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ABSTRACT
Fundamental limitations of traditional data center network
architectures have led to the development of architectures
that provide enormous bisection bandwidth for up to hun-
dreds of thousands of servers. Because these architectures
rely on homogeneous switches, implementing one in a legacy
data center usually requires replacing most existing switches.
Such forklift upgrades are typically prohibitively expensive;
instead, a data center manager should be able to selectively
add switches to boost bisection bandwidth. Doing so adds
heterogeneity to the network’s switches and heterogeneous
high-performance interconnection topologies are not well un-
derstood. Therefore, we develop the theory of heterogeneous
Clos networks. We show that our construction needs only as
much link capacity as the classic Clos network to route the
same traffic matrices and this bound is the optimal. Placing
additional equipment in a highly constrained data center is
challenging in practice, however. We propose LEGUP to de-
sign the topology and physical arrangement of such network
upgrades or expansions. Compared to current solutions, we
show that LEGUP finds network upgrades with more bisec-
tion bandwidth for half the cost. And when expanding a data
center iteratively, LEGUP’s network has 265% more bisec-
tion bandwidth than an iteratively upgraded fat-tree.

1. INTRODUCTION
Most current data center networks use 1+1 redun-

dancy in a three-level tree topology, which provides in-
adequate bisection bandwidth to achieve agility, the
ability to assign any server to any service. This re-
duces server utilization when workloads vary rapidly
because dynamic reallocation of services to servers is
impractical, so a service is assigned enough servers to
handle its peak load. Recent work has addressed this
problem by providing enormous bisection bandwidth for
up to hundreds of thousands of servers [2, 9, 11, 12, 26].
However, these solutions assume homogeneous switches,
each with a prescribed number of ports. Therefore, adopt-
ing these solutions in a legacy data center often comes at
the cost of replacing nearly all switches in the network
and rewiring it. This is wasteful and usually infeasible
due to sunk capital costs, downtime, and a slow time to

market.
The goal of our work is to allow a data center oper-

ator to incrementally add equipment to boost bisection
bandwidth and reliability without needing to throw out
their existing network. However, this results in the cre-
ation of heterogeneous data center network topologies,
which have not been sufficiently studied in past work.
Therefore, we provide the theoretical foundations of
heterogeneous Clos networks. Our construction is prov-
ably optimal in that it uses the minimal amount of link
capacity possible to meet the hose traffic constraints,
which accounts for any traffic matrix supported by the
top-of-rack switch uplink rates. Previous work has con-
sidered heterogeneous interconnection networks in a dif-
ferent traffic model [24]; details are given in Section 8.
To our knowledge this is the first topology construction
that achieves optimality for the hose traffic constraints
while supporting switches with heterogeneous rates and
numbers of ports.

We then construct a system we call LEGUP to design
network upgrades and expansions for existing data cen-
ters. LEGUP aims to design an upgraded network that
is realizable and maximizes performance. To ensure that
its output is realizable, LEGUP allows users to spec-
ify a budget, details of switches available for purchase,
and an optional data center model that places physical
constraints on each rack, such as the thermal output
and power draw of equipment located there. LEGUP
maximizes network performance by building a hetero-
geneous Clos network from existing and new switches.
Supporting heterogeneous switches allows LEGUP to
design upgrades with significantly more bisection band-
width than existing techniques for the same dollar cost,
which includes the cost of new switches and rewiring
the network.

Our key contributions are:

• Development of theory to construct optimal het-
erogeneous Clos topologies.
• The LEGUP system that designs data center net-

work upgrades and expansions with maximal per-
formance, defined here as agility, reliability, and
flexibility, subject to a budget and physical con-
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straints of the existing data center. LEGUP reuses
existing networking equipment when possible, min-
imizes rewiring costs, and selects the location of
new equipment subject to space, thermal, and power
constraints.
• We evaluate LEGUP by using it to find network

upgrades for a 7,600 server data center based on
the University of Waterloo’s School of Computer
Science data center. LEGUP finds a network up-
grade with nearly three times more bisection band-
width for the same dollar cost as a fat-tree or tra-
ditional scale-up upgrades. LEGUP outperforms a
fat-tree upgrade even when LEGUP spends half
as much money. We also find that when adding
servers to a data center in an iterative fashion, the
network found by LEGUP has 265% more bisec-
tion bandwidth than a similarly upgraded fat-tree
after the number of servers is doubled.

The rest of this paper is as follows. We begin with a
background on data center networks in Section 2. We
give an overview of LEGUP in Section 3. The details of
LEGUP’s operation rely on the theory of heterogeneous
Clos networks which we develop in Section 4 before de-
scribing them in Section 5. We discuss our work (§7) and
related work (§8), and then end with our conclusions in
Section 9.

2. BACKGROUND AND MODEL
We describe the data center environment and previ-

ous data center network (DCN) solutions in this section.

2.1 Inside a data center
A data center is a highly constrained environment.

We now discuss the constraints that make adding equip-
ment to a data center challenging.

First, to add equipment to a data center, there must
be enough space for it. Most equipment in the data cen-
ter is housed in large metal racks, and a standard rack is
0.6 m wide, 1 m tall by 1 m deep and is partitioned into
42 rack units (denoted by U). A typical server occupies
1–2U and switches occupy 1U for a top-of-rack switch
up to 21U for large aggregation and core switches (e.g.,
a Juniper EX8216 switch). We assume that all network-
ing equipment must be placed in a rack.

Data center power delivery systems are complex and
expensive. Power enters from an outside transformer at
a medium voltage (10–20 kV) and is then stepped down
to 400–600 V which is delivered to the uninterruptible
power supply (UPS) systems. The UPSes deliver power
to power distribution units (PDUs), which then power
servers and network equipment. A typical PDU handles
75–225 kW of load [13]. We model a data center’s power
system by its PDUs, that is, if any PDU has enough
capacity to power a device, then it can be added to the
data center floor.

Data center equipment creates a significant amount
of heat, which must be dissipated by a cooling system.
For every Watt spent powering IT gear, it takes 1 Watt
to cool it in the average data center [7]. Therefore, cool-
ing is a constrained resource, so we assume that each
rack has a limit on the amount of heat its contents may
generate.

2.2 Data center networks and traffic patterns
The switching fabric of most existing DCNs is a multi-

rooted tree. Each rack usually contains 40–80 servers,
and servers connect to top-of-rack (ToR) switches, which
typically have 48 1Gbps and 2–4 10Gbps ports. These
ToR switches are the leaves of the multi-rooted switch-
ing tree. This tree usually has three levels: the ToR
switches connect to a level of aggregation switches which
connect to a core level made up of either switches or
routers. The core level is connected to the Internet using
edge routers. This architecture has two major drawbacks—
poor reliability and insufficient bisection bandwidth—
besides many other minor problems, as detailed by Green-
berg et al. [9, 10].

These limitations have been the focus of much re-
cent work and researchers have proposed a variety of
topology constructions. Some current DCN proposals
are based on classic network topologies such as fat-
trees [2], the Clos network [9], and hypercubes [26].
Others employ novel recursive constructions [1, 11, 12].
These proposals, however, have a common feature: they
are highly regular and require homogeneous switches,
each with a prescribed number of ports. This makes it
nearly impossible to implement them as an upgrade to
an existing data center without replacing most switches
in the network.

High DCN bisection bandwidth is of primary impor-
tance due to the unpredictable nature of DCN traffic.
Few detailed studies of data center traffic have been
published; however, the studies to date demonstrate
that DCNs exhibit highly variable traffic [4, 9, 17]. The
traffic matrix (TM) in a DCN shifts frequently and its
overall volume changes dramatically in short time pe-
riods. Over longer time periods, DCN traffic shows a
clear diurnal pattern: traffic peaks during the day and
falls off at night (see, e.g., [13]).

Given these traffic patterns, we assume that an ideal
DCN should be able to feasibly route all TMs that are
possible given the uplink rates of the servers. That is, no
link should ever have higher utilization than 1, no mat-
ter the server-to-server traffic matrix. The set of TMs
allowed under this model is known as the hose traffic
matrices and was introduced in the context of provi-
sioning virtual private networks [6]. We find it more
convenient to deal with the ToR-to-ToR traffic matrix,
which aggregates the servers connected to a ToR switch
into a single entry. We denote the sum of uplink rates
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on a ToR switch i by r(i) and call this the rate of the
switch.

3. LEGUP OVERVIEW
LEGUP guides operators when upgrading or expand-

ing their data center. To achieve this goal, LEGUP
solves a network design optimization problem that max-
imizes performance subject to a budget and the data
center’s physical constraints. We define DCN perfor-
mance more precisely next (§3.1), and then give details
about the inputs, constraints, and outputs of LEGUP
(§3.2). We end this section by giving an overview of the
optimization engine used by LEGUP (§3.3).

3.1 Optimization goals
LEGUP designs a network upgrade that maximizes

performance, which we define it to be a weighted, linear
combination of the following metrics:

Agility Rather than focusing on bisection bandwidth,
as previous work has done, we focus on the more general
concept of agility, which we define to be the maximal
constant pa such that the network can feasibly route all
hose TMs (denoted by D) in pa · D, where each hose
TM D ∈ D is multiplied by the scalar pa. Here, pa

can be interpreted as the fraction of servers that can
send/receive at their maximum rate regardless of the
destination/source. A network with no oversubscribed
links has an agility of 1. As an example, consider a net-
work consisting of a two switches, each attached to 48
servers at 1Gbps and a single 10Gbps port that con-
nects the switches. The agility of this network is 10/48.
More generally, if we have n servers attached to the first
switch and m attached to the second, then we have the
agility of the network is min{1, 10/min{n,m}}. Here,
we divide by the minimum of the two values because
the hose TMs do not allow any server to send or receive
more than 1Gbps of traffic, that is, even if there are 48
servers attached to one switch and 1 server attached to
the other, the maximum receiving rate of lone server is
1Gbps so no more than that will ever cross the connect-
ing 10Gbps link.

Flexibility We say that a δ attachment point, is an
unused port such that that attaching a 1 unit (in this
paper, this is 1Gbps) uplink device to this port does
not decrease the network’s agility to less than δ. Then,
a network is (pf , δ)-flexible if it has pf distinct δ at-
tachment points when the attachment points are filled
according to some rule (e.g., by greedily assigning de-
vices to the attachment point that lowers agility the
minimal amount). As an example, again consider our
two switch network, except now assume all 48 of each
switch’s 1Gbps ports are free. If we take δ = 0.5, then
the flexibility of this network is 68, achieved by attach-

ing 48 servers to one switch and 20 to the other. If we
attach an additional server to the second switch, then
the agility drops to 10/min{21, 48} which is less than
0.5.

Reliability Reliability is the number of link or switch
failures needed to partition the ToR switches, which we
denote by pr. This model corresponds to the failure of
a switch or port or a cable cut. As an example, the
complete graph on n vertices has a reliability of n − 1
because every edge neighboring a vertex must be re-
moved in order to partition the complete graph. The
worst case reliability is that of a tree: removing a single
node or edge partitions it.

These metrics measure distinct aspects of a network.
Agility and reliability are related—increased reliability
can increase agility—however, two networks can have
the same agility with completely different reliability met-
rics since link speeds can vary by orders of magnitude.
Similarly, high agility is a prerequisite to high flexibil-
ity, but switches also must have unused ports for a net-
work to be flexible. We have defined these metrics so
that they are computable in polynomial time; we will
describe how to compute each later when describing
LEGUP’s details in Section 5.

3.2 Inputs, Constraints, and Outputs
As input, LEGUP requires a budget, a list of avail-

able switches and line cards, and a data center model.
The budget is the maximum amount of a money that
can be spent in the upgrade, and therefore acts as a
constraint in the optimization procedure. The available
switches are the details and prices of switches that can
be purchased. Relevant details for a switch include its
ports and their speeds, line card slots (if a modular
switch), power consumption, rack units, and thermal
output. Details of a line card are its ports, price, and a
list of interoperable switches.

Providing a model of the existing data center is op-
tional, and even when provided, can include varying
levels of detail. A complete model includes the full de-
tails of the network plus the physical arrangement of
racks, the contents of each rack, and the power and ther-
mal characteristics of equipment in the racks. Addition-
ally, thermal and power constraints can be included in
this description, e.g., the equipment in each rack cannot
draw more than 10 kW of power. Details of the exist-
ing network includes information about its switches and
their locations. If information on the switches is pro-
vided, they will be considered for use in the upgraded
network. LEGUP will find a solution, if one exists, that
meets the physical constraints given and will minimize
the number and length of cable runs.

As output, LEGUP gives a detailed blueprint of the
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upgraded network. This includes its topology and a se-
lection of switches and line cards to obtain. If a data
center model was included in the input, LEGUP also
outputs the rack where each aggregation switch should
be placed.

3.3 The LEGUP optimization engine
We now give a high level overview of the engine em-

ployed by LEGUP. The optimization problem solved by
LEGUP maximizes the sum of agility, reliability, and
flexibility, weighting each metric by a multiplier selected
by the user. This is a difficult optimization problem and
is made harder by the large number of constraints.

LEGUP only designs tree-like networks, which is de-
sirable in a data center because many DCN load balanc-
ing, routing, and addressing solutions require a tree-like
network, e.g., [2, 9, 23]. However, the theory of hetero-
geneous tree-like topologies has not been previously de-
veloped, and we wish to use heterogeneity to reduce the
cost of network upgrades. Therefore, we develop the the-
ory of heterogeneous Clos networks in the next section,
which are tree-like networks. The reasoning behind this
decision is that that a traditional 1+1 redundant DCN
topology is already a Clos network instance (albeit a
1+1 redundant topology is a Clos instance that does not
have the agility and reliability typically associated with
Clos networks). Despite adding heterogeneous switches,
DCN addressing and routing solutions can be used on
our constructions with no or minor modifications; we
discuss this further in Section 7.

We assume that all servers already connect to a suf-
ficient ToR switch, but that the aggregation and core
levels of the network need to be upgraded. Given a set
of aggregation switches, the optimal set of core switches
is somewhat restricted in a heterogeneous Clos network,
so LEGUP explores the space of aggregation switches
using the branch and bound optimization algorithm.

Branch and bound is a general optimization algo-
rithm that finds an optimal solution by enumerating the
problem space; however, it achieves efficiency by bound-
ing, and therefore not enumerating, large portions of the
problems space that cannot contain an optimal solution.
Our branch and bound differs slightly from the stan-
dard implementation because we enumerate over only
the aggregation switches, so we must introduce addi-
tional steps to find a set of core switches.

In our context, the problem space is all possible sets
of aggregation switches given the available switch types
given as input. We need to build a tree of candidate so-
lutions, i.e., the set of aggregation switches used in the
network. We call this tree the solution tree. Each node
in the solution tree is labeled by the set of aggregation
switches it represents; the root’s label is empty. A node
is branched by giving it a child for each switch type; the
label of the child is the label of its parent plus the switch

type the child represents. A solution is a complete so-
lution when its aggregation switches have enough ports
to connect the ToR switches with a spanning tree.

A complete solution only describes the set of aggre-
gation switches in the network and does not account
for the core switches nor the physical layout of the net-
work. Given a complete solution, we find the min-cost
mapping of solution’s aggregation switches to racks (full
details of LEGUP’s handling of complete solutions are
given later in §5) and then find the min-cost set of core
switches to connect the aggregation switches to. Once
this is complete, we add the cost of the core and physical
mapping into the cost of the solution to determine if it is
still feasible, i.e., it is not over budget; additionally, we
check to make sure no physical constraints (e.g., thermal
and power draw) are violated in the physical mapping
phase. Unlike standard branch and bound, we continue
to branch complete solutions because a solution is com-
plete here whenever it can connect all the ToR switches;
however, adding more aggregation switches to a com-
plete solution will always improve its performance (but
may violate some constraints).

Before checking for feasibility; however, a candidate
solution is bounded to check if it, or any of its children,
can be an optimal solution. A candidate is bounded by
finding the maximal agility, flexibility, and reliability
possible for any solution in its subtree. A candidate so-
lution with a lower bound than the optimal complete
solution is trimmed, that is, it is not branched because
its subtree cannot possibly contain an optimal solution.
We delay the details of our particular bounding function
to Section 5.1.

3.4 Why naive solutions aren’t enough
To motivate our design of LEGUP, we briefly address

the need for algorithms more sophisticated than stan-
dard heuristics, e.g., a greedy algorithm. We identify
three key weaknesses of existing heuristics that LEGUP
addresses:

1. Standard techniques don’t take physical constraints
into account, and therefore might not return a fea-
sible solution. LEGUP finds a feasible solution if
one exists.

2. Algorithms that greedily add switches with the
minimum bandwidth to price ratio will always reuse
existing switches. This might not be the optimal
network configuration. LEGUP only reuses switches
when it’s beneficial to do so.

3. Cabling and switch costs need to be accounted for.
We are unaware of any simple algorithms that take
both these costs into account.

Our implementation of LEGUP’s branch and bound al-
gorithm uses depth-first search and when it branches
a solution tree node, and it orders the children so that
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Figure 1: An l-stage Clos network. Each IO switch here is

a subnetwork with l − 2 stages. In (b), each logical edge

represents m physical links and the logical root repre-

sents m switches, each with r ports.

they are sorted by bandwidth to price ratio. As a result,
the first solutions explored by the branch and bound
are the solutions that a greedy algorithm considers.
We have found this to increase the number of trimmed
subtrees dramatically since the first complete solutions
tend to have good, though not optimal, performance.

4. THEORY
Our implementation of LEGUP designs heterogeneous

Clos networks, so we develop this theory before describ-
ing the details of LEGUP’s implementation. Before pre-
senting our heterogeneous Clos construction (§4.2), we
briefly review the standard Clos network.

4.1 The Clos network
A 3-stage Clos network, denoted by C(n,m, r), is an

interconnection network where the first stage, made up
of input switches, consists of r switches, each with n
inlets and m uplinks. Symmetrically, the third stage
consists of r output switches, each with n outlets and
m downlinks. The second stage then is m switches, each
with r links to first-stage switches and r links to third-
stage switches. We call the switches in the middle stage
the core switches. We refer to the links from a stage to
a higher stage as uplinks and the links from a stage to a
lower stage as downlinks. A folded Clos network places
input and output layers top of each other. DCNs are
folded Clos networks, so we use the folded Clos variant
in this section, and when doing so, the input and output
switches are the same devices, so we refer to them as
input/output (IO) switches.

The recursive nature of Clos network means that we
only have to deal with 3-stage Clos networks. An l-stage
Clos network is recursively composed of 3-stage Clos
networks. In an l-stage Clos network, each input and
output switch is replaced by an (l − 2)-stage network.
An example is shown in Figure 1(a). As a result of this

recursive construction, any algorithm or theorem that
applies to a 3-stage Clos network applies to an l-stage
Clos networks by applying it to the outermost 3-stage
network first, and then recursively applying it to the
(l−2)-stage subnetworks. As such, we always deal with
3-stage networks in this paper, but our results can be
generalized to an l-stage Clos networks in a straightfor-
ward manner.

4.2 Constructing heterogeneous Clos networks
We separate logical topology design (§4.2.1) from the

problem of finding a physical realization (§4.2.2). A log-
ical topology in this context is a forest of trees. The
leaves of these trees are IO switches and each root node
represents a set of core switches. Therefore, the logi-
cal topology design problem is to find a suitable set of
root nodes, the neighbors of each root node, and the
capacity of the edges between IO nodes and root nodes.
First, we show in Lemma 1 how to find the root nodes
and the edges between IO switches and roots such that
the logical topology is optimal, i.e., it uses the mini-
mal amount of link capacity necessary and sufficient to
feasibly route the hose TMs possible given the rates of
the IO switches. Finally, we show in Theorem 2 how to
assign capacities to the logical edges. The capacity of
a logical edge is the amount of link capacity the physi-
cal realization needs in order to feasibly route all hose
TMs.

Given a logical topology, we then need to find a set
of switches that realize each of its root nodes. As the
logical topology is a forest, we can consider each tree in
it separately, so our approach here is to find the switches
of each root node individually. Theorem 3 shows that we
can do this in such a way that we use the same amount
of link capacity as the lower bound for feasibly routing
the hose TMs.

4.2.1 Logical design
The logical topology of a Clos network C(n,m, r) col-

lapses all core switches into a single logical node, so the
logical topology of C(n,m, r) is a tree as is shown in Fig-
ure 1(b). This logical tree’s root node has r children—
the r input/output switches—and the tree’s leaves rep-
resent inlets and outlets. Here, an edge between an IO
node and the root represents m links in the underlying
physical realization. For the remainder of this section,
we are concerned with the design of logical topologies
that use the minimal link capacity necessary and suf-
ficient to feasibly route all hose TMs (i.e., the logical
topology is optimal), and we make the assumption that
a logical node can be realized using the same amount of
switching capacity as the logical topology. We lift this
assumption in the next section when we show how to
find such physical realizations.

Note that in our construction, switches need not uni-
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formly have n inlets and outlets. We let each IO switch
i have a rate, denoted by r(i), which is the sum of its
downlink rates (e.g., in a homogeneous network, the rate
of each IO switch is n). Each logical edge (i, x) between
an IO node i and logical core node x has a capacity
c(i, x), which is the sum of physical link rates that (i, x)
represents. A logical topology has optimal edge capacity
if the sum of edge capacities is equal to the sum of node
rates.

We are now ready to give our main logical design re-
sults. The following characterizes logical arrangements
that use minimal link capacity to feasibly route all hose
TMs.

Lemma 1. Let T be a logical topology with input/output
nodes I = {1, . . . , k}, and let x1, . . . , xl be the root nodes
of T . Let Xp denote the set of input/output nodes neigh-
boring root node xp such that X1 = I and X1 ⊃ · · · ⊃
Xl. Whenever all edges of T have positive capacity, we
have that T feasibly routes all hose TMs with optimal
edge capacity if, for all xp, such that 2 ≤ p ≤ l,

r(i) >
∑

j∈Xp−1−Xp

r(j) for all i ∈ Xp (1)

and |Xl −Xl−1| ≥ 2.

Proof. Suppose there is some logical topology T
that has a root node x such that there is a node i ∈ Xl′ ,
where l′ is the maximal root node i neighbors, with
c(i, xl′) > 0 and for which Equation 1 does not hold.
Consider how much capacity the edges (i, x1), . . . , (i, xl′−1)
must have since T can serve all hose TMs: there must
be at least min{r(i),

∑
j∈X1−Xl′

r(j)} capacity to these
nodes otherwise there is a hose TM that T cannot fea-
sibly route. By assumption, r(i) ≤

∑
j∈X1−Xl′

r(j), so
r(i) is the minimal here. In a logical topology with op-
timal edge capacity, each IO node has at most r(i)
of uplink capacity. However, here, we have that i has
r(i) + c(i, xl′) > r(i) uplink capacity, contradicting the
optimality of T .

Suppose that |Xl−Xl−1| = 1. Here, T is non-optimal
since the root node xl has only a single neighbor, so it
cannot route traffic to any other IO nodes. Therefore,
it should not have positive capacity, since all traffic will
need to be routed through x1, . . . , xl−1 anyhow.

The following results are implied by this lemma:

• whenever r(1) = · · · = r(k), the optimal logical
topology has a single root node, and
• no matter the rates of each IO node, a logical

topology with a single root node is optimal, i.e.,
a logical topology can always use fewer root nodes
than it’s allowed by Lemma 1 and be optimal.

This lemma identifies the available logical topologies
for a set I of IO nodes, but it does not determine the

capacities of each logical edge. The following theorem
shows how capacity can be assigned to the logical edges
of T to feasibly route all hose TMs. The intuition un-
derlying this theorem is that the root xp and its chil-
dren (the IO switches) form a disjoint spanning tree.
We provision the spanning tree rooted at x1 first, and
then move to the next root node’s spanning tree. Every
unit of capacity that is provisioned to x1 is a unit that
does not have to be routed through x2, . . . , xl, so we
subtract off the previously allocated capacity from the
edges to x2, . . . , xl.

Theorem 2. Let T be a logical topology with input/
output nodes I = {1, . . . , k}, and let x1, . . . , xl be the
root nodes of T such that T has an optimal number of
root nodes by Lemma 1. Let Xp denote the set of in-
put/output nodes neighboring root node xp such that
X1 = I and X1 ⊃ · · · ⊃ Xl, and let X0 = ∅ and
Xl+1 = ∅. We have that T can feasibly route all hose
TMs using optimal capacity if and only if

c(i, xp) =

{∑
j∈Xp−Xp+1

r(j) if i ∈ Xp+1,

r(i)−
∑

j∈I−Xp
r(j) otherwise

(2)

for all 1 ≤ p ≤ l and all i ∈ I.

Proof. Suppose that T can feasibly route all hose
TMs and that Equation 2 holds for all edges except
(i, xp). Let l′ be the maximum root node such that i ∈
Xl′ . Because T can feasibly route all hose TMs, we have:∑

u∈[l′]

c(i, xu) =
∑

q∈[l′−1]

∑
j∈Xq−Xq+1

r(j)

+ r(i)−
∑

j∈X1−Xl′

r(j) (3)

=
∑

j∈X1−Xl′

r(j) + r(i)−
∑

j∈X1−Xl′

r(j) (4)

= r(i) (5)

So, ∑
q∈[l′−1]

∑
j∈Xq−Xq+1

r(j) =
∑

j∈X1−Xl′

r(j) (6)

whenever T can feasibly route all hose TM with minimal
edge capacity. However, here, we find a contradiction in
both possible cases.
Whenever i ∈ Xp+1, so c(i, xp) <

∑
j∈Xp−1−Xp

r(j), the
left hand side of Equation 6 is less than the right hand
side. And otherwise, c(i, xp) < r(i)−

∑
j∈X1−Xp

r(j), in
which case, we cannot make the reduction from Equa-
tion 4 to Equation 5.

To show sufficiency, suppose that Equation 2 holds
for all edges of T . We construct a multipath routing
that feasibly routes any hose TM Dij . Let i, j ∈ I be
IO nodes such that r(i) ≤ r(j) and let l′ be the max
root node where i, j ∈ Xl′ . When sending to j, let i
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split its traffic across root nodes x1, . . . , xl′ such that
Dij/c(i, xp) traffic is routed through xp, for 1 ≤ p ≤ l′,
and then xp forwards this traffic to j on its single edge to
j. For any hose TM D, the max traffic i can send is r(i),
so the max traffic i places on edge (i, xp) is r(i)/c(i, xp).
Since Equation 2 holds for all edges, we have that∑

u∈[l′]

c(i, xu) = r(i)

as established in Equations 3–5 above. Therefore, i can
send traffic at rate up to r(i) and never overload a link.
Similarly, i cannot overload a link while receiving traf-
fic, because it cannot receive more than r(i) traffic at
once.

We give an example of an optimally provisioned logi-
cal topology in Figure 2(a). Note that for the IO switches
given in Figure 2(a), an optimal logical topology could
have 1, 2 (as shown), or 3 root nodes. This theorem
prescribes the amount of capacity needed in a logical
topology, yet it is flexible in assignment of this capacity
across logical edges. This is beneficial because the physi-
cal constraints of switches make many logical topologies
infeasible to construct in practice.

4.2.2 Physically realizing a logical node
We now show how to find a physical realization of

a logical node. Here, we are given a logical core node
and a set of IO switches, and we want to find a set of
switches that realizes the core node.

Each IO switch has a set of uplink ports, which may
have multiple speeds. To simplify our presentation, we
separate IO nodes with multiple uplink port speeds into
separate switches, so that each IO switch has a single
uplink port speed. This does not lead to a loss of gener-
ality because we can recombine the separated switches
later. So, each IO switch i has a single uplink port speed,
denoted by p(i). We assume that an IO switch i has at
least dr(i)/p(i)e ports; otherwise, no realization that
can feasibly route all hose TMs exists.

We now show how to realize a logical core node x
with a set I of IO switches as its children. We use X to
denote the set of switches that make up logical node x.
Let m(i) = dc(i, x)/p(i)e, where c(i, x) is the capacity
of the logical edge (i, x) as before. Here, m(i) is the
number of physical uplinks i has to x. We use P (r) to
denote the set of all switches of I with p(i) = r, and
I(x) denotes the set of IO switches neighboring root x.

Now, we need to determine how many switches are in
X and how many ports each has. Let

mmin = min
j∈I(x)

{m(j)}.

The core switches that realize x and the IO switches
I(x) form a complete bipartite graph, so we have |X| =
mmin. Each core switch in X must have at least mmin ·

|P (r)| ports with speed r, for each port speed r, and
each i ∈ I(x) has dm(i)/mmine uplinks to each switch
in X. The following shows this construction is optimal.

Theorem 3. A physical realization G constructed as
described above of a logical tree T with root node x and
input/output switches I with c(i, x) minimized accord-
ing to Theorem 2 can feasibly route all hose TMs.

Further, if c(i, x) and m(i) are evenly divisible by p(i)
and mmin respectively for all i ∈ I, then the amount of
link capacity used by this physical realization matches
the lower bound of any interconnection network that can
feasibly route all hose TMs.

Proof. To show that G can feasibly route all hose
TMs, by Theorem 2, it’s enough to show that there
is a routing which distributes r(i)/c(i, x) traffic over
the physical links of the logical edges (i, x) and (x, i)
without overloading any physical links. When i sends
traffic to x, let each physical uplink carry p(i)/c(i, x)
fraction of the traffic, no matter the destination, and
then the receiving core switch forwards the traffic to its
destination. Then any traffic matrix can be handle as
long as i never sends more than:

r(i) ·
∑
v∈X

p(i)/c(i, x)dm(i)/mmine =

r(i) · |X|
(⌈c(i, x)

m(i)

⌉
/c(i, x) · dm(i)/mmine

)
=

r(i) ·mmin

(
1/mmin

)
=
= r(i)

traffic, which i will never exceed in a hose TM. By a
similar argument, there is enough link capacity from
the physical switches in X to i.

An optimal construction has a total link capacity of
2
∑

i∈I r(i). To see that the construction above matches
this bound when c(i, x) and m(i) are evenly divisible
by p(i) and mmin respectively for all i ∈ I, consider the
above equations. In this case, each i ∈ I has r(i) uplink
capacity and r(i) downlink capacity. Summing this over
all switches in I shows our construction is optimal.

In the above theorem we claim that our construction
needs only as much link capacity as any other intercon-
nection network that can feasibly route all hose TMs.
An interconnection network is a network where nodes
with positive rate (i.e., r(i) > 0) never directly connect
to other nodes with positive rate, that is, all nodes con-
nect to switches. A corollary to a result of Zhang-Shen
and McKeown [27] is that any switching network with
node rates r(1), . . . , r(n) can feasibly route all hose TMs
iff the total link capacity is at least

∑
1≤i≤n 2 r(i). This

bound is matched by, for example, a homogeneous 3-
stage Clos network when all IO switch rates are equal.
Our construction matches this bound without any re-
strictions on IO switch rates.
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Figure 2: One optimal logical topology for the given IO switches is shown in (a). The numbers beside each edge indicate

the number of unit capacity links the logical edge represents. The physical realization of this logical topology is shown

in (b). There, x2 consists of 8 switches (not drawn for clarity) and the thicker links indicate a bundle of 7 unit capacity

links.

5. LEGUP DETAILS
We now describe the details of LEGUP’s optimiza-

tion engine. Recall that the optimization engine solves
a maximization problem by performing a branch and
bound exploration of the aggregation switches. In this
section, we focus on the handling of complete solutions,
i.e., the candidate solutions with enough aggregation
ports to connect all ToR switches with at least a span-
ning tree. Given a complete solution S = {s1, . . . , sk},
where each si represents a switch, LEGUP does the fol-
lowing:

1. Bounds the cost of S (§5.1).
2. If S’s bound is lower than the best complete so-

lution found so far, S is trimmed and it is not
branched.
Otherwise, the feasibility of S is determined by:

• selecting a min-cost set of core switches (§5.2);
and
• finding a physical mapping of the aggregation

switches to the data center’s racks (§5.3).

3. If S is determined infeasible (due to a budget or
physical model constraint violation), then it is trimmed.
Otherwise, the performance of S is computed (§5.4),
the best complete solution is updated, and S is
branched.

We use wa, wf , and wr to denote the weights a our
performance metrics agility, flexibility, and reliability
respectively, so the overall performance of a solution
S is p(S) = pawa + pfwf + prwr where pa, pf , and pr

have been normalized by their maximal values. We show
how to find these maximal values in (§5.4). Throughout,
whenever we use one of these, we assume it has been
normalized.

5.1 Bounding a candidate solution
Our bounding function estimates each performance

metric individually and then returns the weighted sum

of the estimates. Because it is used to trim solutions
and we are maximizing performance, it must overesti-
mate the best possible solution in the candidate solu-
tion’s subtree. Given a candidate solution S, we bound
each metric of S is found as follows.

Agility and flexibility Agility and flexibility are cou-
pled, so we bound them simultaneously, i.e., we bound
waba +wfbf . We begin by finding the maximum agility
the remaining budget allows, that is, we find bmax

a by
first greedily adding the switch with the highest sum
of port speeds to cost ratio of all the available switch
types to S until the cost of S is over-budget (note that
this makes use of any existing switches that are not in-
cluded in S as they have no cost). Since this bound is
an overestimate, we do not worry about actually being
able to realize the topology, so we aggregate the band-
width of switches in S, and we use r(S) to denote their
aggregate bandwidth, i.e., the sum of their port speeds.

We combine all levels of switches into single logical
nodes, that is, we have one a core node, aggregation
node, and ToR node, which form a path ToR to ag-
gregation to core. To find bmax

a , we need to find the
maximum possible agility of this logical topology. Let
r(ToR), r(aggr) and r(core) be the bandwidths of the
logical aggregation and core nodes respectively. We ob-
serve that r(aggr) = 2/3 r(S) and r(core) = 1/3 r(S)
maximizes bmax

a (this is implied by Theorem 2). More-
over, we have

ba = min
{

1,
r(core)
r(ToR)

,
1/2 r(aggr)
r(ToR)

}
.

We now lower bound bf , denoted by bmin
f . We have

bmin
f = 1/2r(aggr) − r(ToR). That is, bmin

f is equal to
the amount of spare bandwidth the aggregation and
core nodes can handle without decreasing agility.

Finally, we maximize waba + wfbf using Algorithm
1. In Algorithm 1, r(cToR) is the rate of devices at-
tached to the core node. Briefly, the algorithm attaches
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Algorithm 1 Bound agility and flexibility.

Input: r(core), r(aggr), r(ToR), bmax
a , and bmin

f

Output: ba, bf

begin
ba = bmax

a

bf = bmin
f

r(cToR) = 0
until the following does not increase waba + wf bf do

if r(cToR) < r(ToR) then
r(core) = r(core) + 1
r(aggr) = r(aggr)− 2
r(cToR) = r(cToR) + 1

else
r(aggr) = r(aggr)− 1
r(ToR) = r(ToR) + 1

bf = bf + 1

ba = min{1, r(core)
r(ToR)

,
1/2r(aggr)

r(ToR)
}

end

1 unit of capacity at a time to the best location pos-
sible. If r(cToR) < r(ToR) the best location to attach
a device is the core because doing so decreases agility
less than attaching the device to the aggregation node.
We repeat this process until waba + wfbf hits a max-
imal point, which is guaranteed to be globally optimal
because it is the sum of two linear functions.

Reliability We make two observations that upper
bound S’s reliability. We have that br is at most:

• 1/2 the number of ports on any s ∈ S; and

• the number of open ports on any ToR switch.

We therefore set br to the maximum of these two values.

5.2 Finding a set of core switches
To find the min-cost core switches, we need to solve

two sub-problems: finding an optimal logical topology
(§5.2.1), and then finding the min-cost switches that
realize that topology (§5.2.2).

5.2.1 Selecting a logical topology
Theorem 2 allows for a wide range of logical topolo-

gies that can optimally connect a set of aggregation
switches. We observe, however, that a logical topology
with k logical core nodes can always be made to have
k − 1 logical core nodes by stacking switches, that is,
by combining multiple switches with l ports in total
into a single switch with at least l ports. Moreover, if
no physical realization of a logical topology with k core
nodes exists, then there is no physical realization of a
logical topology with k − 1 core nodes. Therefore, we
always maximize the number of logical core nodes in
accordance with Lemma 1. We set the capacities of each
logical edge such that they are minimized according to
Theorem 2.

5.2.2 Realizing the logical topology
Once we have a logical topology, we need to realize

each logical node. We sketch LEGUP’s realization al-
gorithm due to space constraints. The first issue is to
determine the ports each aggregation switches should
use to connect to ToR switches and what ones should
connect to core switches. Again, we should have 1/2 the
switch’s bandwidth point each direction. We find aggre-
gation switch down ports (i.e., the ports that connect to
ToR switches) by iterating through the ToR switches.
At each ToR switch, we select one of its free ports to
use as an uplink by selecting its free port with the high-
est speed such that there is a switch in S with an open
port at the same speed or greater. When multiple such
switches in S exist, we connect this ToR switch to the
s ∈ S with the most free capacity. We repeat this pro-
cedure until either 1/2 the capacity of each switch in S
has been assigned to a ToR switch or until the uplink
rate of each ToR switch is equal to its hose traffic rate.

By Theorem 3, the aggregation switches and logical
topology dictate the number of core switches and the
number and speeds of ports for each core switch. A
core candidate solution is therefore infeasible if one of
the logical nodes cannot be realized because no switch
has enough ports of each rate required (e.g., the aggre-
gation switches may dictate that each core switch has
145 10Gbps ports when the largest available switch has
only 144 such ports ).

Assuming that realizing the logical topology T is fea-
sible, let x1, . . . , xl be T ’s logical root nodes. The switches
that realize each xi are dictated by Xi, the aggregation
switches that are xi’s children, so we realize each xi with
the min-cost switch that satisfies its port requirements.
This switch assignment is easily found by comparing
each xi’s requirements to the available switch types.

We can, however, potentially lower the cost of the
core switches by stacking several switches into one phys-
ical switch, e.g., if xi needs to be realized by five 24-
port switches, it can also be realized by a single 120-
port switch, potentially at a lower cost. This switch
stacking problem can be reduced to a generalized cost,
variable-sized bin packing problem, which can be ap-
proximated by an asymptotic polynomial-time approx-
imation scheme [8]; however, their algorithm is compli-
cated and still to slow for our purposes since it must be
executed for every complete solution. Instead, we use
the well-known best-fit heuristic [16] to solve stack core
switches, which is known to perform well in practice.

Two issues arise when we stack core switches. First,
it is possible to turn a feasible solution infeasible, e.g.,
after stacking switches, the resulting solution may vi-
olate a physical constraint, such as there may not be
a rack that has enough free slots for the larger switch.
Second, stacking core switches can decrease our relia-
bility metric. Therefore, we save the original set of core

9



switches. If either of these cases occurs, we revert back
to the original set of core switches, and then continue.

5.3 Mapping aggregation switches to racks and
ToR switches

Now that we have determined the set of switches that
comprise the aggregation and core levels, we need to
place them into racks and connect each ToR switch to
aggregation switches. We assume that the core switches
can be centrally located and that ToR switches are al-
ready placed, so we are only concerned with aggregation
switches in this section.

Our mapping algorithm takes as input a set of ag-
gregation switches, here this is S, and the data center
model. If no model is given, then this stage is skipped. If
a network blueprint is given but no data center model,
then the mapping assigns each link a unit cost if it is
new or modified (i.e., if two switches remain connected
after the mapping, then there is no cost for the link).
The mapping’s goal is to minimize the cost of the phys-
ical layout of these aggregation switches subject to the
rack, thermal, and power constraints of the data cen-
ter model; here, cost is the length of cables needed to
connect the ToR switches to aggregation switches. Even
using Euclidean geometry setting and without our addi-
tional constraints, this problem is NP-hard as it can be
reduced to a Steiner forest problem variant, see, for ex-
ample [15]. An additional complication is that the data
center model may already have aggregation switches in
place, and we would like to use Manhattan distance in-
stead of Euclidean.

To solve the mapping problem, we use a two-phase
best-fit heuristic. The first phase matches aggregation
switches to existing switches in the data center model,
and the second stage finds a best-fit for all aggregation
switches not placed in the first phase. To speed up the
algorithm, we preprocess the racks to determine, for
each rack, its free rack units and its distance to k ToR
switches where k is equal to half the number of ports on
the largest available switch type. The algorithm details
are given in Algorithm 2.

Phase I of our mapping algorithm attempts to replace
existing aggregation switches in the data center model
with a close switch in S. We define closeness as follows
for two switches s1 and s2. We have closeness(s1, s2) =
0 if s1 does not have as many ports as s2 for any speed,
when ports are allowed to operate at any speed less than
their line speed, and closeness(s1, s2) = 1 if s1 has at
least as many ports as s2 for all speeds, again allowing
s1’s ports to operate at less than their max speed (e.g.,
the closeness of a 24-port 10Gbps switch and a 24-port
1Gbps switch is 1).

5.4 Computing the performance of a solution
We now address how to compute each of our perfor-

Algorithm 2 Mapping aggregation switches to racks.

Preprocessing
Input: data center model
Output: lists of racks

begin
for each rack do

find the sizes of its contiguous free rack units, and
the distance to the k nearest ToR switches

Separate the racks into lists R[u] such that the largest
contiguous free rack units of racks in R[u] is u

Sort each list in increasing order of distance to k ToR switches
end

Mapping
Input: data center model M and S
Output: map S → racks

begin
// Phase I
for each switch x ∈ S do

for each aggregation switch y ∈M do
find the closeness of x and y

S′ = ∅
for y ∈M do

Map the closest x ∈ S to y
S′ = S′ ∪ {x}

// Phase II
for each switch x ∈ S − S′ do

Map x to the first rack in r ∈ R[x.U ]
Update r’s largest contiguous rack units, and move it to

the appropriate list
end

mance metrics.
Agility can be found in polynomial time for any net-

work using linear programming [20]. Here, however, we
can use a faster algorithm. Because we have construc-
tion the network in accordance with Lemma 1, a node
i with rate r(i) must have at least r(i) of uplink band-
width to feasibly route all hose TMs (i.e., for agility to
be 1). Specifically, if the uplink bandwidth of all i’s up-
link ports sums to u, then we have that the network’s
agility is at most u/r(i). We can therefore determine the
upper bound on agility imposed at each ToR and aggre-
gation switch to find the network’s agility. Note, how-
ever, that this method to compute agility does not work
unless the network’s logical topology follows Lemma 1.

In general, reliability can be determined using a stan-
dard min-cut algorithm. A heterogeneous Clos network’s
reliability is bounded by the number of uplinks from
a ToR to its aggregation switches and an aggregation
switches to its core switches as observed earlier, so we
can compute it more quickly.

Computing flexibility depends on the rule specified
for attaching new devices to the network. In our imple-
mentation, we greedily attach devices to the open port
that reduces agility the least. Computing flexibility is
done by repeating this process until no more unit band-
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width devices can be attached without reducing agility
below δ.

Finding the maximal value of each metric We
need to scale each of our performance metrics to a [0,1]
range to compare them. The maximal agility of any net-
work is 1; however, we normalize flexibility and reliabil-
ity by finding the maximal value of each metric given
the budget and using this for normalization. These up-
per bounds are found using our bounding function on
an empty candidate solution.

6. EVALUATION
We now evaluate LEGUP by comparing it to other

methods of constructing data center networks. We de-
scribe the existing data center we use in the evalua-
tion first (§6.1), and then describe alternative upgrade
approaches (§6.2). Finally, we study the performance
of these approaches with two scenarios: upgrading our
data center (§6.3) and expanding it (§6.4).

6.1 Input
Data center model To test LEGUP on an existing
data center, we have modeled the University of Wa-
terloo’s School of Computer Science (SCS) data cen-
ter. The servers in this room run services such as web,
email, and backup servers, and many are used as com-
pute machines by faculty and students. To make the
upgrade problem more like that in a larger data cen-
ter, we have increased the number of racks in the data
center by a factor of ten. We scaled the network pro-
portionally, keeping the characteristics of the network
invariant (e.g., each ToR connects to a single aggrega-
tion switch). Our analysis of the SCS data center is
based on this scaled version. While the SCS is a small
data center, choosing to study it rather than a made up
system allows us to model a real-world data center with
real constraints rather than synthesizing a model based
on what we believe larger data centers look like.

The scaled-up SCS data center has three rows made
up of 205 racks housing a total of 7600 servers, 190 ToR
switches, six aggregation switches, and two core routers.
The rows are arranged as shown in Figure 3.

The SCS data center has grown organically over time
and has never had a clean slate overhaul. As a result,
the SCS data center is a typical small data center with
problems such as the following:

• Heterogeneous ToR and aggregation switches: Be-
cause of the long lifespan on switches in the SCS
data center, the ToR switches are not uniform. Ag-
gregation switches are all HP 5400 series switches,
though they do not have identical line cards. We
list the details of the data center’s existing switches
in Table 1.

Ch
ill

er

Hot aisle

Cold aisle

Cold/hot aisle

airflow

85 racks

60 racks

60 racks

Figure 3: Layout of the SCS data center. Arrows show

the direction of airflow

ToR switches
Hose uplink rate Uplinks (1, 10 Gbps) No. switches

28 8, 2 50
40 8, 4 80
8 8, 0 40
2 2, 0 20

Aggregation switches
Line cards Line card slots No. switches

3x 24 1Gbps, 1x 2 10Gbps 6 1
4x 4 10Gbps 6 9

Table 1: Existing switches in the SCS data center.

• Poor air handling: as the diagram above shows, the
data center has a single chiller and it’s located at
the end of the rows. Additionally, the hot and cold
aisles are not isolated, resulting in less effective
cooling. Because of this, hot-running equipment
cannot be concentrated at the far end of the rows
where it will not receive much cool air from the
chiller. We model this by linearly decreasing the
allowed amount of heat generated per rack as the
racks move away from the chiller. Because we do
not have thermal measurements for all our input
switches, we approximate the thermal output of a
switch by its power consumption. Therefore, the
first rack in the top row (the row with 85 racks)
can support up to 18 kW of equipment and the
last rack in this row can support only 12 kW; the
ith rack in this row can then support equipment
drawing 12 + 6/i kW of power. The first rack in
the other two racks can support up to 22 kW of
equipment and the last rack on these row supports
up to 12 kW of equipment.

The data center’s current network is arranged as a
tree; each ToR switch has a single uplink to an aggrega-
tion switch and each aggregation switch has two uplinks
to the core routers. We would like to modify the net-
work so that only outbound traffic passes through the
core routers. Therefore, all network upgrades must be
three-levels, that is, they need to replace these routers

11



Switch model Ports Watts Price ($)
Generic 24 1Gbps 100 250

48 1Gbps 150 1,500
48 1Gbps, 4 10Gbps 235 5,000

24 10Gbps 300 6,000
48 10Gbps 600 10,000
144 10Gbps 5000 75,000

HP 5406zl chassis n/a 166 2,299
HP line card 24 1Gbps 160 2,669
HP line card 4 10Gbps 48 3,700

Table 2: Switches used as input in our evaluation. Prices

are street and power draw estimates are based on a typ-

ical switch of the type for the generic models or manu-

facturers estimates, except for the HP 5400 line cards,

which are estimates based on the watts used per port on

the other switches.

with core switches.

Switch and cabling prices The switches available
for use by the upgrade approaches are shown in Table 2
We assume that installing or moving any link costs $50.
Based on our discussions with the data center operators,
we believe this is a conservative estimate based on the
man-hours needed to install a cable in an existing data
center. Though LEGUP supports charging for a cable
based on its length, we do not use this functionality
because we are unable to estimate the lengths of cables
used by the fat-tree upgrade approach.

6.2 Alternative upgrade approaches
To evaluate the solutions found by LEGUP, we con-

sider two alternative network upgrade approaches. The
first method, is the traditional scale-up method. This
approach models the method our data center opera-
tors currently use to upgrade the network. In this ap-
proach, they upgrade line cards in our modular switches
as their budget allows by purchasing the line card with
the least cost to rate ratio. As they run out of line card
slots in the switches, they purchase more of the same
switches, and fill them with additional line cards. In our
upgrade and expansion scenarios, we want the DCN to
have three levels of switches, so we need to add core
switches to our network. To do this, we use the 24-port
10Gbps switches, and only use 10Gbps links between
aggregation switches and the core.

The second approach we consider is to build a fat-tree
using 1Gbps links following the DCN architecture of Al-
Fares et al. [2]. Here, we reuse existing ToR switches. We
do deviate from Al-Fares et al.’s definition of a fat-tree
because we allow switches in different levels to have dif-
ferent port counts, e.g., the aggregation switches could
have 24 ports and the core switch could have 48 ports.
This slight support for heterogeneity greatly improves
the results of the networks found in our examples.

Comparison of upgrades approaches
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Figure 4: Performance of the upgrade approaches for

various budgets. Here, we have wa = wf = wr = 1 and

δ = 0.10.

For both these approaches we do not take the physical
constraints of the data center into account. Therefore,
it may not always be possible to construct the networks
found this way. In contrast, LEGUP takes the phys-
ical constraints (in our case thermal and rack space)
into account, and so it is at a disadvantage. Finally, we
do not guarantee the solutions found by either of these
approaches to be optimal; however, we were generous
when computing the performance metrics of their solu-
tions.

6.3 Upgrading the data center
We first consider upgrading the SCS data center to

maximize its performance. For this scenario, we set the
weights of each performance metric to be 1, and we use
δ = 0.1.

The performance achieved by our three upgrade ap-
proaches for various budgets is shown in Figure 4. As
the chart shows, for all budgets, LEGUP finds an up-
grade with higher agility and flexibility than the the
scale-up or fat-tree approaches. Moreover, LEGUP al-
ways finds a network upgrade with more agility and
flexibility than the other two approaches even when
LEGUP’s budget is half as much as their budgets. Be-
cause the maximal reliability is two (as limited by the
ToR switches with only two uplink ports), all upgrades
were able to achieve this for all budgets.

Interestingly, the scale-up approach often outperforms
the fat-tree. This is largely due to the high number of
cables in the fat-tree, each of which costs $50 to in-
stall here. For example, with a budget of $100K, the
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fat-tree approach can only spend roughly $30,000 on
switches because $70,000 is needed for cabling. By tak-
ing advantage of 10Gbps links, LEGUP and the scale-
up approach need an order of magnitude fewer cables,
and both approaches reduce cabling costs further by
attempting to leave existing switches connected to the
same ToR switches.

With a budget of $1 million, LEGUP finds a network
with only slightly higher performance than with half as
much money. This is because of the thermal constraints
in our data center; LEGUP cannot add enough of the
144-port 10Gbps switches to the data center floor to at-
tain perfect agility. LEGUP still outperforms the other
two approaches even though they do not take these lim-
iting physical constraints into account.

6.4 Expanding the data center
We now consider expanding a data center network to

accommodate additional servers as they are added over
time. Again, we use the SCS data center as a start-
ing point, and we add 1200 servers to it at a time and
find a network for the expanded data center. Each ex-
pansion has a budget of $300,000, and uses the net-
work found in the previously iteration as input. This
budget was selected because it is 10% of the cost of
the servers, assuming a price of $2500 per server. This
DCN budget is in line with recent cost breakdowns for
servers compared to the network [10, 13]. We do not
take the racks’ thermal or constraints into account here
because the assumption is that the data center floor
would have to be expanded for any upgrade of this
size. For LEGUP, we set wa = 1, wf = 5, wr = 1 and
δ = 0.10. Because LEGUP assumes that servers connect
to a ToR switches, we use 30 switches with 48 1Gbps
and 4 10Gbps ports as ToR switches for each 1200 server
expansion. Doing so uses $150,000 of LEGUP’s budget
each iteration.

The results of our expansion scenario are shown in
Figure 5. LEGUP significantly outperforms the fat-tree
upgrades. The fat-tree approach experiences a drop in
agility when the network with 2400 additional servers
is expanded by another 1200 servers because the aggre-
gation and core switches of the +2400 server network
are all 24-port switches. To accommodate the additional
1200 servers without lowering agility even further, one
of these levels needs to be replaced by 48-port switches.
After this change the amount of agility gained with
each addition is less than previously because the 48-
port switches are not as good a value as the 24-port
switches. LEGUP experiences a similar drop in agility;
however, the effect is less pronounced.

7. DISCUSSION
Lacking a theoretical foundation to model and an-

alyze heterogeneous tree-like topologies, a data center
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agility as much as possible given a budget of $300,000

and the previous iteration as the existing network.

manager has two options to upgrade their network: (1)
perform an expensive forklift upgrade, or (2) add addi-
tional switches to their network using best practices or
other rules of thumb. This second approach would likely
either result in a topology with sub-optimal agility for
the money because link capacity would not be able to
be used optimally. So, even without LEGUP, our theory
of heterogeneous Clos networks is useful because it de-
scribes topologies that can extract maximal agility from
available link capacity. This theory can be used to guide
the addition of switches to a network so that the net-
work always maximizes its agility. Moreover, LEGUP
can be used to optimize even homogeneous networks by
finding a good rack slots to place new switches.

So far, we have not addressed operational issues that
arise when heterogeneity is added to a DCN. We ad-
dress them now.

Configuration We have not accounted for the cost of
reconfiguring a DCN after modifying its topology. Re-
configuration could be expensive and error-prone, espe-
cially if it is performed manually. We expect that this
will become less of a issue as data center management
solutions improve. For instance, PortLand [23] provides
“plug-and-play” functionality for DCN switches and NOX
can be used to centrally manage a DCN [25]. Both of
these solutions can support heterogeneous Clos topolo-
gies with minor modifications.

Routing and load balancing In Section 4, we as-
sumed ideal load balancing. This is not achievable in
practice because it requires support for splitting indi-
vidual flows across multiple paths. Nevertheless, close
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to optimal load balancing on our constructions can be
achieved, however. For example, Mudigonda et al.’s SPAIN
[22] performs multipath load balancing on arbitrary topolo-
gies. Based on their results, SPAIN would be able to
extract close to the full bisection bandwidth from our
topologies.

Load balancing can also be achieved using oblivious
routing, where the path for an i-j packet is randomly se-
lected from a probability distribution over all i-j paths.
Our results in Section 4 imply that oblivious routing
is optimal on heterogeneous Clos networks when each
flow may be split across multiple paths. In practice, we
cannot split flows; however, we can perform oblivious
routing by randomizing flow routing instead of packet
forwarding. Oblivious routing should load balance traf-
fic well in-practice because long-lived, high-bandwidth
flows are rare in DCN traffic [9]; Greenberg et al. found
this type of oblivious routing to be within 94% of opti-
mal on a Clos topology. These positive results lead us to
believe that obliviously routing flows will perform well
on our constructions as well.

8. RELATED WORK
Topology constructions Theoretical topology con-
structions date back to telephone switching networks
and a variety of constructions have been proposed, e.g.,
Clos [5], Beneš [3], flattened butterfly [19], HyperX [1],
hypercube [26], DCell [12], and BCube [11]. Despite the
many topology proposals, the only other construction
we are aware of that handles heterogeneous switches is
that of Rasala and Wilfong [24], who gave a strictly non-
blocking construction for networks with heterogeneous
IO switches. Our work differs in two key aspects. First,
they dealt with strictly nonblocking networks whereas
our constructions are rearrangeably nonblocking in their
setting (equivalent to feasibly routing all hose TMs in
our traffic model), so our construction requires much
less link capacity. Second, their constructions only con-
nect IO switch sets with two types of switches and
they do not support heterogeneous switch port speeds,
whereas our construction supports any number of switch
types and port speeds.

Network design The network design literature is
vast and algorithms for network design have been widely
studied, see, e.g., [18]. Branch and bound has been used
to solve network design problems in past work, for ex-
ample, [14,21]. However, existing work does not take the
unique constraints of a data center environment into ac-
count. Our work here is the first to simultaneously sup-
port power, thermal, and rack space constraints. More-
over, other network design algorithms return an arbi-
trary mesh network. LEGUP returns only tree-like al-
gorithms so that existing DCN addressing solutions can
be used.

9. CONCLUSIONS
As demand for cloud and other centralized services

increases, data center server utilization will increase,
putting strain on traditional, under-provisioned networks
and driving demand for data center network upgrades.
Existing data centers are always being incrementally ex-
panded, and data center consolidation is common prac-
tice today. LEGUP allows operators to save money in
these cases by increasing agility, flexibility, and reliabil-
ity while reusing existing switches.

We have shown that heterogeneity can yield signifi-
cant cost savings when upgrading or expanding a legacy
data center. By developing the theory of heterogeneous
Clos networks, we have given data center managers solid
theory to rely on when designing upgrades. LEGUP per-
forms this network design process by solving a difficult
optimization problem with many constraints, and finds
upgrades and expansions with significantly higher per-
formance than previous techniques. LEGUP finds up-
grades with more agility and flexibility than existing
solutions for less than half the cost. When incremen-
tally expanding a network, LEGUP finds a network with
265% more agility than an upgraded fat-tree after the
number of servers in the data center has been doubled.
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