can be read in parallel from cache. We assume as well that
fetching can be done in parallel, i.e. pages from memory corresponding to requests of different cores
can be brought simultaneously from memory to cache.

Finally, we assume that simultaneous requests are served independently. Let R(t) denote the
requests of all processors at time t. We assume that decisions made one each page of R(t) do not
depend directly on other pages in R(t). Decisions on some pages in R(t) can affect the decision on
other pages indirectly, but only as a result of applying the eviction policy when serving those pages.
In addition, and w.l.o.g., we adopt the convention that individual requests within a simultaneous
request are served logically in a fixed priority order (e.g. by increasing number of processor), and
that this order is consistent with the eviction decisions of the algorithm. For example, for LRU, if
two pages σ1 and σ2 are part of the same request R(t) but σ1 is served before σ2 in terms of the
logical order, then the last access to σ1 is earlier than the one to σ2.

3.1 Cost model

Traditionally, the cost of a paging algorithm on a request sequence has been measured in terms of
the number of faults it incurs when serving the sequence. An alternative measure is the time that
the algorithm takes to serve the request. In the sequential setting both measures are equivalent so

1Note that in [14], τ is defined as the fetching time, which would be τ + 1 in this paper.
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long as the time for a fault is greater than the time for a hit. In the case of parallel requests, it is not
immediately clear that both measures are equivalent. In our model, a fault delays the remaining
requests of only one processor, while the requests of other processors continue to be served. Hence
a sensible goal is to minimize the total time of serving. However, in this work we measure the
performance of a strategy in terms of the total number of faults, since it allows us to compare the
results of the parallel setting with the traditional results in the sequential setting, which are usually
expressed in terms of this cost measure. It is not difficult to see that both measures are equivalent
when comparing the performance on sequences of the same length.

Let A(R) be the number of faults that algorithm A incurs on sequence R and let TA(R) be the
total time for serving R under policy A. Let H and F be the hit and fault times when serving a
page. An empty page request spans one unit of time. For simplicity we assume H = 1, and we
let τ = F − 1. Thus, TA(R) ≤ A(R)F + |R| − A(R) = |R|+ A(R)(F − 1) = |R|+ A(R)τ , where
|R| =

∑p
j=1 nj , and the inequality is explained by the fact that simultaneous faults on the same

page only have to wait for the page to be fetched due to the first fault. When requests from different
processors are disjoint, we have equality. It is straightforward to note that for all algorithms A and
A′, and all parallel disjoint requests R and R′ such that |R| = |R′|, TA(R) < TA′(R′) ⇔ A(R) <
A′(R′). The same holds for the equality. Both for requests that are disjoint and non-disjoint, the
number of faults places an upper bound on the time that it takes to serve the request.

Another reasonable goal is to minimize the makespan, i.e., the maximum among the times that
it takes to serve the requests of all processors. In this work we focus entirely on total time (through
the number of faults), in the understanding that it is of interest not only that the parallel request
be finished as soon as possible, but that the total work be minimized and hence resources are freed
for serving further requests.

4 Caching Algorithms

We consider two families of strategies for managing the cache: shared and partitioned. In the first
one, the entire cache is shared by all processors, and a cache cell can hold a page corresponding to
any processor. In the second one, the cache is partitioned in p parts. Part i is destined exclusively
to store pages that belong to requests from processor i. Among partition strategies, we consider
static and dynamic partitions. In a static partition the sizes of the parts for each processor are
determined at the beginning of the execution of the algorithm and remain fixed until the last page
is served. In a dynamic partition, the sizes of the parts can vary throughout the execution.

Any of these strategies is accompanied by an eviction policy A. We call SA the algorithm that
uses a shared cache, with eviction policy A. For partition strategies, the partition needs to be
specified as well. Thus, sPB

A and dPB
A are the static partition and dynamic partition algorithms

that use eviction policy A and partition B, respectively.
An offline partition is dependent on the eviction policy A, the request sequence R, and the size

of the cache K. It defines a function k : {P, N} → {part(K, p)}, where P = {1, . . . , p} is the set
of processors, and part(K, p) = {{k1, k2, . . . , kp} | ki ∈ {0, . . . , K} and

∑p
i=1 ki = K} is the set

of possible partitions of K with p nonnegative integers. Thus, k(i, t) is the size of the cache for
processor i at time t. We make the restriction that all partitions must assign at least one unit of
cache to all processors whose current request is not empty.

For example, according to the notation defined above, SLRU is the strategy that evicts the
current page in the entire cache that was least recently used. Examples of static partition strategies
are sPOPT

LRU : LRU is performed on each sequence in each part of the cache, which is partitioned

offline to minimize the total number of faults; and sPEQ
OPT : each processor is assigned an equal part
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of the cache, and the algorithm performs the optimal offline strategy on each sequence in each part
of the cache. We show an example of the execution of a shared strategy and a static partition
strategy in Appendix A.

4.1 Dynamic Partition Algorithms

Dynamic partition strategies involve possible changes in the cache partition during the service of
a request. A reduction in the size of the cache for a processor can have different consequences for
the pages currently in the cache for that processor. The convention we use is the following. If at
any time t, the part of the cache of processor j has size k(j, t) and contains c(j, t) pages, then if at
time t + 1, k(j, t + 1) < k(j, t), then min{0, c(j, t) − k(j, t + 1)} pages are evicted from the cache
according to the eviction policy.

We define a stage of a dynamic partition strategy to be each period of time during an execution
of the algorithm in which the sizes of the caches are constant. The convention about transitions
described above simplifies the analysis by allowing us to consider each stage independently of the
previous ones: we need only know about the new cache size and the current pages in the cache
at the beginning of the stage. We define a restriction on dynamic partition strategies that will be
useful in proving some of our results.

Definition 1 (Stable partition) Let B be a dynamic partition algorithm and k be the partition
function that it defines. Let ms

j be the number of non-empty pages requested by processor j in a
stage s. We say that a stage s is long if for all processors j, ms

j > ks
j , where ks

j = k(j, t) for some t
during s, is the size of the cache of processor j in stage s. In other words, the length of the stage (in
number of requests) is larger than the sizes of all caches in the partition. We say that a dynamic
partition is stable if all its stages are long.

5 Comparison of strategies

Table 1 shows an all-vs-all comparison of caching strategies. Two entries in a cell T (i, j) correspond
to a lower bound and upper bound in the number of faults between algorithms Algi and Algj in
the following sense. Let T (i, j) = f1(n, K, p), f2(n, K, p). Then ∃R such that Algi(R)/Algj(R) ≥
f1(n, K, p), and ∀R Algi(R)/Algj(R) ≤ f2(n, K, p). If a cell has only one entry, and this entry is of
the form Ω or ω, this corresponds to a lower bound, otherwise it corresponds to a matching lower
and upper bound. In the case of a generic partition strategy B and an eviction policy A, when
in the numerator, these should be interpreted as “for all online partition strategies B”, and “for
all marking or conservative deterministic online eviction policies A”2 When in the denominator,
the quantifier is existential for the lower bound and universal for the upper bound. If both in
the numerator and denominator, generic strategies should be regarded as equal. For adversarial
sequences with optimal offline partitions, the sequence is fixed before the optimal partition is
decided.

2Recall that a k-phase partition of a request R sequence is a partition of R in subsequences such that the first
phase starts at the beginning of R, and a new phase starts every time there is a request for a (k +1)-th different page
since the end of the previous phase. A marking algorithm associates (explicitly or implicitly) a bit to each page. At
the beginning of each phase all pages in the cache are unmarked and each page is marked when it is first requested
during the phase. A marking algorithm never evicts a marked page and therefore it makes at most k faults in a phase.
LRU and FWF are marking algorithms. A conservative algorithm incurs in at most ℓ faults on any subsequence of
at most ℓ distinct pages. LRU and FIFO are conservative algorithms[6].
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In the rest of the section we highlight and discuss the most important results in Table 1. Due
to space constraints, we include only sketches of the proofs in this section, while full proofs are
provided in Appendix B. We also provide short justifications for the values of all entries in Table
1 in Appendix C.

5.1 Static partition strategies

The main observation from our results when comparing different partition strategies is that the
choice of a good partition is more important than a good eviction policy algorithm. For equal
static partitions, we observe that both lower bounds and upper bounds are close to the size of the
cache, as in the sequential setting. A representative entry in Table 1 is the comparison between
static partition with an online eviction policy and a fixed partition B, and static partition with an
optimal offline eviction policy and the same partition B.

Lemma 1 (Online vs offline eviction policies with a fixed static partition) Let A be any
deterministic online cache eviction algorithm and let B = {k1, k2, ..., kp} be any online static
partition. There exists a sequence R such that sPB

A (R)/sPB
OPT (R) ≥ maxj{kj}. When A is

any marking or conservative algorithm (e.g. LRU), there is a matching upper bound, i.e., ∀ R,
sPB

A (R)/sPB
OPT (R) ≤ maxj{kj}, which also holds if B is offline.

Proof sketch3: The proofs for both the lower bound and upper bound are analogous the proofs of
the competitive ratio of the most common algorithms in the sequential setting (e.g. LRU, FIFO).

An adversary with the power of an offline eviction policy can only be K times better than
algorithms with reasonable eviction policies. However, if the adversary is given the power to
partition the cache offline, no algorithm with an online partition can compete with it. The following
lemma shows this, which holds even for an optimal offline eviction policy:

Lemma 2 (Online static partition is not competitive against an offline static partition)
Let B = {k1, ..., kp} be any static online partition. Let j∗ = argminj{kj |kj ≥ 2}. There exist a
sequence R, such that for all A, sPB

A (R)/sPOPT
LRU (R) ≥ min{kj∗ , p− 1} n

K2p
= Ω(n).

Proof sketch3: Consider A = LRU . All processors but one request repeatedly kj + 1 different
pages, and the other one requests repeatedly one page. Thus, sPB

A faults on every request of p− 1
processors. An optimal partition allocates enough cache for all processors and hence it faults a
constant number of times. The result for any algorithm A follows by Lemma 1.

Observe that the optimal offline static partition for any given paging strategy A can be computed
in time O(p(nK + K2)) using dynamic programming (see Appendix D). For the special case when
miss rate functions are convex faster algorithms are known [21].

5.2 Shared cache is better than static partition

Table 1 shows that no static partition strategy is competitive against shared strategies. It is to
be expected that a shared strategy should perform better when serving non-disjoint requests. We
show here that the same holds even when the intersection between processor requests is empty.
The following theorem shows that a static partition strategy, even with an optimal partition and
the optimal offline eviction policy, is not competitive against SLRU .

3See Appendix B for full proofs.
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1 2 3 4 5 6

Ai/Aj sPB
LRU sPOPT

LRU sPB
A sPOPT

A sPB
OPT sPOPT

OPT

sPB
LRU 1 Ω(n) max{kj} Ω(n) max{kj} Ω(n)

sPOPT
LRU 1 1 K,max{kj} K,max{kj} K,max{kj} K,max{kj}

sPB
A 1,max{kj} Ω(n) 1 Ω(n) max{kj} Ω(n)

sPOPT
A 1,max{kj} 1,max{kj} 1 1 K,max{kj} K,max{kj}

sPB
OPT 1 Ω(n) 1 Ω(n) 1 Ω(n)

sPOPT
OPT 1 1 1 1 1 1

SLRU Ω(p),K Ω(p),K K − p2 + p,
K

K − p2 + p,
K

K − p2 + p,
K

K − p2 + p,
K

SA Ω(p),K Ω(p),K Ω(p),K Ω(p),K K − p2 + p,
K

K − p2 + p,
K

SOPT 1 1 1 1 1 1
dPD

A ω(1)d ω(1)d ω(1)d ω(1)d ω(1)d ω(1)d

dPD
OPT ω(1)d ω(1)d ω(1)d ω(1)d ω(1)d ω(1)d

dPD
LRU ω(1)d ω(1)d ω(1)d ω(1)d ω(1)d ω(1)d

7 8 9 10 11 12

Ai/Aj SLRU SA SOPT dPD
A dPD

OPT dPD
LRU

sPB
LRU Ω(n) Ω(n) Ω(n) Ω(n) Ω(n) Ω(n)

sPOPT
LRU Ω(n) Ω(n) Ω(n) Ω(n) Ω(n) Ω(n)

sPB
A Ω(n) Ω(n) Ω(n) Ω(n) Ω(n) Ω(n)

sPOPT
A Ω(n) Ω(n) Ω(n) Ω(n) Ω(n) Ω(n)

sPB
OPT Ω(n) Ω(n) Ω(n) Ω(n) Ω(n) Ω(n)

sPOPT
OPT Ω(n) Ω(n) Ω(n) Ω(n) Ω(n) Ω(n)

SLRU 1 Ω(p(τ + 1)),
Ka

Ω(p(τ + 1)),
Ka

f1, Ka f1, Ka Ω(p(τ + 1)),
Ka

SA 1,Ka 1 Ω(p(τ + 1)),
Ka

Ω(p(τ + 1)),
Ka

f1, Ka Ω(p(τ + 1)),
Ka

SOPT 1 1 1 1 1 1
dPD

A Ω(n)b Ω(n)b Ω(n)b 1 K/pc,2Kc 1,2Kc

dPD
OPT Ω(n)b Ω(n)b Ω(n)b 1 1 1

dPD
LRU Ω(n)b Ω(n)b Ω(n)b K/pc,2Kc K/pc,2Kc 1

Table 1: Comparison of performances of cache strategies. Each entry T [i, j] shows a lower bound
and upper bound for the ratio Algi(R)/Algj(R), where Alg(R) is the number of faults of Alg on R.
f1 = Ω(p(τ + 1)(K − p2 + p)). a: for τ = 0. b: for non-disjoint sequences. For disjoint sequences,
lower bound of w(1) applies with restriction d. c: for stable partitions. d: for partitions with
sublinear number of stages.

Theorem 1 (Static partition is not competitive against a shared strategy) There exists
a sequence R such that sPOPT

OPT (R)/SLRU (R) = Ω(n).

Proof sketch3: Given any static partition (even the optimal offline), there is always a sequence
that can demand more than the given part for each processor at different times, while a shared
strategy can use the entire cache to serve each sequence.

A static partition strategy can be arbitrarily bad compared to a shared one. On the other hand,
there are sequences for which a static partition can perform better than a shared one. However,
the number of faults of a shared strategy can be no worse than K times the number of faults of a
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static one. Theorem 2 and Lemma 3 show this.

Theorem 2 (Shared cache can be worse than static partition) Let A be any online evic-

tion policy and A′ be any marking or conservative eviction policy. ∃R such that SA(R)

sP OPT
A′

(R)
= Ω(p).

Proof sketch3: The adversarial sequence in this proof consists of a sequence that makes SA fault
in every request, while at the same time allows a partition such that sPOPT

A′ will fault only on

the requests of one processor. If A = LRU it is enough to request pages (σj
1 . . . σj

K/p+1) for each
processor j, hence OPT is such that the requests of all processors but one fit in their part of the
cache. For an arbitrary online eviction policy we need to be more careful to ensure a suitable
partition.

Lemma 3 (Shared cache with LRU vs optimal static partition) For all requests R
SLRU (R)/sPOPT

OPT (R) ≤ K.

Proof sketch3: Consider the phases of each sequence Rj (each phase has at most kj different
pages), and the shared K-phases of R. Since a shared phase cannot start and end without the
sequence of some processor changing phases, there are no more shared phases than phases in the
sequences themselves.

5.3 Shared strategies

In this section we show that the lower bound of the competitive ratio of τ of a shared LRU strategy
shown by Hassidim [14] also holds in our model, although the optimal offline strategy does not
have the ability of scheduling the requests. Nevertheless, an offline strategy can effectively delay
the sequence of one processor and serve the rest of the sequences having enough cache space. The
larger τ , the more a sequence can be delayed and hence an offline strategy can spend more time
serving only p − 1 sequences. Note that if τ = Ω(n), then the competitive ratio of SLRU can
be arbitrarily large. On the other hand, if τ = 0, the competitive ratio of SLRU is K, as in the
traditional sequential setting.

Theorem 3 (Lower bound for the competitive ratio of online shared strategies) Let A
be an online deterministic cache eviction policy. There exists a sequence R and an offline eviction
policy OFF such that SA(R)/SOFF (R) = Ω(p(τ + 1)).

Proof sketch3: The adversary requests a sequence such that SA faults on every request. The
offline strategy SOFF forces a fault on one of the sequences, so that the pages of the rest of the
sequences fit in the cache, and SOFF faults once every (τ + 1) requests on the delayed sequence.

The proof of Theorem 3 confirms that if τ = ω(K/p), Furthest-In-The-Future (FITF) is not an
optimal strategy in our model: it is not hard to verify if serving the request in said proof, a shared
strategy that were to evict the page that is furthest in the future would make n/K faults. Eviction
policy OFF in the proof makes O(n/p(τ + 1)), and it is different from FITF. Note that FITF is
not the optimal strategy in Hassidim’s model either. In fact, it is shown in [14] that the optimal
offline schedule is NP-complete.
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5.4 Dynamic partitions

In this section we discuss results related to partitions that can change over time. When comparing
strategies with different eviction policies but that have the same partition, we obtain bounds that
are analogous as those for strategies with the same static partition (see Lemma 1). A dynamic
partition strategy with a deterministic online eviction policy can be at least K/p times worse than
one with an optimal offline eviction policy, but no more than 2K times worse.

Lemma 4 (Online vs offline eviction policies: lower bound) Let A be any online cache evic-
tion algorithm and let B = B(t) be any stable dynamic partition (see Definition 1). Assume kj ≥ p,
∀ 1 ≤ j ≤ p ∀t. There exists a sequence R such that dPB

A (R)/dPB
OPT (R) ≥ K/p.

Lemma 5 (Online vs offline eviction policies: upper bound) Let B be any stable dynamic
partition strategy. For all sequences R, dPB

LRU (R)/dPB
OPT (R) ≤ 2K.

Proof sketch3: The proofs for both lemmas work essentially by applying the arguments of the
proof of Lemma 1 to each stage of the dynamic partition.

As expected, a strategy that utilizes a dynamic partition can be more powerful than one which
must respect the initial partition. However, these can still perform badly when compared to shared
strategies. As we see in Table 1, the ratio between the number of faults of any dynamic partition
strategy to static partition strategies or shared strategies can be non-constant. In fact, when
considering non-disjoint requests, it should be no surprise that a dynamic partition strategy is not
competitive against a shared strategy, as shown in the following lemma:

Lemma 6 (Dynamic partition is not competitive for non-disjoint requests) Let A be
any eviction policy and B be any dynamic partition strategy. ∃R s.t. dPB

A (R)/SLRU (R) =
Ω(n/K2p).

Proof sketch3: The adversary requests the same pages for all processors so that all pages fit in the
cache of SLRU but not in the cache of dPB

A , since pages are different in each part for this algorithm.
Regardless of the partition, dPB

A must fault at least once every K requests.

Even if we restrict ourselves to disjoint requests, if a dynamic partition does not change the
partition enough, it is subject to the same adversarial sequences than static partitions. To illustrate
this, we show that the number of stages of a dynamic strategy is sublinear (w.r.t the length of the
sequences), then such strategy is not competitive against shared LRU:

Lemma 7 (Dynamic partitions that do not change enough are not competitive) Let
A be any deterministic online cache eviction policy, and let B be any online dynamic partition
whose number of stages is o(n). There exists a sequence R such that dPB

A (R)/SLRU (R) = ω(1).

Proof sketch3: Since the number of stages is o(n), at least one stage of the partition has non-
constant length. Then, we can apply the same argument as in the proof of Theorem 1 for static
partitions in this stage. Each processor requests more pages than the size of its part in this stage,
but at different times, allowing a shared strategy to use all the cache to serve the requests of each
processor.

The argument of Lemma 7 can be extended to show that such partitions are not competitive
against static partitions as well, as shown in Table 1. Moreover, if the number of stages is constant,
then the ratio becomes arbitrarily large. However, when considering general dynamic partitions
and if sequences are disjoint, we cannot hope to show an equivalent result to that of Theorem 1,
since there exists a dynamic partition that behaves exactly like SLRU , as shown in Theorem 4:
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Theorem 4 (Dynamic partitions equal shared strategies for disjoint sequences) There
exists a dynamic partition B such that for all disjoint requests R, dPB

LRU (R) = SLRU (R).

Proof sketch3: dPB
LRU can emulate the behaviour of SLRU by reducing the partition of the

processor whose least recently used page is the least recently used among the pages in all parts of
the cache. The reduction implies the eviction of the overall least recently used page.

Theorem 4 implies that any static partition can perform arbitrarily badly when compared to
dynamic partitions in the worst case, as these can simulate SLRU , and we have already shown that
static partitions are not competitive against SLRU . Not only can a dynamic partition have the
same performance that a shared strategy, but it can also perform better:

Lemma 8 (Shared cache with LRU can be worse than dynamic partition) Let A be any

online eviction policy. ∃R such that SA(R)

dP OPT
LRU

(R)
= Ω(p(τ + 1)).

Proof sketch3: As in Theorem 2, there exists a sequence that makes SA fault on every request
but that allows a good partition to serve p−1 requests with no faults. As the partition is dynamic,
as soon as these requests are served, the partition can change to give enough cache to the other
processor.

Finally, we show that no dynamic or static partition strategy can outperform SOPT , since the
latter can emulate any strategy, as the following lemma shows:

Lemma 9 (Offline shared is no worse than dynamic partition) For all sequences R,
SOPT (R) ≤ dPOPT

OPT (R).

Proof sketch3: An offline shared strategy can compute the optimal dynamic partition and emulate
dPOPT

OPT by maintaining a logical division of the cache, making decisions depending on the number of
pages of each processor residing in the cache at any time and the sizes of the parts of each processor
at that time.

6 Conclusions and Future Work

We have presented a thorough comparison between paging algorithms for multicore caches. We have
shown that statically partitioning the cache is not competitive against sharing the cache, even when
requests of different processors are disjoint. As expected, we show that shared strategies outperform
dynamic partition strategies when requests from different processors share pages. However, if
requests are disjoint, a dynamic partition can emulate any shared strategy with an online eviction
policy.

The fact that sequences may be delayed by a factor τ plays a key role in the multicore caching
problem. Delaying some sequences can affect the performance of an algorithm negatively or posi-
tively, and sometimes it can be preferable for an algorithm to deliberately incur in faults to delay
some sequences, and thus use the cache to serve the rest of the sequences. We have shown this
effect when showing, for example, that the competitive ratio of shared LRU is bounded below by
the fetching time. In addition, delaying sequences changes the alignments of remaining pages of
different processors to the future, which, depending on the contents of the sequences, can increase
or decrease the length of phases. A possible direction of research is to study the effect of delay-
ing sequences in the performance of algorithms. In particular, an important open question is to
determine an upper bound on the competitive ratio of shared LRU.

Other lines of future research include determining the optimal offline shared strategy, as well
as competitive online shared strategies and dynamic partition strategies.
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A Example of execution of shared and static partition strategies

Consider the following sequence R = {R1, R2}, with R1 = (σ1, 1), (σ2, 2), (σ4, 3), (σ2, 4), (σ3, 5),
(σ4, 6), and R2 = (σ5, 1), (σ6, 2), (σ2, 3), (σ4, 4), (σ5, 5), (σ5, 7). Let K = 5 and let B be a static
partition such that k1 = 3 and k2 = 2. Table 2 shows the execution of SLRU and sPB

LRU on
R with τ = 2, starting with a populated cache. The total time (work) of execution of SLRU is
TSLRU

(R) = 10 + 8 = 18, the makespan is 10, and the number of faults SLRU (R) = 3. For static
partition we have TsP B

LRU
(R) = 10 + 13 = 23, the makespan is 12 and the number of faults is

sPB
LRU (R) = 5.

B Proofs of Lemmas

Lemma 1 (Online vs offline eviction policies with a fixed static partition) Let A be any
deterministic online cache eviction algorithm and let B = {k1, k2, ..., kp} be any online static
partition. There exists a sequence R such that sPB

A (R)/sPB
OPT (R) ≥ maxj{kj}. When A is

any marking or conservative algorithm (e.g. LRU), there is a matching upper bound, i.e., ∀ R,
sPB

A (R)/sPB
OPT (R) ≤ maxj{kj}, which also holds if B is offline.

Proof: [lower bound] Let j∗ = argmaxj{kj}. The sequence R is such that no pages are requested
for Rj with j 6= j∗, while Rj consists of requesting, among pages {σ1, σ2, ..., σkj∗+1}, the page just

evicted by A, where σi1 6= σi2 for i1 6= i2. Naturally, sPB
A (R) = n/p. On the other hand, since

sPB
OPT only evicts a page of sequence Rj∗ if it is not requested in the following kj∗ requests, we

have sPB
OPT (R) ≤ (n/p)/kj∗ and the lemma follows. 2

Proof: [upper bound] Given the sequence Rj of processor j, divide it in phases such that a new
phase starts every time there is a request for the (kj +1)-th distinct page since the beginning of the
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SLRU sPB
LRU

t Remaining sequence Cache Remaining sequence Cache

0
σ1, σ2, σ4, σ2, σ3, σ4 σ1σ2σ3σ5σ6 σ1, σ2, σ4, σ2, σ3, σ4 σ1σ2σ3

σ5, σ6, σ2, σ4, σ5,⊥, σ5 σ5, σ6, σ2, σ4, σ5,⊥, σ5 σ5σ6

1
σ2, σ4, σ2, σ3, σ4 σ5σ1σ2σ3σ6 σ2, σ4, σ2, σ3, σ4 σ1σ2σ3

σ6, σ2, σ4, σ5,⊥, σ5 σ6, σ2, σ4, σ5,⊥, σ5 σ5σ6

2
σ4, σ2, σ3, σ4 σ6σ2σ5σ1σ3 σ4, σ2, σ3, σ4 σ2σ1σ3

σ2, σ4, σ5,⊥, σ5 σ2, σ4, σ5,⊥, σ5 σ6σ5

3
⊥,⊥, σ2, σ3, σ4 σ2σ6σ5σ1⊥ ⊥,⊥, σ2, σ3, σ4 σ2σ1⊥
σ4, σ5,⊥, σ5 ⊥,⊥, σ4, σ5,⊥, σ5 σ6σ5

4
⊥, σ2, σ3, σ4 σ2σ6σ5σ1⊥ ⊥, σ2, σ3, σ4 σ2σ1⊥
⊥,⊥, σ5,⊥, σ5 ⊥, σ4, σ5,⊥, σ5 σ6σ5

5
σ2, σ3, σ4 σ4σ2σ6σ5σ1 σ2, σ3, σ4 σ4σ2σ1

σ5,⊥, σ5 σ4, σ5,⊥, σ5 σ6σ5

6
σ3, σ4 σ5σ2σ4σ6σ1 σ3, σ4 σ2σ4σ1

⊥, σ5 ⊥,⊥, σ5,⊥, σ5 σ6⊥

7
⊥,⊥, σ4 σ5σ2σ4σ6⊥ ⊥,⊥, σ4 σ2σ4⊥
σ5 ⊥, σ5,⊥, σ5 σ6⊥

8
⊥, σ4 σ5σ2σ4σ6⊥ ⊥, σ4 σ2σ4⊥

σ5,⊥, σ5 σ4σ6

9
σ4 σ3σ5σ2σ4σ6 σ4 σ3σ2σ4

⊥,⊥,⊥, σ5 σ4⊥

10
σ4σ3σ5σ2σ6 σ4σ3σ2

⊥,⊥, σ5 σ4⊥

11
σ4σ3σ2

⊥, σ5 σ5σ4

12
σ4σ3σ2

σ5 σ5σ4

13
σ4σ3σ2

σ5σ4

Table 2: Example of execution of shared LRU with K = 5, and static partition with LRU and
partition {3, 2}. τ = 2 in this example. Pages in the caches are shown from left to right in order of
most recent use, and an empty page (⊥) in the cache indicates that the cell will be used by a page
currently being fetched. Underlined pages denote faults.

previous phase, and the first phase begins at the first page of Rj . sPB
LRU faults at most kj times

in each phase of Rj , while any algorithm must fault at least once in each phase. Let φj denote
the number of phases of sequence Rj , then sPB

LRU (R) ≤
∑p

j=1 φjkj ≤ maxj{kj}
∑p

j=1 φj . On the

other hand, sPB
OPT (R) ≥

∑p
j=1 φj , and thus sPB

LRU (R)/sPB
OPT (R) ≤ maxj{kj}. 2

Lemma 2 (Online static partition is not competitive against an offline static partition)
Let B = {k1, ..., kp} be any static online partition. Let j∗ = argminj{kj |kj ≥ 2}. There exist a
sequence R, such that for all A, sPB

A (R)/sPOPT
LRU (R) ≥ min{kj∗ , p− 1} n

K2p
= Ω(n).

Proof: Consider first A = LRU . Let P denote the set of the first kj∗ processors in decreasing
order of part of the cache according to B. Note that if kj∗ ≥ (p− 1) then P is equal to the set of

all processors. Let P ′ = P \ {j∗}. Let Rj = (σj
1σ

j
2...σ

j
kj+1)

xj with xj such that xj(kj + 1) = n/p

for all j ∈ P ′, and let Rj = (σj
1σ

j
2...σ

j
kj

)xj j /∈ P ′ and j 6= j∗, where xj is such that xjkj = n/p.
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Let Rj∗ = (σj∗

1 )n/p. sPB
LRU faults on every request of |P ′| processors and faults only on the first

request of processor j∗. Hence, sPB
LRU (R) ≥ min{kj∗ , (p− 1)}n/p.

On the other hand, an optimal partition for R would be one such that all different pages of
each request Rj fit in the cache. Intuitively, an optimal partition takes units of cache from j∗ and
assigns them to other processors. Let kOPT

j denote the size of the cache for processor j according

to the optimal partition, then kOPT
j = kj + 1 if j ∈ P ′ and kOPT

j = min{1, kj − (p − 1)} for

j = j∗. The number of faults of sPOPT
LRU on R is K, since it only faults on the first request to each

different page. Hence sPB
LRU (R)/sPOPT

LRU (R) ≥ min{kj∗ , (p− 1)}n/Kp = Ω(n). Now, by Lemma 1
sPB

OPT (R) ≥ sPB
LRU (R)/K, and the lemma follows. 2

Theorem 1 (Static partition is not competitive against a shared strategy) There exists
a sequence R such that sPOPT

OPT (R)/SLRU (R) = Ω(n).

Proof: Let K1 = 0 and Kj =
∑j−1

i=1 ki + 1, for all 2 ≤ j ≤ p. Consider a sequence of requests R,
in which processor j requests the following pages, for all j simultaneously:

(σj
1)

(j−1)(K/p+1)(τ+x)(σj
1σ

j
2 . . . σj

K/p+1)
x(σj

1)
(K+p−j(K/p+1))(τ+x)

where σj
i1
6= σj

i2
for all i1 6= i2, and x is a parameter. In other words, processor j requests the same

page for a while, then repeatedly requests K/p+1 distinct pages (call this the distinct phase), and
then goes back to requesting the same page again. All processors do the same, taking turns to be
the processor currently in the distinct phase: when one processor is in the distinct phase, all other
processors request repeatedly the same page. Given the request sequence, an optimal partition
assigns K/p + 1 units of cache to p − 1 processors, and the rest to one processor: assigning more
than K/p + 1 units of cache to any processor does not result in fewer faults, and assigning less
than K/p + 1 to more than one processor increases the number of faults. Let j∗ be the processor
whose partition is kj∗ = K/p − (p − 1). Consider the distinct phase of this processor. Let A be
any eviction policy. No matter what the eviction policy A is, even the optimal offline, sPOPT

A will
fault at least once every kj∗ requests. Hence sPOPT

A (R) ≥ x(K/p + 1)/kj∗ . On the other hand,
SLRU (R) faults only on the first K/p+1 requests of the distinct phase of each processor, for a total
of K + p faults. Hence sPOPT

A (R)/SLRU (R) ≥ x/(pkj∗). x can be made arbitrarily large, in fact
n = τ(K +p)(p−1)+xp(K +p) and thus x = n/(p(K +p))+τ(p−1)/p, and thus x/(pkj∗) = Ω(n).

2

Theorem 2 (Shared cache can be worse than static partition) Let A be any online evic-

tion policy and A′ be any marking or conservative eviction policy. ∃R such that SA(R)

sP OPT
A′

(R)
= Ω(p).

Proof: Let B an offline static partition strategy. We will use an adversarial sequence that makes
SA fault on every request, while at the same is suitable for a partition that allows restricting the
faults incurred by sPB

A′ exclusively to the requests of one processor (plus a constant number of faults
for the first pages of other processors). The sequence R that the adversary uses is the following.
Each processor j will request pages among {σj

1, σ
j
2, . . . , σ

j
K/p+1}, where the set of pages is disjoint

among processors. The adversary keeps a cyclic order π of processors ordered by, for example,
increasing processor id. While no evictions are made by SA the adversary requests, in turn for each
processor according to π, the page that is not in the cache. Whenever SA evicts a page σj

i , the

adversary makes processor j request the page among {σj
1, . . . , σ

j
K/p+1} that is not in the cache. This

might require the introduction of empty requests among the requests of the rest of the processors
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so that the next page requested effectively corresponds to processor j. If again there is no eviction,
R requests a page corresponding to the next processor according to π.

Let Cj be the number of pages in the cache of SA that belong to processor j. For the request
R to be plausible, it must be the case that at all times Cj ≤ K/p for all j (otherwise R would not
be able to request the page not in the cache for some processor). Initially Cj = 0 for all j. If upon
a request A does not make an eviction, then Cj is increased by one, where j is the next processor
according to π. If A evicts a page from processor j, then R requests a page from processor j and
Cj remains the same. It is not hard to see that if R follows the rules for requests described above,
when the cache becomes full then Cj = K/p for all j. After the cache is full, SA incurs in a fault
that requires eviction for all subsequent requests, and hence the value of Cj remains equal to K/p
until the end of the request. Hence R is plausible and each processor does not request more than
K/p + 1 different pages.

Let mj be the total number of (non-empty) pages requested by processor j in R (recall that n
counts the empty pages as well), and let M =

∑p
j=1 mj . Since R always requests a page that is not

in the cache, SA(R) = M . On the other hand, since the number of different pages requested by each
processor is at most K/p + 1, the partition B can assign K/p + 1 units of cache to p− 1 processors
and the rest to one processor. Let j∗ = argminj{mj} (j∗ is the processor whose sequence ended
up with the least number of non-empty requests among all processors). sPB

A′ gives K/p + 1 units
of cache to all processors j 6= j∗ and gives K/p − (p − 1) to j∗. The total number of faults of
sPB

A′ is at most mj∗ + (p − 1)(K/p + 1) ≤ M/p + (p − 1)(K/p + 1) (recall that A′ is marking or
conservative). Since M can be made arbitrarily large, we ignore constant additive factors and since
sPOPT

A′ (R) ≤ sPB
A′(R) for all B and R, it follows that SA(R)/sPOPT

A′ (R) = Ω(p). 2

Lemma 3 (Shared cache with LRU vs optimal static partition) For all requests R
SLRU (R)/sPOPT

OPT (R) ≤ K.

Proof: Divide a sequence Rj of processor j in phases such that in a sequential traversal of pages, a
new phase begins either on the first page, or at the (kj + 1)-th different page since the beginning of
the current phase, where kj is the size of the cache assigned by OPT to processor j. Define a phase
for the entire sequenceR equivalently for the cache size K. Call this phase a shared phase. We claim
that a shared phase cannot start and end without at least one sequence changing phase. In other
words, the phase of at least one sequence must end before the end of a shared phase. If this was not
the case, within the shared phase, the number of different pages in the sequence of each processor
j would be at most kj , and therefore the total number of different pages in the shared phase would
be at most K, which is a contradiction. Let φ denote the number of shared phases of sequence R
and φj denote the number of phases of sequence Rj . The above claim implies that φ ≤

∑p
j=1 φj .

Since SLRU will fault at most K times per shared phase, and any cache eviction algorithm must
fault at least once per phase, it follows that SLRU (R) ≤ Kφ ≤ K

∑p
j=1 φj ≤ KsPOPT

OPT (R).
Note that the arguments holds for any τ ≥ 0: although during the execution of the algorithm

the effect of τ changes the length of the phases of each sequence and therefore it changes the phases
of the entire sequence, it still holds that a phase for the entire sequence cannot end before a change
of phase of at least one sequence. 2

Theorem 3 (Lower bound for the competitive ratio of online shared strategies) Let A
be an online deterministic cache eviction policy. There exists a sequence R and an offline eviction
policy OFF such that SA(R)/SOFF (R) = Ω(p(τ + 1)).
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Proof: Let us first consider A = LRU . Consider a disjoint sequence R such that each Rj consists

of repeatedly requesting pages (σj
1 . . . σj

K/p+1) where all pages are different, and |Rj | = n/p. SLRU

will fault on every single request. Consider an algorithm OFF that, after the first K/p+1 parallel
requests (all faults), forces a fault only on the request of one processor, say p. In other words, for
all processors j = 1, . . . , p − 1, OFF evicts page σj

K/p when serving σj
K/p+1, but for processor p,

OFF evicts σp
1 . Hence the second request for σj

1 will be a hit for all processors j = 1, . . . , p − 1,
and a fault for j = p. The sequence Rp gets delayed by τ , while all other continue to be served.
Because of the delay of sequence Rp, all pages currently in the cache that belong Rp will be replaced
by pages of other sequences. Since K ≥ p2, (p − 1)(K/p + 1) < K and hence all the pages of Rj ,
j 6= p fit in the cache. Since all pages of Rp will be a fault and this sequence will get further
delayed, eventually (after only one more fault per sequences) all pages of sequences Rj , j 6= p will
be in the cache and OFF will incur in no more faults on these sequences. The total number of
faults on the sequences R1, . . . , Rp−1 will then be (p − 1)(K/p + 2). On the other hand, SOFF

will fault on every request of sequence Rp while other sequences are being served, and since there
is space in SOFF ’s cache to store one page of Rp, SOFF does not have to evict any page of the
other sequences. Once the other sequences are completely served, the rest of Rp will be served with
all the cache for this purpose. The total number of faults on Rp will be K/p + 1 for the initial
requests plus (n/p −K/p − 1)/(τ + 1) for the requests that are served while the other sequences
are served, plus a final K/p + 1 faults before all pages of Rp fit in the cache. The total faults of
SA is then (p− 1)(K/p + 2) + 2(K/p + 1) + (n/p−K/p− 1)/(τ + 1) = O(n/p(τ + 1)), and hence
SLRU (R)/SOFF (R) = Ω(p(τ + 1)) Now, the argument holds for any deterministic online eviction
policy A by modifying the sequences so that the next page requested is the one currently not in
the cache, and modifying the offline algorithm OFF accordingly. 2

Lemma 4 (Online vs offline eviction policies: lower bound) Let A be any online cache evic-
tion algorithm and let B = B(t) be any stable dynamic partition (see Definition 1). Assume kj ≥ p,
∀ 1 ≤ j ≤ p ∀t. There exists a sequence R such that dPB

A (R)/dPB
OPT (R) ≥ K/p.

Proof: We divide R in stages (see Section 4.1) and apply the same argument as in Lemma 1. Let
n = |R| and ns

j be the number of pages requested in Rj in the s-th stage and ks
j be the size of the

cache of processor j in this stage. We set the length of the sequence of each processor to nj = n/p
and thus ns

j1
= ns

j2
for all j1, j2.

As before, the sequence of each processor requests the page just evicted by A. As in the static
case, dPB

A (R) = n. Now, for each stage s, we have dPB
OPT (Rj) ≤ ns

j/ks
j . This follows from the

fact that in this stage, OPT evicts a page only if it will not be requested in the next ks
j requests,

and also from the fact that B is stable and hence none of the pages evicted in a possible reduction
of cache size between stages will be among the first ks

j requests of the stage. Let ns
j = ns for

stage s and all processors j, then dPB
OPT (R) ≤

∑p
j=1

∑

s ns
j/ks

j =
∑

s ns
∑p

j=1 1/ks
j . Again, since

ks
j > p, for all s and j,

∑

s ns
∑p

j=1 1/ks
j ≤

∑

s nsp
2/K, and since

∑

s ns = n/p, it follows that

dPB
OPT (R) ≤ np/K and the lemma follows. 2

Lemma 5 (Online vs offline eviction policies: upper bound) Let B be any stable dynamic
partition strategy. For all sequences R, dPB

LRU (R)/dPB
OPT (R) ≤ 2K.

Proof: Similarly to the case of a static partition in the proof of the upper bound in Lemma 1, divide
each stage of B in phases. Let φs

j the number of phases of Rj in stage s, and let φ =
∑

s

∑p
j=1 φs

j . Let

ks
j be size of the cache of processor j in phase s. The number of faults of dPB

LRU on the sequence Rj in

17



stage s is at most ks
j per phase, and hence dPB

LRU (R) ≤
∑p

j=1

∑

s φs
jk

s
j ≤

∑

s φ̄s
∑p

j=1 ks
j =

∑

s φ̄sK,

where φ̄s = maxj{φ
s
j}. On the other hand, dPB

OPT faults at least once per phase of a stage, except

possibly for the first phase. Thus, dPB
OPT (R) ≥

∑

s

∑p
j=1 φs

j − 1 ≥ φ/2, since B is stable and

hence each stage has at least two phases for each sequence. Since
∑

s φ̄s ≤ φ, it follows that
dPB

LRU (R) ≤ φK ≤ 2KsPB
OPT (R). 2

Lemma 6 (Dynamic partition is not competitive for non-disjoint requests) Let A be
any eviction policy and B be any dynamic partition strategy. ∃R s.t. dPB

A (R)/SLRU (R) =
Ω(n/K2p).

Proof: Let R be the sequence in which each processor repeatedly requests pages (σ1 . . . σK).
Clearly, SLRU (R) = K. On the other hand, each page of a different processor is different for
dPB

A (R), and thus the sequence has Kp different pages. Let us divide the request R in phases
such that each phase has K different pages in total. We will consider only the period when all
sequences are alive, i.e., none of the sequences has been entirely consumed. Consider the sequence
Rj such that the time to serve this sequence is the minimum among all processors. Let ℓi be the
number of pages of Rj in phase i of this period. Given the request sequence, ℓi ≤ K, and thus

L =
∑φ

i=1 ℓi ≤ Kφ, where φ is the number of phases in the period. Since L = n/p it follows that
φ ≥ n/(pK). Since any dynamic partition strategy, regardless of the partition and the eviction
policy, must fault at least once in a phase, the lemma follows. 2

Lemma 7 (Dynamic partitions that do not change enough are not competitive) Let
A be any deterministic online cache eviction policy, and let B be any online dynamic partition
whose number of stages is o(n). There exists a sequence R such that dPB

A (R)/SLRU (R) = ω(1).

Proof: If the number of stages of B is o(n), then at least one stage has non-constant length
ℓ = ω(1) (in number of parallel page requests). Let R in this stage consist of a sequence in the
form of the sequence of Theorem 1: each processor’s sequence has three phases: (1) only one page
σj

1 is requested repeatedly, (2) the page requested is any page not in the cache of processor j (the

distinct phase), and (3) again only one page σj
1 is requested. The length of phase (2) is m pages,

and each processor takes turns to be in the distinct phase. Hence the total number of requests in
the stage is mp2 = ℓp. Let t be the time where the long stage begins. During the distinct phase
of processor j, Rj consists of repeatedly requesting the page not in j’s cache, among the pages

{σj
1, ..., σk(j,t)+1}. dPB

A faults on every request of the distinct phase of all processors, and hence in

this stage dPB
A (R) = pm = ℓ. On the other hand, in this stage, SLRU faults only on the first request

to a distinct page in the distinct phase of each processor, and thus in this stage SLRU (R) = K + p
(recall we assume kj ≥ 1 for all 1 ≤ j ≤ p at all times). Let the rest of R be such that neither
algorithm faults. Then dPB

A (R)/SLRU (R) ≥ ℓ/(K + p) = ω(1). Note that if partitions are allowed
only a constant number of stages, then dPB

A (R)/SLRU (R) = Ω(n). 2

Theorem 4 (Dynamic partitions equal shared strategies for disjoint sequences) There
exists a dynamic partition B such that for all disjoint requests R, dPB

LRU (R) = SLRU (R).

Proof: Let B be the following strategy. B starts by assigning an equal share of the cache to all
processors. On a request to page σj

i , if this page is a fault, let j∗ be any processor whose cache
is not full, or if all caches are full, the processor whose least recently page contained in its cache
partition is the least recently used overall. B modifies kj∗ to be kj∗ − 1 (evicting one page in this

18



cache according to LRU if the cache is full), and assigns that cache cell to j, the processor of the
new request. If, on the other hand, σj

i is a hit, no change in the partition is made, and only the
priority of the pages in the cache of processor j is updated according to the eviction policy. It is
not difficult to see that at all times, the caches of dPB

LRU and SLRU contain the same pages: if the
entire cache is not full, no pages are evicted; if the cache is full, both algorithms evict the overall
least recently used page. 2

Lemma 8 (Shared cache with LRU can be worse than dynamic partition) Let A be any

online eviction policy. ∃R such that SA(R)

dP OPT
LRU

(R)
= Ω(p(τ + 1)).

Proof: The argument is the same as in Theorem 2: using the request R in this lemma, SA(R)
faults on every page, and hence SA(R) = n. On the other hand, an offline partition can give K/p+1
units of cache to all processors but one, and give the rest to the last processor, say processor p.
However, as the partition is dynamic, as soon as the requests of processors 1 to p − 1 are served,
the partition can change to give enough cache to processor p. Hence, dPOPT

LRU will fault in the initial
(K/p + 1) pages of requests R1, . . . , Rp−1, and in the first (n/p)/(τ + 1) + K/p + 1 requests of Rp,

for a total of (n/p)(τ + 1) + K + p faults. Hence SLRU (R)

dP OPT
LRU

(R)
= Ω(p(τ + 1)). 2

Lemma 9 (Offline shared is no worse than dynamic partition) For all sequences R,
SOPT (R) ≤ dPOPT

OPT (R).

Proof: [Proof of Lemma 9] Consider an offline strategy A. A computes the optimal dynamic
partition. Let kt

j denote the size of the cache for processor j at time t in this optimal partition.
Let Cj be the set of pages corresponding to requests of processor j that reside currently in the
cache. SA emulates dPOPT working as follows: let σj be the request of processor j at time t. If
σj is in the cache, then nothing changes. Otherwise, if |Cj | < kt

j then σj is added to Cj , whereas
if |Cj | = kt

j then a page from Cj is evicted from the cache optimally (minimizing the number of
faults overall). If at any point in the execution the optimal dynamic partition requires the size of
the cache of processor j to be reduced, i.e. kt+1

j < kt
j , then SA evicts kt

j − kt+1
j pages from Cj in

the way that minimizes the total number of faults. Hence SA behaves like dPOPT
OPT and thus they

make the same number of faults. Since SOPT (R) ≤ SA(R) for all R, the lemma follows. 2

C Proofs for all entries of Table 1

We briefly justify all entries of the table, organized by row.

sPB
LRU : Columns 2, 4, and 6 follow from Lemma 2. Columns 3 and 5 follow from Lemma 1.

Columns 7 to 9 follow from Theorem 1, while columns 10 to 12 follow from Theorems 4 and 1, with
A = LRU for column 10.

sPOPT
LRU : Column 1: lower bound for B = OPT , upper bound from optimality of the partition.

Columns 3 to 6 follow by letting A = OPT and B = OPT and modifying the proof of Lemma
1 so the sequence requests pages (σ1 . . . σK+1) repeatedly for one processor and nothing for other
processors. Then, the optimal partition will give all cache to this processor. The lower bound is
the same as in the sequential case. The upper bound follows directly from Lemma 1. Note that
these are not contradicting, since for the sequence of the lower bound max{kj} = K. Columns 7
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to 9 follow from Theorem 1, while columns 10 to 12 follow from Theorems 4 and 1, with A = LRU
for column 10.

sPB
A : Column 1: Since A can be LRU, we cannot prove a larger lower bound than 1. For the upper

bound, for any marking or conservative algorithm A, the performance on each partition cannot be
worse than kj times the one of LRU. The proof is the same as the one of Lemma 1. Columns 2, 4,
and 6 follow from Lemma 2. Note that for column 4 (sPOPT

A ), A is the same in both algorithms,
but the bound still holds because A a marking or conservative algorithm and hence the number of
faults of sPOPT

A is K. Column 5 follows from Lemma 1. Columns 7 to 9 follow from Theorem 1.
Column 10 follows from Theorem 4 but making the partition D in dPD

A reduce the cache of the
page evicted by A instead of LRU, and Theorem 1. Columns 11 and 12 follow from Theorems 4
and 1.

sPOPT
A : For columns 1 and 2, the same argument used for column 1 of the row corresponding sPB

A

applies here, with B = OPT for sPB
LRU . Column 3: lower bound for B = OPT , upper bound from

the optimality of the partition. Columns 5 and 6 can be proved using the same argument from the
row for sPOPT

LRU (columns 3 to 6). Again, columns 7 to 9 follow from Theorem 1. The bounds in
columns 10 to 12 follow by applying the arguments of columns 10 to 12 of the row corresponding
to sPB

A .

sPB
OPT : For column 1, a lower bound of 1 can be achieved with a request R such that neither

algorithm faults. The upper bound follows from the optimality of the eviction policy. Column 2,
4, and 6 follow from Lemma 2. Column 3: lower bound for A = OPT , upper bound follows from
the optimality of the eviction policy. Columns 7 to 9 follow from Theorem 1, while columns 10 to
12 follow from Theorems 4 and 1, with A = LRU for column 10.

sPOPT
OPT : For columns 1 and 2, a lower bound of 1 can be achieved with a request R such that

neither algorithm faults. The upper bound follows from the optimality of sPOPT
OPT . Columns 3 to 5:

lower bound for A = OPT and B = OPT , upper bound from the optimality of sPOPT
OPT . Columns 7

to 9 follow from Theorem 1, while columns 10 to 12 follow from Theorems 4 and 1, with A = LRU
for column 10.

SLRU : Columns 1 and 2: lower bound follows from Theorem 2 with B = OPT . The lower bound
of Theorem 2 applies as well for columns 3 to 6, but since the eviction policy is the optimal offline, we
can show a greater lower bound. The optimal offline strategy faults once every kj∗ = K/p− (p− 1)
requests (see proof of Theorem 2), from which the lower bound can be easily derived. Note that
since we assume K ≥ p2, this bound is always at least p. The upper bound for columns 1 to 6
follows from Lemma 3. The lower bound in columns 8 and 9 follow from Theorem 3 and the upper
bound is the same as in the sequential case when τ = 0. The lower bound in columns 10 and 11
follow from Lemma 8 with A = OPT , and the fact that if we replace dPOPT

LRU for dPOPT
OPT then the

number of faults decreases by a multiplicative factor equal to the size of the cache of processor p,
which is K − p2 + p, and thus SLRU (R)

dP OPT
OPT

(R)
= Ω(p(τ + 1)(K − p2 + p)). The lower bound in column

12 follows from Lemma 8. The upper bound in columns 10 to 12 holds when τ = 0, and it follows
from the fact that dPOPT

OPT must fault at least once for every shared phase, regardless of how the
partition changes. For τ = 0, the phases of SLRU and dPOPT

OPT are the same. LRU (or any marking
or conservative algorithm) will fault at most K times per phase.
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SA: Columns 1 to 4: lower bound follows from Theorem 2 with B = OPT and A being marking
or conservative. The lower bounds of Columns 5 and 6 follows from the same argument as in
columns 3 to 6 in the row for SLRU . The upper bound for columns 1 to 6 follows from Lemma 3
and A being a marking or conservative algorithm. Column 7: A could be LRU and hence no larger
upper bound can be proved. The upper bound is the same as in the sequential case when τ = 0,
and this applies to column 9 as well. The lower bound of column 9 follows from Theorem 3. The
lower bounds for columns 10 and 12 follow from Lemma 8 and A being a conservative or marking
algorithm (for column 10). For the lower bound of column 11 we can apply the same argument
used for row SLRU in columns 10 and 11. Again, the upper bound for columns 10 to 12 follows from
the same argument used for row SLRU in columns 10 to 12, and the fact that A is a conservative
or marking.

SOPT : Columns 1 to 12: For the lower bound, let A = OPT and B = D = OPT , there is a
sequence R such that all the algorithms in these columns make the same number of faults as SOPT

(e.g. each processor requests repeatedly the same page). Columns 1 to 6: the upper bound follows
from Lemma 9 and the fact that dPOPT

OPT (R) ≤ sPOPT
OPT for all R. Columns 7 and 8: upper bound

from optimality of SOPT . Columns 10 to 12: upper bound follows from Lemma 9.

dPD
A : Columns 1 to 6: let B = OPT , and apply Lemma 2 on the long stage of D. Since D is

online and does not change in the long stage, it will fault a non-constant number of times (in the
length of the sequence), while an optimal offline partition will be tailored for this stage and hence
sPOPT

A will fault at most K times (since A is marking or conservative). Columns 7 to 9: lower
bound of Ω(n) for the case of non-disjoint requests follows from Lemma 6 and A being a marking
or conservative algorithm (for column 8). Lower bound of w(1) follows from Lemma 7 and A being
a marking or conservative algorithm (for column 8). Column 11: lower bound follows from Lemma
4. Column 12: lower bound if A = LRU . The upper bounds for columns 11 and 12 follow from
Lemma 5 and A being a conservative or marking algorithm.

dPD
OPT : Columns 1 to 6: bounds can be derived applying the argument as in columns 1 to 6 for

row for dPD
A . The optimal eviction policy reduces the number of faults by at most K. Columns

7 to 9: lower bound of Ω(n) for the case of non-disjoint requests follows from Lemma 6. Lower
bound of w(1) follows from the same argument as in Lemma 7, however, the adversary cannot
chose the page that is not in the cache, since the eviction policy of the dynamic partition algorithm
is optimal. It is enough to request, for example, repeatedly pages (σj

1, ..., σ
j
k(j,t)+1), where t is the

time when the long stage begins. The number of faults of dPD
OPT is at least ℓ/K, which can be

arbitrarily large. The number of faults of SLRU is at most K + p. Columns 10: lower bound for
A = OPT . Column 12: lower bound for a sequence such that dPD

OPT and dPD
LRU fault the same

number of times. Upper bounds for columns 10 and 12 follow from the optimality of the eviction
policy.

dPD
LRU : Columns 1 to 9: bounds follow from the same arguments as in columns 1 to 9 for row for

dPD
A . Columns 10 and 11, for A = OPT , lower bounds follows from Lemma 4 and upper bounds

from Lemma 5.
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D Optimal static partition

If we are able to process a request offline, the optimal partition of the cache can be computed by a
simple dynamic program. If we have one sequence, then we can simply compute the cost of serving
the sequence by running algorithm A on that sequence with a given cache size. If the size of the
cache is zero, then the cost is the sum of the length of the sequences. Otherwise, the optimal cache
partition is the minimum over all K choices of dividing the cache into two parts, giving the first to
the first core, and the rest to an optimal partition of the rest p− 1 cores.

Let R = {R1, . . . , Rr} denote a set of r request sequences and let R[i, j] = {Ri, Ri+1, . . . , Rj}.
Let C(R, K) denote the optimal cost of serving R with a cache of size K, and let A(R, K) be the
number of faults when serving a sequence R ∈ R with algorithm A. The dynamic program that
computes the optimal cost (number of faults) of serving a set of sequences with algorithm A with
the optimal partition corresponds to the following recurrence:

C(R, K) =







∑r
i=1 |Ri| if K = 0

A(R1, K) if K > 0 and r = 1
mini=0..K{C(R1, i) + C(R[2, r], K − i)} otherwise

The above dynamic program computes the cost of the optimal partition of the cache. The actual
partition can be easily computed by backtracking in the table keeping track of the choices made
for each cell. Note that the recurrence allows requests to be served with a cache of size zero. This
recurrence can be easily modified for the case when we require non-empty caches for all requests.

Lemma 10 Let A be an eviction policy. Assume that A takes constant time to decide which page
to evict. Let R be a sequence of requests such that |R| ≤ n for all R ∈ R. Given the size of cache
K and number of processors p, we can compute the static partition B that minimizes the number
of faults of sPB

A (R) in O(p(nK + K2)) time.

Proof: The table used to solve the dynamic program is a (2p − 1) × (K + 1) table. The entries
corresponding to K = 0 can be computed in O(p) time by computing the prefix sums of the lengths
of the sequences. There are p rows corresponding to the base case when r = 1. Each of these pK
entries can be computed by running the algorithm on a single sequence of length at most n, and
hence the cost to compute these base cases is O(npK). Finally, the rest of the entries, of which
there are (p− 1)K can be computed in O(K) time. The lemma follows. 2
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