Modeling Context-Aware Distributed Event-Based Systems

Eduardo S. Barrenechea, Rolando Blanco, and Paulo Alencar
David R. Cheriton School of Computer Science
University of Waterloo

Technical Report CS-2010-07

Abstract

Emerging applications are becoming increasingly dy-
namic, adaptive and context-aware in areas such as
just-in-time location-based m-commerce, situational
health monitoring, and dynamic social networking
collaboration. Although numerous systems and im-
plementation infrastructures have been proposed to
deal with some features of such systems, there is
a lack of higher-level modeling abstractions and as-
sociated component metamodels that combine dy-
namic features, adaptation mechanisms, and context-
awareness.

In this report we propose a metamodel for context-
aware distributed event-based systems that supports
novel forms of event-based context-aware interactions
such as context event schemas, component interfaces
that react to context, event and context interactions
at the interface level and subscriptions based on both
events and context. Our approach also supports re-
quirements for context-aware systems proposed in the
literature. The applicability of the approach is illus-
trated by showing how existing context-aware systems
can be modeled using our metamodel.

1 Introduction

Recent emerging applications are becoming increas-
ingly dynamic, adaptive and context-aware in areas
such as just-in-time location-based m-commerce, sit-
uational health monitoring, and dynamic social net-
working collaboration. Context-awareness provides
systems with increased information about the situa-
tions in which its components and users are immersed.
Context is highly dynamic, sometimes with drastic
changes. For example, a change in location can have
an effect on the status of the available services or be-
haviour of running applications. Context-aware sys-
tems are required to support this high level of dy-
namism.

Although numerous systems and implementation

infrastructures have been proposed to deal with fea-
tures of context-aware systems in isolation, there is a
lack of component metamodels and higher-level mod-
eling abstractions. Currently, context-awareness rep-
resentation is typically addressed at the application
level. The coupling between application and context-
awareness related code introduces problems associ-
ated with software architecture and development,
reusability, maintenance and program comprehen-
sion. By introducing context and context-awareness
entities as first class citizens, separate from applica-
tion level entities, it is possible to model context-
awareness in an application-independent manner.
This promotes reusability of concepts and features,
as well as strengthens support for program compre-
hension, maintenance and architecture.

The features related with context-awareness require
a highly dynamic infrastructure. Distributed event-
based systems (DEBSs) provide such infrastructure
through adaptive component interfaces and loosely
coupled components communicating via event-based
asynchronous interactions. The low coupling between
components in a DEBS is due to the fact that compo-
nents generating events are oblivious to components
consuming the events and vice-versa. Consumers are
interested in event types and not in the components
generating events. This property of DEBSs allows
context to be disseminated in a transparent fashion
throughout the system. Context-aware components
are notified of context related events generated from
changes in context irrespectively of context sources.
Context sources and context-aware components can
enter and leave the system without the need to alter
existing components.

In this report we propose a metamodel for
context-aware distributed event-based systems. The
metamodel supports the dynamism associated with
context-awareness through event-based interactions
and component interface changes. The metamodel
consists of a structural view and a control view. The
structural view is used to model the relationships be-

tween events and interfaces. The control view is used
to model administrative components in a DEBS, as
well as component grouping and access controls that
can be imposed on events and interfaces. The model
meets general requirements for context-aware sys-
tems proposed in the literature and later discussed in
this report. The metamodel supports novel forms of
event-based context-aware interactions, such as con-
text event schemas, component interfaces that react
to context, event and context interactions at the in-
terface level, and subscription based on both events
and context.

1.1 Distributed Event-Based Systems

A distributed event-based system (DEBS) is made
up of independent functional components interacting
with each other via events [4]. An event is a data
representation of a happening in the system or the
environment in which the system executes.

Events are generated by components called publish-
ers. Components interested in the events that have
been generated, are called subscribers. Other charac-
teristics of DEBSs are:

- The kinds of events, components publish and
subscribe to, can be introduced to, and removed
from, the system at run time.

- A component publishes an event by explicitly in-
voking an announce or publish operation.

- Components must register their interest on the
events they want to be notified about.

- When an event is published, the component an-
nouncing the event continues its execution with-
out being blocked. The publisher component
does not wait for subscriber components to be
notified or for their reaction to the event.

- DEBSs maintain the information required to de-
cide which components are to be notified when an
event is published, without the need for publisher
components to be aware of which components are
interested in their events. Hence, when an event
is announced the publisher of the event does not
specify the components that will be notified of
the event.

- The system attempts to deliver an event to all
the components interested in the event.

Because of these characteristics, components in
DEBSs exhibit time, space, and synchronization de-
coupling [7]. Time decoupling occurs when interact-
ing components do not need to be actively participat-

ing in the interaction at the same time; space decou-
pling occurs when components do not need to know
each other for them to interact; and synchronization
decoupling occurs when publishers announcing events
do not wait for the events to reach interested compo-
nents, nor for their reaction to the events.

1.2 Context-Aware Systems

Context can be defined as any information used to
characterize the situation a system entity or user is
inserted|[6].

A context-aware system is a system that takes ad-
vantage of available context information relevant to
its functionality in order to better assist its users.
Context-aware systems are dependent on many differ-
ent types of context that can either be automatically
acquired through sensors, or that is manually input
into the system. The former is referred to as implicit
context, while the later is referred to as explicit con-
text.

Context-aware systems may be classified according
to its main goals: information and services, automa-
tion or context information repository[6).

Information and services context-aware systems
provide users with extra context information to sup-
port the their tasks and goals such as assisting in
finding a Japanese restaurant close to the user, for ex-
ample. Automation uses context information to auto-
mate tasks such as switching a mobile phone to silent
mode during a scheduled meeting time. Context in-
formation repository is used to store context informa-
tion for later retrieval, such as providing the location
where a handheld detected a wireless hotspot.

Requirements for dealing with context-awareness
have been discussed in [2, 6] and are described be-
low.

Separation of concerns addresses the need of sep-
arating low-level programming details of retrieving
context information sensed through sensors from
higher-level details such as how this context infor-
mation applies to the context-aware system. This
problem is best addressed through the use of com-
mon interfaces for retrieving context information for
sensor components.

Distributed communications specifies the need
of supporting distributed components and context
sources. Context sensing is a distributed effort, since
most devices will have sensors for all different types
of context.

Context availability relates to the necessity that
context-aware systems have of always being able to
access context information. Context sensor compo-
nents should be self-contained and independent from

other components in the system.

Resource discovery relates to the ability of a com-
ponent being able to identify other components of in-
terest in the system. It addresses the need of being
able to request context from other components that
either sense, interpret or transform context informa-
tion.

This report is structured as follows. Section 2 com-
pares our approach to other approaches proposed in
the literature. Section 3 describes our metamodel in
detail. The applicability of the approach is illustrated
in Section 4 by showing how the existing context-
aware systems can be modeled using our metamodel.
Conclusion and future work are presented in Sec-
tion 5.

2 Related Work

Different approaches for dealing with context-aware
systems have been discussed in the literature. The
Context-Toolkit[6], one of the first context-aware
frameworks, proposes the use of context widgets as an
abstraction for context sensors, hiding the complexity
and low level details of context acquisition. Widgets
are reusable entities and can be exchanged by other
widgets that provide the same type of context. Con-
text can be retrieved from widgets by either polling
the widget or requesting for notification on context
changes.

The Service-Oriented Context-Aware Middleware
(SOCAM)[11] is a distributed middleware supporting
context-aware services. Context is provided by ei-
ther direct sensory input through context providers or
by processing and logic reasoning from previously ac-
quired context through context interpreters. The ser-
vice locating service is a directory containing the ref-
erences to context providers and context interpreters
available for use. It is responsible for keeping track
of the changes in context providers and context in-
terpreters. Context-aware services query the service
locating service in order to receive a reference from ei-
ther a context provider or a context interpreter that
provides the desired context information. A context-
aware service can either pool or request notification
upon context changes from the context providers and
context interpreters.

A similar approach is presented by de Farias et
al.[5]. Both context providers and context inter-
preters are used in a way similar to SOCAM. It in-
troduces a service provider component that provides
both context-aware and plain services. A service man-
ager is responsible for discovery, selection and pub-
lication of services, while a monitor manages appli-
cation service subscriptions. A metamodel for mod-

eling Service-Oriented context-aware applications is
also provided in their approach.

The Context-Awareness Sub Structure (CASS)[8]
is a middleware-based approach that supports
context-awareness in hand-held and mobile comput-
ing devices. Context is acquired by sensor equipped
computers called sensor nodes and transmitted to the
CASS server for storage. The CASS server stores all
context changes in a database, creating a context his-
tory. An inference engine uses the information con-
tained in the context history database to derive higher
level context for the context-aware applications. The
context-aware applications retrieve context informa-
tion either through polling or notification. This ap-
proach provides a separation between context reason-
ing and application code, since all of the context pro-
cessing is contained in the CASS server.

The approaches described above, although referring
to networked and distributed systems, are not appli-
cable as a DEBS, since they make use of a Service-
Oriented architecture instead. These approaches also
focus mostly on low-level programming infrastructure
and implementation details of context-aware applica-
tions and not on higher-level concepts such as meta-
models. The work of de Farias et al. is an exception
to this, but it also uses a Service-Oriented architec-
ture and does not provide a distributed event-based
metamodel for context-aware systems.

The feasibility of applying context-awareness to
distributed event-based applications was observed by
Biegel et al. through the sentient object model pre-
sented in [2]. Their proposed approach is based on
STEAM[12], a location-aware, event-based middle-
ware for ad-hoc networks. In this approach sensors
are used to propagate different types of events con-
taining contextual information. Actuators register for
specific event types in order to receive context data.
Events can be filtered by its context data and loca-
tion. This approach also focuses mostly on low-level
programming infrastructure and does not provide a
formal metamodel for context-aware DEBS.

3 Metamodel

We represent DEBSs using our metamodel proposed
in [4]. The main advantage of using this metamodel
is its ability to represent, not only basic features com-
mon to most DEBSs, but also advanced DEBS fea-
tures that have been lately proposed in DEBS. In par-
ticular, component grouping mechanisms and basic
role based access controls [1, 10]. Besides the events
and component themselves, other DEBS entities rep-
resented in the metamodel are reactive component in-
terfaces, regions, event schemas and access roles.

Context Primitive
subscribes to Enumeration
events of type

derived
from | o * has 0.* 0.* represents Structured
Context Reactive Context Event
0.* Component Interface Schema
0. publishes 0.
events of type
composed v Data Type
from | 0.* 7
0 Interface Behaviour
] 1 subscribes to
behaviour | 4 « 0. eventsoftype 0." \V/ 0.*
0.* . 1 0.*
Reactive Component ;
Interface Event Schema Attribute
derived | 0. 1 0. 0.
from
publishes
events of type
implements | 0..*
i 0.* 1
Interface Implementation k¢ - - - - - Interface Implementation Reactive Component
Instance executed by

Figure 1: Structural view of the context-aware DEBS metamodel.

The metamodel, as presented in [4], does not pro-
vide any context or context-awareness modeling ca-
pabilities. Modeling context-awareness with such
metamodel would require both context and context-
awareness to be modeled at application-level, result-
ing once again in a low-level programming infrastruc-
ture approach.

In order to model context-awareness in DEBSs we
need to introduce the concept of context and context-
awareness into the existing model. This is accom-
plished with the inclusion of three new entities into
the metamodel: Context, Context Event Schema and
Context Reactive Component Interface.

3.1 Structural View

Figure 1 shows the structural view of the context-
aware DEBS metamodel. The entities named in ital-
ics in the Figure are the ones introduced in our ap-
proach. These new entities allow for context and
context-awareness to be represented as first class cit-
izens that can be modeled and reasoned upon in the
metamodel.

Every event in the system has an event schema. An
event schema specifies the data attributes that every
event of the given event schema must have.

The operation of the components in the system is
specified by reactive component interfaces. These in-
terfaces specify the events published and of interest

to components, as well as the behaviour that a com-
ponent implementing an interface must exhibit. The
use of interfaces makes possible to focus on what func-
tionality is being provided and the interactions and
collaborations between components, without the need
to inspect actual interface implementations.

Access roles characterize sets of components [9].
Before publishing an event, a component must ad-
vertise the event to the system. Advertisement of an
event is rejected by the system if the component ex-
ecuting the request has not been granted the access
role required to implement the interface.

Once an event type has been advertised, a com-
ponent can publish the event by invoking an event
publishing operation. A component wishing to react
to events of a schema published via a specific inter-
face must first subscribe to the events generated by
the interface. A component can subscribe to an event
schema produced by an interface, only if it has been
granted the role required by the interface to react to
events of the given event schema. As part of the sub-
scription request, a component can specify a filtering
condition. Events will be delivered to the component
only if the filtering condition is met.

The Context entity is used to represent a specific
type of context. A Context Event Schema extends
the event schema and is used to represent this con-
text. An event based on a context event schema will
be used to propagate the changes in context through-

L

Event 0..* 1 Reactive Component Context Reactive
publishes Interface I<]—_ Component | nterface
0..* has requires | g, has
to implement
if granted required
to another role -. to subscribe
grantee must be in same
region granted to 1 0.1
0.* Access Role depends
subregion of
o 9 0.* 1
Access Role Grantee }4—4‘ Region O
has |
4{ Reactive Component }— | Context

IAdministrative Componentl

| Application Component

Figure 2: Control view of the context-aware DEBS metamodel.

out the system. It has to provide all of the infor-
mation described by the context event schema that
represents the context being sensed. Context event
schemas are used both in the subscription and publi-
cation of events.

The Context Reactive Component Interface extends
the reactive component interface, adding behaviour
for generating and reacting to context events. A con-
text reactive component interface is context-aware in
that it either senses changes in context (a sensor com-
ponent in this case) or reacts to context events. This
reaction can vary from a simple operation on context
change, a simple reactive component, to more com-
plex behaviour such as a context interpretation that
infers higher-level context information by combining
different context events and propagates it through the
system. This allows us to model the behaviour of all
common approaches for context-aware systems.

Notification of context events is accomplished
through subscription to the context event schema de-
scribing the desired context event. The context reac-
tive component interface can also filter context events
by the context data described in the event, in a way
similar to current DEBSs.

3.2 Control View

Figure 2 shows the control view of the context-aware
DEBS metamodel. The FEvent entity represents a

happening in the system, and can be categorized ac-
cording to its schema. Event schemas are stored and
maintained by specialized administrative components
in each region, and the name of an event schema is
assumed to be unique.

A context event will always follow a context event
schema. A context event is used to dynamically prop-
agate context information throughout the system as
context changes occur. It is also interesting to note
that events themselves, being part of the context-
aware system, have context associated with them.
The most basic context information associated with
an event are the component of origin and the times-
tamp for the publication of the event.

Two kinds of components exist in DEBSs: appli-
cation and administrative components. Application
components run application-specific interface imple-
mentations that are not related to the basic opera-
tion of the DEBS and its services. Administrative
components, on the other hand, are in charge of the
administrative activities in the DEBS.

Components in DEBSs are logically grouped in re-
gions. Regions can contain other regions forming a
tree hierarchy. With the exception of the root region,
regions can be dynamically created and removed from
the system.

Basic access control is modeled by using roles. As
previously mentioned, a role typically characterizes a
set of components. Roles are used to restrict the col-

lection of components that can run given interface im-
plementations, or that can subscribe to certain events.
Roles are uniquely identified and can be dynamically
created and dropped. Roles are granted to (revoked
from) components, regions, and other roles. When a
role is granted to a region, every single component
in the region is granted the role. Similarly, if a role
is revoked from a region, every component in the re-
gion is revoked the role, even if the role was directly
granted to a component in the region. As with event
schemas, role names are assumed to be unique.

In a context-aware system, regions serve the pur-
pose of allowing the grouping of components that
share the same context. This permits the modeling
of different regions with different contexts. A sub-
region will contain only a subset of the context that
its super-region has available. Overlapping regions
will only have part of their context in common. An
example of this capability is modeling a context-aware
system where the system contains components inter-
ested in the context shared with your peers in a social
network such as preferences and social relationships,
while other components are interested in physical at-
tributes of the context such as room temperature,
time and location, while yet other components are
monitoring the user’s health indices such as glucose
levels and heart rate.

Context also has an impact in role access control.
Access roles can be granted or revoked based both
on context and on context changes. This allows a
more fine grained solution in security and privacy for
context-aware systems.

4 Model Evaluation

In this section we illustrate the applicability of our
metamodel by modeling different context-aware sys-
tems proposed in the literature.

4.1 Context-Toolkit

Figure 3 shows the modeling of the Context-Toolkit
[6]. Table 1 describes the different components
present in the Context-Toolkit framework.

A widget is a common interface for accessing con-
text information. It serves the purpose of hiding the
complexity of retrieving sensed context information
from the sensors; it abstracts context information and
provides reusable and customizable building blocks
for context-aware applications. In our model, wid-
gets are represented as context reactive component
interfaces. All of the knowledge needed to extract
sensed context information from sensors is stored in-
side the interface behaviour. It advertises a con-

Component | Description

Aggregator | logical repository of context infor-
mation

Discoverer | component registry

Interpreter | context information transformer

Sensor a provider of context information

Service an external action

Widget common interface for context re-
trieval

Table 1: Context-Toolkit framework components.

text event schema with the structure of the context
being provided and publishes events upon context
changes. This context reactive component interface
can be reused by other components in the system.
Events published by one interface can be combined
with events published by other interfaces to provide
customization capabilities.

An aggregator is a logic repository for context in-
formation. The aggregator serves two different pur-
poses, the first being a central location that stores
all of the context information pertaining to an entity
in the system, and the second being a central loca-
tion that stores the same context information form
different context sources. In our approach, the first
use of aggregators is not needed. Once a component
subscribes to a context event schema it is guaranteed
to receive events that are based on that schema. In
this view, the component itself if the aggregator of
context information, without any need for an exter-
nal aggregator. Examples of this use of aggregators
are shown in the “Intercomm System” and the “Con-
ference Assistant System” presented by Dey et al. in
[6].

The second use of aggregators relates to our use of
context event schemas, since it deals with accessing
the same context information from different sources.
If a component subscribes to a given context event
schema it will receive events from all components that
use that schema for event publication. Examples of
this use of aggregators are shown in [6] through the
model implementation of the “Active Badge System”
and the “Mobile Tour Guide”.

A discoverer is a component responsible for provid-
ing a registry of all widgets, interpreter and aggrega-
tors available in the system. It is implemented in our
model through an administrative component which
is responsible for keeping the registry of advertised
event schemas in the system.

An interpreter is a component that transforms low-
level context information into higher-level context
information through reasoning and inference. This

<<CRCI>> <<CRCI>> <<CRCI>>
publishes Interpreter Application Service
f ,) -
teyvpeents © subscribes subscribes subscribes
to events to events to events
of type of type of type
<<CES>> | <<CES>> _ <<CES>>
Aggregator Aggregator] Aggregator
subscribes publishes publishes publishes
to events events of events of events of
of type type type type
<<CRCI>> <<CRCI>> <<CRCI>> <<CRCI>>
Application Widget Widget Widget
<<ADMC>>
Discoverer Sensor Sensor Sensor
Figure 3: Modeling the Context-Toolkit framework.
component is modeled in our approach as a context | Component Description
reactive component interface. This interface will have Context Provider context information in-
the associated behaviour of subscribing to the rele- terface
vant context event schemas and processing the re- Context Interpreter transforms context in-
ceived events to extract higher-level context informa- formation
tion. Once this new context is derived from sub- Context Database context history and
scribed events, the component will publish a new storage
event with this higher-level context information. This | Context-aware Service context-aware applica-
new event should be based on different context event tion
schema in order to identify the different in context | Service Locating Ser- | component registry
information. vice
A sensor is simply a source of context. In the | Senmsor source of context infor-
Context-Toolkit framework sensors are entities exter- mation

nal to widgets, in our model we present them as being
external entities to the widgets, but both the sensor
and the widget can be part of the same component.

4.2 SOCAM

Figure 4 shows the modeling of SOCAM][11]. Table 2
describes the components of the SOCAM framework.

Sensors are components able to sense a given type
of context. SOCAM defines two different types of
sensors: virtual sensors and physical sensors. Vir-
tual sensors, web services or information servers for
example, provide some context information that is
external to the device containing the context-aware
application. Physical sensors, on the other hand, are
ubiquitous sensors associated with the environment
where the device containing the context-aware appli-
cation is present. We model sensors as context re-
active component interfaces. This allows a sensor to
specify the behaviour of publishing events of a cer-
tain context event schema when a change in context

Table 2: SOCAM components.

is sensed. The low-level programming concepts for
context acquisition are also hidden inside this com-
ponent.

Context Providers are components that serve as an
interface for context acquisition in sensors, being able
to separate the low-level programming concepts re-
lating to context sensing from higher-level concepts
of context-aware applications. SOCAM differenti-
ates between external context providers and internal
context providers, with the former relating to exter-
nal sensors and the later relating to physical sen-
sors present in the context-aware domain. Context
providers are modeled as context event schemas, since
its objective is to provide context information. Con-
text providers act as interfaces for context informa-
tion acquired from sensors in the same way that con-
text event schemas act as context information pub-

subscribes subscribes
to events to events
<<CRCI>> of type <<CES>> of type <<CRCI>>
Context Aware Service Context Reasoner Context Database
subscribes subscribes
to events) to events
of type publishes of type
events of
subscribes type subscribes
to events to events
<<CES>> of type <<CRCI>> of type <<CES>>

Context Provider

IContext Knowledge Base)

Context Provider

publishes publishes
events of events of
type type
<<CRCI>> <<ADMC>> <<CRCI>>
Sensor Service Locating Service Sensor

Figure 4: Modeling SOCAM.

lished by a context reactive component interface. In
our model we do not differentiate between external
and internal context providers for the sake of simpli-
fying the model. The functionality for both internal
and external context providers is the same, though,
and as such this differentiation can be modeled with
ease using our approach.

Context Interpreters are specialized components
composed of a Context Knowledge Base and a Con-
text Reasoner. A context interpreter uses logic rea-
soning to process context information. This process-
ing involves extracting higher-level context informa-
tion, querying context knowledge, ensuring consis-
tency and resolving conflicts in context information.
The context reasoner is responsible for the logic rea-
soning and processing, while the context knowledge
base provides an API for adding, querying, modify-
ing and deleting context information. In our model
we show both the context knowledge base and the
context reasoner components explicitly instead of ab-
stracting both components inside a context inter-
preter.

The addition, deletion and modification of context
information is done through the context knowledge
base which is modeled as a context reactive compo-
nent interface. Adding a new context provider and
new context information can be accomplished by sub-
scribing to a previously unsubscribed advertised con-
text event schema. Since events are published on
context changes, the context information is updated
whenever a new event is received, keeping the context
knowledge base up to date. The deletion of context
information from the context knowledge base occurs

when the last context provider publishing events of
a give context event schema removes (unadvertises)
this event schema from the system.

The logic reasoning is also performed through the
context knowledge base. It receives context informa-
tion from the context providers and processes this
information to produce a new, higher-level context.
Similarly to context providers, this higher-level con-
text information is published through a context event
schema, and propagated throughout the system. This
context event schema is the context reasoner compo-
nent.

Context-aware services are services that use the
context information from context providers and con-
text interpreters. They are modeled as context reac-
tive component interfaces, and subscribe to the con-
text event schemas providing the context information
they require.

Context databases are repositories of context his-
tory for the domain. They hold all of the past con-
text information received from context providers and
context interpreters. They are modeled as context
reactive component interfaces, and subscribe to all
context event schemas available in the domain.

Service locating services provide a registry for all
context sources present in the system. It is modeled
as an administrative component that contains all the
advertised context event schemas advertised by the
sensors and by the context interpreter, represented
by knowledge base. These context event schemas are
the context provider and the context reasoner com-
ponents.

<<CRCI>>
Change Listener

subscribes publishes
to events events of
of type type
<<CRCI>> <<CES>> <<CES>>
Sensor Requested Context Context Channel
publishes publishes
events of) events of
type subscribes type subscribes
to events to events
of type
<<CES>> P <<CRCI>> of type
Context CASS Middleware

Figure 5: Modeling CASS.

4.3 CASS

Figure 5 shows the modeling of CASS[8]. Table 3
describes the components in the CASS framework.

Description
middleware components such
as interpreter and context re-

Component
Cass Middleware

triever

Change Listener mobile listener for context
changes

Requested Context | requested context informa-
tion

source of context information
listener for context changes

Sensor
Sensor Listener

Table 3: CASS components.

Context is represented by a context event schema.
There is a context event schema for each different
type of context. A sensor is responsible for acquiring
context information. Sensors are modeled as context
reactive component interfaces that advertise the con-
text event schema that refers to the context it is able
to sense. Sensors sensing the same type of context
share the same context event schema. Sensors pub-
lish context events following the context event schema
whenever a change in context is sensed.

Change listeners are the context-aware components
of the system. Change listeners are modeled as con-
text reactive component interfaces. These compo-
nents have the ability to receive the desired con-
text information by subscribing to a context event
schema of type requested context. Upon subscrip-
tion, the change listener defines a filtering condition.
This filtering condition specifies that only context
events containing context information requested by

this change listener be delivered. The request of con-
text information is accomplished through the adver-
tisement and publication of an event of type context
channel.

The CASS middleware component is composed of
a context database as well as two subcomponents:
context retrievers and interpreters. The middleware
is responsible for gathering all context information
available; it is modeled as a context reactive com-
ponent interface that subscribes to all context event
schemas advertised by the sensors. It stores context
information in its context database, and this context
information can be retrieved by change listeners at a
later time.

Context retrievers are components that query the
context information database and retrieve the de-
sired context information, according to context chan-
nel events. The retrieval of past context information
is accomplished by subscribing to the context channel.
A change listener publishes an event of type context
channel with a request for some specific context in-
formation, stored by the sensor listener. The sensor
listener receives this event and publishes an event of
type requested context with the context information
being requested. The filtering condition ensures that
the event will be received by the change listener that
requested the context.

Interpreters are transformers of context informa-
tion, being able to extract higher-level context infor-
mation from available context. Upon receiving a re-
quest for a higher-level context information, the mid-
dleware will invoke the interpreter and retrieve the
necessary context information from the database for
logic reasoning processing. The higher-level context
information is the result of this processing and is pub-
lished by the middleware as an event of type requested

context. Once again, the filtering condition ensures
that the event will be received by the change listener
that requested the context information.

5 Conclusion and Future Work

In this report we addressed the lack of higher-
level modeling abstractions for context-aware sys-
tems. Our approach focuses on a metamodel that
supports context-awareness features and modeling ca-
pabilities, as well as dynamic event-based interac-
tions. This metamodel addresses the requirements
dealing with context-awareness listed in Section 1.2.
Separation of concerns is addressed by the use of re-
active component interfaces. The event-based infras-
tructure deals with distributed communication while
the publish and subscribe model targets the context
availability requirements. Finally, resource discovery
is handled through schema advertisement. We illus-
trate the applicability and validate our metamodel by
representing existing context-aware systems.

Future work includes continuing to extend DEBS
concepts such as access roles to deal with both pri-
vacy and context-aware security issues, and a context-
aware publish and subscribe model. Work is also be-
ing done in the formalization of the context-aware
DEBS computational model by extending kell-m [3],
and in providing property validation mechanisms. A
context metamodel is being developed that will en-
able the modeling of different types of context.

References

[1] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch,
J. Bacon, and K. Moody. Role-based Access Con-
trol for Publish/Subscribe Middleware Architec-
tures. In 2nd International Workshop on Dis-
tributed Event-Based Systems (DEBS’03), San
Diego, California, June 2003. ACM. Program
Chair-Hans-Arno Jacobsen.

G. Biegel and V. Cahill. A Framework for De-
veloping mobile, Context-Aware Applications. In
PERCOM °04: Proceedings of the Second IEEE
International Conference on Pervasive Comput-
ing and Communications (PerCom’04), page
361, Washington, DC, USA, 2004. IEEE Com-
puter Society.

R. Blanco. Process Models for Distributed Event-
Based Systems. PhD thesis, Univeristy of Water-
loo, Ontario, Canada, March 2010.

10

[4] R. Blanco, J. Wang, and P. Alencar. A Meta-
model for Distributed Event Based Systems. In
R. Baldoni, editor, Proceedings of the Second
International Conference on Distributed Event-
Based Systems, volume 332 of ACM Interna-
tional Conference Proceeding Series, pages 221—
232, New York, NY, USA, July 2008. ACM
Press.

C. R. G. de Farias, M. M. Leite, C. Z. C. R. M.
Pessoa, and J. G. P. Filho. A MOF Meta-
model for the Development of Context-Aware
Mobile Applications. In SAC ’07: Proceedings of
the 2007 ACM Symposium on Applied Comput-
ing, pages 947-952, New York, NY, USA, 2007.
ACM.

A. K. Dey, G. D. Abowd, and D. Salber. A
Conceptual Framework and a Toolkit for Sup-
porting the Rapid Prototyping of Context-Aware
Applications. Human Computer Interactions,
16(2):97-166, 2001.

P. T. Eugster, P. A. Felber, R. Guerraoui,
and A.-M. Kermarrec. The Many Faces of
Publish/Subscribe. ACM Computing Surveys,
35(2):114-131, 2003.

P. Fahy and S. Clarke. Cass - Middleware for
Mobile Context-Aware Applications. In Proceed-
ings of MobiSys Workshop on Context Aware-
ness, pages 304-308, June 2004.

D. Ferraiolo and R. Kuhn. Role-based Access
Controls. In 15th NIST-NCSC National Com-
puter Security Conference, pages 554-563, 1992.

L. Fiege. Visibility in FEvent-Based Systems.
Ph.d. thesis, Technische Universitat Darmstadt,
Darmstadt, Germany, Apr. 2005.

T. Gu, H. K. Pung, and D. Q. Zhang. A Service-
Oriented Middleware for Building Context-
Aware Services. Journal of Network and Com-
puter Applications, 28(1):1-18, 2005.

R. Meier and V. Cahill. Exploiting Proximity in
Event-Based Middleware for Collaborative Mo-
bile Applications. In In Proceedings of the 4th
IFIP International Conference on Distributed
Applications and Interoperable Systems (DAIS
2003), volume 2893 of Lecture Notes in Com-
puter Science, pages 285-296. Springer-Verlag,
2003.

