
Reducing Waste in Data Center Network Upgrades

Andrew R. Curtis, S. Keshav, and Alejandro Lopez-Ortiz
Cheriton School of Computer Science

University of Waterloo

University of Waterloo Technical Report CS-2010-08

ABSTRACT
Fundamental limitations of traditional data center network
architectures have led to the development of architectures
that provide enormous bisection bandwidth for up to hun-
dreds of thousands of servers. To implement any of these so-
lutions, a legacy data center operator usually must replace
most switches in their network—a tremendously wasteful
proposition in terms of capital costs, energy used in man-
ufacturing, and raw materials. To enable such upgrades, we
introduce a construction for the first data center network topol-
ogy that supports heterogeneous switches while providing
guarantees on bisection bandwidth and using optimal link
capacity. We finish by describing an algorithm that finds the
minimum cost upgrade path for an existing network to sup-
port a given traffic load.

1. INTRODUCTION
Most current data center networks use 1+1 redun-

dancy in a three-level tree topology, which provides
inadequate bisection bandwidth, reducing data center
agility. This reduces server utilization when workloads
vary rapidly because dynamic reallocation of services
to servers is impossible. Recent work has addressed this
problem by providing enormous bisection bandwidth for
up to hundreds of thousands of servers [1, 7, 9, 10, 18].
However, these solutions assume homogeneous switches,
each with a prescribed number of ports. Therefore, adopt-
ing these solutions comes at the cost of replacing nearly
all switches in their network. This is not only waste-
ful but also usually infeasible due to sunk capital costs,
downtime, and time to market.

The goal of our work is to allow a data center op-
erator to incrementally add equipment to boost bisec-
tion bandwidth and reliability without needing to throw
out the entire existing network. Adding switches rather
than replacing them greatly reduces cost as well as the
environmental impact of a data center. However, this
results in the creation of a heterogeneous tree-like topol-
ogy, a topology that has not been sufficiently studied in
past work. Therefore, we provide the theoretical foun-
dations for the analysis of heterogeneous Clos networks.

We also use these results to construct an algorithm we
call OptUp that allows data center operators to de-
termine the minimal cost upgrade path to meet given
traffic constraints. Our construction is provably optimal
in that it uses the minimal amount of link capacity pos-
sible to meet these traffic constraints. To our knowledge
this is the first construction that achieves this optimal-
ity while supporting switches with heterogeneous rates
and numbers of ports.

Our key contributions are:

• Analysis of the relative dollar and energy costs of
reusing versus replacing networking infrastructure
in a data center.
• A theoretical basis for constructing optimal het-

erogeneous Clos topologies that support routing
all hose traffic matrices.
• The OptUp algorithm to determine the minimum

set of networking equipment that needs to be pur-
chased to upgrade an existing topology to meet a
given oversubscription guarantee.

The rest of this paper is as follows. We begin with a
background on data center topologies in Section 2. In
Section 3 we compare the costs of replacing and reusing
networking infrastructure in a data center. Section 4
provides the theoretical foundations for the analysis of
heterogeneous Clos networks. The OptUp algorithm is
described in Section 5. We end with a discussion of our
work and conclusions in Section 6.

2. BACKGROUND AND RELATED WORK
Most current DCN switching fabrics form a multi-

rooted tree. Servers are arranged in racks—each rack
typically contains 40–80 servers—and servers connect
to top-of-rack (ToR) switches, which usually have 48
1 Gb and 2–4 10 Gb ports. These ToR switches are
the leaves of the multi-rooted switching tree. This tree
usually has three levels: the ToR switches connect to
a level of aggregation switches which connect to a core
level made up of either switches or routers. The core
level is connected to the Internet using edge routers.

1

Model No. Ports Rates (Gb) Watts Price Energy cost/yr Years before energy cost dominants
Arista 7048 48, 4 1, 10 235 $11,995 $206 58
Arista 7124S 24 10 288 $13,195 $252 52
Juniper EX2500 24 10 190 $18,000 $166 108
Arista 7148S 48 10 588 $20,895 $515 40
Juniper EX8216 128 10 10k $716k $8,760 81

Table 1: Capital cost vs. energy cost for a few switches. We assume a relatively high price of 10 cents per kWh for

electricity and that the switch uses its maximal rated power 24 hours/day. Power draw information is from the vendor’s

product information.

This architecture has two major problems—poor re-
liability and insufficient bisection bandwidth—besides
many other minor problems, as detailed by Greenberg
et al. [7, 8].

These limitations have been the focus of much re-
cent work and researchers have proposed a variety of
topology constructions. Some current DCN proposals
are based on classic network topologies such as fat-trees
[1], the Clos network (a generalization of fat-trees) [7],
and hypercubes [18]. Others employ recursive construc-
tions [9,10]. These proposals, however, have a common
feature: they are highly regular and require homoge-
neous switches, each with a prescribed number of ports.
This makes it nearly impossible to implement them as
an upgrade to an existing data center without replac-
ing most switches in the network. Further, the proposed
topologies all take a one size fits all approach: they do
not allow operators flexibility in determining bandwidth
requirements of different rows in the data center, in-
stead all rows must have uniform uplink bandwidth.

The most closely related topology construction to our
work here is that of Rasala and Wilfong [15], who gave a
strict nonblocking construction for networks with het-
erogeneous switches. Our work differs in two key as-
pects. First, they dealt with strictly nonblocking net-
works whereas our constructions are rearrangeably non-
blocking in their setting, so our construction require
much less link capacity. Second, their constructions only
connect switch sets with two types of switches and they
do not support heterogeneous switch port speeds. Our
construction supports any number of switch types and
port speeds.

3. COMPARING THE COSTS OF REPLAC-
ING VERSUS REUSING NETWORKING
EQUIPMENT IN A DATA CENTER

We now compare the capital, operational, and envi-
ronmental cost of upgrading a DCN and contrast it with
the cost of replacing it with all-new infrastructure. The
capital cost of the network is a significant portion of
a data center’s overall operating budget. Recent esti-
mates peg the capital cost of networking equipment—
switches, routers and load balancers—at around 13–
20% of the total monthly budget of a 50,000 server

data center [8, 11], assuming data center operates with
a PUE1 of 1.7 and a three year amortization period for
servers and network equipment. Lengthening the life of
networking equipment can therefore tangibly reduce a
data center’s operational cost; for example, the yearly
cost of our example data center is over $17 million, so
doubling the life of all existing networking equipment
can save up to $7.65 million over three years and re-
duces the data center’s operating budget by 7.5%. This
indicates our approach is at least promising. We now
explore this saving at greater depth.

One reason to replace equipment is to save energy
costs, e.g., by replacing several inefficient devices with
a new device that draws much less power. To examine
this approach in the context of a DCN, Table 1 lists
details of a few switches. As the table shows, the ex-
pense of a switch is dominated by capital cost, not en-
ergy cost, making it unlikely that replacing old switches
with a new switch will save money overall. For example,
replacing 10 Arista 7048 switches with a 48 port 10 Gb
switch saves $2,192 per year on energy costs assuming
PUE of 1.7 and 10 cents per kWh, but it still takes over
9.5 years for the power savings to pay for the capital
costs of the new switch. Therefore, replacing switches
on the basis of energy savings does not make sense cur-
rently.

The operational power draw of a switch is only one
component of its total energy use—a complete analy-
sis should include the energy used to manufacture it.
We are not aware of any such analysis for networking
equipment; however, studies have been conducted to de-
termine the amount of energy used to manufacture a
personal computer, which should be on the same or-
der of magnitude as the energy used producing a 1U
switch. Williams has estimated that over 2 MWh of en-
ergy is used to produce a desktop PC [17]. If we take this
number as an approximation for producing a switch, we
find that manufacturing a switch consumes as much en-
ergy as powering that switch for 6–12 months for 24
hours/day. When a switch like the Arista 7048 has a
three year lifetime, manufacturing it accounts for nearly

1Power Usage Efficiency (PUE) is the total facility power/IT
equipment power. An average DC has a PUE of 2.0 [4], and
the industry best is 1.2 [6].

2

25% of its total energy use. Therefore, doubling the life-
time of switches can reduce their lifetime energy con-
sumption by up to 12.5%.

The downside of extending switches lifetimes is that,
as hardware ages, its likelihood of failure increases. Ev-
ery time a switch (or component of a switch such as a
port or line card) fails, it impacts the network’s ability
to meet demand and necessitate human intervention.
Given a traditional DCN with only 1+1 redundancy,
the a switch failure seriously degrades network perfor-
mance. However, if the network has been upgraded ac-
cording to our approach, the impact of a single switch
failure is minimal—the network will have N+N redun-
dancy, so removing a single switch has minimal im-
pact on the amount of bisection bandwidth available. A
failed switch will need to be replaced by a human; how-
ever, these replacements will have to be performed re-
gardless, and most switches will operate long past their
amortization period, so IT staff workload will not be
adversely effected by our approach.

4. OUR APPROACH
We are interested in upgrading legacy DCNs, so our

approach must be applicable to the traditional 1+1
topology, which happens to be a form of a Clos network.
However, Clos networks cannot make use of heteroge-
neous switches as we described previously. Therefore,
we focus on the analysis of heterogenous Clos networks.
To give optimal results, our construction places strict
constraints on the number of ports available at switches
in the core level of the network, so it may not be not
applicable in every situation.

Few detailed studies of data center traffic have been
published; however, the studies to date demonstrate
that DCNs exhibit highly variable traffic [2, 7, 12]—the
traffic matrix (TM) in a DCN shifts frequently and its
overall volume changes dramatically in short time peri-
ods. To account for this, our constructions can feasibly
route, i.e., no link’s utilization is ever higher than 1, all
TMs that are possible given a maximum ingress/egress
rate for each node is known as the hose traffic matri-
ces [3, 5]. We denote the rate of each node by r(i).

To simplify our analysis, we use multipath routing,
i.e., a TM D represents a multi-commodity flow and
entry Dij is a demand from i to j. Modeling routing
as a network flow is not entirely realistic because a sin-
gle flow can be split fractionally across multiple paths.
However, we expect our theoretical results to be indica-
tive of the behavior of a practical implementation be-
cause long-lived flows are rare in DCN traffic [7]. We
address this issue further in Section 4.3.

Before presenting our heterogeneous Clos construc-
tion in Section 4.2, we briefly review the Clos network.

1

m

.

.

.

.

.

.

.

.

.

coreinput output

n

.

.

.

.

.

.

.

.

.

.

.

.

m

m

m

m

r

r r

r
n

nn

1
(l-2) stage

r
(l-2) stage

1
(l-2) stage

r
(l-2) stage

Figure 1: Unfolded l-stage Clos network. Each input and

output switch here is a subnetwork with l − 2 stages.

4.1 The Clos network
A 3-stage Clos network, denoted by C(n, m, r), is an

interconnection network where the first stage, made up
of input switches, consists of r switches, each with n
inlets and m uplinks. Symmetrically, the third stage
consists of r output switches, each with n outlets and
m downlinks. The second stage then is m switches, each
with r links to first-stage switches and r links to third-
stage switches. We call the switches in the middle stage
the core switches. We refer to the links from a stage to
a higher stage as uplinks and the links from a stage to a
lower stage as downlinks. A folded Clos network places
input and output layers top of each other; only bidi-
rectional networks can be folded. DCNs are folded Clos
networks, so we use the folded Clos variant in this paper,
and when doing so, the input and output switches are
the same devices, so we refer to them as input/output
(IO) switches.

The recursive nature of Clos network means that we
only have to deal with 3-stage Clos networks. An l-stage
Clos network is recursively composed of 3-stage Clos
networks. In an l-stage Clos network, each input and
output switch is replaced by an (l − 2)-stage network.
An example is shown in Figure 1. As a result of this
recursive construction, any algorithm or theorem that
applies to a 3-stage Clos network applies to an l-stage
Clos networks by applying it to the outermost 3-stage
network first, and then recursively applying it to the
(l−2)-stage subnetworks. As such, we always deal with
3-stage networks in this paper, but our results can be
generalized to an l-stage Clos networks in a straightfor-
ward manner.

4.2 Constructing A Heterogeneous Clos Net-
work

We separate the logical network design (§4.2.1) from
the problem of finding a physical realization (§4.2.2).

4.2.1 Logical design
The logical topology of a Clos network C(n, m, r) col-

3

lapses all core switches into a single logical node, so
the logical topology of C(n, m, r) is a tree. This logi-
cal tree’s root node has r children—the r input/output
switches—and the tree’s leaves represent inlets and out-
lets. Here, an edge between an IO node and the root rep-
resents m links in the underlying physical realization.
For the remainder of this section, we are concerned with
the design of logical topologies that use the minimal
link capacity necessary and sufficient to feasibly route
all hose TMs (i.e., the logical topology is optimal), and
we make the assumption that a logical node can be re-
alized using the same amount of switching capacity as
the logical topology. We lift this assumption in the next
section when we show how to find such physical realiza-
tions.

Note that in our construction, switches need not uni-
formly have n inlets and outlets. We let each IO switch
i have a rate, denoted by r(i), which is the sum of its
downlink rates (e.g., in a homogeneous network, the rate
of each IO switch is n). Each logical edge (i, x) between
an IO node i and logical core node x has a capacity
c(i, x), which is the sum of physical link rates that (i, x)
represents. A logical topology has optimal edge capacity
if the sum of edge capacities is equal to the sum of node
rates.

We are now ready to give our main logical design re-
sults. The following characterizes logical arrangements
that use minimal link capacity to feasibly route all hose
TMs.

Lemma 1. Let T be a logical topology with input/output
nodes I = {1, . . . , k}, and let x1, . . . , xl be the root nodes
of T . Let Xp denote the set of input/output nodes neigh-
boring root node xp such that X1 = I and X1 ⊃ · · · ⊃
Xl. Whenever all edges of T have positive capacity, we
have that T feasibly routes all hose TMs with optimal
edge capacity if, for all xp, such that 2 ≤ p ≤ l,

r(i) >
∑

j∈X(xp−1)−X(xp)

r(j) for all i ∈ Xp (1)

and |Xl −Xl−1| ≥ 2.

Proof. Suppose there is some logical topology T
that has a root node x such that there is a node i ∈ Xl′ ,
where l′ is the maximal root node i neighbors, with
c(i, xl′) > 0 and for which Equation 1 does not hold.
Consider how much capacity the edges (i, x1), . . . , (i, xl′−1)
must have since T can serve all hose TMs: there must
be at least min{r(i),

∑
j∈X1−Xl′

r(j)} capacity to these
nodes otherwise there is a hose TM that T cannot fea-
sibly route. By assumption, r(i) ≤

∑
j∈X1−Xl′

r(j), so
r(i) is the minimal here. In a logical topology with op-
timal edge capacity, each IO node has at most r(i)
of uplink capacity. However, here, we have that i has
r(i) + c(i, xl′) > r(i) uplink capacity, contradicting the
optimality of T .

Suppose that |Xl−Xl−1| = 1. Here, T is non-optimal
since the root node xl has only a single neighbor, so it
cannot route traffic to any other IO nodes. Therefore,
it should not have positive capacity, since all traffic will
need to be routed through x1, . . . , xl−1 anyhow.

The following results are implied by this lemma:

• whenever r(1) = · · · = r(k), the optimal logical
topology has a single root node, and

• no matter the rates of each IO node, a logical
topology with a single root node is optimal, i.e.,
a logical topology can always use fewer root nodes
than it’s allowed by Lemma 1 and be optimal.

This lemma identifies the available logical topologies
for a set I of IO nodes, but it does not determine the
capacities of each logical edge. The following theorem
shows how capacity can be assigned to the logical edges
of T to feasibly route all hose TMs. The intuition un-
derlying this theorem is that the root xp and its chil-
dren (the IO switches) form a disjoint spanning tree.
We provision the spanning tree rooted at x1 first, and
then move to the next root node’s spanning tree. Every
unit of capacity that is provisioned to x1 is a unit that
does not have to be routed through x2, . . . , xl, so we
subtract off the previously allocated capacity from the
edges to x2, . . . , xl.

Theorem 2. Let T be a logical topology with input/
output nodes I = {1, . . . , k}, and let x1, . . . , xl be the
root nodes of T such that T has an optimal number of
root nodes by Lemma 1. Let Xp denote the set of in-
put/output nodes neighboring root node xp such that
X1 = I and X1 ⊃ · · · ⊃ Xl, and let X0 = ∅ and
Xl+1 = ∅. We have that T can feasibly route all hose
TMs using optimal capacity if and only if

c(i, xp) =

{∑
j∈Xp−Xp+1

r(j) if i ∈ Xp+1,

r(i)−
∑

j∈I−Xp
r(j) otherwise

(2)

for all 1 ≤ p ≤ l and all i ∈ I.

Proof. Suppose that T can feasibly route all hose
TMs and that Equation 2 holds for all edges except
(i, xp). Let l′ be the maximum root node such that i ∈
X(xl′). Because T can feasibly route all hose TMs, we
have:∑

u∈[l′]

c(i, xu) =
∑

q∈[l′−1]

∑
j∈Xq−Xq+1

r(j)

+ r(i)−
∑

j∈X1−Xl′

r(j) (3)

=
∑

j∈X1−Xl′

r(j) + r(i)−
∑

j∈X1−Xl′

r(j) (4)

= r(i) (5)

4

So, we have∑
q∈[l′−1]

∑
j∈Xq−Xq+1

r(j) =
∑

j∈X1−Xl′

r(j) (6)

whenever T can feasibly route all hose TM with minimal
edge capacity. However, here, we find a contradiction in
both possible cases.
Whenever i ∈ X(xp+1), so c(i, xp) <

∑
j∈Xp−1−Xp

r(j),
the left hand side of Equation 6 is less than the right
hand side. And otherwise, c(i, xp) < r(i)−

∑
j∈X1−Xp

r(j),
in which case, we cannot make the reduction from Equa-
tion 4 to Equation 5.

To show sufficiency, suppose that Equation 2 holds
for all edges of T . We construct a multipath routing
that feasibly routes any hose TM Dij . Let i, j ∈ I be
IO nodes such that r(i) ≤ r(j) and let l′ be the max
root node where i, j ∈ Xl′ . When sending to j, let i
split its traffic across root nodes x1, . . . , xl′ such that
Dij/c(i, xp) traffic is routed through xp, for 1 ≤ p ≤ l′,
and then xp forwards this traffic to j on its single edge to
j. For any hose TM D, the max traffic i can send is r(i),
so the max traffic i places on edge (i, xp) is r(i)/c(i, xp).
Since Equation 2 holds for all edges, we have that∑

u∈[l′]

c(i, xu) = r(i)

as established in Equations 3–5 above. Therefore, i can
send traffic at rate up to r(i) and never overload a link.
Similarly, i cannot overload a link while receiving traf-
fic, because it cannot receive more than r(i) traffic at
once.

We give two examples of an optimally provisioned
logical topology in Figure 2. This theorem prescribes
the amount of capacity needed in a logical topology, yet
it is flexible in assignment of this capacity across logical
edges. This is beneficial because the physical constraints
of switches make many logical topologies infeasible to
construct in practice.

4.2.2 Physically realizing a logical node
We now show how to find a physical realization of

a logical node. Here, we are given a logical core node
and a set of IO switches, and we want to find a set of
switches that realizes the core node.

Each IO switch has a set of uplink ports, which may
have multiple speeds. To simplify our presentation, we
separate IO nodes with multiple uplink port speeds into
separate switches, so that each IO switch has a single
uplink port speed. This does not lead to a loss of gener-
ality because we can recombine the separated switches
later. So, each IO switch i has an single uplink port
speed, denoted by p(i). We assume that an IO switch i
has at least dr(i)/p(i)e ports; otherwise, no realization
that can feasibly route all hose TMs exists.

4 4 16 16 64 64

x1 x2

rate =

4

8
8

56 56
4 8

88 8

4 4 16 16 64 64

x1 x2

rate =

4

8

x3

24 244

88 8 8

32 32

Figure 2: Two optimal logical configurations for a set of

IO switches. The uplink rate of each IO switch is shown

inside of the switch, and the numbers by the edges indi-

cate the edge’s capacity. Despite the different number of

core nodes, each of these logical topologies is optimal.

We now show how to realize a logical core node x
with a set I of IO switches as its children. We use X to
denote the set of switches that makeup logical node x.
Let m(i) = dc(i, x)/p(i)e, where c(i, x) is the capacity
of the logical edge (i, x) as before. Here, m(i) is the
number of physical uplinks i has to x. We use P (r) to
denote the set of all switches of I with p(i) = r, and
I(x) denotes the set of IO switches neighboring root x.

Now, we need to determine how many switches are in
X and how many ports each has. Let mmin = minj∈I(x){m(j)}.
The core switches that realize x and the IO switches
I(x) form a complete bipartite graph, so we have |X| =
mmin. Each core switch in X must have at least mmin ·
|P (r)| ports with speed r, for each port speed r, and
each i ∈ I(x) has dm(i)/mmine uplinks to each switch
in X.

Theorem 3. A physical realization G constructed as
described above of a logical tree T with root node x and
input/output switches I with c(i, x) minimized accord-
ing to Theorem 2 can feasibly route all hose TMs.

Further, if c(i, x) and m(i) are evenly divisible by p(i)
and mmin respectively for all i ∈ I, then the amount of
link capacity used by this physical realization matches
the lower bound of any switching network that can fea-
sibly route all hose TMs.

Proof. To show that G can feasibly route all hose
TMs, by Theorem 2, it’s enough to show that there
is a routing which distributes r(i)/c(i, x) traffic over
the physical links of the logical edges (i, x) and (x, i)
without overloading any physical links. When i sends
traffic to x, let each physical uplink carry p(i)/c(i, x)

5

fraction of the traffic, no matter the destination, and
then the receiving core switch forwards the traffic to its
destination. Then any traffic matrix can be handle as
long as i never sends more than:

r(i) ·
∑
v∈X

p(i)/c(i, x)dm(i)/mmine =

r(i) · |X|
(⌈c(i, x)

m(i)

⌉
/c(i, x) · dm(i)/mmine

)
=

r(i) ·mmin

(
1/mmin

)
=

r(i)

traffic, which i will never exceed in a hose TM. By a
similar argument, there is enough link capacity from
the physical switches in X to i.

An optimal construction has a total link capacity of
2
∑

i∈I r(i). To see that the construction above matches
this bound when c(i, x) and m(i) are evenly divisible
by p(i) and mmin respectively for all i ∈ I, consider the
above equations. In this case, each i ∈ I has r(i) uplink
capacity and r(i) downlink capacity. Summing this over
all switches in I shows our construction is optimal.

In the above theorem we claim that our construction
needs only as much link capacity as any other switch-
ing network that can feasibly route all hose TMs. A
switching network is a network where nodes with posi-
tive rate (i.e., r(i) > 0) never directly connect to other
nodes with positive rate, that is, all nodes connect to
switches. A corollary to a result of Zhang-Shen and
McKeown [19] is that any switching network with node
rates r(1), . . . , r(n) can feasibly route all hose TMs iff
the total link capacity is at least

∑
1≤i≤n 2r(i). This

bound is matched by, for example, a homogeneous 3-
stage Clos network when all IO switch rates are equal.
Our construction matches this bound without any re-
strictions on IO switch rates.

4.3 Routing
The theorems in the previous section state that a

feasible routing of any hose TM exists on our heteroge-
neous Clos network construction; however, we have not
described how to find such a routing. To prove these the-
orems, we used multipath routing, where a flow can be
split across multiple paths. This approach is not practi-
cal, however, because switches do not currently support
splitting a flow across multiple paths. Even if switches
did support flow splitting, out of order packet arrival
could cause problems with TCP.

For practical routing our heterogeneous constructions,
we offer two possibilities. First, one could use Mudigonda
et al.’s SPAIN [14], a recent system to load balance
DCN traffic over arbitrary topologies. SPAIN works by
created many VLANs over a network topology, each
one a spanning tree, and then spreading flows over these
spanning trees. As our constructions give tree-like topolo-

gies, SPAIN would be to extract the full bisection band-
width from our constructions provided that flows can be
effectively load balanced across VLANs.

The second routing approach is to load balance flows
using oblivious routing, that is, the path for an i-j
flow is randomly selected from a probability distribu-
tion over all i-j paths available. Valiant load balanc-
ing (VLB) [16] is one example of oblivious routing, and
VLB provides optimal routing on a Clos network when
flows can be split across multiple paths (packet-level
VLB). Flow-level VLB has been tested as a load balanc-
ing mechanism by Greenberg et al. on a Clos network,
and was found to balance traffic with near optimal re-
sults [7], namely because long lived flows are rare in
the data center. In their experiments, flow-level VLB
performed within 94% of optimal. Packet-level VLB is
no longer optimal on our heterogeneous Clos networks;
however, there is a packet-level optimal oblivious rout-
ing on our constructions, and the routing can be found
using linear programming [13].

Theorem 4. When flows can be split across multiple
paths, there exists an oblivious routing that can feasibly
route all hose TMs on a heterogeneous Clos network
that meets the conditions of Theorem 3.

Proof. In the proof of Theorems 2 and 3, we showed
that a feasible multipath routing exists for any hose TM
on a heterogeneous Clos network. As the same routing
is feasibly for any hose TM, it is an oblivious routing
for all hose TMs.

Even though we cannot perform packet-level obliv-
ious routing in practice, previous positive results re-
garding flow-level VLB lead us to believe that flow-level
oblivious routing will perform well on a heterogeneous
Clos network as well.

5. THE OPTUP ALGORITHM
We now sketch the OptUp algorithm. As input, it

takes a description of the data center’s infrastructure
and the prices of available switches. OptUp returns a
min-cost set of switches to purchase and an upgraded
network topology.

OptUp does the following:

1. generate all feasible logical topologies as deter-
mined by Lemma 1, and then

2. find a min-cost physical realization of each logical
topology.

Step 1 is easily done by enumeration because the
number of feasible logical topologies grows linearly with
the number of IO nodes.

Step 2 is an NP-hard problem, which we solve using
a branch and bound algorithm. Branch and bound is a
general algorithm to solve optimization problems, and it

6

enumerates the solution space efficiently by eliminating
branches of solutions known to be non-optimal.

By Theorem 3, we can take our solution space to be
the set of IO switches because the core switches are
determined by the IO switches (i.e., a heterogeneous
Clos network is uniquely defined by the IO switch set).
So, each node in the search tree is labeled by a switch
type, and we branch a node by giving it children labeled
with the available switch types. Each search tree node
is a partial solution, representing the set of IO switches
denoted by the labels on nodes to its path to the search
tree’s root.

Branch and bound trims branches of the search tree
by lower bounding the cost of partial solutions, and dis-
carding the subtree of a partial solution that cannot
contain an optimal solution. Here, our lower bound for
a partial solution is equal to the cost of partial solution’s
label plus an estimate of additional IO switch cost plus
an estimate of core switches cost. The additional IO
switch cost estimate is found by greedily adding a min-
cost switch from the available types until the solution
has enough capacity to satisfy the requirements of The-
orem 2. The core switch cost is estimated by summing
the number of ports/speed multiplied by the number
of ports of that rate needed as dictated by Theorem 3.
We can also use Theorem 3 to determine when a par-
tial solution solution is not feasible and then trim its
branch.

We are currently evaluating the performance of our
algorithm and plan to report its performance in future
work.

6. CONCLUSION
In this paper, we have argued that upgrading a DCN

by adding switches, rather than by replacing switches
significantly lowers capital costs and reduces a data cen-
ter’s overall energy burden. To enable such upgrades, we
gave theoretical results for constructing DCNs with het-
erogeneous switches. Finally, we described the OptUp
algorithm which can find a minimum cost upgrade path
so an existing network can feasibly route a set of hose
TMs. Together, our results here are a step towards a
DCN architecture where the existing network does not
have to be replaced to increase bisection bandwidth.

7. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture. In ACM
SIGCOMM, 2008.

[2] T. Benson, A. Anand, A. Akella, and M. Zhang.
Understanding data center traffic characteristics. In
Proceedings of the 1st ACM workshop on Research on
enterprise networking (WREN), 2009.

[3] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K.
Ramakrishnan, and J. E. van der Merive. A flexible model
for resource management in virtual private networks. In
ACM SIGCOMM, 1999.

[4] EPA. Epa report to congress on server and data center
energy efficiency. Technical report, U.S. Environmental
Protection Agency, 2007.

[5] J. A. Fingerhut, S. Suri, and J. S. Turner. Designing
least-cost nonblocking broadband networks. J. Algorithms,
24(2):287–309, 1997.

[6] Google. Efficient computing–step 2: efficient datacenters.
http://www.google.com/corporate/green/datacenters/
step2.html.

[7] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and
flexible data center network. In ACM SIGCOMM, 2009.

[8] A. G. Greenberg, J. R. Hamilton, D. A. Maltz, and
P. Patel. The cost of a cloud: research problems in data
center networks. Computer Communication Review,
39(1):68–73, 2009.

[9] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: a high performance,
server-centric network architecture for modular data
centers. In ACM SIGCOMM, 2009.

[10] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
Dcell: a scalable and fault-tolerant network structure for
data centers. In ACM SIGCOMM, 2008.

[11] J. R. Hamilton. Data center networks are in my way.
Presented at the Standford Clean Slate CTO Summit,
2009.

[12] S. Kandula, S. Sengupta, A. Greenberg, and P. Patel. The
nature of datacenter traffic: Measurements & analysis. In
ACM IMC, 2009.

[13] M. Kodialam, T. V. Lakshman, and S. Sengupta.
Maximum throughput routing of traffic in the hose model.
In IEEE Infocom, 2006.

[14] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C.
Mogul. SPAIN: COTS data-center ethernet for
multipathing over arbitrary topologies. In USENIX NSDI,
2010.

[15] A. Rasala and G. Wilfong. Strictly non-blocking wdm
cross-connects for heterogeneous networks. In Proceedings
of the thirty-second annual ACM symposium on Theory of
computing (STOC), pages 514–523, New York, NY, USA,
2000. ACM.

[16] L. G. Valiant and G. J. Brebner. Universal schemes for
parallel communication. In Proceedings of the thirteenth
annual ACM symposium on Theory of computing
(STOC), 1981.

[17] E. D. Williams. Revisiting energy used to manufacture a
desktop computer: hybrid analysis combining process and
economic input-output methods. In Proceedings of the
International Symposium on Electronics and the
Environment (ISEE ’04), pages 80–85, Washington, DC,
USA, 2004. IEEE Computer Society.

[18] H. Wu, G. Lu, D. Li, C. Guo, and Y. Zhang. MDCube: a
high performance network structure for modular data
center interconnection. In CoNEXT ’09: Proceedings of the
5th international conference on Emerging networking
experiments and technologies, 2009.

[19] R. Zhang-Shen and N. McKeown. Designing a predictable
internet backbone with Valiant load-balancing. In
Thirteenth International Workshop on Quality of Service
(IWQoS ’05), 2005.

7

