Feature and Class Models in Clafer:
Mixed, Specialized, and Coupled

University of Waterloo Technical Report CS-2010-10

Kacper Bak!, Krzysztof Czarnecki', and Andrzej Wasowski?

! Generative Software Development Lab, University of Waterloo, Canada,
{kbak,kczarnec}@gsd.uwaterloo.ca
2 IT University of Copenhagen, Denmark, wasowski@itu.dk

Abstract. We present Clafer, a class modeling language with first-class
support for feature modeling. We designed Clafer as a concise notation for
class models, feature models, mixtures of class and feature models (such
as components with options), and models that couple feature models and
class models via constraints (such as mapping feature configurations to
component configurations). Clafer also allows arranging models into mul-
tiple specialization and extension layers via constraints and inheritance.
We identified four key mechanisms allowing a class modeling language to
express feature models concisely and show that Clafer meets its design
objectives using a sample product line.

1 Introduction

Both feature and class modeling have been used in software product line en-
gineering to model variability. Feature models are tree-like menus of mostly
Boolean—but sometimes also integer and string—configuration options, aug-
mented with cross-tree constraints [15]. These models are typically used to show
the variation of user-relevant characteristics of products within a product line. In
contrast, class models, as supported by the Unified Modeling Language (UML),
have been used to represent the components and connectors of product line ar-
chitectures and the valid ways to connect them. Thus, the nature of variability
expressed by each type of models is different: feature models capture simple se-
lections from predefined (mostly Boolean) choices within a fixed (tree) structure;
and class models support making new structures by creating multiple instances
of classes and connecting them via object references.

Over the last eight years, the distinction between feature and class models
has been blurred somewhat in the literature due to feature modeling extensions,
such as cardinality-based feature modeling [10, 3], or attempts to use composition
hierarchies to express feature models in UML class models [7,11]. A key driver
behind these two developments has been the desire to express components and
configuration options in a single notation (e.g., see [9]). Cardinality-based fea-
ture modeling achieves this goal by extending feature modeling with multiple
instantiation and references. Class modeling, while natively supporting multiple

instantiation and references, can also support feature modeling by a stylized use
of composition hierarchy and UML profiling mechanisms.

Both developments have notable drawbacks, however. An important advan-
tage of feature modeling as originally defined by Kang et al. [15] is its simplicity;
several respondents to a recent survey confirmed this view [16]. Extending feature
modeling with multiple instantiation and references diminishes this advantage
by introducing additional complexity. Further, models that contain significant
amounts of multiply-instantiatable features and references can be hardly called
feature models in the original sense; they are more of class models. On the other
hand, whereas the model parts requiring multiple instantiation and references
are naturally expressed as class models, the parts that have feature-modeling na-
ture cannot be expressed elegantly in class models, but only clumsily simulated
using composition hierarchy and certain modeling patterns.

We present Clafer (class, feature, reference), a class modeling language with
first-class support for feature modeling. The language was designed to naturally
express class models, feature models, mixtures of class and feature models (such
as components with options), and models that couple feature models with class
models via constraints (such as mapping feature configurations to component
configurations). Clafer also allows arranging models into multiple specialization
and extension layers via constraints and inheritance. We show that Clafer meets
its design objectives using a sample product line. Clafer’s design identifies four
key mechanisms allowing a class modeling language to express feature models
concisely.

We developed a translator from Clafer to Alloy [13], a class modeling lan-
guage with a powerful constraint notation. The translator gives Clafer precise
(translational) semantics and allows analyzing Clafer models using the Alloy
Analyzer. In particular, we show how the analyzer can be used to instantiate
our sample product line. In future, we will investigate model-specific translations
to a range of reasoners in order to provide efficient support for operations on
Clafer models and model instances, such as consistency checks, configuration,
refactoring, and specialization.

The paper is organized as follows. We introduce our running example in
Sect. 2. We discuss the challenges of representing the example using either only
class modeling or only feature modeling and define a set of design objectives
for Clafer in Sect. 3. We then present Clafer in Sect. 4 and demonstrate that it
satisfies these objectives. We revisit the objectives in Sect. 5 and discuss Clafer’s
current status and future work in Sect. 6. After comparing Clafer with related
work in Sect. 7, we conclude in Sect. 8.

2 Running Example: Telematics Product Line

Vehicle telematics systems integrate multiple telecommunication and informa-
tion processing functions in an automobile, such as navigation, driving assistance,
emergency and warning systems, hands-free phone, and entertainment functions,
and present them to the driver and passengers via multimedia displays. Figure 1

Problem space Mapping Solution space

telematics|
System

‘/l\- comp

extra ||displa version : int]
channel A play

Display| [Size A
[single] [dual] [small] [large]

a) Product features

[small] [large] [size : int]

b)

server
Component model c¢) Display options

Fig. 1. Telematics product line

presents a variability model of a sample telematics product line, which we will
use as a running example. The product line offers the features summarized in
Fig. 1a, the problem-space feature model. A concrete telematics system can sup-
port either a single or two independently controllable channels; two channels
afford independent programming for the driver and the passengers. The choice
is represented as the xor-group channel, marked by the small triangle. By de-
fault, each channel has one associated display; however, we can add one extra
display per channel, as indicated by the optional feature extraDisplay. Finally, we
can choose large or small displays (displaySize).

Figure 1b shows the actual components that make up a telematics system,
represented by a class model. There are two types of components: ECUs (elec-
tronic control units) and displays. Each display has exactly one ECU as its server.
Further, all components have a version.

Components may have configuration options themselves. In our example, we
can configure the display size and enable a display cache (see Fig. 1c). We can
also specify the cache size and decide whether the size is fixed or can be updated
at runtime. Thus, the solution space consists of a class model of component types
and a feature model of component options.

Finally, the variability model requires a mapping from the problem-space
feature configurations to the component and option configurations in the solution
space. A big arrow in Fig. 1 indicates this mapping; we will specify it completely
and precisely in Sect. 4.3.

3 Feature vs. Class Modeling

The solution space in Fig.1 contains a class and a feature model. To capture
our intention, the models are connected via UML composition. Since the precise
semantics of such notational mixture are not clear, this connection should be
understood only informally for now.

We have at least two choices to represent both the components and the
options in a single notation. The first choice is to show the entire solution space
model using cardinality-based feature modeling. Figure 2a shows the component

* *
display| [ECU|

4 cach(.e'
options| |server: ECU # size :int
a) Cardinality-based small| [large| fixed : booll

feature model of components ~ b) Class model of display options

Fig. 2. Feature model as class model and vice versa

part of the model (the subfeatures of options are elided). The model introduces
a synthetic root feature; display and ECU can be multiply instantiated; and display
has server subfeature representing a reference to instances of ECU. Versions could
be added to both display and ECU to match the class model (Fig.1b) or we
could extend the notation with inheritance. Doing the latter would bring the
cardinality-based feature modeling notation very close to class modeling, posing
the question whether a class modeling notation should be used for the entire
solution space model instead.

We explore the class modeling alternative in Fig. 2b. The figure shows only
the options model, as the component model remains unchanged (as in Fig. 1b).
Subfeature relationships are represented as UML composition and feature cardi-
nalities correspond to composition cardinalities at the part end. The xor-group
is represented by inheritance and cache size and fixed as attributes of cache.

Representing a feature model as a UML class model worked reasonably well
for our small example; however, the approach has several drawbacks. First, the
feature model showed fixed as a property of size by nesting; this intention is lost
in the class model. As solution would be to create a separate class size, containing
the size value and fixed; thus, adding a subfeature to a feature represented as a
class attribute requires refactoring. Another issue is that the name of the new
class size would clash with the class size representing the display size; thus, we
would have to rename one of them. Further, converting an xor-group to an or-
group in feature modeling is simple: the empty triangle needs to be replaced by
a filled one. For example, displaySize (Fig. 1a) could be converted to an or-group
in a future version of the product line to allow systems with both large and small
displays simultaneously. Such change is tricky in UML class models: we would
have to either allow one to two objects of type displaySize and write an OCL
constraint forbidding two objects of the same subtype (small or large) or use
overlapping inheritance (i.e., multiple classification). Thus, the representation
of feature models in UML, rather than a dedicated notation, incurs additional
complexity. Similar argument can be made for Alloy.

The examples in Fig. 2 lead us to the following two conclusions:

(1) “Cardinality-based feature modeling” is a misnomer. Cardinality-based
feature modeling encompasses multiple instantiation and references, mechanisms
characteristic of class modeling, and could even be extended further towards class
modeling, e.g., with inheritance; however, the resulting notation can be hardly

a a0 N =

© ® N o

abstract options abstract <0-*> options {

1
Xor size 2 <1l-1> size 1..1 {
small 3 <0-*> small 0..1 {}
large 4 <0-*> large 0..1 {}
5 }
cache? 6 <0-*> cache 0..1 {
size : int 7 <0-*> size : int 1..1 { - -
fixed? 8 <0-*> fixed 0..1 {} small size
0 1 val :int
o }
[small & cache => 0..1
fixed] w [some this.size.small &&
12 some this.cache =>
13 some this.cache.size.fixed]
14
a) Concise notation b) Full notation c) Class model

Fig. 3. Feature model in Clafer and corresponding UML class model

still referred to as “feature modeling’, as it would go clearly beyond the original
scope of feature modeling [15].

(2) Euisting class modeling notations such as UML and Alloy do not offer
first-class support for feature modeling. Feature models can still be represented
in these languages; however, the result carries undesirable notational complexity.

The solution to these two issues is to design a class modeling language with
first-class support for feature modeling. We postulate that such a language should
satisfy the following design goals:

1. Provide a concise notation for feature modeling

2. Provide a concise notation for class modeling

3. Allow mizing feature models and class models

4. Use minimal number of concepts and have uniform semantics

The last goal expresses our desire that the new language should unify the con-
cepts of feature and class modeling as much as possible, both syntactically and
semantically. In other words, we do not want a hybrid language.

4 Clafer: Class Modeling with First-Class Support for
Feature Modeling

We explain the meaning of Clafer models by relating them to their corresponding
UML class models. Figure 3 shows the display options feature model in Clafer
(a) and the the corresponding UML model (c). Figure4 shows the component
class model in Clafer; Fig. 1b has the corresponding UML model.

A Clafer model is a set of type definitions, features, and constraints. A type
can be understood as a class or feature type; the distinction is immaterial. Fig-
ure 3a contains options as single top-level type definition. The definition contains

a hierarchy of features (lines 2-8) and a constraint (lines 10-11); the enclosing
type provides a separate name space for this content. The abstract modifier
indicates that no instance of the type will be created, unless extended by a
concrete type.

A type definition can contain one or more features; the type options has
two (direct) features: size (line 2) and cache (line 6). Features are slots that can
contain one or more instances or references to instances. Mathematically, features
are binary relations. They correspond to attributes or role names of association
or composition relationships in UML. For example, in Fig. 4, the feature version
(line 2) corresponds to the attribute of the class comp in Fig. 1b; and the feature
server (line 6) corresponds to the association role name next to the class ECU in
Fig. 1b. Features declared using the colon notation and having no subfeatures,
like in server : ECU, are reference features, i.e., they hold references to instances.

Features that do not have their type declared using the colon notation, such
as size (line 2) and cache in Fig.3a, or have subfeatures, such as size (line 7)
in Fig.3a, are containment features, i.e., features that contain instances. An
instance can be contained by only one feature, and no cycles in instance con-
tainment are allowed. These features correspond to role names at the part end
of composition relationships in UML. For example, the feature cache in Fig. 3a
corresponds to the role name cache next to the class cache in Fig. 3c. By a UML
convention, the role name at the association or composition end touching a class
is, if not specified, same as the class name.

A containment feature definition creates a feature and, implicitly, a new
concrete type, both located in the same name space. For example, the feature
definition cache (line 6) in Fig. 3a defines both the feature cache, corresponding
to the role name in Fig. 3¢, and, implicitly, the type cache, corresponding to the
class cache in Fig.3c. The new type is nested in the type options; in UML this
nesting means that the class cache is an inner class of the class options, i.e., its
full name is options::cache. Figure 3¢ shows UML class nesting relations in light
color. Class nesting permits two classes named size in a single model, because
each enclosing class defines an independent name scope.

The feature size (line 7) in Fig. 3a is a containment feature of general form,
the implicitly defined type is a structure containing a reference, here to int, and
a subfeature, fixed. This type corresponds to the class cache:size in Fig. 2b.

Features have feature cardinalities, which constrain the number of instances
or references that a given feature can contain. Cardinality of a feature is specified
by an interval m..n, where m € Nyn € NU {x},m < n. Feature cardinality
specification follows the feature name or its reference type, if any.

1 abstract comp s abstract display extends comp
2 version : int 6 server : ECU
3 7 ‘options

8 [version >= server.version]

+ abstract ECU extends comp

Fig. 4. Class model in Clafer

Conciseness is an important goal for Clafer; therefore, we provide syntactic
sugar for common constructions. Figures 3a and 3b show the same Clafer model;
the first one is written in concise notation, while the second one is completely
desugared code with resolved names in constraints.

Clafer provides syntactic sugar similar to syntax of regular expressions: ? or
lone (optional) denote 0..1; * or any denote 0..x; and + or some denote 1..x. For
example, cache (line 6) in Fig.3 is an optional feature. No feature cardinality
specified denotes 1..1 (mandatory) by default, modulo three exceptions explained
shortly. For example, size (line 7) in Fig. 3a is mandatory.

Features and types have group cardinalities, which constrain the number of
child instances, i.e., the instances contained by subfeatures. Group cardinality
is specified by an interval (m-n), with the same restrictions on m and n as
for feature cardinalities, or by a keyword: xor denotes (1-1); or denotes (1—3x);
and mux denotes (0—1); further, each of the three keywords makes subfeatures
optional by default. If any, a group cardinality specification precedes a feature or
type name. For example, xor on size (line 2) in Fig. 3a states that only one child
instance of either small or large is allowed. Because the two subfeatures small
and large have no explicit cardinality attached to them, they are both optional
(cf. Fig.3b). No explicit group cardinality stands for (0-x), except when it is
inherited as illustrated later.

Constraints are a significant aspect of Clafer, because they can express de-
pendencies among features or restrict string or integer values. Constraints are
always surrounded by square brackets and are a conjunction of first-order logic
expressions. We modeled constraints after Alloy; the Alloy constraint notation is
elegant, concise, and expressive enough to restrict both feature and class models.
Logical expressions are composed of terms and logical operators. Terms either
relate values (integers, strings) or are navigational expressions. The value of
navigational expression is always a relation, therefore each expression must be
preceded by a quantifier, such as no, one, lone or some. However, lack of explicit
quantifier (Fig.3a) stands for some (Fig.3b), meaning that the relation cannot
be empty.

Each feature in Clafer introduces a local namespace, which is rather different
from namespaces in popular programming languages. Name resolution is impor-
tant in two cases: 1) resolving type names used in feature and type definitions
and 2) resolving feature names used in constraints. In both cases, names are path
expressions, used for navigation like in OCL or Alloy, where the dot operator
joins two relations. A name is resolved in a context of a feature in up to four
steps. First, it is checked to be a special name like this. Secondly, the name is
looked up in subfeatures in breadth-first search manner. If it is still not found,
the algorithm searches in the top-level definition that contains the feature in
its hierarchy. Otherwise, it searches in other top-level definitions. If the name
cannot be resolved or is ambiguous within a single step, an error is reported.

Clafer supports single inheritance. In Fig. 4, the type ECU inherits features
and group cardinality of it supertype. The type display extends comp by adding

two features and a constraint. The reference feature server points to an existing
ECU instance. The meaning of ‘options notation is explained in Sect. 4.1.

The constraint defined in the context of display states that display’s version
cannot be lower than server’s version. To dereference the server feature, we use
dot, which then returns version. Although version is itself just a reference, Clafer
automatically infers that it should compare the actual integer values and not
just references.

4.1 Mixing via Quotes and References

Mixing class and feature models in Clafer is achieved via quotation (see line
7 in Fig.4) or references. Syntactically, quotation is just a name of abstract
type preceded by left quote (*), which in the example is expanded as options
extends options. The first name indicates a new feature, and the second refers
to the abstract type. Semantically, this notation creates a containment feature
options with a new concrete type display.options, which extends the top-level
abstract type options from Fig. 3a. The concrete type inherits group cardinality
and features of its supertype. By using quotation only type is shared, but not
instances. References, on the other hand, are used for sharing instances.
The following example highlights the difference:

s

displayOwningOptions *
‘options -- shorthand for options extends options

In the above snippet, each instance of displayOwningOptions will have its own
instance of type options. Note that Clafer assumes the existence of an implicit
root object; thus, a feature definition, such as displayOwningOptions above, defines
both a subfeature of the root object and a new top-level concrete type.

Now consider the following code:

o

options
-- content as in options in Fig. 3a

displaySharingOptions *
sharedOptions : options

Each instance of displaySharingOptions has a reference named sharedOptions
pointing to an instance of options. Although there can be many references, they
might all point to the same instance living somewhere outside displaySharingOp-
tions.

Clafer tries to minimize the number of language concepts. For example, it
does not have a built-in enumeration type. There are several ways of defining
enumerations in Clafer; we present one of them in Fig. 5. Quotation can simulate
enumerations in the following way. First, we define an abstract feature color, with
xor group cardinality. Next, the feature is quoted as a subfeature of another type,
house in our example. Each house contains one roof and at least two walls. A roof
can be painted in one of previously defined colors; however, a wall can be painted

1+ abstract xor color

2 red

3 blue

4 house *

5 roof

6 ‘color

7 walls 2..%

8 ‘color 0.1 0.1 0..1

. yellow [red | |[blue| [yellow|
a) Clafer model b) Corresponding class model.

Fig. 5. Simulating enumerations in Clafer using xor and quotation

in one of three colors since we extended the original set of two with an additional
color. The corresponding UML model is shown in Fig. 5b. The abstract type color
is shared between roof and walls via inheritance; however, no instances of type
color are shared. Elements introduced by quotation are marked in red.

4.2 Specializing via Inheritance and Constraints

Let us go back to our telematics product line example. The class model of archi-
tecture as presented in Fig. 4 is a very generic metamodel, representing infinitely
many different products. We would like to specialize and extend it to create a
particular architectural template. A template makes most of the architectural
structure fixed, but leaves some points of variability.

Figure 6a shows such a template for our example. We achieve specialization
via inheritance and constraints. In our example, a concrete product must have at
least one ECU (ECU1) and can optionally have another ECU (ECU2). Similarly,
each ECU has either one display (d1) or two displays (d1 and d2), but none
of the displays has cache. Besides, we need to constrain the server reference in
each display, so that it points to its associated ECU. The reference this points
to the current instance of ECU1. Also, ECU2 extends the base type with master,
pointing to ECU1 as the main control unit.

Figure 6b visualizes the template in a domain-specific notation, showing both
the fixed parts, e.g., mandatory ECU1 and d1, and the variable parts, e.g., alter-
native display sizes (radio buttons) and optional ECU2 and d2 (checkboxes).

The template represents knowledge that was not available in the metamodel.
We could push forward this approach until there is no variability and a concrete
product is defined. Moreover, we could use multiple layers of specialization or
extension. It is all possible to express using inheritance and constraints.

4.3 Coupling via Constraints

Having defined the architectural template, we are ready to expose the remaining
variability points as a product-line feature model. Figure 7 shows this model (cf.
Fig. 1a) along with a set of constraints coupling its features to the variability

1

2

abstract displays 7 ECU1 extends ECU ECUL

d1 extends display 8 ‘displays displays
d2 extends display? o [di.server = this]
[~d1.options.cache 1o [d2.server = this] O 4z osmall
~d2.options.cache
] 1 ECU2 extends ECU ?
12 ‘displays master
13 master : ECU1 OECU2
14 [di.server = this] d's"'ag’s ; Legend
. sma :
15 [d2.server = this] orgdio button
0 g2 osmall (alternative)
ocheck box
(optional)
a) Clafer model b) A possible graphical rendering
Fig. 6. Architectural template
telematicsSystem
xor channel 9 [single => ~ECU2
single 10 dual => ECU2
dual 1 extraDisplay <=> ECU1.displays.d2 &&
extraDisplay? 12 (ECU2 =>. ECU2.d|fspIaysl.d2)
13 small => ~displays.options.size.large
xor displaySize 14 large => ~displays.options.size.small
small 15]
large

Fig. 7. Feature model with mapping constraints

points of the template. Note that the template allowed the presence of the extra
displays (ECU1.d2 and ECU2.d2) and the size of every display to vary indepen-
dently; however, we further restrict the variability in the feature model, requiring
either all present ECUs to have an extra display or all to have no extra display
and either all present displays to be small or all to be large.

Constraints allow us restricting a model to a single configuration. Figure 8
shows a top-level constraint defining a single product, with two ECUs, two large
displays per ECU, and all components in version 1.

We tested our approach by automatically translating the Clafer model to
Alloy and subjecting the resulting code to the Alloy Analyzer. The analyzer
generates the expected instance of the product-line, which confirms that the
model is not constrained too much. The solution is represented as a graph,
where vertexes correspond to signatures and edges correspond to relations in
the Alloy model. The output graph is unique up to structural equivalence. The
Alloy Analyzer generates multiple instances of our example, but all of them have
exactly the same structure within tested scope (each signature instantiated no

10

1

2

-- concrete product
[dual && extraDisplay && telematicsSystem.size.large && comp.version == 1]

Fig. 8. Constraints determining a single product

more than 27 times). Although Alloy can detect some equivalent solutions, it
does not perform full graph isomorphisms detection.?

5 Clafer’s Design Goals Revisited

Let us revisit Clafer’s design goals from Sect. 3.

(1) Clafer provides a concise notation for feature modeling (e.g., Fig.3). Our
language design reveals four key ingredients allowing a class modeling language
to provide a concise notation for feature modeling:

— Containment features: A containment feature definition creates both a fea-
ture and a type in one step; for example, all features in Figs. 3 and 7 are of
this type. Neither UML nor Alloy provide this mechanism.

— Feature nesting: Feature nesting is a single construct accomplishing both
instance composition and type nesting. UML provides composition; however,
type nesting has to be specified separately (cf. Fig. 3c). Alloy has no built-
in support for composition and thus requires explicit set-up of parent-child
constraints. It also has no signature nesting; signature name clashes need to
be avoided differently, e.g., by using prefixes.

— Group constraints: Group constraints are defined concisely as intervals. Group
constraints can be expressed in OCL or Alloy; however, the resulting encod-
ing can be lengthy since it requires enumerating reference features.

— Constraints with default quantifiers: Default quantifiers on relations, such as
some in Fig. 3, allow us writing constraints that look like propositional logic,
even though their underlying semantics is first-order predicate logic.

Let us compare the size of the Clafer and Alloy models of the running example.
With similar code formatting (no comments and blank lines), Clafer representa-
tion has 43 LOC and the automatically generated Alloy code is over two times
longer. Since the Alloy model contains many long lines, let us also compare
source file sizes: 1kb for Clafer and over 4kb for Alloy. The code generator favors
conciseness of the translation over uniformity of the generated code, but in the
worst case the lack of the previously listed constructs makes Alloy models nec-
essarily larger. Additional language differences tip the balance further in favor
of Clafer. For example, an abstract type definition in Clafer guarantees that the
type will not be automatically instantiated; however, unextended abstract sets
can be still instantiated by Alloy Analyzer. Therefore, each abstract signature
in Alloy needs to be extended by an additional signature and then constrained.

(2) Clafer provides a concise notation for class modeling (e.g., Fig.4).

3 The Clafer model of the running example, the generated Alloy code, and the gener-
ated instance are available at http://www.cs.uwaterloo.ca/~kbak/clafer/.

11

(3) Clafer allows mixing feature and class models. Quotations allow reusing
feature or class types in multiple model locations; references allow reusing both
types and instances. Figure 7 shows how separate feature and class models can
be related via constraints.

(4) Clafer tries to use a minimal number of concepts and has uniform semantics.
While integrating feature modeling into class modeling, our goal was to avoid
creating a hybrid language with duplicate concepts. In Clafer, there is no dis-
tinction between class and feature types. Features are relations and thus, besides
their obvious role in feature modeling, they also play the role of attributes in
class modeling. We also contribute a simplification to the realm of feature mod-
eling: Clafer does not have an explicit feature group construct; instead, every
feature can use a group cardinality to constrain the number of its children. We
believe that this is an important simplification, as we no longer need to distin-
guish between “grouping features”, i.e., features used purely for grouping, such
as menus, and feature groups. In Clafer, the grouping intention and grouping
cardinalities are orthogonal: any feature could be marked as a grouping feature
via an annotation and any feature may or may not chose to impose grouping
constraints on its children. Further, constructions such as enumeration types are
built easily from the basic ingredients. Finally, both feature and class modeling
have a uniform semantics in Clafer: a Clafer model instance, just like Alloy’s, is
a set of relations.

6 Current Status and Future Work

Clafer is still in the early stage of development. Although we are mainly focused
on semantics of the language, we also spent significant amount of time on defin-
ing clean, intuitive syntax. We designed the language simultaneously with the
Clafer-to-Alloy translator, which automates many tasks and enables us to ex-
periment with new language constructions. The translator is written in Haskell
and comprises several chained modules: lexer, layout resolver, parser, desugarer,
semantic analyzer, and code generator. Layout resolver makes brackets grouping
subfeatures optional. Feature hierarchies are resolved by means of code indenta-
tion. Clafer is composed of two languages: the core and the full language. The
first one is a minimal language with well-defined semantics. The latter is built on
top of the core language and provides large amount of syntactic sugar. Semantic
analyzer is responsible for resolving names and dealing with inheritance. The
code generator translates the core language constructions into Alloy.
Clafer-to-Alloy translator is able to generate feature models with simple con-
straints. Current work concerns mostly cross-tree constraints, providing support
for operations on native types, such as integers or strings, and polishing syntax.
In the nearest future, we plan to find out the most suitable name resolution
strategies and provide a module system. Moreover, we would like to add type
checking and inference rules and see what role they play in our language.
Clafer’s applications include variability modeling and metamodeling. Our
running example demonstrated the former. In the realm of metamodeling, we

12

used a language similar to Clafer, though without support for constraints and
implemented as a profile on Eclipse’s metamodeling language ecore, to define
metamodels of domain-specific languages (DSLs) for framework APIs [1]. These
DSLs specify components with rich property hierarchies as feature models.

Both variability modeling and metamodeling can benefit from a declarative
constraint-based language supported by reasoners. Reasoners can help uncover
flaws in models and assist in model evolution and model instantiation (i.e., con-
figuration). For example, Alloy analyzer helped us discover that our original
Clafer code was missing several constraints (specifically lines 9-10 and 14-15 in
Fig.6a and line 14 in Fig. 7). Some software platforms already provide configu-
ration tools using reasoners; for example, Eclipse uses a SAT solver to help users
select valid sets of plug-ins [17].

In future, we plan exploring different target reasoners and translation strate-
gies for Clafer. We envision syntactic analyzers that classify Clafer models as
belonging to specific sublanguages and using this classification to use the most
efficient reasoner and encoding for each model. We also plan providing transla-
tions from variability modeling languages used in practice, such as KConfig [18§]
or CDL [5], to Clafer, and thus making these languages accessible to reason-
ers. In a sense, we hope to use Clafer as a pivot language, connecting different
specialized variability modeling languages and different reasoners.

7 Related Work

Asikainen and Méannisto present Forfamel, a unified conceptual foundation for
feature modeling [3]. The basic concepts underlying Forfamel and Clafer are
similar; Forfamel also includes subfeature, attribute, and subtype relations. The
main difference is that Clafer’s focus is to provide concise concrete syntax, such
as being able to define feature, feature type, and nesting all just by stating
an indented feature name. Also, the conceptual foundations of Forfamel and
Clafer differ in many respects; e.g., features in Forfamel correspond to Clafer’s
instances, but features in Clafer are relations. Also, a feature instance in Forfamel
can have one or more parents; in Clafer, an instance can have at most one parent.
These differences likely stem from the difference in perspective: Forfamel takes
a feature modeling perspective and aims at providing a foundation unifying the
many existing extensions to feature modeling; on the other hand, Clafer limits
feature modeling to its original FODA scope [15], but integrates it into class
modeling. Finally, Forfamel considers a constraint language as out of scope,
hinting at OCL. Clafer’s goal is to provide a concise constraint notation.

TVL is a textual feature modeling language [6]. It favors the use of ex-
plicit keywords, which some software developers may prefer. The language covers
Boolean features and features of other primitive types such as integer or string.
The key difference is that Clafer is also a class modeling language with multiple
instantiation, references, and inheritance. It would be interesting to provide a
translation from TVL to Clafer. The opposite translation is likely impossible.

13

Nivel is a metamodeling language, which was applied to define feature and
class modeling languages [2]. It supports deep instantiation, enabling concise
definitions of languages with class-like instantiation semantics. Clafer’s purpose
is different: to provide a concise notation for combining feature and class models
within a single model. Nivel could be used to define the abstract syntax of Clafer,
but it would not be able to naturally support our concise concrete syntax.

Clafer builds on our several previous works, including encoding feature mod-
els as UML class models with OCL [11]; a Clafer-like graphical profile for ecore,
having a bidirectional translation between an annotated ecore model and its
rendering in the graphical syntax [19]; and the Clafer-like notation used to spec-
ify framework-specific modeling languages [1]. None of these works provided
a proper language definition and implementation like Clafer; also, they lacked
Clafer’s concise constraint notation.

Gheyi et al. [12] pioneered translating feature models into Alloy; their trans-
lation targets Boolean feature models, which is a small subset of Clafer.

Relating problem-space feature models and solution-space models has a long
tradition. For example, feature models have been used to configure model tem-
plates before [8]. That work considered model templates as superimposed in-
stances of a metamodel and presence conditions attached to individual elements
of the instances; however, the solution in Sect. 4.2 implements model templates
as specializations of a metamodel. Such a solution allows us treating the feature
model, the metamodel, and the template at the same metalevel, simply as parts
of a single Clafer model. As another example, Janota and Botterweck show how
to relate feature and architectural models using constraints [14]. Again, our work
differs from this work in that our goal is to provide such integration within a
single language. Such integration is given in Kumbang [4], which is a language
that supports both feature and architectural models, related via constraints.
Kumbang models are translated to Weight Constraint Rule Language (WCRL),
which has a reasoner supporting model analysis and instantiation. Kumbang
provides a rich domain-specific vocabulary, including features, components, in-
terfaces, and ports; however, Clafer’s goal is a minimal clean language covering
both feature and class modeling, and serving as a platform to derive such do-
main specific languages, as needed. We would like to explore specializing and
extending Clafer into Kumbang via a profiling mechanism.

8 Conclusion

The premise for our work are usage scenarios mixing feature and class models
together, such as representing components as classes and their configuration
options as feature hierarchies and relating feature models and component models
using constraints. Representing both types of models in single languages allows
us to use a common infrastructure for model analysis and instantiation.

We take the perspective of integrating feature modeling into class model-
ing, rather than trying to extend feature modeling as previously done in its
cardinality-based variant. We propose the concept of a class modeling language

14

with first-class support for feature modeling and define a set of design goals for
such languages. Clafer is an example of such a language, and we demonstrate
that it satisfies these goals. The design of Clafer revealed that a class modeling
language can provide a concise notation for feature modeling if it supports con-
tainment feature definitions, feature nesting, group cardinalities, and constraints
with default quantifiers. Our design contributes a precise characterization of the
relationship between feature and class modeling and a uniform framework to
reason about both feature and class models.

References

1.

2.

® N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Antkiewicz, M., Czarnecki, K., Stephan, M.: Engineering of framework-specific
modeling languages. IEEE TSE 35(6), 795-824 (2009)

Asikainen, T., Méannisto, T.: Nivel: a metamodelling language with a formal se-
mantics. Software and Systems Modeling 8(4), 521-549 (2009)

Asikainen, T., Mé&nnistd, T., Soininen, T.: A unified conceptual foundation for
feature modelling. In: SPLC’06. pp. 31-40 (2006)

Asikainen, T., Ménnisto, T., Soininen, T.: Kumbang: A domain ontology for mod-
elling variability in software product families. Adv. Eng. Inform. 21(1), 23-40
(2007)

Bart Veer, J.D.: The eCos Component Writer’s Guide (2000)

Boucher, Q., Classen, A., Faber, P., Heymans, P.: Introducing TVL, a text-based
feature modelling language. In: VaMoS’10. pp. 159-162 (2010)

Claut, M., Jena, I.: Modeling variability with UML. In: YRW at GCSE’01 (2001)
Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach
based on superimposed variants. In: GPCE’05. pp. 422-437 (2005)

Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.: Generative programming
for embedded software: An industrial experience report. In: GPCE’02. pp. 156-172
2002

(Czarn)ecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice 10(1),
7-29 (2005)

Czarnecki, K., Kim, C.H.: Cardinality-based feature modeling and constraints: A
progress report. In: OOPSLA’05 Workshop on Software Factories (2005)

Gheyi, R., Massoni, T., Borba, P.: A theory for feature models in Alloy. In: First
Alloy Workshop. pp. 71-80 (2006)

Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT Press
2006

F] anoti}, M., Botterweck, G.: Formal approach to integrating feature and architec-
ture models. In: FASE’08. pp. 31-45 (2008)

Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-21 (1990)

Kang, K.C.: FODA: Twenty years of perspective on feature modeling. In: VaMoS’10
(Keynote) (2010)

Le Berre, D., Rapicault, P.: Dependency management for the Eclipse ecosystem:
Eclipse p2, metadata and resolution. In: IWOCE’09. pp. 21-30 (2009)

She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Variability model of
the linux kernel. In: VaMoS’10. pp. 45-51 (2010)

Stephan, M., Antkiewicz, M.: Ecore.fmp: A tool for editing and instantiating class
models as feature models. Tech. Rep. 2008-08, Univeristy of Waterloo (2008)

15

