
Factored HMMs for Bimanual, Context-Dependent Gestures

Adam Fourney
afourney@cs.uwaterloo.ca

Richard Mann
mannr@uwaterloo.ca

Michael Terry
mterry@cs.uwaterloo.ca

David R. Cheriton School of Computer Science, University of Waterloo
Technical Report CS-2010-09

Abstract

As we expand our use of hand gestures for interacting
with computational devices, the spatial context in which
gestures are performed becomes an increasingly important
feature for interpreting user intent. In this paper, we demon-
strate how spatial context, and bimanual coordinated hand
motion, can be efficiently modeled using a factored hidden
Markov model. This factorization, guided by topological
constraints relating to feature extraction, reduces the num-
ber of modeling parameters by two orders of magnitude
compared to an unfactored model. We used these factored
models when constructing a gesture-based presentation sys-
tem called Maestro. We then performed a series of experi-
ments to evaluate the performance of Maestro’s recognizer
with and without the spatial and bimanual context features.

1. Introduction

Gesture-based interaction is quickly becoming a real-
istic input modality for a variety of computing devices
and applications. Hidden Markov models have emerged
as a means to constructing robust and efficient gesture-
recognizers [5, 9, 14, 18, 19]. In this paper, we consider
the problem of efficiently representing context (spatial and
motion) in a discrete hidden Markov model (DHMM).

Our research is motivated by our work in developing
Maestro, a gesture-based presentation system. Electronic
presentations are one of the most frequently proposed ap-
plication spaces for this type of interaction because people
naturally gesture at slides when giving presentations. To in-
form the design of a gesture-based presentation system, we
performed observational studies, noting how people gesture
when giving technical presentations [7]. We observed that
presenters often gesture by pointing to specific landmarks
on the screen (single hand spatial context), by positioning
both hands to demarcate an object (bimanual coordinated

position), or by moving both hands (bimanual coordinated
motion). The design of Maestro’s single hand gestures was
further informed by our previous work in [6], where we ex-
plored the properties of this class of gesture; this research
uncovered tight clustering for various motion regularities
(e.g., stopping events, vertical motion, horizontal motion,
etc.) Both the observational study, and the aforementioned
research, helped directly inform the design of Maestro’s
gesture language.

In [7] we presented an overview of Maestro from the per-
spective of human computer interaction (HCI). There we
focused on the design of the interface and interaction. We
also reported the results of a performance evaluation where
Maestro was used for lecturing to undergraduate university
classes.

In this paper, we focus on the details of Maestro’s ges-
ture recognition component. In particular we show how bi-
manual and spatial context can be encoded efficiently in a
discrete hidden Markov model with a factored observation
model. A factored observation model is required due to
the large number of features we consider. A naive imple-
mentation would directly model the joint distribution of all
features (positions and velocities of both hands, etc.). How-
ever, since several of the features are conditionally indepen-
dent, we can significantly reduce the number of parameters
required.

Maestro’s DHMMs are factored using a few simple topo-
logical constraints. A simple example is the relative posi-
tion of the two hands, or of one hand to a landmark. In
this case, the relative position is a function of the position
of both objects, and can be taken to be independent of the
velocities of those objects. Similarly, when observations
are missing, such as lost position or velocity measurements,
all features derived from the measurements are taken to
be missing. The above are general topological constraints
that depend on the feature types only, and do not change
the potential dependency assumptions among the objects.
Nonetheless, we will show that enforcing these constraints

1



...Q1 Q2 Qt QT...

O1 O2 Ot OT

Figure 1: The dynamic Bayesian network rep-
resentation of a hidden Markov model.

significantly reduces the number of parameters in our ges-
ture models.

The first two parts of this paper review related work, and
describe Maestro’s gesture language and gesture recogni-
tion system. The third part of the paper presents a simple
set of topological constraints, and shows a graphical model
for the observations. The fourth part of the paper shows
the performance of the recognizer, and evaluates our system
with and without the spatial and bimanual context features.
The paper concludes with a discussion of future research.

2. Background

In this section we review discrete hidden Markov mod-
els, and we describe previous work on using DHMMs to
model contextualized gestures. Following this discussion,
we describe the details of Maestro’s gesture recognizer in
sections 3 and 4.

2.1 Discrete hidden Markov models

Hidden Markov models (HMMs) are graphical models
used for modeling sequential observations, such as the evo-
lution of signals over time. Discrete hidden Markov models
(DHMMs) are HMMs operating over a discrete alphabet of
output symbols (observations). Formally, DHMMs adhere
to the dynamic Bayesian network depicted in figure 1, and
consist of the following components:

• A set of N states S = {s1, s2, . . . , sN}

• A discrete alphabet of M output symbols Σ =
{f1, f2, . . . , fM}

• A prior distribution P (Q), where Q is a random vari-
able over the set of initial states S.

• A state transition distribution P (Qt+1|Qt) where Qt,
and Qt+1 are latent random variables denoting the
model’s state at times t and t+1 respectively. Note that
the transition distribution is conditioned only on the
previous stateQt, not on the value of t. In other words,
the state transitions follow a homogenous Markov pro-
cess.

• An observation distribution P (Ot|Qt) where Ot is an
observable random variable denoting the symbol from

the alphabet that is generated by the model at time t.
Note that the observation distribution is conditioned
only on the current state Qt.

It is important to keep in mind the properties that give
rise to the DHMM’s namesake; first, the state sequence
evolves according to a 1st-order homogeneous Markov pro-
cess, with each state transition depending only on the pre-
vious state; secondly, the state sequence is always hidden
from the observer, who only has knowledge of the output
sequence. As such, the state sequence must be inferred from
the observations.

2.2 Related Work

HMMs have been used extensively for hand gesture
recognition [5, 9, 14, 18, 19]; however, comparatively little
work describes how best to model spatial relations in this
framework. In many cases, observations are intentionally
abstracted in order to achieve various levels of translation
and rotation invariance. For example, translation invariance
is often achieved by taking the hand’s instantaneous veloc-
ities as features rather than positions [2, 11]. Alternatively,
it is common to compute features based purely on the di-
rection of hand motion [4, 9, 12]. These approaches work
quite well for recognizing semaphoric gestures (similar to
those found in the US army field manual “FM 21-60: Vi-
sual Signals” [1]). Unfortunately, there are many practical
scenarios where the meaning of a gesture partially depends
on the spatial context in which it is performed. For example,
this is the case with many signs in American sign language
(ASL) [16], and also with gesture-based interfaces seeking
to replicate the direct manipulation style of interaction com-
mon to today’s graphical user interfaces.

There have been numerous approaches to adding or rep-
resenting spatial relations in HMM gesture models. Perhaps
the simplest approach is to simply model the hand position
directly. Unfortunately, this approach is not well founded;
in an HMM, observations depend only on the state in which
the machine finds itself in at a given moment in time. Im-
portantly, these state-specific observation distributions do
not evolve with time – making them inappropriate for mod-
eling even the simplest gestures where the hands’ positions
are changing under constant non-zero velocity (e.g., mov-
ing straight down). One way to address this challenge is
to coarsely divide space into large regions, and to model
the hands’ paths through these regions rather than modeling
exact positions [19]. Unfortunately, this coarse approach
throws away much information regarding the shape of the
gestures. This shape information is very valuable for differ-
entiating between many gestures.

Okumura et al. , seeking to build a system for recogniz-
ing Chinese characters in handwriting, proposed a modified
HMM which addresses the aforementioned problems. In
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Figure 2: Maestro’s navigation gestures (left), and content gestures (right).

their system, position and direction features are used inter-
changeably depending on how each of the HMM’s states is
entered; direction is used as the observation when a state
is reentered following a self-transition, and position is used
when a state is entered by an inter-state transition. The au-
thors reported much success using this approach. We at-
tempted to adapt this approach to Maestro, but found that
the approach did not place enough weight on the position
observations for this context information to meaningfully
guide inference; our models and motion sequences made
far more use self-transitions as compared to inter-state tran-
sitions.

Wilson et al. augment HMMs with global parameter(s)
to create parametric HMMs (PHMMs). While this approach
allows global properties such as scale or reference points,
we require features (particularly, relational features), which
are state dependent.

Finally, the discussion has thus far considered spatial
context as capturing details regarding the hand’s motion
with respect to a landmark or a region of interest. An alter-
native form of context comes from the coordinated motion
of the presenter’s hands when performing bimanual ges-
tures. Relatively little literature discusses how to model bi-
manual gestures. Siskind and Morris [15] used relational
features to recognize simple motion verbs. While this sys-
tem was successful, no attempt was made to factorize the
spatial and velocity distributions. Brand et al. present a
“coupled hidden Markov model” (CHMM), consisting of
multiple HMMs (e.g., one for each hand). The CHMM con-
ditions the state transitions for each HMM to consider both
the current state as well as the states of the other HMMs to
which it is coupled [3]. While this approach is a mathemat-
ically elegant way to model loosely interacting processes,
the flexibility comes at a cost of increased complexity (and
training sample sizes).

In the remainder of this paper we will present a com-
pact and simple approach to modeling spatial context and
coordinated hand motion in a DHMM. We begin the dis-

cussion by describing Maestro’s gestures, and we provide
an overview of its gesture recognition machinery. We then
discuss the DHMMs in more details, followed by an evalu-
ation of our approach on real-world data.

3. Gestures in Maestro

Maestro was developed with the expressed purpose of
quickly and inexpensively exploring the implications of
gesture-based interactions with presentations. This system
employs the use of a single web camera and is particularly
simple; hands are detected and tracked via two brightly col-
ored gloves, one red, one blue. Detection is achieved using
simple color thresholding techniques, while tracking is ac-
complished through the continuous detection of the gloves
from frame to frame. The tracking system reports on the
positions of both gloves at a rate of 15 times per second.
Although both gloves occupy a sizeable area in every cam-
era frame, the position of each glove is summarized by a
single point in space; specifically, the rightmost point on
the glove’s contour (which is similar to the method used
in [8]). The input to Maestro’s gesture recognition system
thus consists of a pair of point trajectories. We extract fea-
tures from these trajectories which are then modelled by a
DHMM. In the sections that follow we present an overview
of Maestro’s gesture language and we describe the DHMMs
used by Maestro.

3.1 Gesture language

Maestro allows presenters to use hand gestures to both
navigate the slide deck (e.g., to advance slides), and to in-
teract directly with the content of their slides (e.g., to zoom
into figures, or to expand bullet hierarchies). We now de-
scribe these navigation gestures (figure 2, left) and content
gestures (figure 2, right) in more detail.



3.1.1 Presentation navigation

Maestro’s navigation gestures allow presenters to move be-
tween slides, to scroll slides, and to bring up the slide
carousel. These gestures are independent of slide content,
and are thus performed in the left margin of each slide, a
region we call the staging area (see left side of figure 2).
To move to the next slide, a presenter places one hand in
the center of the staging area and moves the hand straight
down (figure 2a). Likewise, to move to the previous slide,
a presenter need only move their hand straight up, again
starting from the center of the staging area (figure 2b). A
set of horizontal ruled lines delineates the areas for invok-
ing these gestures, but these visual guides appear only when
the presenter rests their hand within the margin for a short
period of time. Gestures can be performed even when the
guidelines are not visible.

Unique to Maestro is the ability to scroll up and down
within slides. Content can be scrolled by placing both hands
in the stage’s center region, and then moving one of the
hands straight down (figure 2d). The slide responds by im-
mediately scrolling down, and continues to scroll down as
long as the hands remain in that particular configuration.
The scroll speed is determined by the distance between the
hands. Scrolling up is performed with a similar gesture.

Finally, Maestro allows presenters to open a carousel
containing thumbnails of all slides in the presentation. To
access the carousel, the presenter places both hands in the
stage’s center section, and then pushes the hands away from
their body (figure 2f). Using other gestures, the presenter is
then able to randomly access any slide.

3.1.2 Interactions with slide content

Maestro also affords gestural interaction with the actual
content of the slides (see right side of figure 2). This class of
gestures is particularly context sensitive. Blocks of text can
be highlighted by pointing to them with one hand. Presen-
ters can also selectively enlarge figures embedded alongside
text. When enlarged, a figure occupies the entire screen. To
zoom into a figure, the presenter moves both hands into the
figure, then pulls them apart vertically (figure 2j).

Finally, presenters can also author slides with hierarchi-
cal lists of bullets, with child bullets initially hidden. To
reveal child bullets, the presenter places both hands next to
the bullet point of interest, and slides one hand down, sim-
ilar to the scroll gesture (figure 2m). The reverse motion
hides the child bullet point.

3.2 Modeling gestures

Each of Maestro’s gestures is modeled independently as
a DHMM. The general definition of a DHMM from Sec-
tion 2.1 allows state transitions to occur between any pair

s1 s2 s3 s4 F

Figure 3: The topology of the 4-state DHMMs
used by Maestro.

of states. Such DHMMs are known as “ergodic”, and have
a fully connected state topology (i.e., a full state transi-
tion matrix). However, in gesture recognition (and also in
speech recognition), it is useful to consider other topolo-
gies; specifically, it is common to use a left-right topology
[9, 13, 14, 19] where state si is connected to state sj only if
0 ≤ j − i ≤ ∆.

In Maestro, all gesture models take the form of a 4-state
DHMM where ∆ = 1. This topology is depicted in fig-
ure 3. Note that the model includes a 5th non-emitting final
state. This state is only entered after observing the final
observation OT . The use of a final state is quite common,
and forces finite observation sequences to align with the full
model. Conceptually, one can think of all finite observation
sequences as being terminated by an “end of sequence” ob-
servation which can only be generated by the final state.

3.3 Gesture spotting

Maestro must be able to recognize meaningful hand ges-
tures that are embedded in sequences which also contain
non-gesture (background) hand motion (e.g., to account for
a presenter’s gesticulation). In this environment, gestures
must be both isolated (i.e., segmented) and recognized si-
multaneously. This problem is known as “gesture spotting”,
and is analogous to keyword spotting in speech recogni-
tion systems. To accomplish gesture spotting, we arrange
the individual gesture DHMMs into a “gesture spotting net-
work”, as described by Lee et al. in [9]. This gesture spot-
ting network, depicted in figure 4, is itself a discrete hidden
Markov model. It is constructed by connecting the indi-
vidual gesture models in parallel. Additional “garbage” or
“filler” models [5, 17] are added to directly model the back-
ground process. Such models “close the world” since all
segments of the input sequence can be explained either by a
gesture performance or by the background process. Time-
synchronous Viterbi decoding is then used to establish the
most likely state sequence through this DHMM for a given
observation sequence. This approach implicitly segments
the observations into gesture and background subsequences.
Gestures are spotted when the Viterbi path passes from be-
ginning to end through a gesture model.

Maestro’s filler models consist of a one-state “silence”
model, to account for sequences in which neither hand is
detected; and a “catch-all” model, which accounts for any
additional hand motion. We use the catch-all model sug-
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Figure 4: Maestro’s gesture spotting network.

gested by Lee et al. in [9]. The catch-all model simply ex-
plains all hand motion by an arbitrary ordering of piecewise
linear motion segments in any direction. While all hand mo-
tion can be explained by a path through the catch-all model,
sequences consisting of gestures will prefer a Viterbi path
leading through the more specialized gesture models.

4. Features and a factored observation distri-
bution

In this section we present the set of features which Mae-
stro uses to model gestures, along with an efficient factor-
ization of the joint observation distribution. Importantly,
the observation distribution is factored using conditional in-
dependence relations that are guided by topological con-
straints.

4.1 Gesture features

Similar to previous research [4, 9, 12] Maestro uses a
measure known as “direction” or “turning angle” as a stable
feature for modeling gestures. Consider the pair of sequen-
tial observations ~X

(R)
t−1, ~X(R)

t of the red glove’s position at
times t − 1 and t, respectively. The turning angle θ(R)

t is
defined as the angular component of the finite difference
~X

(R)
t − ~X

(R)
t−1, when expressed in polar coordinates. The

turning angle θ(B)
t of the blue glove is defined similarly.

Initially, both θ(R)
1 and θ(B)

1 are undefined since there are
no previous observations from which to compute the finite
difference. Additionally, the red and blue gloves may not
be present at all times. Suppose that the red glove is not
detected at time t, then neither θ(R)

t nor θ(R)
t+1 are defined.

Xt-1

Xt

θ t

Rest
(0) 1

2

4 35
6

7

8
9 10 11

12 Absent
(13)

Turning Angle Discretized Turning Angle

Figure 5: The discrete turning angle feature
used for modeling gestures.

If the turning angle θ
(R)
t is constrained to the range

[0◦, 360◦), the feature can be discretized by simply dividing
the range into equal sized bins (e.g., 12 bins, each account-
ing for 30◦). The discretization Θ(R)

t for θ(R)
t is simply the

index of the bin to which the continuous turning angle is
assigned (figure 5).

Additionally, we noted earlier that the turning angle is
undefined in the cases where the glove is not detected.
Moreover, the measure itself becomes unstable when the
hands are at, or are near, rest. To resolve these issues
in the discretization, we simply add one bin for each of
these cases. This requires thresholding the finite difference
|| ~X(R)

t − ~X
(R)
t−1||2 in order to determine when the glove is

considered to be “near rest”.

4.2 Regional context

While the turning angle feature captures the motion of
the hands, it provides no information regarding the spa-
tial context in which the motion occurs. As mentioned in
section 3, many of Maestro’s gestures are contextualized
by particular targets or regions of interest (ROIs) such as
bullet-points or figures. Consequently, we compute a dis-
crete feature which captures this spatial information. At
each instant, the hands can find themselves in one of three
spatial contexts known as “zones”:

• ZONE 1: “Inside” the region of interest

• ZONE 2: “Near” the region of interest (i.e., within
ε pixels from the region, either horizontally or verti-
cally).

• ZONE 3: “Far” from the region of interest (i.e., more
than ε pixels from the region, either horizontally or ver-
tically).

The featureZ(R)
t encodes the zone in which the red glove

is found at time t. If the red glove is not detected at time t,
then Z(R)

t takes on a 4th value indicating that the hand is
absent. Z(B)

t is defined similarly, but for the blue glove.
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Figure 6: Various factorizations of the observation distribution.

4.3 Spatial relation between hands

The turning angle captures the motion of the hands, but
not their configuration with respect to one-another. For ex-
ample, it provides no indication of whether the hands are
together, or if they are collinear along a column or row of
the display, etc. To capture this information, we introduce
the spatial relation feature σt which is similar to the turning
angle features but is computed using the difference vector
~X

(R)
t − ~X

(B)
t rather than ~X

(R)
t − ~X

(R)
t−1. In this sense, σt

encodes the direction of the vector pointing from the blue
glove towards the red glove. Importantly, σt becomes un-
stable when || ~X(R)

t − ~X
(B)
t ||2 is small. These short vectors

indicate that the hands are “together”.

4.4 An efficient factorization

Together, the aforementioned features are rep-
resented by the discrete feature vector ~f =
[Θ(R)

t , Z
(R)
t ,Θ(B)

t , Z
(B)
t , σt]T . In this environment,

the most straightforward approach to modeling a DHMM
state’s observation distribution is to represent it directly
using a histogram. The corresponding Bayesian network
is depicted in figure 6a. In this case, the histogram would
consist of one bin for every possible feature vector ~f , and
each bin would contain the probability P (Ot = ~f |Qt).
Unfortunately, this simple approach is dreadfully wasteful
given the number of possible feature vectors. Consider that
there are 14 possible values for each of the turning angle
features Θ(R)

t and Θ(B)
t , 4 possible values for each of the

zone features Z(R)
t and Z(B)

t , and 14 more possibilities for
the spatial relationship feature σt. Together, this makes for
143×42 = 43, 904 possible feature vectors. An HMM with
4 states would then require more than 175,000 parameters.
Learning such a model would require an immense amount
of training data in order to acquire good approximations for
each of these parameters.

One way to resolve this issue is to assume that each of
the feature vector’s components are conditionally indepen-
dent given the HMM state (as in figure 6b). This reduces
the number of parameters to 50 for each state – an immense
savings! However, such a factorization is unwarranted since
the various components of ~ft are not conditionally indepen-
dent. In addition to omitting dependencies, independence
assumptions may admit inconsistent states. For example,
if Z(R)

t indicates that the red glove is “inside” a region of
interest, while Z(B)

t indicates that the blue glove is “far”
from the region of interest, then it is impossible for the fea-
ture σt to take on a value indicating that the hands are close
together.

We use these topological constraints to factor the ob-
servation distributions P (~ft|Qt) according to the Bayesian
network depicted in figure 6c. Our factorization in-
cludes dependencies among all spatial context features
(Z(R)

t , Z
(B)
t , σt). Furthermore, since σt depends only on

the position features, we avoid dependencies on the mo-
tions Θ(R)

t , and Θ(B)
t . Note that, for each of the aforemen-

tioned cases, the conditional dependencies follow directly
from the manner in which features are computed. In this
sense, we call these relationships “topological constraints”.
This can be contrasted with other conditional independen-
cies which are assumed solely for the purpose of simplify-
ing the model. For example, an HMM assumes states evolve
according to Markov process, where the next state is condi-
tionally independent on the past history of states, provided
that the current state is known. This Markovian assumption
is probably not entirely accurate, but significantly simplifies
modeling.

Notice the addition of two new binary random variables
D

(R)
t and D

(B)
t . These random variables indicate if the

red and blue gloves have been detected at time t. Impor-
tantly, they allow us to account for cases where the hands
are not detected while preserving conditional independence
between the position and direction features. The resulting
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(a) Visualization of the “scroll up” DHMM.
(Gesture motion depicted in figure 2c)
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(b) Visualization of the “Zoom In” DHMM.
(Gesture motion depicted in figure 2j)

Figure 7: In this figure, each cell represents a possible value for the discrete turning angle (Θ(R) and
Θ(B)), zone (Z(R) and Z(B)), and spatial relation (σ) features. The intensity of each cell represents the
marginal probability of observing the value for the corresponding feature.

factored observation distribution requires only 300 parame-
ters.

5. Evaluation of Maestro’s contextual features

In this section, we present a set of formal experiments
used to evaluate Maestro’s gesture recognizer in a series of
gesture spotting tasks. These experiments quantitatively es-
tablish the importance of the contextual features used in our
models. The discussion begins with a description of the
procedure used to train the models. We then describe the
results of the gesture spotting experiments in more detail.

5.1 Training and parameter estimation

As noted earlier, Maestro models each gesture with a 4-
state left-right hidden Markov model consisting of approx-
imately 300 parameters per state. In order to train these
DHMMs, we gathered approximately 100 isolated exam-
ples of each of Maestro’s gestures. Since there are 11 ges-
tures, a total of 1,100 training examples were collected. In
the case of context-sensitive gestures, such as expand, col-
lapse, and zoom-in, training was conducted by randomly re-
locating the landmarks after each gesture performance. This
avoids learning a model that is specific to a single location
or slide layout.

Having acquired the training data, model parameters
were learned using the Baum-Welch reestimation proce-
dure. Since the training data represents isolated gestures,
five-fold cross validation can be used to evaluate the per-
formance of the DHMMs in an isolated gesture recognition
task. While isolated gesture recognition is arguably simpler
than gesture spotting, the results of this experiment were

used as an initial “sanity check” to verify that the training
was proceeding as expected. This experiment revealed that
between 98% and 99% of the isolated gestures were recog-
nized correctly across each of the five folds. These positive
results suggest that the models are able to accurately dis-
criminate Maestro’s gestures from one another.

In addition to performing cross validation, an inspection
of the resulting models reveals that the reestimation proce-
dure seems to have well-captured the essence of each ges-
ture. As an example, the “scroll up” gesture’s DHMM is
depicted graphically in figure 7(a), and the “zoom in” ges-
ture’s DHMM is depicted in figure 7(b).

5.2 Method

Motivated by the initial positive results of the isolated
gesture recognition task, a set of formal experiments was
conducted to evaluate the models when used for gesture
spotting. These experiments numerically establish the im-
portance of the contextual features used in our models. To
accomplish this, we compared the gesture spotter’s error
rates across numerous models utilizing different subsets of
the contextual features. Specifically, in the first experiment,
the full set of features was utilized; in the second experi-
ment, the spatial relation feature σt was dropped from the
model; in the third experiment, the zone features Z(R)

t and
Z

(B)
t were dropped; and in the fourth experiment, all three

contextual features were dropped (leaving only the turning
angle features).

In order to compare gesture spotting rates across the
four experimental conditions, we video recorded the per-
formance of 10 instances of each gesture. The video was
manually coded to establish a ground truth for the tim-



False False
Condition Correct Negatives Positives
1. Full Model 107 3 4
2. Without σ 100 10 8
3. Without Z(R), and Z(B) 91 19 56
4. Without σ, Z(R), and Z(B) 88 22 82

Table 1: Recognition rates for each of the four
experimental conditions.

ing of each gesture performance. However, the video was
presented to the gesture recognizer as one continuous se-
quence. As such, hand trajectories included both gesture
and non-gesture hand motion; gestures would have to be
spotted. This data was then used as input in each of the four
experimental conditions. To ensure results were directly
comparable across conditions, a standardized set of pre-
sentation slides provided the contextual information with
which the gestures were interpreted. While the standard-
ized slides resembled a typical presentation, the slides were
static and did not respond to gestures. As such, the context
in which gestures were performed remained constant even
as the rates of false positives or false negatives varied.

5.3 Results

The results from the four experiments are presented in
table 1. In this table, we count the frequency of correct ges-
ture spottings as well as the number of recognition errors.
In this work we count both false negative errors and false
positive errors. A false negative is counted when a gesture
is performed by the presenter but no gesture is spotted by
the recognizer. False positives are counted when the recog-
nizer spots a gesture that does not correspond to any gesture
performance. It is also possible for one gesture to be mis-
taken for another (e.g., the “next slide” gesture mistaken as
the “previous slide” gesture), but this did not occur in our
data (leading to a fully diagonal confusion matrix).

As expected, both the number of false negatives and the
number of false positives increase as contextual features are
removed from the model. Here, the zone features have the
largest impact, especially in regards to false positives. This
is because, without the zone features, gestures can be rec-
ognized anywhere in space; this leads to a large number of
gesture detections during the preparatory motion that occurs
between gestures. For example, the “previous slide” gesture
might be mistakenly detected when the presenter initially
moves their hand up to interact with the presentation. While
the zone features are essential for a robust system, the spa-
tial relation feature also appears to provide some inferential
leverage to further reduce the number of errors.

6. Discussion

In this paper we have shown how spatial context and
coordinated hand motion can be efficiently modeled in a
DHMM for the purpose of building a gesture recognizer.
This was demonstrated by selecting a set of discrete features
describing the hands’ positions with respect to a common
region of interest (landmark), as well as a feature describing
the the hands’ positions with respect to one another. Fac-
torization was achieved by recognizing various conditional
independencies that follow directly from topological con-
straints based on the way in which features are computed.
This factorization reduced the number of parameters by two
orders of magnitude.

Additionally, we evaluated our models, and the context
features, experimentally. As expected, the gesture recog-
nizer was most accurate when using the full set of contex-
tual features; accuracy dropped for each feature that was
removed. Additionally, these experiments clearly demon-
strate the importance of the spatial “zone” features, which
communicate the locations of the presenter’s hands. Possi-
ble future work would be to extend these results to mixed
discrete-continuous hidden Markov models, where the di-
rection and spatial relation features are modeled using a
mixture of Gaussians rather than a simple histogram. Ad-
ditionally, we will consider other topological constraints re-
lated to instantaneous changes in motion [10].
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