Technical Report CS-2010-02

Distributed XML Query Processing: Fragmentation, Localization and
Pruning

Patrick Kling - M. Tamer Ozsu - Khuzaima Daudjee

September 2010

Abstract Distributing data collections by fragmenting them centralized management and querying of XML data (i.e.,
is an effective way of improving the scalability of a data- data residing on a single system) is now a well understood
base system. While the distribution of relational data id welproblem. Unfortunately, centralized techniques are &ahit
understood, the unique characteristics of XML data and it&n their scalability when presented with large collectiansl
query model present challenges that require different disaeavy query workloads.

tribution techniques. In this paper, we show how XML data In relational database systems, scalability challenges ha
can be fragmented horizontally and vertically. Based os\ thi ve been successfully addressed by partitioning data eollec
we propose solutions to two of the problems encounteretlons and processing queries in parallel in a distributed sy
in distributed query processing and optimization on XML tem [1]. Our work is focused on similarly exploiting distri-
data, namely localization and pruning. Localization ta&es bution in the context of XML. While there are some simi-
fragmentation-unaware query plan and converts it to a diSarities between the way relational database systems can be
tributed query plan that can be executed at the sites thdt hoblistributed and the opportunities for distributing XML dat
XML data fragments in a distributed system. We then showhase systems, the significant differences in both data and
how the resulting distributed query plan can be pruned squery models make it impossible to directly apply relationa
that only those sites are accessed that can contribute to thechniques to XML. Therefore, new solutions need to be de-
query result. We demonstrate that our techniques can be ireloped to distribute XML database systems.

tegrated into a real-life XML database system and that they |n this paper, we focus on the following three aspects of
significantly improve the performance of distributed querydistributing an XML database system:

execution. — First, we present distribution modefor XML that sup-
ports horizontal fragmentation (based on selection oper-
ators and predicates) and vertical fragmentation (based
1 Introduction on a partitioning of the set of element types in a schema).
Our definitions of horizontal and vertical fragmentation
are semantically analogous to those for relational data
[1]. However, the characteristics of XML, such as its
nested data model and structure-based queries lead to
a set of challenges and optimization opportunities that
differ significantly from what is encountered in the re-
lational context. As in the relational case, both types of

Keywords Distributed- XML - Localization- Pruning

Over the past decade, XML has become a commonly used
format for storing and exchanging data in a wide variety
of systems. Due to this widespread use, the problem of ef-
fectively and efficiently managing XML collections has at-
tracted significant attention in both the research commu-
nity and in commercial products. One can claim that the

University of Waterloo fragmentation are designed to be orthogonal. This allows
Cheriton School of Computer Science us to use them together to achieve hybrid fragmentation.
200 University Ave W — Second, we focus on the problem lotalization and
\év:;zggo' ONN2L 361 pruningin distributed XML database systems. We pro-
Tel.: +1-519-888-4567 pose a localization technique that transforms a fragment-
Fax: +1-519-885-1208 ation-unaware query into sub-queries that can be evalu-

E-mail: {pkling, tozsu, kdaudjg@@cs.uwaterloo.ca ated in parallel at the individual sites in the system. We

/ \
: EU (Cpubs) :
[[
| (First) (Tast) (Cbook) I (first) (CTast) (Cbook) |
[I [
I Z3ohn - (CAdams > (ehapter) I (“Jane) (Dean . (chapter) |
[I [
' A ! . N
AN 7 N\ 7/ | |
[[
[[
| (hrsl) C Iast)(flrst) C Iast) (Cfirst) C \as()(Iusl DI Iasl O |
[[
\ \,,QQUD,, \,Ad,amg \,,,J,a,n,e ,,,,, P,e,aﬂ,, _William _ e Jahn dre)
N e e e e e e o e e e e e o — —— — — o — — — — —— ——— — ~
(b) 1y
A N N
! @D R \I
|<pu‘bs> <pu‘bs> Coubs D |
| [
| (Cbook (Cbook D (Cbook) |
@ @ '
Fig. 1 A horizontally fragmented collection \\ _— __ - /'
then present a novel technique that allows us to identify © fs
fragments that are irrelevant for answering a given query e = — ~
' @D @ |
and prune them from the query plan. I

|

| (chapter) (chapter) (chapter) |
] | | !
|

(eference) {eference (eference) I

While localization and pruning represent only the first
step of distributed query evaluation, we show that even
with these techniques alone we can achieve significant (d) Y
improvements in performance. Further optimizations thatig. 2 A vertically fragmented collection
can be performed after localization and pruning have

been published separately [2] and will be the subject o tart with the letters “A” and “D”, respectively. Pruningete

future work. L) fragments allows us to answer the query without contacting
— Based on our localization techniques, we then Propose @ . sites at which they are stored

set ofworkload-aware fragmentation algorithmshese . .

If we evaluatey on the vertically fragmented collection,
algorithms are designed to determine a fragmentatlon

the general case, we have to access all four fragments.

?g:rlijésthat will optimize performance for a given set Of _Fragment,f is needgd to evaluate the yalue constraint pred-
icates, fragmentf)” is needed to obtain result nodes and

To motivate our work, consider the following example. fragmentsf)” andf}” are needed to evaluate structural con-
Figure 1 shows a horizontally fragmented data collectiorstraints. We will later present a technique that allows us
consisting of four documents representing informatiorutibo to avoid accessing some of the fragments only needed for
authors and their publications. The horizontal fragmeémat structural constraints.
is defined based on the first letter of the authors’ last names, We propose a general technique that detects situations in
placing “John Adams” in fragmenfi”, “Jane Dean” in frag- which fragments are not needed to answer a query and then
mentf;’ and “John Smith” as well as “William Shakespeareprunes these irrelevant fragments from a distributed query
in fragmentf4’. plan. This greatly improves the performance of distributed

Figure 2 shows a similar collection that has been fragquery evaluation and allows us to fully benefit from distribu
mented vertically. Ignoring the nodes labeledRS™” and tion as a means to overcome the scalability challenges faced
RP; 7 for now, we can see thaut hor andagent nodes by large XML collections. We achieve this goal without re-
are stored in fragment!”, the nodes related to the author’s lying on a globally replicated index structure, becausagsi
name are stored in fragmerf’, pubs andbook nodes such a structure could limit the scalability of a distriliite
are stored in fragment;” andchapt er andr ef erence system and negatively affect the performance of updates.

uery since they correspond to authors whose last names

nodes are stored in fragmefyy . The specific contributions of the work presented here are
Consider evaluating the following XPath quety:(the following:
/author[nane[first = 'WIIliani and 1. We formally define fragmentation in the context of XML
| ast = ' Shakespeare’]]//book//reference databases and propose a succinct method for specifying

In the horizontal case, it is easy to see that the fragments the horizontal or vertical fragmentation of a collection
f and fH cannot possibly contribute to the result of this of XML documents.

2. We develop a mechanism that transforms a fragment- aut hor (nare, pubs, agent ?)
ation-unaware query plan into an equivalent distributed bopoukb(sc(hbaopotk;)*)
plan. Teference(chaptory

3. We propose the first known technique that can identify agent (nane)
and prune horizontal fragments that are irrelevant for an- nane(f! t’(S;t'ex' t"ft)
swering a given query. I ast (#text)

4. We present a novel technique that, without relying o
a fully replicated index, allows us to skip vertical frag-
ments that are not needed to evaluate value constraint

5. We propose algorithms for fragmenting a collection Ofposg _a. problem [3].] .

XML documents in order to improve the performancePefinition 1 An XML schema grapfs defined as a 5-tuple

of a given workload (when evaluated using our pruning(>> ¥ 87, p) whereX'is an alphabet of node types,is

techniques). the root node typel C X' x X' is a set of directed edges
6. We have implemented these techniques within a real-lif@etween node types, : ¥ — {ONCE OPT,MULT } and

distributed XML database system, which has allowed ug? : & — {string}.

to obtain realistic experimental results. The semantics of this definition are as follows: An edge

The remainder of this paper is structured as follows: Sect’ = (01, 02) € ¥ denotes that a node of type may con-
tion 2 describes the technical background of our work. Sectain a node of typer,. s(¢) denotes the cardinality of the
tion 3 introduces our model of horizontal and vertical frag-containment represented by this edges(#)) = ONCE,
mentation. In Section 4, we propose techniques for evaluthen a node of type; must contain exactly one node of
ating queries over distributed collections and describe ho typeos. If s(1») = OPT, then a node of type; may or may
distributed query evaluation can be optimized throughlioca not contain a node of type,. If s(4/) = MULT, then a node
ization and pruning. Based on these query evaluation tect®f typeo: may contain multiple nodes of type. m(o) de-
niques, Section 5 describes our algorithms for fragmentingiotes the domain of the text content of a node of type
an XML collection such that performance for a given work-represented as the set of all strings that may occur inside
load is optimized. In Section 6, we present a thorough evalusuch a node. Note that the definition:ef o) may include
ation of the performance impact of the techniques presentdépth the direct content of a node of typeas well as the

in this paper. Section 7 discusses related work. In Section 8ontent of node types nesteddn Figure 4 illustrates how
we summarize our work and present our conclusions. the simplified DTD shown in Figure 3 can be represented as

a graph.

Iﬁ‘:ig. 3 Aschema
5l:s never used for the validation of documents this does not

2 Background
2.1 Data model

An XML collection can be described as a set of labeled, or-
dered trees. While XML is a self-describing format that can !

MULT

be used without a schema, in practice, the structure of docu- [FLexT} THexT)

ment trees is usually constrained by a schema that specifies il once
how elements may be nested and what the domain of the'#rig. 4 An XML schema graph

textual content is. A schema is usually defined in a language When translating a DTD or an XML Schema into the

SPCh as DTD or XML Schema. In this paper, we use as”npl%raph representation, attributes are always assigned-a car
directed graph representation that covers only the aspéctsdina”ty of either ONCE or OPT, corresponding to manda-

the schema that are important for our purposes. For exar%ry and optional attributes, respectively. Elements, lan t

ple, our representation ignores the distinction betweei. XM other hand, may occur with any of the three cardinalities,

elements "’?”0.' attributes by treating both of them umfprmlysince both DTD and XML Schema allows for the specifica-
asnodes Similarly, we refer to element types and attribute

de tvpesA ing that the original sch gef tion of elements with exactly one, zero or one, or multiple
names asode typesassuming that the originai schema det- .\ rances. In addition to these three cases, XML Schema

initi_on doe_s not contain unspecified po_rtions_(such as thosgllows a more fine-grained specification of the number of
defined using the DTD keywordNY), itis straightforward occurrences of an element. We handle this by assigning a

tp extract the information captured by our graph represent%ardinality of MULT whenever the XML Schema definition
tion from a DTD' or an XML Schema. Extracting schema allows for an element to occur more than once.

information yields a schema graph that may be less restric-
tive than the original schema, but since the schema graph2 Query model and tree patterns

1 Note that a DTD does not explicitly specify the root elementtyp Th? query model used in thls paperis a SUbset, of XPath,
of a document. However, the root element type can be infered fr Which we call XQ. XQ consists of absolute location paths
the DOCTYPE declarations of documents conforming to a DTD. consisting of node tests with and without wildcards, child

ONCE

ONCE MULT

(/) and descendant () axes and predicates. Predicates mayis based on predicates and results in a collection that is par
consist of (i) a relative location path with the same restric tioned into fragments that all follow the same schema. Verti
tions (with XPath’s existential semantics); (ii) a textaah- cal fragmentation, on the other hand, is based on partitgpni
straint of the form 0, s”, where s is a string constant and the schema.

0, is either= or! =; or (iii) a numeric constraint of the form

“ 0, n”, wheren is a numeric constant ar@y, is one of<, 3.1 Horizontal fragmentation

<=, =, >, >=, or! =. As in XPath, XQ steps return nodes Our model of horizontal fragmentation assumes a collection
in document order (since both axes we support are forwarthat consists of multiple document trees. These document
axes). trees can either be entire XML documents or they can be the

XQ queries are not only commonly used on their own,result of a previous fragmentation step. In either casegwe r
but they also represent an important building block of morejuire that all document trees correspond to the same schema.
complex XQuery queries [4,5]. Therefore, solving the prob-Multiple-document collections where all documents follow
lem of evaluating XQ queries in a distributed fashion is anthe same schema are a common use case for XML. Popular
important contribution to distributed XQuery evaluation. examples include MathML [8] and CML [9].

It is convenient to represent XQ queries as tree patterns A horizontal fragmentation is defined by a set of frag-
[6, 7], which we formalize as follows: mentation predicates. Each fragment consists of the docu-
Definition 2 Let (X, ¥, s, m, p) be aschema. &ee pattern ~ment trees that match the corresponding predicate. To en-
is a 7-tuple(N, E,r,v,¢e, T, c) whereN is a set of pattern sure that the fragmentation is lossless and that the fragmen
nodes,E C N x N is a set of pattern edges and¥, £,r) are disjoint, we require that whenever a document tree con-
is a tree rooted at € N. For eachn € N, v(n) € YU formstothe schema of the collection, it matches exactly one
{x} denotes a node test. For eacl E, ¢(e) € {child, ofthe predicates.
descendant } denotes the axis typd. C N denotes the Definition 3 Let D = {d1,ds, ..., d,} be a collection of

set of extraction points. Eor eaehe N, ¢(n) C m(v(n)) document trees such that eathe D corresponds to the
?enotes a value constraint on the text content of nodes Qf — schemaX, ¥, s, m, p). Then we can define a set of
ypev(n). horizontal fragmentation predicatd®3 = {po, p1,...,pi-1}

In the following, we will refer to the tree pattern rep- such thatvd € D : 3 uniquep; € P wherep;(d). If this
resentation of a query ascuery tree patter{QTP). Itis holds, thenF = {{d € D | p;(d)} | p; € P} is a set
interesting to note that, in addition to XQ queries, QTPs camf horizontal fragments corresponding to collectibrand
be used to express queries with multiple extraction pointspredicatesP.

While this may be useful for supporting a larger class of Wi he f) di Bool
queries, in this paper, our focus is on queries with a single ' fepresent the ragmentau_orr]} predicates as IOO ean
extraction point. free patterns, i.e., tree patterns with no extraction goint

The QTP depicted in Figure 5 is equivalent to querythe following, we will refer to them afragmentation tree

¢ from Section 1. The double-outlined node labeled Withpatterns(FTPs). Basgd on this representation, the Iosslgss—
ref er ence is an extraction point and the edge labels “/" ness of a fragmentation can be enforced by carefully ciftin
and “//" denote child and descendant steps, respectively value constraints so that they cover the entire domain of the

A match for a QTP assigns a node from the document tgalues to which they refer.)
each pattern node such that all node tests, value constraint If We assume _that. the document trees in the fragmeqted
and structural constraints (expressed as axis relatipsshi collection shown in F'gu_fe 1 conform tq the schema in ,F'g'
are satisfied. While all pattern nodes in the QTP have to pre 4 and thatn(l ast) is the S?t of strings that start with
matched to nodes in a document, only the nodes associatdgPer-case letters of the English alphabet, then the frag-

with pattern nodes that are designated as extraction poinfé€ntation of this collection can be described by the set of
are returned as part of the result. FTPs shown in Figure 6.

Fig. 5 Query tree pattern (QTP) representation of query Fig. 6 Set of fragmentation tree patterns (FTPs)

3 Fragmentation 3.2 Vertical fragmentation

The work presented in this paper is based on two techniqué3ur model of vertical fragmentation can handle collections
for fragmenting XML collections. Horizontal fragmentatio that consist of a single or multiple document trees. Again, i

is possible that these trees are the result of a previous frag
mentation step, which allows us to combine horizontal and
vertical fragmentation.

A vertical fragmentation schemsadefined by fragment-
ing the schema graph of the collection into connected sub-
graphs:

Definition 4 Let (X, ¥, s,m, p) be a schema graph. ¥er-
tical fragmentation schemia defined by a partitionings;
of the set of node types.

The dashed outlines in Figure 7 show how the node type
in this schema have been fragmented into four disjoint subeach type of fragmentation, we start with aweaquery eval-
graphs. Fragmenf! consists of the node typesut hor uation strategy and then present optimizations, with speci
andagent ; fragmentf)’ consists of the node typemne, focus on the problem of pruning the set of fragments that
first andl ast along with their text content; fragment need to be accessed to answer a given query.
fY consists opubs andbook; fragmentf}” includes the In relational systems, distributed query optimization is
node typeshapt er andr ef er ence. usually done based on an algebraic representation of a dis-

Since we require the schema graph to be connected, aftéifouted query [1]. For many of the optimizations presented
fragmentation, there will be graph edges that cross fragmefiere, however, the QTP represents a simpler abstraction tha
boundaries. Whenever the schema contains an edge fronfantains all the information necessary to make pruning de-
fragmentf) to another fragmenf}/, we refer toij as a cisions. We therefore describe many of our techniques in
child fragmenbf £V and tof! as aparent fragmenof £/, terms of QTP manipulations.

There is exactly one fragme[ﬁ}f’ € Iy that contains the 4 1 Horizontal fragmentation

root node type. We refer tof)” as theroot fragment While - : .
- Based on the definition of horizontal fragmentation, we can
the schema graph may contain cycles, for performance rea—

-
| |
MuLT | | orT ONCE |

MULT
I I I

O @

Iéig. 7 A vertical fragmentation schema

sons, we require that the fragmentation schema be a DA efine a nive strategy for evaluating QTPs on a horizontally
. . - : ragmented collection of data. In an approach that resesnble
(i.e., each cycle has to be contained within a single frag; "= N .

ment) horizontal localization in the relational context [1], warnc

When a collection is partitioned according to a verticalev"’lluate a query by computing the union of all fragments

fragmentation schema, there will be document edges thaatnd ther'1 executlng'a. fragmentgﬂon-unaware plan over the
result. Since the definition of horizontal fragmentatio{D

cross fragment boundaries. We represent a document edgfrequires that the set of document trdess the union of

from fragmentf to fragmentf} by inserting a pair of ar-
ificial gd {Lj d g ij?); g Vp qrv all fragmentsf € F’ and because our query model does not
tificial nodesP, ~ and 2P, into fragmentsf;” andfi", 410y for structural constraints involving nodes in difiet

respectivelyP; " denotes @roxy noddn fragmentf” (the gocuments, this leads to the correct result:
originating fragment) with 1Dk, whereasR P, "’ denotes a

root proxy nodein fragmentf)” (the target fragment) with (D) = q(fUF f)
S

ID k. SinceP, ™ andR P, share the same ID:f and ref- Our query model implies that each result is derived from
erence the same fragmenis-¢ j), they correspond to €ach gyactly one document tree in the collection. This allows us
other and 'Fogether represent a single cross-fragment adgei, push the (unchanged) fragmentation-unaware query plans
the collection. o down to the individual fragments:

The collection shown in Figure 2 has been fragmentegyefinition 5 I ¢ is a plan that evaluates the query on an
according to the vertical fragmentation schema shown "?Jn-fragmented collection of document treBsand F' is a
Figure 7. The proxy pair consisting dt/;~ in fragment |0 i-ontal fragmentation ab, then
fV andRP}% in fragmentf)’, for example, represents an '

edge from araut hor node inf) to aname node inf) . q7(F) := sor((-) a(f))
Vertical fragments generally consist of multiple uncon-. . Jer
nected pieces of XML data, which we refer todmcument is anaive horizontal query plathat evaluates the same query
. ' v . on F, where® denotes concatenation of results, apdF’) =
subtrees In Figure 2, for example, fragmerft’ contains D
three subtrees, each of which consists ofdl hor and a(D).

agent nodes of one of the documents in the collection. As shown m_the deflnltlon,_ It may be necessary to sort
the results received from the individual fragments in order

4 Querying distributed collections to return them in a stable global order as required by the
In this section, we propose techniques for evaluating gseri XQuery data model [10]. For unordered queries, or if we are
over horizontally and vertically distributed collectio®r willing to relax the ordering constraint, we can reduce the

amount of sorting-induced buffering by only maintaining a Descendant stepsan also yield multiple results in the
stable order between nodes in the same document. This magme context. In the QTP shown in Figure 8(a), for exam-
be a reasonable trade-off in many use cases. ple, the descendant edge betwean hor andnamne can
4.1.1 Pruning fragments be satisfied either by mane node that is the direct child of

As discussed before, to answer the query shown in Figur@ 9ivenaut hor node or by aname node that is reachable

5 on the fragmented collection from Figure 1, only the doc-through an intermedia@gent node. Because of this, even
uments contained in the fragmefl need to be accessed. though the constraints on the author’s last name imposed by
The ndve plan, in contrast, accesses every fragment in thie FTP shown in Figure 8(b) and the QTP shown in Figure
collection, which can significantly reduce query throughpu 8(&) seem to cause these two patterns to be contradictory,

In this section, we propose a procedure that detects irref’€y actually are not. Document trees in the fragment cor-
evant fragments and prunes them from a distributed quer§gSPonding to the FTP predicate will only contain informa-
plan. This procedure relies on the schema of the collectioon aPout authors whose last names start with the letter A"
and the FTPs that define the fragmentation. Both of thes€n® QTP, on the other hand, matches books that are either
are static over time, do not depend on the size of the collec@uthored by “William Shakespeare” or by someone whose
tion and can be encoded in a compact manner. This makes3gent is “William Shakespeare” and whose last name might
feasible to replicate them at all sites as metadata. well start with the letter “A”.

Our pruning algorithm works based on the QTP repre- Wildcardsare another source of multiple matches in the
sentation of the query before converting the result to an als@me context whenever the schema specifies that a node type
gebraic plan. This allows us to reduce the problem of prunfay contain multiple other node types.
ing horizontal fragments to that of determining the subseto ~ We define simplified tree patterns as tree patterns that do
FTPs that can be shown to be unsatisfiable at the same tinfi@t contain any of these primitives:
as the QTP. _ . Definition 6 A tree pattern{ N, E,r,v,¢, T, c) is a simpli-

_To s_o_lve this problem, we transform QTP a_n_d FTPs intGiaq tree pattern ifin € N, v(n) € X andV(z,y) €
a simplified form. We then traverse both simplified patterns, e((z,y)) = chi | dA(v(z), v(y)) € T As((v(z), v(y)))

simultaneously and check for contradictory constrairts. | 7MULT.
we find such a contradiction, there cannot be any results for
the query in the fragment corresponding to the FTP and the In order to convert a tree pattern into a simplified tree
fragment can thus be eliminated from the distributed plan. Pattern, all disallowed primitives have to either be rentbve
4.1.2 Transformation to simplified form or converted into an equivalent simplified form. It is impor-
The goal of transforming tree patterns into a simplified formt@nt to note that simplified tree patterns are strictly less e
is to make sure that each pattern node refers to a uniquiessive than arbitrary tree patterns. Therefore, wheeea tr
node within the context of a single document tree. In genPattern is transformed to a simplified tree pattern, theltesu
eral, pattern nodes may match more than one node in a givéh Not generally equivalent to the original tree pattern. In
document tree. A constraint associated with such a pattef#iéad, the simplified tree pattern matches a superset of the
node is satisfied if one of the matching nodes conforms tflocument trees that match the original tree pattern. Since
the constraint. This makes it impossible to exploit contraSimplified tree patterns are only used to identify fragments
dictory constraints associated with such pattern nodezn Ev that can be pruned, but not for the subsequent query evalua-
if the constraints themselves are contradictory, they neay btion on those fragments, this loss of expressiveness ddes no
satisfied by different nodes in the same document. pose a problem. Nevertheless, it is important that the trans
With QTPs, there are three sources of pattern nodes thigrmation retains as much of the information present in the
may match multiple nodes in the same document tree: original pattern as possible so that this information can be
Node types reached via MULT edgétode types that €xploited for pruning.
are reached via an edge in the schema that has a cardinal- Algorithm 1 performs the transformation of a tree pat-
ity of MULT may occur multiple times in the same con- tern into a canonical tree pattern based on the following-pri
text. Based on the schema in Figure 4, for example, the stepiples:
pubs/ book may yield multiplebook nodes correspond- — Using schema information, descendant steps are unrolled
ing to a singlepubs node. into equivalent paths comprised entirely of child steps
(procedure shown as Algorithm 2). If there is more than
one path, artificial nodes representing a choice (denoted
as®) are inserted and the branch below the descendant
step becomes reachable via more than one path, thus
turning the tree pattern into a directed, acyclic graph
(DAG).

Fig. 8 QTP and FTP that are not contradictory

— Wildcard node test are conve'rted to non-willdcard nod& Algorithm 1: pattern transformation algorithm
tests wherever this is unambiguously possible. Other—jnout pattern tree NV, .1, 1, ¢, 7', c), schema
wise, the corresponding pattern nodes are removed along (X,¥,s,m,p)
with their descendants. output : pattern graphiN’, E',r', v/, ¢/, T", ¢')
— Pattern nodes that match nodes from the collection which, Vaniable: @ // represents pattern nodes whose children have
. . . . ’ yet to be checked
according to the schema, can occur multiple times in the

-) variable: N’ // set of pattern nodes to be inserted
same position are removed along with the branches be- variable: E /I set of pattern edges to be inserted

low them. 1 7/ — new node

. 2 V(") —v(r)
4.1.3 Unrolling descendant steps 3 () — e(r)

The unrolling of descendant steps can be succinctly imple-4 N/ — {/}
mented as a manipulation of the directed graph representas E’ < 0

tion of the schema (Algorithm 1, lines 31-33). In order to un- 3 g *{@("
roll a descendant step from a pattern node labal&da pat- 8 while QT;Z@ do

tern node labeleld, we consider the subgraph of the schema o I/ while there are pattern nodes to be processed, pick one
graph that consists of all nodes that are reachable famd 10 (¢,q') < some (q,q') € Q
from whichb is reachable. This yields a graph that contains ! | @ < @\ {(¢.4)}

. . 12 /I for all outgoing edges
all the intermediate node types that may occur on a down+; | ¢or o — (;5) '6% W?th xoj: ¢ do

ward path froma to b. In the example shown in Figure 9, 14 y' — new node
the nodes that are used to unroll the step hor / / name 15 < (y') — cly)
are highlighted. 16 if e(e) = chi | d then
f1h . le in thi h b h di 17 /I case 1: child axis
If there exists a cycle in this schema subgraph, we dis- if () # * then
card the descendant step and all the pattern nodes that occwy | V() =v(y)
below it (Algorithm 1, line 34). This is necessary because ,, else if3(o1, o2) € ¥ unique withv(z) = oy
the presence of a cycle implies that a matching node may oc- then
cur at different levels in the document tree. This creates am?21 | V() — o2
biguity, making it impossible to take advantage of the value22 else _
constraints associated with such a node. Assume, for exant® [continue
ple, that we want to unroll the stégook/ / r ef er ence. 24 if = (v(z),v(y)) € ¥, 5(¢) # MULT then
We can observe that there is a cycle involving the node typeéz %?‘E t]r\',',sk??tyt/e}m node to the simplified tree
chapt er andr ef er ence. This corresponds to the fact E — EU{(d,y)}
that the path can be satisfied either by a reference in a chaps Q< QU{(y,y)}
ter of the book where we start out, or by a reference in a o
) 29 else ifv(y) # = then
chapter referenced by this chapter, and so on. 30 J/ case 2: descendant axis
31 X' «— {o € X¥| oreachable fron¥(z),
32 v(y) reachable fronw in (X, %)}
oncE oL 33 U — {(o1,02) €E¥ | 01,02 € X'}
34 if (2/,%’) is acyclic andfy € ¥’ with
MULT S(Qﬁ) = MULT then
[lexi] [#iexi] 35 V' (y) — v(y)
? ONCE 36 (]\[/'7 E”) —
_B unrol | desc(q,y', X", ¥, v(z))
Fig. 9 Schema restricted to nodes reachable fewnh hor and from 37 N — N'UN"U{y'}
which nane is reachable 38 E'—E'"UE"
If the subgraph is acyclic (as in the example shown in 3° Q= QU{(y,y")}

Figure 9), we introduce a new pattern node for each ofthe L *—

intermediate schema nodes such that the node test of the pai2 Ve’ € £/,¢/(¢) —chi I d

tern node matches the name of the corresponding schemi ™™ (N, Bl v € T)

node (Algorithm 2, lines 19-22). In cases where a schema

node has more than one child, an intermediate choice node

is inserted (lines 8-11, denoted ky), which signifies that ~are reachable through more than one path. In general, how-

the subsequent branch of the pattern can be satisfied byexer, this is not necessary since we can directly traveese th

match for any of the child nodes. more compact DAG, which yields the same result as travers-
After these intermediate nodes have been inserted, tHgg the equivalent tree.

pattern has been transformed from a tree into a DAG. We can Figure 10 shows the tree representation of the unrolled

reconstruct a tree representation by duplicating nodes thaersion of the QTP given in Figure 8(a). Note that while

Algorithm 2: unrolldescg, y, X7/, ¥, p') unrolls de-
scendant step

Algorithm 3:

traverse(V, E,r,v,¢,T, ¢) ,

(N',E' v,V €, T)) finds contradictions

input : origin nodez, target nodey, transformed schema
(2,)
output : pattern nodesV’/, pattern edges”’
variable: S // pattern nodes yet to be processed
1 N"—0

1

input : predicate patter@N, E,r,v,¢, T, c) , query pattern
(N, E' v V' e, T,)

output : true iff constraints are satisfiable

variable: result

if v(r) =v/(r") and c¢(r) A ¢ (r') is not satisfiablehen

2 E"—0 2 L result « false// constraint violation found
i ff {x; d 3 else ifu(r) = @ then
ors € 50do , 4 Il check if at least one choice leads to satisfiable
5 if (c1,02),(03,04) €W/, 02 # 04,v(s) =01 = 03 constraints
then . 5 result «— false
6 /I more than one outgoing edge fram 6 for n € N with (r,n) € E do
; I/linsert® noded 7 if 3(z,y) € E with
n,@ < Newnode z=71" AW (y) =v(n) vV (y) = ®)then
o V/ (ng) — @ 8 result «—
10 d(ng) — L T
1 N N U {n} result Vtraverse((N, E,n),(N',E' y))
12 E" — E"U {(s,n@)} 9 else
13 | s ng 10 L result « true
14 Il insert edges " ege ifL/ (') — @ then
! —
15 for (o1, 02) € ¥/, v(s) = o1 do 12 /I check if at least one choice leads to satisfiable
16 if o2 = v(y) then constraints
7 L Moz T Y 13 result «— false
18 else 14 for n’ € N’ with (+/,n’) € E' do
19 ng, < New node 15 if 3(z,y) € E with
20 V' (ngy) «— o2 z=7rA (v(y) =v'(n)Vr(y) = ®) then
21 (Noy) — L 16 result —
22 N" — N"U{nos,} result Vtraverse((N, E,y),(N', E',n'))
23 S 5U{ney} 17 else
24 | B — E"U{(no,n0y)} 18 L result — true
25 return(N",E") 19 else
20 /Il check all child nodes
21 result < true
22 for n € N with (r,n) € E do
23 if 3(z,y) € E’ with
z=r" AV (y) =v(n) V' (y) =®Vr(n) =)
then
24 result «—
result Atraverse((N,E,n),(N’,E’,y))

25 return result

Fig. 10 Pattern after unrolling descendant steps

the stepaut hor / / book can simply be unrolled into a se-
quence of child steps, unrollirgut hor / / nane requires 4.1.5 Removing nodes referring to nodes with multiple
the insertion of a choice node and the duplication of thevccurrences in the same context

branch below it. This is because there are two paths from
aut hor to name, as is shown in Figure 9. In general, a meaningful conversion of pattern nodes cor-

responding to nodes with multiple occurrences in the same
4.1.4 Removing wildcard nodes context is not possible and we need to eliminate these nodes
We convert wildcard nodes whenever they unambiguousljrom the pattern. One exception to this is the scenario where
refer to a specific node type (Algorithm 1, lines 20 and 21)the pattern node is associated with an explicit positiooat ¢
For example, by relying on the schema shown in Figure 4straint that disambiguates between multiple occurrentes o
we can determine that the stagent / * can be translated a matching node (for examplpubs/ book[1]). In this
tothe ste@gent / name. Itis also possible to convert wild- case, we can retain the pattern node and exploit its associ-
card nodes that can refer to more than one node type by imted constraints for pruning. In the example from Figure 10,
troducing choice nodes into the pattern in a procedure shat iwe need to remove thigook node since the schema indi-
largely analogous to the way descendant steps are unrolledates that @ubs node may have multiple children of type

inspecting the value constraints associated withl tast
nodes, the algorithm detects a contradiction because the co
tent of the corresponding document node cannot be equal to
the string ‘Shakespeare’ and at the same time start with the
letter ‘A'. Therefore, we know that there is a contradiction
for the left branch of the choice node. In order for there to be
a global contradiction, however, the patterns have to be con
tradictory for both branches of the choice node. Therefore,

Fig. 11 Simplified pattern the algorithm still has to inspect the right branch, for vrhic

book. The resulting simplified pattern is shown in Figure Encounters a node with the node tagent . For this node,

11. there is no equivalent in the FTP and therefore no contra-
_ diction. Since the algorithm only found a contradiction for

4.1.6 Traversal and pruning one branch of the choice node, there is no global contradic-

After transforming both QTP and FTP into simplified treetion and the fragment corresponding to the FTP cannot be
patterns, we traverse both patterns simultaneously as dpruned.
scribed in Algorithm 3. Only pattern nodes occurring in both
patterns are visited. For each pair of corresponding patter
nodes, we check whether the value constraints in one pat-

tern contradict those in the other pattern. Since in singulifi

tree patterns each pattern node corresponds to a unique node
from the collection within the context of a single document

tree, a contradiction between patterns allows us to immedi- (a) OTP) FTP
ately eliminate the fragment corresponding to the FTP frontig. 13 Simplified QTP and FTP that are contradictory
further consideration. For the example in Figure 13, on the other hand, the

Special care has to be taken when a choice node is efayersal algorithm does detect a contradiction. Aftepats-
countered. In this case, a contradiction exists only if we Cajng theaut hor andnane nodes in both patterns, the algo-
find contradictory constraints regardless of which brarfch opjthm reaches theast nodes and their contradicting value
the choice we follow. If there is at least one choice without &gnstraints. This time, theast node does not occur as the
contradiction, which may be a choice that leads to a branchescendant of a choice node so this contradiction is suffi-

that is not present in the other pattern, it is not possible t@jent to prune the fragment corresponding to the FTP.
conclude that the fragment can be eliminated (lines 3-18). 4 1 7 Analysis and optimization

While it may seem that the transformation and traversal of
QTP and FTPs could pose a significant overhead, there are a
number of considerations that reduce this impact. Thetrans
formation of the FTPs only has to be performed once when
the fragmentation is set up. Therefore, it does not pose a
run-time overhead during query execution.

For the transformation of the QTP, we make the follow-
ing observations: child steps are either copied from the QTP
to the canonical QTP or omitted. Both the size of the canon-

_ o _ ical QTP and the time consumed by the transformation are
Fig. 12 Simplified QTP and FTP that are not contradictory therefore linear idESIPIdL which is the number of child

In the example shown in Figure 12, the traversal algosteps in the QTP. For each descendant step, in the worst
rithm proceeds as follows. First, tlaeit hor nodesin QTP case, Algorithm 2 introduces one choice node and one non-
and FTP are visited. Since there is no value constraint asschoice pattern node for eaehin X'. Therefore, the size of
ciated with this node in either pattern, there is no conflictthe canonical QTP is linear i, | |X|. In order to ana-
therefore we move on to the children of thet hor nodes. lyze the time complexity, we also have to take into account
Thepubs node is only present in the QTP and is thereforethe time consumed by computing the reachable schema sub-
not visited. As the other child of treeut hor node, the QTP graph and by detecting cycles in the resulting graph. We can
contains a choice node. We now have to check both branchesmpute the subgraph consisting of nodes that are reach-
for conflict. The left branch leads to theane node, for able from nodex and from whichb is reachable by first
which there is an equivalent node in the FTP. In both patmarking all nodes reachable framthen marking all nodes
terns thenane node has a child with node tdsast . When from which b is reachable and finally choosing all nodes

10

4.2 Localization and pruning with vertical fragmentation
In this section, we define an initial strategy for evaluating
QTPs on a vertically fragmented collection based on the fol-
lowing steps:
' — First, we decompose the global QTP into a selochl
QTPscorresponding to the individual fragments.

— Then, we use an existing tree pattern evaluation strategy
that were marked both times. Assuming a suitable repre- to evaluate the local QTPs on the fragments (the specific
sentation of the graph, this can be done(X| + |¥|) strategy is left to each site to decide).
time. Using Tarjan’s algorithm [11], we can detect cycles in — After that, we combine the partial results generated at
O(]X] + |#|) time. Therefore, the transformation of a QTP each site by joining the matches derived from individual
takesO(|EST 4| + |ESL.| (12| + |#])) time and yields a fragments based on their proxy/root proxy IDs. How this
result containingD(|EQL 4| + |ESe| |£|) nodes. Since is done is specified by distributed execution plan
the result is also a directed graph, in which nodes may be We then improve upon this initial strategy and present
shared among multiple branches, the equivalent tree pattetwo techniques that allow us to eliminate certain fragments
is of sizeO(|EQe| |Z| |ESTE 4 + |ESE.|2 [37]2). This from the distributed execution plan.
is important, because the time consumed by the subsequenb 1 [ocalization of QTPs
traversal step depends on the size of the equivalent tree. | ocjization is the process of determining which fragments

The time required to traverse the QTP and the FTPs igre relevant to a given query and decomposing the query into
linear in the size of the tree representations of the canoniyp_queries that can be evaluated on individual fragments.
cal QTP and the FTPs. Because the traversal has to be pa(s mentioned before, QTPs provide a convenient abstrac-
formed for each fragment, it is also linear in the numbetjon for decomposing a global query into sub-queries that
of fragments. This leads to an overall time complexity ofgre |ocal to a single fragment. We have therefore chosen to
O((|Egese| |21 | Echi1 al + | Edese |* 1217) (| EEE| 12 perform query decomposition at the QTP level before trans-
| Eghi1al + [Egesc|* |1%) [F|). Note that run-time of the forming the resulting local QTPs into algebraic query plans
pruning algorithm depends solely on the size of the patferns;; the individual sites.
the number of fragments and the size of the schema. Itis The decomposition of a global QTP into a set of lo-

independent of the size of the collection. cal QTPs directly follows the schema graph. After unrolling
Since horizontal fragmentation is defined as a partitionyjigcard nodes (using a procedure similar to Algorithm 2),
ing of the data collection, FTPs need to be disjoint and Covep|gorithm 4 divides the global QTP into a set of sub-patterns
the entire collection. Because of this, we expect that inymangach of which consists of pattern nodes that match nodes in
instances the FTPs will only differ in their value consttain he same fragment. Edges between pattern nodes in the same

plify the traversal process by traversing the QTP togethegqge in the global QTP.

with a single, abstract FTP, rather than with each FTP inthe A child edge from a pattern node in sub-patterto one
fragmentation. In this abstract FTP, value constraintsewe sub-patterrb is converted to a pattern node matching a
placed with variables. Traversal of QTP and abstract FTP '§sroxy in e and a pattern node matching a root proxybin
sults in a formula that describes the conditions under whichnese new pattern nodes are marked as extraction points be-

ure 14(b) shows an abstract FTP, in which a value constraiffenerate the final result.

‘

(

(b) FTP
Fig. 14 Simplified QTP and abstract FTP

has been replaced with the variableTraversing this ab- \when descendant edges across fragment boundaries are
stract FTP with the QTP in Figure 14(a) shows that there igncountered, we need to identify all paths in the fragment-
a contradiction if-(.="Shakespeare! z) holds. ation schema that satisfy the descendant edge. This can be

We can now instantiate with the corresponding value achieved, for example, by unrolling the descendant step int
constraint from each of the Ol’iginal Slmpllfled FTPS, |e,ch||d Steps according to the same procedure that iS used
with the expressions by the horizontal transformation algorithm (i.e., Algbrit
startswith('A), ..., startswith('S’) ..., startswith(’Z’) 2.)' It is important to note that this unrqlling may turn a

single cross-fragment descendant step into multiple eross

Solving this formula yields a contradiction for all of thesefragment child steps. This corresponds to the case where
cases except = startswith('S’). A similar optimization is a descendant step traverses multiple fragments. Consider,
possible for the QTPs if we assume that the structure of for example, the descendant sept hor / / r ef er ence.
query is known at compile time whereas the constants used/hen this step is unrolled, it yields two cross-fragmentahil
in value constraints are only known at run time. stepsaut hor / pubs andbook/ chapt er . Therefore, an

11

Algorithm 4 : Vertical localization the pattern nod&P, > i1n a2 and the pattern nodg;—? in
input _: global QTP(N, E, 1, v,¢, T,), schema q1- The pattem nod& P, —* matches all of the root proxy
(X,%, s, m, p), vertical fragmentation function nodesRP!~?2 in ¢o’s fragmentf,. The pattern nod@!—2
¢: X —Fx matches the proxy nodgd' —?2 in f,’s parent fragmenf;;
output : set of local QTPs with fragment they are evaluated on these are the proxy nodes that corresponﬂﬂjﬁz Since
— N/7El, /’ l7 l,T/, / , IEF o . . :
1Q« {(N?E,’{T(,{ v, E,7TT,75) r;aximcaf ‘ngf Efp)z}yvn, c the original pattern edge is a child edgeZ edges to and from
N’ :ow(n) = f)A(E' = EN(N' x N')) A the generated pattern nodes are also child edges. In the case
(N, E/’) is Conn,ected «l':md rootedal) A (' = v) A (¢ = where the original pattern edge is a descendant edge (such as
) A (T"=TNN) A (¢ = o)} Il construct local QTPs the edge betweeaut hor andbook, which is represented
without cross-fragment edges 3 153
2 for (n1,ns) € E, d(v(n1)) # ¢(v(ns)) do by the pattern nodes labelgef —3 and RP!—3), edges to
3 i — unique ID and from the generated pattern nodes are also descendant
4 q1 — (N1, Ev,r1,v1,61,Th,e1) € Q,ny € Ny edges.
Z 4 : ﬂﬁi&ﬁi&f&fﬁﬁéﬂm) €Qmnz € N2 Whenever we decompose a global Qf,Rhere will be
7 f;i — new pattern node exactly one local QTP that does not contain a pattern node
8 Ny — Ny U {p;} that matches a root proxy node. We refer to this local QTP as
9 Nz — N2 U {rpi} theroot QTP In our exampleg, is the root QTP. All other
1001 valp) = proxyi local QTPs contain exactly one pattern node that matches
11 vo(rp;) < root proxys . . .
12 Ty — T1 U {p;} root proxy nodes in their fragments. If local Q¢Pcontains
13 | Ty — ThU {rp;} a pattern node labele@P; "’ and local QTRy; contains the
14 By — EyU }Em,pi)})»} corresponding pattern node labelBfi”’, then we cally, a
15 FEo — Eo U{(rpi,n2 i
child QTPof ¢; andg; aparent QTPof ¢,.
16 5((”17pi)) - 6((TL1,7L2)) Q qt qt p Q qs
17 €((rpi,n2)) < e((n1,n2)) 4.2.2 Conversion of Local QTPs to Local Plans
18 rQ — T4

L Each local QTPy; is then transformed into a local query
plan p;. This is done at the site holding the fragment cor-
responding tay;, using centralized XML query evaluation
strategies (e.g., [12,13]). The pruning techniques ptesen
in this paper are independent of the techniques used by lo-
cal query plans. We therefore omit a detailed description of
local plan generation.

For the purpose of illustration, Figure 16 shows a set of
local plans based on structural joing throughp,), which
correspond to the local QTRs throughg,, respectively.

! G

(@ a1

4.2.3 Distributed execution plans

To obtain the overall query result, the results of local plan
Fig. 15 Local QTPs need to be “combined” based on the IDs of their proxy and
additional local QTP corresponding to fragmeit (which ~ root proxy nodes. Alistributed execution plaspecifies how
contains thgubs andbook node types) is introduced, even exactly this is done. In this section, we explore how dis-
if there is no pattern node in the global QTP that refers tdributed execution plans can be constructed and what their
node types in this fragment. properties are.

If the global QTP does not reach a certain fragment (beDefinition 7 Let P = {py, ..., p, } be the set of local query
cause even after unrolling no constraints are placed on thHdans corresponding to a quegy For eachp; € P, let f;
node types contained in this fragment) and if no intermediatdenote the vertical fragment correspondingpto Further,
QTP has to be generated for it because of cross-fragment dé&t 2’ C P. ThenG p/ is adistributed execution plafor P’
scendant steps, then the localized plan derived from the Idff
cal QTPs will not access this fragment. Therefore, the local 1. P’ = {p;} andG’, = p;, or
ization technique eliminates some vertical fragments ever?. P’ = P, U P}, P, N P, = 0, p; € Py,p; € P,
without further pruning. pi = parentp;); Gp, andGp, are distributed execu-

Localizing the global QTP shown in Figure 5 yields the tion plans forP; and F/, respectively; andzp: = G,
set of local QTPs shown in Figure 15(a)—(d). Each cross- Mpi=i jg—ppi=i.ia GP):
fragment edge in the global QTP is represented by a pair If Gp is a distributed execution plan fdr (the entire
of pattern nodes that match a proxy/root proxy pair. Theset of local query plans), theff, = Gp is a distributed
edge fromaut hor to name, for example, is replaced by execution plan foy.

12

Mprs.pi-zy

Mauthor//PJ "3

/N

Naﬂlthor/P,}*2 Scamp*lﬂg)

scarfauthor) scar{P}~?)
(@) p1
Mrpi-2y

Otirst="William'

Nname/first

N

O1last='Shakespeare' Scamf iI'St)

Mpane /last

/N

Mgrpi-2/mame Scarflast)

scarfRP!~?) scarfname)
(b) p2
H{RP}A{PJHI}
Mook / /P31

/N

MRpi-a/pook scarfP34)

/N
scarfRP!~%) scarfbook)
(©) ps

H(RP;"“".reference}

[X]RP;‘H'U/reference

VAN

scarfRP3~") scarfreference)

i) P4
Fig. 16 Local plans

N p1-3 id=RP1~3.id

N

Np1-2id=rpi~2id MNps—1id=RP3~*.id

/\ /\

P11 P2 p3 P4
Fig. 17 Initial distributed execution plan

Mpi=i ja—prpi=i.ia Grp thenMeg, = Mg, U Mg, \
{PI77 RPI7Y.

Figure 17 shows a distributed execution plan that com-
bines the results of the local plans shown in Figure 16. There
are usually many different vertical execution plans that al
yield the correct result but that may vary in cost. Since the
focus of this paper is on localization and pruning, we do not
discuss the problem of picking the most advantageous plan.

4.2.4 Skipping fragments

The localization strategy for vertical fragmentation @i
accessing fragments whose node types are not reached by
the global QTP. It does not, however, address a scenario
where node types in a fragment are reached by the global
QTP but no constraints are placed on these node types. Con-
sider, for example, the local QTP shown in Figure 15(c),
which is evaluated on fragmeyit’ . Its sole purpose is to de-
termine which proxy nodes ifi) lead to which root proxy
nodes in fragment}’. Since the only way from a root proxy
node inf) to a proxy node in the same fragment is through
abook node, no further constraints are placedfdh We

now propose a technique that allows us to avoid accessing
such intermediate fragments, and, thereby, prunes thé loca
QTPs corresponding to these fragments from a distributed
query plan.

We achieve this by storing information that allows us to
identify all ancestor proxy nodes for any given root proxy
node. Using this information, we can then determine for any
root proxy node inf};” which proxy node inf) is its an-
cestor. This, in turn, allows us to answer the query without
accessingfy or evaluating the local QTP shown in Figure

A distributed execution plan must contain all the local15(c). The benefits of this are twofold: it reduces load on the
plans corresponding to the query. As shown in the recurintermediate fragments (since they are not accessed) and it
sive definition above, an execution plan for a single locakvoids the cost of computing intermediate results and join-
plan is simply the local plan itself (condition 1). For a skt o ing them together.

multiple local plansP’ we assume thak, and P; are two While it would be possible to store the ancestor-descen-
non-overlapping subsets & such that’; U P, = P’.We dant join information in a centralized (or replicated) irde
require that’; contains the parent local planfor some lo- structure, this could severely limit the scalability oftdisu-

cal planp; in P;. An execution plan foP” is then defined by ted query processing. In addition, it would make update man-
combining execution plans fd?, andF; using a join whose agement more difficult. Therefore, we store the join infor-
predicate compares the IDs of root proxy nodes derived frormation by numbering proxy nodes according to a scheme

p; to the IDs of corresponding proxy nodes derived frem pased on the Dewey decimal sysfefi].
(condition 2). We refer to this join as@oss-fragment join

. . 2 We have also experimented with other numbering schemes, such
/ ’
If G'» consists of a single local plan, then the setof - == = """ + proxy pair is identified by its pre-ordermost-

attributes returned by:’, (referred to asM¢,,) is identi- grder position in the collection. Our techniques are appliéo these
cal to the set of attributes returned py. If Gpr = Gp: alternate representations as well.

13

D<I1’%’,133*4id.startswitf(P,}*ff.z'd)
NMpi-2 ;0-"ppi-2iq D3

P P2
Fig. 18 Skipping vertical plan

To define this numbering scheme, we need to distin-
guish between the following two casds$) If a document
subtree does not have a root proxy node as its root (i.e., if
the subtree contains the root element of a document tree in
the collection, which can only occur in the root fragment),
then the proxy nodes in this subtree (and, of course, the @ 1Y’
root proxy nodes in othe_zr fragments _that correspond to thqug. 19 A modified fragmentation schema
proxy nodes) receive simple numeric IDs. In the collection

shown in Figure 2, this can be seen in all subtrees in frags they are not needed for evaluating value constraints. To
mentf}”. The proxy nodes in this fragment therefore receiveyystrate this, consider the modified fragmentation schem
numeric IDs, which means that &lR) P} > and(R) P~ ghown in Figure 19, which adds the additional type of pub-
are already numbered in accordance with our numbering.ationarti cl e. If we evaluate the local QTPs shown in
scheme(ii) If a document subtree is rooted at a root ProxXyFigure 15 on this modified schema, we can no longer elimi-
node then the ID of each of its proxy nodes is prefixed byyate the local QTP in Figure 15(c) because skipping the cor-
the ID of the root proxy node of the subtree, followed by aresponding fragment would mean that we could no longer
numeric identifier that is unique within this subtree. InFig distinguish between the subtrees in fragmﬂ{t’ that are
ure 2, fragmentgy’, £ andf) consist of subtrees that are part of abook and those that are partof ant i cl e.

rooted at a root proxy. However, only fragmefjt contains We propose a technique that allows us to skip such frag-
proxy nodes. Therefore, onlfis™, Piy™* andP3;~* have ments. In addition to storing skipping IDs, we use the proxy
to be renumbered?ji™* is part of a subtree that is rooted |ps 1 keep track of some structural information for cases
at the root proxy node?Pj;"*. We would therefore have \yhere there is ambiguity. We define structural ambiguity as
to renumber it taP?;3*. Similarly, P4 would be renum- f5j10ws:

bered toP7; ;* and P3;* to P . Definition 8 Let £, be a fragment whose subtrees are rooted

If all proxy pairs are numbered according to this schemeg; ot proxy nodes and assume that subtrees icontain
a root proxy node is the descendant of a proxy node presroxy nodes that refer to fragmefit Thenf, is structurally
cisely when the ID of the proxy node is a prefix of the ID of ambiguouswith respect tof, if there is more than one path
the root proxy node. When evaluating query patterns, we cag, the schema of,, that leads from a root proxy node jfiy
exploit this information by removing local QTPs from the {g 5 proxy node irf, that corresponds tg,.
distributed query plan if they contain no value or strudtura | f. is structurally ambiguous with respect fg, then
constraints, and no extraction point nodes other than thosge add label path information to the proxy ID of each proxy
corresponding to proxies. These local QTPs are only needeghqe inf, that corresponds tg,. This information consists
to determine whether a root proxy node in some other fragpf the labels encountered on a path from the root proxy of
ment is a descendant of a proxy node in a third fragmentne subtree in which the proxy occurs to the proxy itself.
which we can now infer from the skipping IDs. Using this since the label path information is part of the locally urgqu
optimization, we can rewrite the query plan from Figure 17jgentifier specified by our numbering scheme, it is also part
to the simpler plan shown in Figure 18, which avoids accessyf the prefix of the IDs of proxy nodes that are descendants
ing fragmentf;”. of the proxy node for which it was inserted.

It is important to note that our numbering scheme does |, the case of the fragmentation schema shown in Figure
not complicate update management. Subtrees can be insertgsl there is one instance of structural ambiguity: fragment
or removed from a document collection without having 10" is structurally ambiguous with respect f&". This is
modify other parts of the collection and without having t0 pecause there are two label paths from a root proxﬁg‘”l’n
maintain a centralized index. that could lead to a proxy node that correspondg ¥o:
4.2.5 Structural constraints in skipped fragments pubs/ book andpubs/ arti cl e. We therefore store the
While skipping IDs allow us to skip fragments on which label path as part of the ID of each proxy nodefﬁ that
no constraints are placed, sometimes structural contgraincorresponds tg} ". Figure 20 shows a sample instance of
make it necessary to access intermediate fragments, evélagmentfs’ " with label path IDs.

14

izontal fragmentation, it is important that the FTPs are de-
fined such that for a given QTP in the workload contradic-
tions can be found that allow us to exclude some of the frag-
ments. For vertical fragmentation, a suitable fragmeorati
schema should aim to maximize parallelism between the
(non-skippable) sub-queries of a given query while avajdin

Fig. 20 Fragmentf)’ with label path IDs excessively large intermediate results. In either casatwh
DM R pi—1.jd startswitt P13 id) constitutes a good fragmentation schema cannot be defined
independently of the query evaluation strategy used. While
/ in practice fragmentation is performed before query eval-
N p1-2 jq=RP1-2.id TrP3-+.13sei=pubs /vook uation, we have chosen to present our fragmentation algo-

rithms after our query evaluation strategies in order teebet
illustrate this dependency.
41 2 4

Fig. 21 Label path plan 5.1 Horizontal fragmentation

i . Horizontal fragmentation allows us to directly apply a frag
_ Label paths as defined here can be viewed as a mateflioniation algorithm that was originally developed for re-
alization of structural selections on linear paths throagh lational systems. This relational fragmentation alganitis
particular fragment. Thus, they contain sufficient informa based on minterm predicates, which are conjunctions of sim-
tion to evaluate structural constraints in a linear pathipas ple predicates on individual attributes. Minterm prechsat

the QTP shown in Figure 15(c). In combination with skip- 50 ohtained by extracting the predicates found in the query

ping IDs, label paths therefore allow us to evaluate theﬂ”erworkload, decomposing them into simple predicates consist
using the plan shown in Figure 21, which avoids accessin

p 919 of a single (in)equality and finally combining these sim-
J5 - ple predicates such that all possible combinations of gmpl
4.2.6 Analysis predicates are covered [1].
Assuming that we use the unrolling technique presented in In order to apply this technique, we need to transform
the section on horizontal localization, the upper bound onhe predicates found in tree patterns into simple predicate
the total size of local QTPs obtained by vertical localiza-from which minterm predicates can be constructed. We do
tionisO(|EG ¢l + | EQuee||Z])- In practice, where schema this by first unrolling descendant steps into child stepm@us
graphs tend to be sparse, we can expect the total size of aHe same procedure employed in Algorithm 2). Then, each
local QTPs to be close to the size of the original QTP. value constraint in the pattern can be transformed into a set
Both skipping IDs and label paths are inserted at fragof simple predicates whose left-hand side is the path from
mentation time and whenever data are added to the colleehe root of the unrolled tree pattern to the node with which
tion. Since they are not replicated, local insertions and-de the value constraint is associated.
tions can be handled without having to modify other frag- Performing this transformation for the workload shown
ments. in Table 2 yields the constraints shown in Table 3. We then
The vertical pruning techniques proposed here operatextract the simple predicates from these constraintgriegl-
solely on the QTP and the fragmented schema graph. Theyates that do not contain conjuction or disjunction. The re
are independent of the size of the data and of the constangsilt of this is shown in Table 1.
used in value constraints. This allows us to perform prun-

ing at query compile time, thereby minimizing the run-time T aut hor/ name/ | ast == * Shakespear '’
overhead introduced by our technique. [aut hor/ nanme/ [ast =="* John’’
Label paths are useful not only for localization but also lauthor/name/first==""WIlian"

for pruning irrelevant subtrees within fragments [2]. Stud Table 1 Simple Predicates

ing further uses of label paths in a distributed contextés th From these simple predicates, we can then construct min-
subject of future research. term predicates using the same techniques applied to the re-
lational scenario. The minterm predicates derived from the
simple predicates in Table 1 are shown in Table 4. Based on

In this section, we propose a set of fragmentation algosthmese minterm predicates, we can then apply the relational
that determine a fragmentation schema that optimizes Pefragmentation algorithm.

formance for a given query workload. The previous section

has identified a number of properties that a fragmentatioR-2 Vertical fragmentation

schema needs to possess in order for localization and prufie evaluate a query over a vertically fragmented collegtion
ing to achieve high query performance. In the case of horwe evaluate each sub-query on its corresponding fragment

5 Workload-aware fragmentation of collections

15

Q1 | /author[nane/ | ast=""Shakespeare’’ or nane/last=""John" ']/ pubs/book
Q2 | /author[nanme/first=""WIIliam ']/ pubs/book

Table 2 Sample workload

[Path | Constraint]
[aut hor/ name/ | ast . =="" Shakespeare’’ v.=="*John"’
[aut hor/name/first | .==""WIlliam"’
Table 3 Constraints

[aut hor/ nane/ | ast ==' * Shakespeare’’ A/author/nanme/first=="*WIllian’
/aut hor/ nane/ | ast ==" * Shakespeare’’ A/author/name/first!=""WIlliam’
/aut hor/ nane/ | ast =="* John’’ A/author/name/first=="WIIliam’
/aut hor/ nane/ | ast =="* John’’ A/author/name/first!=""WIIliam’
[aut hor/ nane/ | ast!=""* Shakespeare’'’ A/author/nane/last!=""John’’ A/author/name/first==""WIlliam"’
[aut hor/ nane/ | ast! ="* Shakespeare'’ A/author/nane/last!="*John’’ Alauthor/nane/first!=""WIIliam’

Table 4 Minterm Predicates

and then join the intermediate results to obtain the over5.2.2 Heuristic fragmentation algorithm

all query result. Depending on how the collection is frag- he nd for d . he best f .
mented, the intermediate results may be large and the su-tg— € nave strategy for determining the best fragmentation

gueries may be expensive to evaluate. In extreme cases, tl’?i%hema for a given Wor_kload would be_ to exhaustively enu-
can lead to a scenario where it is more expensive to evaljerate all possible vertical fragmentation schemas, cempu
ate a query on a vertically distributed collection than iois th,fht?:lal |C°St f(;r ea;:hv\c/);‘ftlhetr; apd then C?Ooji thg slgklﬁma
evaluate the same query in a centralized fashion. In order gg'th the lowest cost. e tis 15 guaranieed 1o yie ©
avoid this situation and to take full advantage of the pagnt opt|mal_ result, the large number of p05_5|ble vertlgal frag-
of vertical distribution, we have to ensure that the vettica"'entation schemas generally makes this hstrategy infeasibl
’ H H t

fragmentation schema is well suited to the query Workload.gggre,siﬁz”naﬁagr;?g\ﬁ%ﬁrlerﬁg 'i iﬂgzchi(::;)umber

In the following, we propose a vertical fragmentation al- n i u . yp I) o
gorithm that chooses a suitable vertical fragmentatioesch 10 obtain a feasible fragmentation algorithm, we instead
ma for a given query workload. Our algorithm is based orPTOPOS€ a.heurlstlc str.ategy. that starts out wnh an |n|t|gl
a cost model, which estimates the response time of a quef{pgmentation schema in which each node type is placed in

when evaluated over a vertically fragmented collection. 1t OWn fragment and then greedily merges fragments until

we can no longer reduce the estimated workload cost. While
5.2.1 Cost model this strategy is not guarant.eed to find the global 9pt|mum,
our experiments show that it performs well in practice.
In the following, we explain how the greedy algorithm
works for a single query. Details are shown in Algorithm 5.

We define the following cost metrics for each local pfgn
and its corresponding fragmefitp;):

— cos(p,), the response time of evaluatipgon f(p;), After determining the local cost metrics for each local plan

— scancog,), the time it takes to scan the root proxy based on the initial fragmentation, we identify the plartwit
nodes inf(p;) that are accessed by, the highest local cosinax (ignoring local plans that can be

— cardp;), the number of tuples returned pywhen eval- ~ pruned) and its corresponding fragmefitpmax). Since the
uated onf(p;), overall cost of the query is determined by the cost of the

— snip(p;), the number of document subtreesfifp;) that ~ Most expensive local plan, we can focus on decreasing the
are accessed by;. cost ofpmax.

While it i ible to obtain th i . To do this, we attempt to mergg(pmax) With one of
all thl'e ' 'prOSSI € .0 0 aclin' esetme 'rtlcs exsenmefn-its ancestor fragments. We start wiflipmax)’s parent frag-
ally, This can be expensive and In practice it may be pretely, g ror each parent fragmefit we mergef (pmax) and
able to estimate these values using various cost estlmatu%w

I

techniques that have been developed for the centralizéd ev » and then determine the cost of each non-prunable local
.) ;) an corresponding té; U . If the cost of all of these
uation of XML queries. For notational convenience, we do P 91U f(pmax)

R .) _ _“plans is lower than co§i;), we removef; and f (pmax) from
npt distinguish between estimated cost metrics and their P the fragmentation schema and inS&rt f (pmay). We then
cise counterparts.

repeat the procedure by determining the most expensive lo-

Since th? local plans can be evaluated independently Q,Ial plan for the modified fragmentation schema and attempt-
each other in parallel, we can model the cost of a query ing to reduce its cost.

as cosfg) = max{cos(p,) | p, € P} whereP is the set
of local plans (after pruning) correspondinggtfor a given
vertical fragmentation schema.

If none of the parent fragments tpmax) allow us to re-
duce the maximum local plan cost, we {ffpmax)’s “grand-

16

parent” fragments, “great grand-parent” fragments, and s6é Performance evaluation
forth. When merging with an ancestor fragmehtthat is
not a direct parent of (pmax), we merge all the fragments
on the path fromf(pmax) to f;. If no ancestor fragment of
f(pmax) allows us to reduce the maximum local plan cost,
the algorithm terminates without making further modifica-
tions to the fragmentation schema.

We have enhanced the native XML database system NATIX
[12] with distributed capabilities and implemented outtec
nigues within this system. This allows us to validate our ap-
proach and to perform realistic experiments.

The goal of our experiments is to show that our tech-
nigues can improve the performance of query processing
through distribution and pruning. To achieve this, we first

Algorithm 5 : Vertical fragmentation focu_s on stress-testing thg distributio_n techniques pledg
input - query plarp, schema >, . s, m. p) in th|§ paper. We pay part|cul_ar attention to how our pruning
output : vertical fragmentation scherfia’ C X} algorithms limit query execution to a subset of the fragraent

1I—{{o}|oeZ} o in a distributed collection and carefully analyze how tHis a

: ha < ¢ eézrt]é‘;‘;fg’(’%(l))) ;OmaX{COS(pj(])) |71} fects performance. Then, we run a number of experiments

. Z?”C'es“”) fma that represent realistic use cases based on the XPathMark

merged <— tmax U . . . U Zancestor

5 if cOS(pi,,,(imax)) > cos{p()) then benchmark [15].

6 L I + (I Uimerged \ max - - - ; Zancestor All of our experiments rely on collections of on-line auc-

! goto2 tion data generated by the XMark benchmark [16], which

8 return(I) is a standard benchmark for evaluating XML query perfor-

mance. The experiments are conducted on virtualized Linux
machines within Amazon’s Elastic Compute Cloud [17]. We
use a separate instance (providing 1.7 GB of memory and
a single-core 32 bit CPU) for each fragment, with an ad-
Our fragmentation algorithm relies on frequent tentatiee-m ditional instance for dispatching queries. All instances r
ges between fragments. While it is possible to re-estimatg the same availability zone, ensuring low-latency, high-
the cost of all affected local plans after each such mergehroughput communication.

this can be expensive. To address this, we propose a method

for estimating the cost of a local plan; corresponding to 6.1 Horizontal fragmentation

the fragmentf (p;) U f(p;) based on cost estimates for For the horizontal fragmentation model, the goal of our-eval
(corresponding tgf (p;)) andp; (corresponding tof (p:)'s yation is twofold: First, we want to verify that horizontasd

5.2.3 Estimating local plan costs after merging

parent fragmenf (p;)): tribution allows us to improve both query response time and
_ throughput. Then, we want to show that our pruning tech-

cardp;) _ _
costp;;) = costp;) + Snipp:) (costp;) — scancosh;)) niques allow us to further improve throughput beyond the

.) o) level achieved by distributed execution alone without any
The rationale behind this is as follows: c@sf) includes 5qverse effects on response time.

all of the cost of the local plan corresponding to the parent gince our definition of horizontal fragmentation assumes
fragment, cosp;). The cost of the child fragment is scaled 5 ytiple-document collection, we conduct these experi-
by the selectivity of the parent fragment, represented @s thy,ents on an XMark collection that has been decomposed
fraction of the subtrees irf(p;) for which corresponding jnio multiple small documents. We do this by by placing
proxy nodes are returned py. We also subtract the portion eachopen_auct i on element into its own document along

of the cost that can be attributed to scanning the root proxyith its descendants and document subtrees referenced via
nodes inf (p;). Our experiments show that this approxima-|p/|pREF. This results in documents of regular structure
tion does not prevent us from identifying good vertical #ag yith an average size of approximately 30 KB. We scale this
mentation schemas. collection to 350 MB, 3.5 GB and 35 GB.

5.2.4 Handling multiple-query workloads 6.1.1 Balanced fragmentation

So far, for simplicity, we have focused on identifying a frag

. . . Eachopen_aucti on element generated by XMark con-
mentation schema for a single query. In practice, howeve

. - tains an auction end date and these dates are uniformly dis-
Work!oads generally COﬂSIS.t of more th.a”. one query. .lt Sributed across the years 1998-2001. We can therefore ob-
Egzsézls dtigoanc-jei‘r?; tzl;:j a;?ct):rtrr:i?];?/nmc\:\;jr:fgr']ntghéhsot;rgl?ﬁétain a balanced horizontal fragmentation schema (i.eag fr

: 9 mentation schema in which all fragments are approximately

most expensive local plan cannot be reduced further, w . - .)
. . e same size) by dividing this date range into non-overlap-
check the most expensive local plans of each query in de-. .) .
ing periods of equal lengths, with each such period corre-

scending order of cost and only terminate once we cann(ﬁ
sponding to one horizontal fragment. For this experiment,
further reduce the cost of any of those.

17

Q1 | /open.auction[./interval/end[. = xs:date(’ 12/28/2001")]][initial > 120]//iten nane

Q2 | /open.auction[./interval/end[. >= xs:date(’ 01/01/1998")][. < xs:date(’ 12/28/1998")]][initial
Topen_auction[./interval/end[. >= xs:date(’ 01/01/1998)][. < xs:date(’ 12/28/1999") initial
Q4 | /open_auction[./interval/end[. >= xs:date(’ 01/01/1998")][. < xs: date(’ 12/28/2000") initial
Q5 | /open_auction[./interval/end[. >= xs:date(’ 01/01/1998")][. < xs:date(’ 12/28/2001") initial

Q6 | /open_auction[initial > 200]/interval/end

Q7 | /open_auction//person//category[id="categoryl0’']

/open_aucti on/ bi dder// person//category[id=" categoryl0’]

Q9 | /open_auction/bidder//person[creditcard]//category[id="categoryl0’]

Q10 | /open_aucti on/ bi dder//person[creditcard]/profile[education]//category[id="categoryl0’]

Al /'sitel/closed_auctions/closed_auction/annotation/description/text/keyword

A2 /Il cl osed_auction//keyword

A3 I'sitelclosed_auctions/closedauction//keyword
['sitelclosed_auctions/closedauction[annotation/description/text/keyword]/date
A5 /sitelclosed.auctions/closed.auction[descendant: : keyword]/date

A6 / sitel peopl e/ person[profil e/ gender and profile/age]/nane

B7 /I person[profil e/ @ncone]/ nanme

120]//item nane
120]/7itenf name
120]/7itenf nanme
120]//item nane

Horizontal
QO
w

V| v|v|v

Vertical
Q
[e°]

XPathMark
2|
B

Table 5 Queries used in experiments

we use fragmentation schemas consisting of 1, 2, 4, 8, 16, Next, we consider the throughput impact of distribution
32, 64 and 99 fragmerits and pruning. To measure query throughput, we use multiple
On this distributed collection, we evaluate 5 classes oflispatcher processes to keep the system loaded with queries
gueries. Q1 consists of queries that contain a point preglicaln Figure 23, we report the maximum throughput rates we
on the auction end date, i.e., each query returns auctians thwere able to achieve for each class of queries. Even with-
end on exactly one date within the 4 year period. Q2-Q5 repeut pruning, distribution significantly increases thropgh
resent range queries that cover 25%, 50%, 75%, and 100%d this increase in throughput is proportional to the numbe
of the date range, respectively. It is important to note thaof fragments. Enabling pruning further improves throughpu
each time we run a query in one of these classes, we raiwy a significant margin. Naturally, the impact of pruning is
domly choose a date/date range within the 4-year range. Taaost pronounced for the class of point queries Q1, where
ble 5 shows an example of a query in each class. a single date is selected and where our pruning algorithm
We first measure the response time of evaluating the qu&an therefore avoid accessing all but one of the fragments
ries on the horizontally distributed collection. As in aleey ~ for each query. Pruning also helps for the queries that in-
surements in this paper, the results reported in Figure 22 irvolve a range of dates, particularly when this range is small
clude the cost of constructing sub-query results at the indithough the effect is less pronounced. For Q4 and Q5, where
vidual sites, shipping them to the dispatcher and assemblira large portion of the fragments or all fragments have to be
them to the overall query result. In the case of the 35 GBnspected, pruning offers no advantage over simple distrib
collection, some data points are missing for centralized ex tion but it also does not harm performance (apart from some
cution and the fragmentation schemas with a lower numbensignificant anomalies in the case of the 35 GB collection
of fragments. In these cases, the query did not finish withinvhere throughput rates are very low).
2 hours. This illustrates the importance of a fragmentation sche-
When interpreting the results, we can see that horizontana that is well suited to the workload: fragmenting on at-
distribution allows us to reduce query response time whetfibutes on which single-value selections are performadde
compared to centralized execution (i.e., the scenario avith to greater pruning opportunities than fragmenting on-attri
single fragment on a single machine). The more machinegutes that are used in wide range predicates. Even in the lat-
we add to the system (by fragmenting the collection intdter case, however, distributed evaluation by far outperor
more fragments), the faster response time becomes. Singentralized querying.
larly, adding more machines allows us to manage larger col- Our results also show that once a throughput of approxi-
lections while maintaining the same level of response timemately 20 queries per second is achieved, further incrgasin
We can also observe that pruning does not result in a majéhe number of machines does not lead to improved perfor-
improvement of response time when compared to distributethance. This can be explained by the fact that, at this point,
execution without pruning. This is expected since pruning i the dispatcher is saturated, and distributed query evatuat
primarily intended to improve throughput. It is important, is no longer the bottleneck in the system.

however, to point out that pruning has no negative impact on
response time. 6.1.2 Skewed fragmentation

3 We were limited to 100 EC2 instances running simultaneouslyy\/hIIe pruning performs well on a balanced fragmentation,

Since one instance is needed for the dispatcher, this meangefean 1N practice it is not always possible to achieve this balance
use at most 99 instances to store fragments. We therefore measure the effect of pruning with a skewed

18

Fig.

Response time (seconds) Response time (seconds)

Response time (seconds)

w/ pruning —*—
w/o pruning —8—

Response time (seconds)

0
1 2 4 8 16 32 6499
Number of machines and fragments

() Q1, 350 MB

350
300
250
200
150
100

50

w/ pruning —>=—
w/o pruning —&—

Response time (seconds)

5 6 7 7
45 w/ pruning —*— z w/ pruning —— ™ w/ pruning —»— I w/ pruning —>—
'4 w/o pruning —8— T 5 w/o pruning —8— T 6 w/o pruning —&— e 6 w/o pruning —8—
3 8 3
o g4 o 5 o 5
) <@ <2
o o 4 o 4
E 3 £ £
[O 3 ; 3
g 2 2 2
o o 2 o 2
aQ o aQ
g 1 2 1 2 1
4 4 o
0 0 0

1 2 4 8 16 32 6499
Number of machines and fragments

(b) Q2, 350 MB

350
w/ pruning —>=— =
300 w/o pruning —&— B
o
250]
K2
200)
E
150 >
@
100 S
a
50 2
14

0
1 2 4 8 16 32 6499
Number of machines and fragments

(f) Q1,3.5GB

600

w/ prgning —>—
w/o psyning —&—

500
400
300
200
100

Response time (seconds)

0
1 2 4 8 16 32 6499
Number of machines and fragments

0
1 2 4 8 16 32 6499
Number of machines and fragments

() Q2,3.5GB

600

w/ prgning —><— G

500 w/o pyning —8— 2
8

400 8
(<3

300 E
200 8
2

100 g
[i4

0
1 2 4 8 16 32 6499
Number of machines and fragments

1 2 4 8 16 32 6499
Number of machines and fragments

(c) Q3, 350 MB

350
300 |
250
200
150
100
50
0

w/ pruning —>=—
w/o pruning —&—

Response time (seconds)

4 8 16 32 6499

12
Number of machines and fragments

(h) Q3,3.5GB

600
w/ pgining —><—
w/o priyning —&—

500
400
300
200
100

Response time (seconds)

0
1 2 4 8 16 32 6499
Number of machines and fragments

1 2 4 8 16 32 6499
Number of machines and fragments

(d) Q4,350 MB

350
300
250
200
150
100

50

w/ pruning —<—
w/o pruning —&—

Response time (seconds)

1 2 4 8 16 32 6499
Number of machines and fragments

(e) Q5, 350 MB

350
300
250
200
150
100

50

w/ pruning —>=—
w/o pruning —&—

0
1 2 4 8 16 32 6499
Number of machines and fragments

(i) Q4,3.5GB

600

0
1 2 4 8 16 32 6499
Number of machines and fragments

() Q5,3.5GB

600

w/ phining —x— m w/ pgygning —>—
500 w/o prining —8— 2 500 w/o pryning —&—
o
1=
400 & 400
300 £ 300
200 % 200
100 2 100
14
0 0

1 2 4 8 16 32 6499
Number of machines and fragments

1 2 4 8 16 32 6499
Number of machines and fragments

(k) Q1,35GB () Q2,35GB (m) Q3,35 GB (n) Q4,35 GB (0) Q5,35 GB
22 Response time, balanced horizontal fragmentation
% w/ pruning —>— § 18 w/ pruning —*— E:’\ 4 w/ pruning —*— "é\ 4 w/ pruning —— ? 12 w/ pruning —»—
25 w/o pruningg=—=8— § ii w/o pruning § 12 w/o pruning —8— § 12 w/o pruning —8— § 10 w/o pruning —&—
& b a &
20 2 12 g 10 g 10 % s
s g 1 g s g s : o,
€ S € s £
5 5 5 =]
5 3 3 2 3 2 3 2
oo F oo E oo E oo

Throughput (queries/second) Throughput (queries/second)

Throughput (queries/second)

0
1 2 4 8 16 32 6499
Number of machines and fragments

(a) Q1, 350 MB

2
° w/ pruning —>—
20 w/o pruning —&—

15

10

Throughput (queries/second)

0
1 2 4 8 16 32 6499
Number of machines and fragments

1 2 4 8 16 32 6499
Number of machines and fragments

(b) Q2,350 MB

35
3
25
2
15
1
0.5

w/ pruning —>—
w/o pruning —&—

Throughput (queries/second)

0
1 2 4 8 16 32 6499
Number of machines and fragments

() Q1,3.5GB (9) Q2,35GB
14 w/ pruning —%— ? 035 w/ pruning —%— ?
12 w/o pruning —8— § 0.3 w/o pruning —8— §
10 2 025 %
2]
8 5] 0.2 5]
> >
6 S o015 =t
5 5
4 = 0.1 £
= =3
2 3 005 3
= =
0 —=-8 =

1 2 4 8 16 32 6499
Number of machines and fragments

(k) Q1,35 GB

1 2 4 8 16 32 6499
Number of machines and fragments

() Q2,35GB

Fig. 23 Throughput, balanced horizontal fragmentation

1 2 4 8 16 32 6499
Number of machines and fragments

(c) Q3,350 MB

1 2 4 8 16 32 6499
Number of machines and fragments

(d) Q4, 350 MB

1 2 4 8 16 32 6499
Number of machines and fragments

(e) Q5, 350 MB

1.4 ! 5 12 ' g 12 i
w/ pruning —><— c w/ pruning —><— c w/ pruning —>—
1.2 w/o pruning —8— 3 1 w/o pruning —8— 5] 1 w/o pruning —8—
. g g
g o8 & os
0.8 5] 5]
06 \Es 0.6 % 0.6
5 5
0.4 g 0.4 2 0.4
0.2 g o2 g o2
= =
0 = 0 = 0

1 2 4 8 16 32 6499
Number of machines and fragments

(h) Q3,3.5GB

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

w/ pruning —<—
w/o pruning —8—

Throughput (queries/second)

0
1 2 4 8 16 32 6499
Number of machines and fragments

(m) Q3, 35 GB

1 2 4 8 16 32 6499
Number of machines and fragments

(i) Q4,3.5GB

0.06

w/ pruning —<—
w/o pruning —8—

0.05
0.04
0.03
0.02

0.01

Throughput (queries/second)

0
1 2 4 8 16 32 6499
Number of machines and fragments

(n) Q4,35 GB

1 2 4 8 16 32 6499
Number of machines and fragments

() Q5,3.5GB

0.06

w/ pruning —»—
w/o pruning —8—g

0.05
0.04
0.03
0.02
0.01

0 = &
1 2 4 8 16 32 6499
Number of machines and fragments

(0) Q5,35 GB

19

3
1 central m—" 16 0.3
wio central wiopruning y central y central
12 pruning 25 "l ornin 1.4 | wiopruning wiopruning
w/ pruning ——— pruning —— w/ pruning ——— 0.25 w/ pruning ———

0.2

0.1

02 H 0.05 H
| o 0 R N A o o 0
cent-1 bal-2 bal-4 bal-8 skew-8 cent-1 bal-2 bal-4 bal-8 skew-8 cent-1 bal-2 bal-4 bal-8 skew-8 cent-1 bal-2 bal-4 bal-8 skew-8
Fragmentation Fragmentation Fragmentation Fragmentation

(a) Q1,350 MB (b) Q2, 350 MB (c) Q1,3.5GB (d) Q2,3.5GB

Throughput (queries/second)
Throughput (queries/second)
Throughput (queries/second)
Throughput (queries/second)

Fig. 24 Throughput, balanced and skewed horizontal fragmentation

fragmentation consisting of 8 fragments. Our skewed fragthe queries, with a lower value yielding more query results.
mentation is defined as follows: The first fragment containdVe can see that pruning is more effective for the queries that
half of the entire collection (corresponding to the first 2sge select a large number of results (corresponding to lower bid
of the 4-year period), the next fragment contains half of thevalues). This is because a query that selects a larger portio
remaining collection (i.e., 25% of the data), and so forth,of the collection is more likely to find a match within a given
with the last fragment containing the remainder of the colfragment. The results reported here are derived from the 35
lection data. GB collection. With the smaller collections, efficacy tends
Figure 24 shows the throughput rates achieved by cerio be slightly lower, which can be attributed to the lower
tralized query execution (which is vanishingly low in somenumbers of results derived from these collections.
of the cases shown), as well as distributed query execution
(with and without pruning) on a balanced fragmentation con-
sisting of 2, 4 and 8 fragments and on the skewed fragment-
ation. We use queries Q1 and Q2, for which pruning has
been shown to be particularly effective. Even in the pres-
ence of skew, distribution results in a significant boost in
performance over centralized querying in all cases. As with
a balanced fragmentation schema, pruning further improves 20
throughput. o LS ‘ ‘ ‘ ‘
The throughput rates obtained on the skewed fragment- 00400 800 600 700800
ation tend to fall between that of a balanced fragmentatioftid- 25 Pruning efficacy
with 2 fragments and 4 fragments. This can be explained
by the fact that the largest fragment in the skewed frag- . .
mentation, which is the same size as a fragment in the baf-2 Vertical fragmentation
anced fragmentation with 2 fragments, represents a througH he experimental evaluation of our vertical techniques fo-
put bottleneck. cuses on response times. In a vertically fragmented system,
To further improve querying performance on a skewed® single type of query always accesses the same fragments
distribution, it could be beneficial to replicate the mosthe
ily loaded fragments. We plan to examine replication as part
of our future work.

100

80

60

40

Pruning efficacy (%)

Bid value

6.1.3 Pruning efficacy

In addition to evaluating the performance impact of pruning
we are interested in how effectively the pruning technique
limits query execution to the fragments that actually yield
part of the result. To determine this, we measure the fractio
of those sites accessed by a pruned query plan that yield part
of the query result. The results (based on a balanced frag-
mentation consisting of 16 fragments) are shown in Figure
25. We omitted Q1 from this experiment, since it can be an-

[creditcard] | | [education] [interest

swered using a single fragment. We vary the cut-off value for ST T TTTTey T Tt
the initial bid of the auction, which affects the selectvitf

Fig. 26 Vertical fragmentation schema (vertical experiments)

20

Table 6 Number of fragments accessed, vertical fragmentation

2 \ [[Fragments accessed
2 2f e | Query || Dist | Skip | Label |
€ 18| skip o6 0 T .
g .
§ 16 skip, label —— & : : L
s M Q8 5 2 1
£ 12} Q| 5| 3 2
g 107 Q10 5 2 3
g
3
"4

6l
al
’ Q7 @8 Q10 tributed execution without any pruning, distributed execu
Query tion with pruning based on skipping IDs and distributed ex-
(a) 350 MB

ecution with pruning based on skipping IDs as well as la-

bel paths. We can observe that distributed execution signifi
220 ¢ oo et s cantly outperforms centralized execution in all cases.
180 | ki, labe In order to closely analyze the impact of the various dis-

tributed techniques, it is useful to consider the number of

fragments that they access for each query, which is shown
in Table 6. For Q6, which can be answered by accessing a
single fragment, all distributed execution techniqueddyie
approximately the same response time. For QTvendis-

Response time (seconds)

Query tributed execution needs to access 5 fragments, wherdas bot
(b) 3.5GB pruning techniques access only a single fragment. This ex-
plains why both pruning techniques yield comparable re-
Fig. 27 Response time, vertical fragmentation sponse times, which are approximately half of that df/ea

distributed execution. In the case of Q8, pruning with skip-
ping IDs performs better than iv& distributed execution
resulting in a closed system in which throughput can onlyand pruning with label paths in turn performs better than
be improved by reducing the response time. This makes jruning with skipping IDs. Again, these results are refldcte
separate study of throughput unnecessary. in the number of fragments accessed by each of these tech-
We again use the multiple-document XMark collectionniques. For Q9 and Q10, finally, where even with pruning
described in the previous section, which we partition into? large number of fragments need to be accessed, response
six vertical fragments based on the fragmentation schemf#mes for all distributed techniques are approximately an p
shown in simplified form in Figure 26. This results in a With each other.
skewed fragmentation because different node types in the
collection occur with different frequencies. We scale thie ¢ 6.3 XPathMark

lection to 350 MB and 3.5 GB. In order to measure the performance of our techniques in a
We evaluate queries Q6-Q10 shown in Table 5. Q6 onlyealistic context, we use a subset of the queries in the XPath
involves a single fragment (shown in Figure 26(a)). Previark benchmark (those that can be expressed in our query
ous work has shown that this is the ideal case for verticaiodel, i.e., A1-A6 and B7, as shown in Table 5). We eval-
fragmentation [18]. The remaining queries, however, reacjate these queries on a multiple-document XMark collec-
five of the six fragments in the collection (Figure 26(a), (c) tion consisting of documents with an average size of 60 MB
(d), (e) and (f)). Traversing such a large number of verticalwe did not transform the collection for this experiment).
fragments poses a challenge for distributed query evaluati \we scale this collection to 120 MB, 1.2 GB, and 12 GB and
because the large number of joins required to assemble thgygment it in 2 different ways: First, we use our vertical
results from individual fragments can degrade performancgragmentation algorithm to obtain a fragmentation schema
A carefully designed fragmentation schema will therefore(shown in Figure 28) Then, we use a hybnd fragmentation
aim to avoid this scenario, although this is not always pospased on the vertical fragmentation schema shown in Figure
sible. One of the goals of this experiment is to show thabg, where we horizontally fragment the fragments marked
our distributed execution and pruning techniques allow usyith « based on the label path components of their root
to achieve good performance even in this adversarial casgroxy IDs.
While Q7 to Q10 reach the same number of fragments, they |n Figure 30, we report the response times obtained by
differ in the number of structural and value constraintythe centralized query execution on an un-fragmented collactio
contain, which increases as we go from Q7 to Q10. distributed execution (with all optimizations presented i
Figure 27 shows, for each collection and query, the rethis paper) on the vertically fragmented collection, aret di
sponse time obtained by centralized query execution, digfibuted execution on the collection with hybrid fragment-

21

central m—
vertical
hybrid —

| |
| |
| [cTosed-auctions]| [categories| [people] |
| |
| |

Response time (seconds)
o = N w s (9] o ~ ©

Al A2 A3 A4 A5 A6 B7
Query

(a) 120 MB

80

central m—m
70 vertical
hybrid ——

Response time (seconds)

(b) 1.2 GB

central m—
1600 vertical

| |
| |
| [cTosed-auctions]| [categories] [people] | 1800
| |
| | hybrid ——1

1400
1200
1000
800
600
400
200

—_——_——_—_—
| [closedauction]

Response time (seconds)

Fig. 30 Response time, vertical and hybrid fragmentation

decoupled from other query processing steps, our techsique
can easily be combined with other distributed query process
ing techniques. The work presented here is also orthogonal
to local XML query evaluation strategies, which have been
the subject of intense research and which can be used to fur-
ther improve the results shown here.

Fig. 29 Hybrid fragmentation schema (XPathMark experiments
g y 9 (P) 7 Related work

ation. We can see that for all queries, vertically fragménte There exist significant bodies of work on both querying XML

execution performs significantly better than centralized e data in a centralized environment and distributed querl eva

ecution. Query execution on the hybrid fragmentation peruation in relational systems. Due to space constraints, we

forms even better and is in some cases more than 50 tim&éll restrict our discussion of related work to XML query

faster than centralized execution. evaluation in distributed systems and to techniques tleat ar
directly related to our work.

.4 Other techni
6.4 Other techniques 7.1 Specifying XML Fragmentation

Since this is the first pruning technique proposed for frag-_ . . .
mented XML data, there is little opportunity for direct com- Existing work has focused on two main approaches to frag

arison with other approaches. Since fragment prunin igwenting a collection of XML dataad-hoc fragmentation
P PP ' 9 P 9 andstructure-based fragmentation

22

7.1.1 Ad-hoc fragmentation Bremer et al. present another mechanism for specifying

Ad-hoc fragmentation is a flexible fragmentation model thata vertical fragmentation of XML data [27]. They call such

L . e a specification a Repository Guide. In a Repository Guide,
does not rely on an explicit fragmentation specification. In P P y P y

. L a fragment is defined by a selection path expression iden-
stead, it allows us to fragment XML data by arbitrarily cut- .. . 9 y b xP
. . tifying the root nodes of the subtrees contained, as well as
ting edges in XML documents.

a set of exclusion paths representing nodes whose descen-

d |Qn§ ap pr;?\;l:[] thahtlfcr)]llows the ad-hoc fre:cgmentatlor:jmoaams are excluded from the fragment. The set of fragments
elis Active » Which represents cross-iragment edgegq required to be both disjoint and complete. The authors

as calls to remote functions. When such a function call is aC3rque that this approach can be expanded to horizontal frag-

tiyated, the ‘?'ata corregponding to the remote fragmgnt is Mnentation by allowing branching and value constraints in
trieved and is then available for local query processing-{19 the defining path expressions. However, this would make it

22]. ,] o more difficult to enforce completeness and disjointness.
Cong et al's work on partial query evaluation is also apqrade et al. expand Bremer's specification method by
based on ad-hoc fragmentation although their single-docu;ying explicit support for horizontal and hybrid fragment

meanata.modeI allows the authors tc_) infer certain strattur ation [18]. They define each horizontal fragment by giving
relationships between fragments, which can then be used f‘&rselection predicate in the form of a Boolean path expres-

distributed query optimization [23, 24]. Therefore, thistw i, with value constraints. This predicate is used to eeter

can be considergd_ a hybrid case that has certain structurgs. -\ hether a given document is part of the fragment. The

based characterlstlcls. predicates are required to cover all documents (complete-
The representation of cross-fragment edges as pairs @kss) and be mutually exclusive (disjointness). The asthor

proxy nodes is a technique that has been used successfulllss make the observation that by nesting horizontal and

to fragment XML document trees onto pages in the nativgertical fragmentation, both single-document and mutipl
XML database system NATIX, albeit at a much smaller levelyqcument scenarios can be accommodated.

of granularity than in the work presented here [12]. In addition to predicate-based horizontal fragmentation,

_ Kido et al. introduce a novel definition of vertical fragment
7.1.2 Structure-based fragmentation ation that is based on partitioning the schema graph, rather

Structure-based fragmentation is based on the concept han on inclusion and exclusion path; [28]. T_his definition
fragmenting a collection based on some properties of thgl(.)sely resembles the the way we define vertical fragment-
schema or the data itself. As in the relational context, we ca@ton- _ _ _
distinguish betweehorizontal fragmentationwhich defines While not directly related to fragmentation, Marian et
fragments byselectingsubsets of the collection, avertical &l Propose a technique thatimproves query performance by
fragmentationin which fragments are defined pyojecting projecting away irrelevant portions of an XML collection
to different parts of the schema. In addition to these ogtion :
it is possible to define Aybrid fragmentatiorby concate- In summary, we can observe that ad-hoc fragmentation
nating selection and projection steps. offers great flexibility in how a collection can be distribdt
One of the first attempts to transfer the relational con-' NS flexibility, however, comes at the cost of decreased op-
cepts of horizontal and vertical fragmentation to the reaim POrtunity for distributed query optimization. Structurased

XML was made by Ma and Schewe [25, 26]. However theirflfagmentation, on the other hand, is less flexible but yialds
definition of vertical fragmentation is limited to elements Well-defined specification of the fragmentation layout, ethi

whose content is a sequence of other elements. Under theSe? Valuable asset during distributed query optimization.
constraints, it is straightforward to extend the relatlatedi-

nition of vertical fragmentation by treating the contam#l- 7.2 Representing XML Schema Information
ement type as a relation that contains attributes correspon

ing to the contained element types. As in the relational,cas@‘ concise graph representation of the schema of an ,XML
we can then simply project to subsets of the contained e|gollect|on hag been used to convert XML data to relational
ements. The authors also assume a single-document qué les [3]. Asin ourwgr}(, the authors capture only the rele-
model, which means that a horizontal fragmentation step al’ nt aspects of the original DTD or XML Schema.

ways has to be preceeded by an implicit vertical fragment-

ation step. In addition, their approach is based on modify7.3 Query Evaluation

ing the schema by renaming elements and rearranging thejr .
n:’stin Thereforg unlike Iagtler techniques. it is notsg g A number of techniques have been developed to evaluate
g ' ques, B queries on distributed XML collections. In this section, we

ent f"‘”d It requires qgerles to.t-)e fprmulated explicitly for aclassify these existing techniques based on their apptoach
particular fragmentation specification.

optimizing distributed query evaluation.

23

7.3.1 Query models Within the context of Active XML, Abiteboul et al. pres-
Query models similar to XQ and their connection to stan-ent a technique that avoids calling certain remote funstion
nd thereby limits the number of fragments that have to be

dard XPath and XQuery have been considered in related <.) :
Query hav I I etrieved in order to answer a given query [19]. Due to the

work [4,5]. The representation of such queries as tree als) . e
[] P . . q P ad-hoc fragmentation of Active XML documents, it is not
terns is also an established technique [6, 7].) . . .
possible to identify in advance the set of irrelevant frag-
7.3.2 Fragmentation in Centralized Query Processing ments. Instead, a lazy approach to retrieving fragments is

The problem of centralized query processing on fragmente(amployed’ anq fragments are only shlppe(_j o the .central
query processing site when the corresponding function call

collections of XML data has been studied within the con-, :
s reached during query evaluation. This is consistent with

text of streamed XML data on devices with limited resources:A tive XMLs f N rving over intearated XML dat
[30] and as a means to implement publish/subscribe SySten%SgrviEes S Tocus on querying overintegrate ata
[31]. Fragmentation-aware query evaluation techniquee ha '

also been used within the context of a centralized XML data- O_n_t_he structu_re-pased side, A_ndrade etal. allude to the
base system [32]. possibility of pruning irrelevant horizontal fragments oo

not provide details on how this pruning could be performed
7.3.3 Distributed Query Language Extensions [18,37].

A simple way to query distributed collections is to make the o .
distribution explicit in the query language. Zhang and Bonc 7-3.5 Distributed Query Execution

have developed the query language XRPC [33,34], which i, jmnortant consideration when evaluating queries on a

a superset of XQgery that has bgen enriched with faCi“t?eﬁlistributed system is the trade-off between shipping data a
for shipping queries to remote sites. When XRPC queriegpinning queries. On one hand, it is possible to ship all rel-
are evaluated, these requests are forwarded and the resyl{s gata to a central location where all query processing
are used during local query processing. If a remote site dogg performed. On the other hand, it is possible to ship the
not support XRPC but suppprts plain XQuery, ol adapte&uery or parts of the query to the sites storing the individ-
can be used to translatg. This aIon\{s queries to make use g, fragments and perform as much as possible of the query
remote data sources without requiring any changes to tho?ﬁocessing work distributed throughout the system, shippi

sources, which is desirable since a user might not have ag)hly the (partial) results derived from each fragment.
ministrative control over them. While Zhang and Boncz do While most of the literature on Active XML employs a

nlt?t.cliescribi.agy or;:imization;éf;azt: g0 bebyond I\lNhat iz XGata shipping approach [19, 20] there has been some work on
plicitly specified in the query, may be well suited to distributing query processing [22]. Distributing queryopr

serveasa targget Iangduage forBaédistriptéted optimizer. cessing is complicated by the ad-hoc fragmentation of Ac-
. XQueryD [,5] .an DXQ [36] provide XQuery exten- tive XML, which makes it difficult to determine which part

sions that are similar to XRPC. All these approaches cate(gf the query has to be executed on which fragments

primarily to a data integration scenario. They might, how- '

L Based on a hybrid of ad-hoc and structure-based frag-
ever, be useful as a backend language for a distributed data- . N .
base system mentation, Cong et al. present a distributed query evalnati

strategy that computes partial matches at each fragment and
7.3.4 Pruning Irrelevant Fragments then combines them at a central location [23,24]. The main

L . L .. goal of this strategy is to limit the number of times that each
Pruning is an important step in distributed query opt|m|za-fra ment has to be accessed and to provide a bound on the
tion. The idea behind pruning is to identify which fragments 9 b

. . o amount of network traffic incurred. The authors start with
are irrelevant for a given query and then refraining from ac- . : . .
a technique that is designed to answer Boolean queries and

cessing these fragments altogether. This can help "MProvRen expand the scope of their work to include data-selgctin

the query throughput of a distributed system and can aIsE) ; L
o . dueries with a single extraction point while maintaining im
reduce latency by eliminating the need to wait for process-

. . . ressive performance guarantees.
ing of irrelevant fragments to finish. P P g

Based on their partial evaluation strategy, Cong et al Within the context of vertical fragmentation, there is a

present a simple technique for pruning fragments [24]. The)l/arge optimization space in how sub-queries are executed

. . - nd how there results are combined to the overall query re-
identify fragments that can be pruned by examining the stru . . .
fyfrag P y g sult. We discuss this problem in [2] and suggest a number of

tural relationship between fragments. Unlike our pruning | it i that | ; Anoth
techniques, however, they cannot eliminate intermediatg f Zsi)nefcit (e)fr rt]r?islvgri)bI;im”iTs]F;g;teegl:srr{or\:\/ecrji(;?iqt?u:gz.joirrz arer
ments. Their pruning technigue is therefore largely eguiva _ S .

P g d gely e ordered and executed. This has been studied in detail in the

lent to the initial vertical localization we perform befaap- lational text and f th it licabl
plying our more advanced pruning techniques. Lee?elc[)ln]a context and many of those resufts are applicable

24

7.3.6 Query Decomposition system the bulk of the query processing work can be per-

Another important aspect of distributed query evaluationfcormed efficiently and at a single site. Remote fragments

particularly in the context of vertical fragmentation, et only_ ne(_ed to be accesse d in Qrder tp evaluate value con-
problem of decomposing a query into sub-queries that Castramts in the query. While replicated indexes allow the au-
be evaluated on the individual fragments H’mrs to achieve good query performance, this comes at the

Suciu describes a limited class of queries that can be d(—?—Otent'al cost of decreased scalability and more compitat

I . update management (since replicated indexes have to be up-
composed and for which it can be shown that evaluating thSZte 4 when (?hanges(are ma dpe o the collection). The cenp-
decomposed queries is efficient [38].)

Based on the XRPC extension of XQuery, Zhang et altrallzed nature of index-based query processing might also

describe a technique that transforms a centralized, dgga sh lead to reduced m'qa-query parallelism anql can potegtiall
. : . o Lo cause bottlenecks in the system when queries are not evenly
ping-oriented query into a distributed, query shippingiequ . . .
S . . glstrlbuted across all sites.
alent [39]. This is achieved by decomposing the query an Koloniari and Pit ta Bl filtler-based i
pushing part of the query execution to remote sites. Thi_?j 2on|tar| atﬂ ¢ |outr)a presdetn 3 _ootm |ker— alief -
work supports all of XQuery, although certain query primi- ex structure that can be used o derive top-k resufts for an

tives make it impossible to perform effective query decom.2PProximate structural query on a distributed XML collec-

position while maintaining result correctness. In thesesa tion [42]. This index is used to prune fragments that will not

the technique falls back to a data shipping approach yield top-k results. It can also serve to determine the order

Le et al. present a schema-based technique for deco in which fragments are accessed, with the most promising

posing a global query into local queries within the context ragments bemg_accessed ﬂrs.t. .

of a data integration system [40]. They identify which of Dewey IDs, first prgposed in [14] are anoth_er te(_:hr_uque
the local schemas contain information that can be mappe at has been used to index structural information within th
to the global schema types used in the query. While theifOntext of XML documents [43].

technique is not directly applicable to the distributedadat

base scenario, one might employ a similar method to ider8 Conclusion

tify which fragments in a vertically fragmented collection

. We have shown how tree pattern queries can be evaluated
are relevant for a given query.

in a distributed system by employing a predicate-based def-

7.3.7 Representing Partial Results inition of horizontal fragmentation and a schema-based def

A common problem encountered when using a query shi inition of vertical fragmentation. We have proposed a prun-
ing algorithm for horizontal fragments that significanthy-i

ping approach to distributed query evaluation is how to rep- . .
resent the partial results that need to be shipped from orfg oves the query throughput in a distributed XML database

site to another. If multiple of these results contain theesamSyStem’ withoutincurring a significantresponse time ptgnal

. . . In the case of vertical fragmentation, we have shown that
node, it may be advantageous not to send multiple copies 0 . : A :

. our pruning techniques can significantly improve response
this redundant node.

Tajima and Fukui present a technique that can be used {bmes even for queries that span many fragments. This al-

) . . . -~ lows greater flexibility in choosing a vertical fragmendeti
solve this problem by sending a minimal view that contains o S
: chema. The related problem of distributed query optimiza-
all results rather than sending each result separately [41]~ =) .
. . T ; . ion is discussed in our companion paper [2].
While their work is primarily intended for querying a single

XML database instance over a network, it could also be usetd One dlrtect_ltqn of Iuturefwork IS io t_exammg tr(;,-hogstlmlzba-
to ship partial results within a distributed system. 'on opportunities of our fragmentation modet that go be-

yond localization and pruning. Expanding our query model

7.3.8 Index Structures such that it can express a larger subset of XQuery is another
Another option for enabling distributed query processig i important. Qoa'- It V\.'OL,"d glso be intere;ting to investi.gate
P g query p d hat additional optimizations are possible for a hybrid of

the use of index structures, which can provide a compaé‘f’ ical and hori 't . dh d
summary of the data stored in other fragments and therebiglertlca and horizontal fragmentation and how we can deter-

enable some amount of local query processing over remo ine hybrid fragmentation schemas automatically.
data.
Bremer et al. employ this approach to evaluate querieReferences
on a collection that is fragmented based on structure [27].)
One of their indexes stores label path information for al th 1. M. T. Ozsu and P. Valdurie®Rrinciples of distributed database

. . . systems (2nd ed.}999.
nodes in the collection. Our technique, on the other hand,zl P Kling, M. T.0zsu, and K. Daudjee, “Generating efficient exe-

only stores label path information for proxy nodes and only ¢tion plans for vertically partitioned XML databases,Aroc. of
if there is ambiguity. By replicating the indexes across the VLDB, 2011, (to appear).

25

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. N. Zhang, V. Kacholia, and M. Dzsu, “A succinct physical stor-

J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWit27
and J. F. Naughton, “Relational databases for querying XML- doc
uments: Limitations and opportunities,” Proc. of ICDE 1999,
pp. 302-314.

. G. Miklau and D. Suciu, “Containment and equivalence foag{

ment of XPath,"J. ACM vol. 51, no. 1, pp. 2-45, 2004.

. Z.G.Ives, A. Y. Halevy, and D. S. Weld, “An XML query engine 29.

for network-bound data,VLDB Journa) vol. 11, no. 4, pp. 380—
402, 2002.

. N. Bruno, N. Koudas, and D. Srivastava, “Holistic twig joinp: 0

timal XML pattern matching,” inProc. of ACM SIGMOD 2002,
pp. 310-321.

age scheme for efficient evaluation of path queries in XML,” in
Proc. of ICDE 2004, pp. 54-65.

. S. Buswell, S. Devitt, A. Diaz, P. lon, R. Miner, N. Pop- 33.

pelier, B. Smith, N. Soiffer, R. Sutor, and S. Watt, “Mathe-

matical Markup Language (MathML) 1.01 Specification,” 1999, 34.

http://lwww.w3.0rg/TR/REC-MathML/.

. P. Murray-Rust, “Chemical markup languag@&/orld Wide Web

Journal vol. 2, no. 4, pp. 135-147, 1997.

M. Ferrandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh,
“XQuery 1.0 and XPath 2.0 Data Model (XDM),” 2007,
http://lwww.w3.0rg/TR/xpath-datamodel/.

R. Tarjan, “Depth-first search and linear graph algorithi @M
Journal on Computingpp. 114-121, 1972.

M. Brantner, S. Helmer, C.-C. Kanne, and G. MoerkotteJl*Fu 37,

fledged algebraic XPath processing in Natix,"Rrmoc. of ICDE
2005, pp. 705-716.

S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, D. Srivasianve
Y. Wu, “Structural joins: A primitive for efficient XML query ga
tern matching,” inProc. of ICDE 2002, pp. 141-152.

M. Dewey, “A classification and subject index for cataloguémd
arranging the books and pamphlets of a library,” 1876.

M. Franceschet, “XPathMark: An XPath benchmark for XMark 40,

generated data,” iRroc. of XSym2005, pp. 129-143.
A. Schmidt, F. Waas, M. Kersten, M. J. Carey, |. Manolescu, and

R. Busse, “XMark: a benchmark for XML data management,” in 41

Proc. of VLDB 2002, pp. 974-985.
“Amazon Elastic Compute
http://aws.amazon.com/ec2/.

Cloud (EC2)”

A. Andrade, G. Ruberg, F. A. B, V. P. Braganholo, and 43

M. Mattoso, “Efficiently processing XML queries over frag-
mented repositories with PartiX,” iRroc. of EDBT 2006, pp.
150-163.

S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, Tidyland
N. Preda, “Lazy query evaluation for Active XML,” iRroc. of
ACM SIGMOD 2004, pp. 227-238.

S. Abiteboul, O. Benjelloun, and T. Milo, “The Active XML
project: an overview,VLDB Journal vol. 17, no. 5, pp. 1019-
1040, 2008.

S. Abiteboul, O. Benjellourn, I. Manolescu, T. Milo, andWeber,
“Active XML: Peer-to-peer data and web services integration
Proc. of VLDB 2002.

S. Abiteboul, A. Bonifati, G. Cdmna, |. Manolescu, and T. Milo,
“Dynamic XML documents with distribution and replication,” in
Proc. of ACM SIGMOD2003, pp. 527-538.

P. Buneman, G. Cong, W. Fan, and A. Kementsietsidis, “Using
partial evaluation in distributed query evaluation,” Rroc. of
VLDB, 2006, pp. 211-222.

G. Cong, W. Fan, and A. Kementsietsidis, “Distributed queaj-ev
uation with performance guarantees,”’Rroc. of ACM SIGMOD
2007, pp. 509-520.

H. Ma and K.-D. Schewe, “Fragmentation of XML documents,”
in Proc. of SBBD2003, pp. 200-214.

——, “Heuristic horizontal XML fragmentation,” irProc. of
CAISE 2005, pp. 131-136.

28.

30.
31.

32.

35.

36.

38.

39.

2006, 4.

. J.-M. Bremer and M. Gertz, “On distributing XML repositories,
in Proc. of WebDB2003, pp. 73-78.

K. Kido, T. Amagasa, and H. Kitagawa, “Processing XPath que-
ries in PC-clusters using XML data partitioning,”8pecial Work-
shop on Databases for Next-Generation Researchers, |QDEb5,

p. 114.

A. Marian and J. Sigon, “Projecting XML documents,” iRroc.

of VLDB, 2003, pp. 213-224.

S. Bose and L. Fegaras, “XFrag: A query processing framework
for fragmented XML data,” irProc. of WebDB2005, pp. 97-102.
C.-Y. Chan and Y. Ni, “Content-based dissemination of frag-
mented XML data,” inProc. of ICDCS 2006, p. 44.

C.-C. Kanne, M. Brantner, and G. Moerkotte, “Cost-seresitér
ordering of navigational primitives,” ifPfroc. of ACM SIGMOD
2005, pp. 742-753.

Y. Zhang and P. Boncz, “XRPC: interoperable and effictkst
tributed XQuery,” inProc. of VLDB 2007, pp. 99-110.

——, “XRPC: distributed xquery and update processing with he
erogeneous xquery engines,”froc. of ACM SIGMOD New
York, NY, USA: ACM, 2008, pp. 1331-1336.

C. Re, J. Brinkley, K. Hinshaw, and D. Suciu, “Distributed
XQuery,” in Workshop on Information Integration on the Web
2004, pp. 116-121.

M. F. Ferandez, T. Jim, K. Morton, N. Onose, and J. 8on,
“Highly distributed XQuery with DXQ,” inProc. of ACM SIG-
MOD, 2007, pp. 1159-1161.

A. Andrade, G. Ruberga, F. A. Bai, V. P. Braganholo, and
M. Mattoso, “Partix: processing XQuery queries over fragmented
XML repositories,” Universidade Federal do Rio de Janeiro, Tech
Rep., 2005.

D. Suciu, “Distributed query evaluation on semistructurathd
ACM Trans. Database Systol. 27, no. 1, pp. 1-62, 2002.

Y. Zhang, N. Tang, and P. Boncz, “Efficient distributionfoli-
fledged XQuery,” inProc. of ICDE 2009, pp. 565-576.
T.T.T.Le,D.D. Doan, V. C. Bhavsar, and H. Boley, “A bottap-
algorithm for query decompositionifit. J. Innov. Comput. Appl.
vol. 1, no. 3, pp. 185-193, 2008.

K. Tajima and Y. Fukui, “Answering xpath queries over nakgo
by sending minimal views,” ifProc. of VLDB 2004, pp. 48-59.

G. Koloniari and E. Pitoura, “Distributed structural pedtion of
XPath queries,” irProc. of ICDE 2009, pp. 529-540.

M. P. Haustein, T. Hrder, C. Mathis, and M. Wagner, “DewesAD
the key to fine-grained management of XML documentsPiioc.

of Brasilian Symposium on Databas@905, pp. 85-99.

