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Abstract Distributing data collections by fragmenting them
is an effective way of improving the scalability of a data-
base system. While the distribution of relational data is well
understood, the unique characteristics of XML data and its
query model present challenges that require different dis-
tribution techniques. In this paper, we show how XML data
can be fragmented horizontally and vertically. Based on this,
we propose solutions to two of the problems encountered
in distributed query processing and optimization on XML
data, namely localization and pruning. Localization takesa
fragmentation-unaware query plan and converts it to a dis-
tributed query plan that can be executed at the sites that hold
XML data fragments in a distributed system. We then show
how the resulting distributed query plan can be pruned so
that only those sites are accessed that can contribute to the
query result. We demonstrate that our techniques can be in-
tegrated into a real-life XML database system and that they
significantly improve the performance of distributed query
execution.

Keywords Distributed· XML · Localization· Pruning

1 Introduction

Over the past decade, XML has become a commonly used
format for storing and exchanging data in a wide variety
of systems. Due to this widespread use, the problem of ef-
fectively and efficiently managing XML collections has at-
tracted significant attention in both the research commu-
nity and in commercial products. One can claim that the

University of Waterloo
Cheriton School of Computer Science
200 University Ave W
Waterloo, ON N2L 3G1
Canada
Tel.: +1-519-888-4567
Fax: +1-519-885-1208
E-mail:{pkling, tozsu, kdaudjee}@cs.uwaterloo.ca

centralized management and querying of XML data (i.e.,
data residing on a single system) is now a well understood
problem. Unfortunately, centralized techniques are limited
in their scalability when presented with large collectionsand
heavy query workloads.

In relational database systems, scalability challenges ha-
ve been successfully addressed by partitioning data collec-
tions and processing queries in parallel in a distributed sys-
tem [1]. Our work is focused on similarly exploiting distri-
bution in the context of XML. While there are some simi-
larities between the way relational database systems can be
distributed and the opportunities for distributing XML data-
base systems, the significant differences in both data and
query models make it impossible to directly apply relational
techniques to XML. Therefore, new solutions need to be de-
veloped to distribute XML database systems.

In this paper, we focus on the following three aspects of
distributing an XML database system:
– First, we present adistribution modelfor XML that sup-

ports horizontal fragmentation (based on selection oper-
ators and predicates) and vertical fragmentation (based
on a partitioning of the set of element types in a schema).
Our definitions of horizontal and vertical fragmentation
are semantically analogous to those for relational data
[1]. However, the characteristics of XML, such as its
nested data model and structure-based queries lead to
a set of challenges and optimization opportunities that
differ significantly from what is encountered in the re-
lational context. As in the relational case, both types of
fragmentation are designed to be orthogonal. This allows
us to use them together to achieve hybrid fragmentation.

– Second, we focus on the problem oflocalization and
pruning in distributed XML database systems. We pro-
pose a localization technique that transforms a fragment-
ation-unaware query into sub-queries that can be evalu-
ated in parallel at the individual sites in the system. We
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Fig. 1 A horizontally fragmented collection

then present a novel technique that allows us to identify
fragments that are irrelevant for answering a given query
and prune them from the query plan.
While localization and pruning represent only the first
step of distributed query evaluation, we show that even
with these techniques alone we can achieve significant
improvements in performance. Further optimizations that
can be performed after localization and pruning have
been published separately [2] and will be the subject of
future work.

– Based on our localization techniques, we then propose a
set ofworkload-aware fragmentation algorithms. These
algorithms are designed to determine a fragmentation
layout that will optimize performance for a given set of
queries.

To motivate our work, consider the following example.
Figure 1 shows a horizontally fragmented data collection
consisting of four documents representing information about
authors and their publications. The horizontal fragmentation
is defined based on the first letter of the authors’ last names,
placing “John Adams” in fragmentfH

1
, “Jane Dean” in frag-

mentfH
2

and “John Smith” as well as “William Shakespeare”
in fragmentfH

3
.

Figure 2 shows a similar collection that has been frag-
mented vertically. Ignoring the nodes labeled asP i→j

k and
RP i→j

k for now, we can see thatauthor andagent nodes
are stored in fragmentfV

1
, the nodes related to the author’s

name are stored in fragmentfV
2

, pubs andbook nodes
are stored in fragmentfV

3
andchapter andreference

nodes are stored in fragmentfV
4

.
Consider evaluating the following XPath query (q):

/author[name[first = ’William’ and
last = ’Shakespeare’]]//book//reference

In the horizontal case, it is easy to see that the fragments
fH
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andfH
2
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Fig. 2 A vertically fragmented collection

query since they correspond to authors whose last names
start with the letters “A” and “D”, respectively. Pruning these
fragments allows us to answer the query without contacting
the sites at which they are stored.

If we evaluateq on the vertically fragmented collection,
in the general case, we have to access all four fragments.
FragmentfV

2
is needed to evaluate the value constraint pred-

icates, fragmentfV
4

is needed to obtain result nodes and
fragmentsfV

1
andfV

3
are needed to evaluate structural con-

straints. We will later present a technique that allows us
to avoid accessing some of the fragments only needed for
structural constraints.

We propose a general technique that detects situations in
which fragments are not needed to answer a query and then
prunes these irrelevant fragments from a distributed query
plan. This greatly improves the performance of distributed
query evaluation and allows us to fully benefit from distribu-
tion as a means to overcome the scalability challenges faced
by large XML collections. We achieve this goal without re-
lying on a globally replicated index structure, because using
such a structure could limit the scalability of a distributed
system and negatively affect the performance of updates.
The specific contributions of the work presented here are
the following:

1. We formally define fragmentation in the context of XML
databases and propose a succinct method for specifying
the horizontal or vertical fragmentation of a collection
of XML documents.
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2. We develop a mechanism that transforms a fragment-
ation-unaware query plan into an equivalent distributed
plan.

3. We propose the first known technique that can identify
and prune horizontal fragments that are irrelevant for an-
swering a given query.

4. We present a novel technique that, without relying on
a fully replicated index, allows us to skip vertical frag-
ments that are not needed to evaluate value constraints.

5. We propose algorithms for fragmenting a collection of
XML documents in order to improve the performance
of a given workload (when evaluated using our pruning
techniques).

6. We have implemented these techniques within a real-life
distributed XML database system, which has allowed us
to obtain realistic experimental results.
The remainder of this paper is structured as follows: Sec-

tion 2 describes the technical background of our work. Sec-
tion 3 introduces our model of horizontal and vertical frag-
mentation. In Section 4, we propose techniques for evalu-
ating queries over distributed collections and describe how
distributed query evaluation can be optimized through local-
ization and pruning. Based on these query evaluation tech-
niques, Section 5 describes our algorithms for fragmenting
an XML collection such that performance for a given work-
load is optimized. In Section 6, we present a thorough evalu-
ation of the performance impact of the techniques presented
in this paper. Section 7 discusses related work. In Section 8,
we summarize our work and present our conclusions.

2 Background
2.1 Data model

An XML collection can be described as a set of labeled, or-
dered trees. While XML is a self-describing format that can
be used without a schema, in practice, the structure of docu-
ment trees is usually constrained by a schema that specifies
how elements may be nested and what the domain of their
textual content is. A schema is usually defined in a language
such as DTD or XML Schema. In this paper, we use a simple
directed graph representation that covers only the aspectsof
the schema that are important for our purposes. For exam-
ple, our representation ignores the distinction between XML
elements and attributes by treating both of them uniformly
asnodes. Similarly, we refer to element types and attribute
names asnode types. Assuming that the original schema def-
inition does not contain unspecified portions (such as those
defined using the DTD keywordANY), it is straightforward
to extract the information captured by our graph representa-
tion from a DTD1 or an XML Schema. Extracting schema
information yields a schema graph that may be less restric-
tive than the original schema, but since the schema graph

1 Note that a DTD does not explicitly specify the root element type
of a document. However, the root element type can be inferred from
the DOCTYPE declarations of documents conforming to a DTD.

author(name, pubs, agent?)
pubs(book*)

book(chapter*)
chapter(reference?)
reference(chapter)

agent(name)
name(first, last)

first(#text)
last(#text)

Fig. 3 A schema

is never used for the validation of documents this does not
pose a problem [3].
Definition 1 An XML schema graphis defined as a 5-tuple
〈Σ,Ψ, s,m, ρ〉 whereΣ is an alphabet of node types,ρ is
the root node type,Ψ ⊆ Σ × Σ is a set of directed edges
between node types,s : Ψ → {ONCE, OPT, MULT} and
m : Σ → {string}.

The semantics of this definition are as follows: An edge
ψ = (σ1, σ2) ∈ Ψ denotes that a node of typeσ1 may con-
tain a node of typeσ2. s(ψ) denotes the cardinality of the
containment represented by this edge: Ifs(ψ) = ONCE,
then a node of typeσ1 must contain exactly one node of
typeσ2. If s(ψ) = OPT, then a node of typeσ1 may or may
not contain a node of typeσ2. If s(ψ) = MULT, then a node
of typeσ1 may contain multiple nodes of typeσ2. m(σ) de-
notes the domain of the text content of a node of typeσ,
represented as the set of all strings that may occur inside
such a node. Note that the definition ofm(σ) may include
both the direct content of a node of typeσ as well as the
content of node types nested inσ. Figure 4 illustrates how
the simplified DTD shown in Figure 3 can be represented as
a graph.
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Fig. 4 An XML schema graph

When translating a DTD or an XML Schema into the
graph representation, attributes are always assigned a car-
dinality of either ONCE or OPT, corresponding to manda-
tory and optional attributes, respectively. Elements, on the
other hand, may occur with any of the three cardinalities,
since both DTD and XML Schema allows for the specifica-
tion of elements with exactly one, zero or one, or multiple
occurrences. In addition to these three cases, XML Schema
allows a more fine-grained specification of the number of
occurrences of an element. We handle this by assigning a
cardinality of MULT whenever the XML Schema definition
allows for an element to occur more than once.

2.2 Query model and tree patterns

The query model used in this paper is a subset of XPath,
which we call XQ. XQ consists of absolute location paths
consisting of node tests with and without wildcards, child
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(/) and descendant (//) axes and predicates. Predicates may
consist of (i) a relative location path with the same restric-
tions (with XPath’s existential semantics); (ii) a textualcon-
straint of the form “. θs s”, wheres is a string constant and
θs is either= or !=; or (iii) a numeric constraint of the form
“ . θn n”, wheren is a numeric constant andθn is one of<,
<=, =, >, >=, or !=. As in XPath, XQ steps return nodes
in document order (since both axes we support are forward
axes).

XQ queries are not only commonly used on their own,
but they also represent an important building block of more
complex XQuery queries [4,5]. Therefore, solving the prob-
lem of evaluating XQ queries in a distributed fashion is an
important contribution to distributed XQuery evaluation.

It is convenient to represent XQ queries as tree patterns
[6,7], which we formalize as follows:
Definition 2 Let 〈Σ,Ψ, s,m, ρ〉 be a schema. Atree pattern
is a 7-tuple〈N,E, r, ν, ǫ, T, c〉 whereN is a set of pattern
nodes,E ⊆ N × N is a set of pattern edges and〈N,E, r〉
is a tree rooted atr ∈ N . For eachn ∈ N , ν(n) ∈ Σ ∪
{∗} denotes a node test. For eache ∈ E, ǫ(e) ∈ {child,

descendant} denotes the axis type.T ⊆ N denotes the
set of extraction points. For eachn ∈ N , c(n) ⊆ m(ν(n))

denotes a value constraint on the text content of nodes of
typeν(n).

In the following, we will refer to the tree pattern rep-
resentation of a query as aquery tree pattern(QTP). It is
interesting to note that, in addition to XQ queries, QTPs can
be used to express queries with multiple extraction points.
While this may be useful for supporting a larger class of
queries, in this paper, our focus is on queries with a single
extraction point.

The QTP depicted in Figure 5 is equivalent to query
q from Section 1. The double-outlined node labeled with
reference is an extraction point and the edge labels “/”
and “//” denote child and descendant steps, respectively.

A match for a QTP assigns a node from the document to
each pattern node such that all node tests, value constraints,
and structural constraints (expressed as axis relationships)
are satisfied. While all pattern nodes in the QTP have to be
matched to nodes in a document, only the nodes associated
with pattern nodes that are designated as extraction points
are returned as part of the result.

author

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

book

//

reference

//

Fig. 5 Query tree pattern (QTP) representation of queryq

3 Fragmentation
The work presented in this paper is based on two techniques
for fragmenting XML collections. Horizontal fragmentation

is based on predicates and results in a collection that is parti-
tioned into fragments that all follow the same schema. Verti-
cal fragmentation, on the other hand, is based on partitioning
the schema.

3.1 Horizontal fragmentation

Our model of horizontal fragmentation assumes a collection
that consists of multiple document trees. These document
trees can either be entire XML documents or they can be the
result of a previous fragmentation step. In either case, we re-
quire that all document trees correspond to the same schema.
Multiple-document collections where all documents follow
the same schema are a common use case for XML. Popular
examples include MathML [8] and CML [9].

A horizontal fragmentation is defined by a set of frag-
mentation predicates. Each fragment consists of the docu-
ment trees that match the corresponding predicate. To en-
sure that the fragmentation is lossless and that the fragments
are disjoint, we require that whenever a document tree con-
forms to the schema of the collection, it matches exactly one
of the predicates.

Definition 3 Let D = {d1, d2, . . . , dn} be a collection of
document trees such that eachdi ∈ D corresponds to the
same schema〈Σ,Ψ, s,m, ρ〉. Then we can define a set of
horizontal fragmentation predicatesP = {p0, p1, . . . , pl−1}
such that∀d ∈ D : ∃ uniquepi ∈ P wherepi(d). If this
holds, thenF = {{d ∈ D | pi(d)} | pi ∈ P} is a set
of horizontal fragments corresponding to collectionD and
predicatesP .

We represent the fragmentation predicates as Boolean
tree patterns, i.e., tree patterns with no extraction points. In
the following, we will refer to them asfragmentation tree
patterns(FTPs). Based on this representation, the lossless-
ness of a fragmentation can be enforced by carefully crafting
value constraints so that they cover the entire domain of the
values to which they refer.

If we assume that the document trees in the fragmented
collection shown in Figure 1 conform to the schema in Fig-
ure 4 and thatm(last) is the set of strings that start with
upper-case letters of the English alphabet, then the frag-
mentation of this collection can be described by the set of
FTPs shown in Figure 6.
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Fig. 6 Set of fragmentation tree patterns (FTPs)

3.2 Vertical fragmentation

Our model of vertical fragmentation can handle collections
that consist of a single or multiple document trees. Again, it
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is possible that these trees are the result of a previous frag-
mentation step, which allows us to combine horizontal and
vertical fragmentation.

A vertical fragmentation schemais defined by fragment-
ing the schema graph of the collection into connected sub-
graphs:

Definition 4 Let 〈Σ,Ψ, s,m, ρ〉 be a schema graph. Aver-
tical fragmentation schemais defined by a partitioningFΣ

of the set of node typesΣ.

The dashed outlines in Figure 7 show how the node types
in this schema have been fragmented into four disjoint sub-
graphs. FragmentfV

1
consists of the node typesauthor

andagent; fragmentfV
2

consists of the node typesname,
first andlast along with their text content; fragment
fV
3

consists ofpubs andbook; fragmentfV
4

includes the
node typeschapter andreference.

Since we require the schema graph to be connected, after
fragmentation, there will be graph edges that cross fragment
boundaries. Whenever the schema contains an edge from a
fragmentfV

i to another fragmentfV
j , we refer tofV

j as a
child fragmentof fV

i and tofV
i as aparent fragmentof fV

j .
There is exactly one fragmentfV

ρ ∈ FΣ that contains the
root node typeρ. We refer tofV

ρ as theroot fragment. While
the schema graph may contain cycles, for performance rea-
sons, we require that the fragmentation schema be a DAG
(i.e., each cycle has to be contained within a single frag-
ment).

When a collection is partitioned according to a vertical
fragmentation schema, there will be document edges that
cross fragment boundaries. We represent a document edge
from fragmentfV

i to fragmentfV
j by inserting a pair of ar-

tificial nodesP i→j
k andRP i→j

k into fragmentsfV
i andfV

j ,

respectively.P i→j
k denotes aproxy nodein fragmentfV

i (the
originating fragment) with IDk, whereasRP i→j

k denotes a
root proxy nodein fragmentfV

j (the target fragment) with

ID k. SinceP i→j
k andRP i→j

k share the same ID (k) and ref-
erence the same fragments (i → j), they correspond to each
other and together represent a single cross-fragment edge in
the collection.

The collection shown in Figure 2 has been fragmented
according to the vertical fragmentation schema shown in
Figure 7. The proxy pair consisting ofP 1→2

11
in fragment

fV
1

andRP 1→2

11
in fragmentfV

2
, for example, represents an

edge from anauthor node infV
1

to aname node infV
2

.
Vertical fragments generally consist of multiple uncon-

nected pieces of XML data, which we refer to asdocument
subtrees. In Figure 2, for example, fragmentfV

1
contains

three subtrees, each of which consists of theauthor and
agent nodes of one of the documents in the collection.

4 Querying distributed collections

In this section, we propose techniques for evaluating queries
over horizontally and vertically distributed collections. For
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Fig. 7 A vertical fragmentation schema

each type of fragmentation, we start with a naı̈ve query eval-
uation strategy and then present optimizations, with special
focus on the problem of pruning the set of fragments that
need to be accessed to answer a given query.

In relational systems, distributed query optimization is
usually done based on an algebraic representation of a dis-
tributed query [1]. For many of the optimizations presented
here, however, the QTP represents a simpler abstraction that
contains all the information necessary to make pruning de-
cisions. We therefore describe many of our techniques in
terms of QTP manipulations.

4.1 Horizontal fragmentation

Based on the definition of horizontal fragmentation, we can
define a näıve strategy for evaluating QTPs on a horizontally
fragmented collection of data. In an approach that resembles
horizontal localization in the relational context [1], we can
evaluate a query by computing the union of all fragments
and then executing a fragmentation-unaware plan over the
result. Since the definition of horizontal fragmentation (Def.
3) requires that the set of document treesD is the union of
all fragmentsf ∈ F and because our query model does not
allow for structural constraints involving nodes in different
documents, this leads to the correct result:

q(D) = q(
⋃

f∈F

f)

Our query model implies that each result is derived from
exactly one document tree in the collection. This allows us
to push the (unchanged) fragmentation-unaware query plans
down to the individual fragments:
Definition 5 If q is a plan that evaluates the query on an
un-fragmented collection of document treesD andF is a
horizontal fragmentation ofD, then

qf (F ) := sort(
⊙

f∈F

q(f))

is anäıve horizontal query planthat evaluates the same query
onF , where⊙ denotes concatenation of results, andqf (F ) =

q(D).
As shown in the definition, it may be necessary to sort

the results received from the individual fragments in order
to return them in a stable global order as required by the
XQuery data model [10]. For unordered queries, or if we are
willing to relax the ordering constraint, we can reduce the
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amount of sorting-induced buffering by only maintaining a
stable order between nodes in the same document. This may
be a reasonable trade-off in many use cases.

4.1.1 Pruning fragments

As discussed before, to answer the query shown in Figure
5 on the fragmented collection from Figure 1, only the doc-
uments contained in the fragmentfH

3
need to be accessed.

The näıve plan, in contrast, accesses every fragment in the
collection, which can significantly reduce query throughput.

In this section, we propose a procedure that detects irrel-
evant fragments and prunes them from a distributed query
plan. This procedure relies on the schema of the collection
and the FTPs that define the fragmentation. Both of these
are static over time, do not depend on the size of the collec-
tion and can be encoded in a compact manner. This makes it
feasible to replicate them at all sites as metadata.

Our pruning algorithm works based on the QTP repre-
sentation of the query before converting the result to an al-
gebraic plan. This allows us to reduce the problem of prun-
ing horizontal fragments to that of determining the subset of
FTPs that can be shown to be unsatisfiable at the same time
as the QTP.

To solve this problem, we transform QTP and FTPs into
a simplified form. We then traverse both simplified patterns
simultaneously and check for contradictory constraints. If
we find such a contradiction, there cannot be any results for
the query in the fragment corresponding to the FTP and the
fragment can thus be eliminated from the distributed plan.
4.1.2 Transformation to simplified form

The goal of transforming tree patterns into a simplified form
is to make sure that each pattern node refers to a unique
node within the context of a single document tree. In gen-
eral, pattern nodes may match more than one node in a given
document tree. A constraint associated with such a pattern
node is satisfied if one of the matching nodes conforms to
the constraint. This makes it impossible to exploit contra-
dictory constraints associated with such pattern nodes. Even
if the constraints themselves are contradictory, they may be
satisfied by different nodes in the same document.

With QTPs, there are three sources of pattern nodes that
may match multiple nodes in the same document tree:

Node types reached via MULT edges. Node types that
are reached via an edge in the schema that has a cardinal-
ity of MULT may occur multiple times in the same con-
text. Based on the schema in Figure 4, for example, the step
pubs/book may yield multiplebook nodes correspond-
ing to a singlepubs node.

author

name

//

first

/

.=’William’

last

/

.=’Shakespeare’

book

//

reference

//

(a) QTP

author

name

/

last

/

startswith(’A’)

(b) FTP
Fig. 8 QTP and FTP that are not contradictory

Descendant stepscan also yield multiple results in the
same context. In the QTP shown in Figure 8(a), for exam-
ple, the descendant edge betweenauthor andname can
be satisfied either by aname node that is the direct child of
a givenauthor node or by aname node that is reachable
through an intermediateagent node. Because of this, even
though the constraints on the author’s last name imposed by
the FTP shown in Figure 8(b) and the QTP shown in Figure
8(a) seem to cause these two patterns to be contradictory,
they actually are not. Document trees in the fragment cor-
responding to the FTP predicate will only contain informa-
tion about authors whose last names start with the letter “A”.
The QTP, on the other hand, matches books that are either
authored by “William Shakespeare” or by someone whose
agent is “William Shakespeare” and whose last name might
well start with the letter “A”.

Wildcardsare another source of multiple matches in the
same context whenever the schema specifies that a node type
may contain multiple other node types.

We define simplified tree patterns as tree patterns that do
not contain any of these primitives:

Definition 6 A tree pattern〈N,E, r, ν, ǫ, T, c〉 is a simpli-
fied tree pattern iff∀n ∈ N , ν(n) ∈ Σ and ∀(x, y) ∈
E, ǫ((x, y)) = child∧(ν(x), ν(y)) ∈ Ψ∧s((ν(x), ν(y)))

6= MULT.

In order to convert a tree pattern into a simplified tree
pattern, all disallowed primitives have to either be removed
or converted into an equivalent simplified form. It is impor-
tant to note that simplified tree patterns are strictly less ex-
pressive than arbitrary tree patterns. Therefore, when a tree
pattern is transformed to a simplified tree pattern, the result
is not generally equivalent to the original tree pattern. In-
stead, the simplified tree pattern matches a superset of the
document trees that match the original tree pattern. Since
simplified tree patterns are only used to identify fragments
that can be pruned, but not for the subsequent query evalua-
tion on those fragments, this loss of expressiveness does not
pose a problem. Nevertheless, it is important that the trans-
formation retains as much of the information present in the
original pattern as possible so that this information can be
exploited for pruning.

Algorithm 1 performs the transformation of a tree pat-
tern into a canonical tree pattern based on the following prin-
ciples:

– Using schema information, descendant steps are unrolled
into equivalent paths comprised entirely of child steps
(procedure shown as Algorithm 2). If there is more than
one path, artificial nodes representing a choice (denoted
as⊕) are inserted and the branch below the descendant
step becomes reachable via more than one path, thus
turning the tree pattern into a directed, acyclic graph
(DAG).
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– Wildcard node tests are converted to non-wildcard node
tests wherever this is unambiguously possible. Other-
wise, the corresponding pattern nodes are removed along
with their descendants.

– Pattern nodes that match nodes from the collection which,
according to the schema, can occur multiple times in the
same position are removed along with the branches be-
low them.

4.1.3 Unrolling descendant steps

The unrolling of descendant steps can be succinctly imple-
mented as a manipulation of the directed graph representa-
tion of the schema (Algorithm 1, lines 31-33). In order to un-
roll a descendant step from a pattern node labeleda to a pat-
tern node labeledb, we consider the subgraph of the schema
graph that consists of all nodes that are reachable froma and
from whichb is reachable. This yields a graph that contains
all the intermediate node types that may occur on a down-
ward path froma to b. In the example shown in Figure 9,
the nodes that are used to unroll the stepauthor//name
are highlighted.

If there exists a cycle in this schema subgraph, we dis-
card the descendant step and all the pattern nodes that occur
below it (Algorithm 1, line 34). This is necessary because
the presence of a cycle implies that a matching node may oc-
cur at different levels in the document tree. This creates am-
biguity, making it impossible to take advantage of the value
constraints associated with such a node. Assume, for exam-
ple, that we want to unroll the stepbook//reference.
We can observe that there is a cycle involving the node types
chapter andreference. This corresponds to the fact
that the path can be satisfied either by a reference in a chap-
ter of the book where we start out, or by a reference in a
chapter referenced by this chapter, and so on.

author

name

ONCE

first

ONCE

#text

last

ONCE

#text

agent

OPT

pubs

ONCE

book

MULT

chapter

MULT

reference

OPT

ONCE

ONCE

Fig. 9 Schema restricted to nodes reachable fromauthor and from
whichname is reachable

If the subgraph is acyclic (as in the example shown in
Figure 9), we introduce a new pattern node for each of the
intermediate schema nodes such that the node test of the pat-
tern node matches the name of the corresponding schema
node (Algorithm 2, lines 19-22). In cases where a schema
node has more than one child, an intermediate choice node
is inserted (lines 8-11, denoted by⊕), which signifies that
the subsequent branch of the pattern can be satisfied by a
match for any of the child nodes.

After these intermediate nodes have been inserted, the
pattern has been transformed from a tree into a DAG. We can
reconstruct a tree representation by duplicating nodes that

Algorithm 1 : pattern transformation algorithm
input : pattern tree(N, E, r, ν, ǫ, T, c), schema

(Σ, Ψ, s, m, ρ)

output : pattern graph(N ′, E′, r′, ν′, ǫ′, T ′, c′)
variable : Q // represents pattern nodes whose children have

yet to be checked
variable : N ′′ // set of pattern nodes to be inserted
variable : E′′ // set of pattern edges to be inserted
r′ ← new node1
ν′(r′) ← ν(r)2
c′(r′) ← c(r)3
N ′ ← {r′}4
E′ ← ∅5
T ′ ← ∅6
Q ← {(r, r′)}7
while Q 6= ∅ do8

// while there are pattern nodes to be processed, pick one9
(q, q′) ← some (q, q′) ∈ Q10
Q ← Q \ {(q, q′)}11
// for all outgoing edges ofq12
for e = (x, y) ∈ E, with x = q do13

y′ ← new node14
c′(y′) ← c(y)15
if ǫ(e) = child then16

// case 1: child axis17
if ν(y) 6= ∗ then18

ν′(y′) = ν(y)19

else if∃(σ1, σ2) ∈ Ψ unique withν(x) = σ120
then

ν′(y′) ← σ221

else22
continue23

if ψ = (ν(x), ν(y)) ∈ Ψ, s(ψ) 6= MULT then24
// add this pattern node to the simplified tree25
N ′ ← N ′ ∪ {y′}26
E′ ← E′ ∪ {(q′, y′)}27
Q ← Q ∪ {(y, y′)}28

else ifν(y) 6= ∗ then29
// case 2: descendant axis30
Σ′ ← {σ ∈ Σ | σ reachable fromν(x),31
ν(y) reachable fromσ in (Σ, Ψ)}32
Ψ ′ ← {(σ1, σ2) ∈ Ψ | σ1, σ2 ∈ Σ′}33
if (Σ′, Ψ ′) is acyclic and∄ψ ∈ Ψ ′ with34
s(ψ) = MULT then

ν′(y) ← ν(y)35
(N ′′, E′′) ←36
unrolldesc(q′, y′, Σ′, Ψ ′, ν(x))
N ′ ← N ′ ∪ N ′′ ∪ {y′}37
E′ ← E′ ∪ E′′38
Q ← Q ∪ {(y, y′)}39

∀e′ ∈ E′, ǫ′(e′) ← child40
return (N ′, E′, r′, ν′, ǫ′, T ′, c′)41

are reachable through more than one path. In general, how-
ever, this is not necessary since we can directly traverse the
more compact DAG, which yields the same result as travers-
ing the equivalent tree.

Figure 10 shows the tree representation of the unrolled
version of the QTP given in Figure 8(a). Note that while
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Algorithm 2 : unrolldesc(x, y,Σ′, Ψ ′, ρ′) unrolls de-
scendant step

input : origin nodex, target nodey, transformed schema
(Σ′, Ψ ′)

output : pattern nodesN ′′, pattern edgesE′′

variable: S // pattern nodes yet to be processed
N ′′ ← ∅1
E′′ ← ∅2
S ← {x}3
for s ∈ S do4

if ∃(σ1, σ2), (σ3, σ4) ∈ Ψ ′, σ2 6= σ4, ν(s) = σ1 = σ35
then

// more than one outgoing edge froms6
// insert⊕ node7
n⊕ ← new node8
ν′(n⊕) ← ⊕9
c′(n⊕) ← ⊥10
N ′′ ← N ′′ ∪ {n⊕}11
E′′ ← E′′ ∪ {(s, n⊕)}12
s ← n⊕13

// insert edges14
for (σ1, σ2) ∈ Ψ ′, ν(s) = σ1 do15

if σ2 = ν(y) then16
nσ2

← y17

else18
nσ2

← new node19
ν′(nσ2

) ← σ220
c′(nσ2

) ← ⊥21
N ′′ ← N ′′ ∪ {nσ2

}22
S ← S ∪ {nσ2

}23

E′′ ← E′′ ∪ {(nσ , nσ2
)}24

return(N ′′, E′′)25

author

⊕

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

agent

/

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

book

/

Fig. 10 Pattern after unrolling descendant steps

the stepauthor//book can simply be unrolled into a se-
quence of child steps, unrollingauthor//name requires
the insertion of a choice node and the duplication of the
branch below it. This is because there are two paths from
author to name, as is shown in Figure 9.

4.1.4 Removing wildcard nodes

We convert wildcard nodes whenever they unambiguously
refer to a specific node type (Algorithm 1, lines 20 and 21).
For example, by relying on the schema shown in Figure 4,
we can determine that the stepagent/* can be translated
to the stepagent/name. It is also possible to convert wild-
card nodes that can refer to more than one node type by in-
troducing choice nodes into the pattern in a procedure that is
largely analogous to the way descendant steps are unrolled.

Algorithm 3 : traverse((N,E, r, ν, ǫ, T, c) ,
(N ′, E′, r′, ν′, ǫ′, T ′, c′)) finds contradictions

input : predicate pattern(N, E, r, ν, ǫ, T, c) , query pattern
(N ′, E′, r′, ν′, ǫ′, T ′, c′)

output : true iff constraints are satisfiable
variable : result

if ν(r) = ν′(r′) and c(r) ∧ c′(r′) is not satisfiablethen1
result ← false// constraint violation found2

else ifν(r) = ⊕ then3
// check if at least one choice leads to satisfiable4
constraints
result ← false5
for n ∈ N with (r, n) ∈ E do6

if ∃(x, y) ∈ E′ with7
x = r′ ∧ (ν′(y) = ν′(n) ∨ ν′(y) = ⊕) then

result ←8
result ∨ traverse((N, E, n), (N ′, E′, y))

else9
result ← true10

else ifν′(r′) = ⊕ then11
// check if at least one choice leads to satisfiable12
constraints
result ← false13
for n′ ∈ N ′ with (r′, n′) ∈ E′ do14

if ∃(x, y) ∈ E with15
x = r ∧ (ν(y) = ν′(n) ∨ ν(y) = ⊕) then

result ←16
result ∨ traverse((N, E, y), (N ′, E′, n′))

else17
result ← true18

else19
// check all child nodes20
result ← true21
for n ∈ N with (r, n) ∈ E do22

if ∃(x, y) ∈ E′ with23
x = r′ ∧ (ν′(y) = ν(n) ∨ ν′(y) = ⊕ ∨ ν(n) = ⊕)
then

result ←24
result ∧ traverse((N, E, n), (N ′, E′, y))

return result25

4.1.5 Removing nodes referring to nodes with multiple
occurrences in the same context

In general, a meaningful conversion of pattern nodes cor-
responding to nodes with multiple occurrences in the same
context is not possible and we need to eliminate these nodes
from the pattern. One exception to this is the scenario where
the pattern node is associated with an explicit positional con-
straint that disambiguates between multiple occurrences of
a matching node (for example,pubs/book[1]). In this
case, we can retain the pattern node and exploit its associ-
ated constraints for pruning. In the example from Figure 10,
we need to remove thebook node since the schema indi-
cates that apubs node may have multiple children of type
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/

Fig. 11 Simplified pattern

book. The resulting simplified pattern is shown in Figure
11.

4.1.6 Traversal and pruning

After transforming both QTP and FTP into simplified tree
patterns, we traverse both patterns simultaneously as de-
scribed in Algorithm 3. Only pattern nodes occurring in both
patterns are visited. For each pair of corresponding pattern
nodes, we check whether the value constraints in one pat-
tern contradict those in the other pattern. Since in simplified
tree patterns each pattern node corresponds to a unique node
from the collection within the context of a single document
tree, a contradiction between patterns allows us to immedi-
ately eliminate the fragment corresponding to the FTP from
further consideration.

Special care has to be taken when a choice node is en-
countered. In this case, a contradiction exists only if we can
find contradictory constraints regardless of which branch of
the choice we follow. If there is at least one choice without a
contradiction, which may be a choice that leads to a branch
that is not present in the other pattern, it is not possible to
conclude that the fragment can be eliminated (lines 3-18).

author

⊕

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

agent

/

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

(a) QTP

author

name

/

last

/

startswith(’A’)

(b) FTP

Fig. 12 Simplified QTP and FTP that are not contradictory

In the example shown in Figure 12, the traversal algo-
rithm proceeds as follows. First, theauthor nodes in QTP
and FTP are visited. Since there is no value constraint asso-
ciated with this node in either pattern, there is no conflict,
therefore we move on to the children of theauthor nodes.
Thepubs node is only present in the QTP and is therefore
not visited. As the other child of theauthor node, the QTP
contains a choice node. We now have to check both branches
for conflict. The left branch leads to thename node, for
which there is an equivalent node in the FTP. In both pat-
terns thename node has a child with node testlast. When

inspecting the value constraints associated with thelast
nodes, the algorithm detects a contradiction because the con-
tent of the corresponding document node cannot be equal to
the string ‘Shakespeare’ and at the same time start with the
letter ‘A’. Therefore, we know that there is a contradiction
for the left branch of the choice node. In order for there to be
a global contradiction, however, the patterns have to be con-
tradictory for both branches of the choice node. Therefore,
the algorithm still has to inspect the right branch, for which it
encounters a node with the node testagent. For this node,
there is no equivalent in the FTP and therefore no contra-
diction. Since the algorithm only found a contradiction for
one branch of the choice node, there is no global contradic-
tion and the fragment corresponding to the FTP cannot be
pruned.

author

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

(a) QTP

author

name

/

last

/

startswith(’A’)

(b) FTP

Fig. 13 Simplified QTP and FTP that are contradictory

For the example in Figure 13, on the other hand, the
traversal algorithm does detect a contradiction. After inspect-
ing theauthor andname nodes in both patterns, the algo-
rithm reaches thelast nodes and their contradicting value
constraints. This time, thelast node does not occur as the
descendant of a choice node so this contradiction is suffi-
cient to prune the fragment corresponding to the FTP.
4.1.7 Analysis and optimization

While it may seem that the transformation and traversal of
QTP and FTPs could pose a significant overhead, there are a
number of considerations that reduce this impact. The trans-
formation of the FTPs only has to be performed once when
the fragmentation is set up. Therefore, it does not pose a
run-time overhead during query execution.

For the transformation of the QTP, we make the follow-
ing observations: child steps are either copied from the QTP
to the canonical QTP or omitted. Both the size of the canon-
ical QTP and the time consumed by the transformation are
therefore linear in|EQTP

child|, which is the number of child
steps in the QTP. For each descendant step, in the worst
case, Algorithm 2 introduces one choice node and one non-
choice pattern node for eachσ in Σ. Therefore, the size of
the canonical QTP is linear in|EQTP

desc| |Σ|. In order to ana-
lyze the time complexity, we also have to take into account
the time consumed by computing the reachable schema sub-
graph and by detecting cycles in the resulting graph. We can
compute the subgraph consisting of nodes that are reach-
able from nodea and from whichb is reachable by first
marking all nodes reachable froma, then marking all nodes
from which b is reachable and finally choosing all nodes
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author

name

/

first
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last

/

.=’Shakespeare’

pubs

/

(a) QTP

author

name

/

last

/

x

(b) FTP

Fig. 14 Simplified QTP and abstract FTP

that were marked both times. Assuming a suitable repre-
sentation of the graph, this can be done inO(|Σ| + |Ψ |)
time. Using Tarjan’s algorithm [11], we can detect cycles in
O(|Σ| + |Ψ |) time. Therefore, the transformation of a QTP
takesO(|EQTP

child| + |EQTP
desc| (|Σ| + |Ψ |)) time and yields a

result containingO(|EQTP
child| + |EQTP

desc| |Σ|) nodes. Since
the result is also a directed graph, in which nodes may be
shared among multiple branches, the equivalent tree pattern
is of sizeO(|EQTP

desc| |Σ| |EQTP
child| + |EQTP

desc|
2 |Σ|2). This

is important, because the time consumed by the subsequent
traversal step depends on the size of the equivalent tree.

The time required to traverse the QTP and the FTPs is
linear in the size of the tree representations of the canoni-
cal QTP and the FTPs. Because the traversal has to be per-
formed for each fragment, it is also linear in the number
of fragments. This leads to an overall time complexity of
O((|EQTP

desc| |Σ| |EQTP
child| + |EQTP

desc|
2 |Σ|2) (|EFTP

desc| |Σ|
|EFTP

child| + |EFTP
desc|

2 |Σ|2) |F |). Note that run-time of the
pruning algorithm depends solely on the size of the patterns,
the number of fragments and the size of the schema. It is
independent of the size of the collection.

Since horizontal fragmentation is defined as a partition-
ing of the data collection, FTPs need to be disjoint and cover
the entire collection. Because of this, we expect that in many
instances the FTPs will only differ in their value constraints
but not in their structure. It is therefore possible to sim-
plify the traversal process by traversing the QTP together
with a single, abstract FTP, rather than with each FTP in the
fragmentation. In this abstract FTP, value constraints arere-
placed with variables. Traversal of QTP and abstract FTP re-
sults in a formula that describes the conditions under which
there is a contradiction between the QTP and an FTP. Fig-
ure 14(b) shows an abstract FTP, in which a value constraint
has been replaced with the variablex. Traversing this ab-
stract FTP with the QTP in Figure 14(a) shows that there is
a contradiction if¬(.=’Shakespeare’∧ x) holds.

We can now instantiatex with the corresponding value
constraint from each of the original simplified FTPs, i.e.,
with the expressions

startswith(’A’), . . . , startswith(’S’), . . . , startswith(’Z’)

Solving this formula yields a contradiction for all of these
cases exceptx = startswith(’S’). A similar optimization is
possible for the QTPs if we assume that the structure of a
query is known at compile time whereas the constants used
in value constraints are only known at run time.

4.2 Localization and pruning with vertical fragmentation
In this section, we define an initial strategy for evaluating
QTPs on a vertically fragmented collection based on the fol-
lowing steps:
– First, we decompose the global QTP into a set oflocal

QTPscorresponding to the individual fragments.
– Then, we use an existing tree pattern evaluation strategy

to evaluate the local QTPs on the fragments (the specific
strategy is left to each site to decide).

– After that, we combine the partial results generated at
each site by joining the matches derived from individual
fragments based on their proxy/root proxy IDs. How this
is done is specified by adistributed execution plan.
We then improve upon this initial strategy and present

two techniques that allow us to eliminate certain fragments
from the distributed execution plan.

4.2.1 Localization of QTPs

Localization is the process of determining which fragments
are relevant to a given query and decomposing the query into
sub-queries that can be evaluated on individual fragments.
As mentioned before, QTPs provide a convenient abstrac-
tion for decomposing a global query into sub-queries that
are local to a single fragment. We have therefore chosen to
perform query decomposition at the QTP level before trans-
forming the resulting local QTPs into algebraic query plans
at the individual sites.

The decomposition of a global QTP into a set of lo-
cal QTPs directly follows the schema graph. After unrolling
wildcard nodes (using a procedure similar to Algorithm 2),
Algorithm 4 divides the global QTP into a set of sub-patterns,
each of which consists of pattern nodes that match nodes in
the same fragment. Edges between pattern nodes in the same
subtree are assigned the same axis type as the corresponding
edge in the global QTP.

A child edge from a pattern node in sub-patterna to one
in sub-patternb is converted to a pattern node matching a
proxy in a and a pattern node matching a root proxy inb.
These new pattern nodes are marked as extraction points be-
cause they are needed to join the results of local QTPs to
generate the final result.

When descendant edges across fragment boundaries are
encountered, we need to identify all paths in the fragment-
ation schema that satisfy the descendant edge. This can be
achieved, for example, by unrolling the descendant step into
child steps according to the same procedure that is used
by the horizontal transformation algorithm (i.e., Algorithm
2). It is important to note that this unrolling may turn a
single cross-fragment descendant step into multiple cross-
fragment child steps. This corresponds to the case where
a descendant step traverses multiple fragments. Consider,
for example, the descendant stepauthor//reference.
When this step is unrolled, it yields two cross-fragment child
steps:author/pubs andbook/chapter. Therefore, an
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Algorithm 4 : Vertical localization
input : global QTP(N, E, r, ν, ǫ, T, c), schema

(Σ, Ψ, s, m, ρ), vertical fragmentation function
φ : Σ → FΣ

output : set of local QTPs with fragment they are evaluated on
Q = {((N ′, E′, r′, ν′, ǫ′, T ′, c′), f ′ ∈ FΣ)}

Q ← {(N ′, E′, r′, ν′, ǫ′, T ′, c′) maximal | (∃f ∈ FΣ , ∀n′ ∈1
N ′ : φ(ν(n′)) = f) ∧ (E′ = E ∩ (N ′ × N ′)) ∧
((N ′, E′) is connected and rooted atr′) ∧ (ν′ = ν) ∧ (ǫ′ =

ǫ) ∧ (T ′ = T ∩ N ′) ∧ (c′ = c)} // construct local QTPs
without cross-fragment edges
for (n1, n2) ∈ E, φ(ν(n1)) 6= φ(ν(n2)) do2

i ← unique ID3
q1 ← (N1, E1, r1, ν1, ǫ1, T1, c1) ∈ Q, n1 ∈ N14
q2 ← (N2, E2, r2, ν2, ǫ2, T2, c2) ∈ Q, n2 ∈ N25
pi ← new pattern node6
rpi ← new pattern node7
N1 ← N1 ∪ {pi}8
N2 ← N2 ∪ {rpi}9
ν1(pi) ← proxy i10
ν2(rpi) ← root proxyi11
T1 ← T1 ∪ {pi}12
T2 ← T2 ∪ {rpi}13
E1 ← E1 ∪ {(n1, pi)}14
E2 ← E2 ∪ {(rpi, n2)}15
ǫ((n1, pi)) ← ǫ((n1, n2))16
ǫ((rpi, n2)) ← ǫ((n1, n2))17
r2 ← rpi18

author
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/

P 1→3
∗

//

(a) q1

RP 1→2
∗

name

/
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/

.=’Shakespeare’
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/
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(b) q2
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book

//

P 3→4
∗

//

(c) q3

RP 3→4
∗

reference

//

(d) q4

Fig. 15 Local QTPs

additional local QTP corresponding to fragmentfV
3

(which
contains thepubs andbook node types) is introduced, even
if there is no pattern node in the global QTP that refers to
node types in this fragment.

If the global QTP does not reach a certain fragment (be-
cause even after unrolling no constraints are placed on the
node types contained in this fragment) and if no intermediate
QTP has to be generated for it because of cross-fragment de-
scendant steps, then the localized plan derived from the lo-
cal QTPs will not access this fragment. Therefore, the local-
ization technique eliminates some vertical fragments even
without further pruning.

Localizing the global QTP shown in Figure 5 yields the
set of local QTPs shown in Figure 15(a)–(d). Each cross-
fragment edge in the global QTP is represented by a pair
of pattern nodes that match a proxy/root proxy pair. The
edge fromauthor to name, for example, is replaced by

the pattern nodeRP 1→2

∗
in q2 and the pattern nodeP 1→2

∗
in

q1. The pattern nodeRP 1→2

∗
matches all of the root proxy

nodesRP 1→2

i in q2’s fragmentf2. The pattern nodeP 1→2

∗

matches the proxy nodesP 1→2

i in f2’s parent fragmentf1;
these are the proxy nodes that correspond toRP 1→2

i . Since
the original pattern edge is a child edge, edges to and from
the generated pattern nodes are also child edges. In the case
where the original pattern edge is a descendant edge (such as
the edge betweenauthor andbook, which is represented
by the pattern nodes labeledP 1→3

∗
andRP 1→3

∗
), edges to

and from the generated pattern nodes are also descendant
edges.

Whenever we decompose a global QTPq, there will be
exactly one local QTP that does not contain a pattern node
that matches a root proxy node. We refer to this local QTP as
the root QTP. In our example,q1 is the root QTP. All other
local QTPs contain exactly one pattern node that matches
root proxy nodes in their fragments. If local QTPqs contains
a pattern node labeledRP i→j

∗ and local QTPqt contains the
corresponding pattern node labeledP i→j

∗ , then we callqs a
child QTPof qt andqt aparent QTPof qs.

4.2.2 Conversion of Local QTPs to Local Plans

Each local QTPqi is then transformed into a local query
plan pi. This is done at the site holding the fragment cor-
responding toqi, using centralized XML query evaluation
strategies (e.g., [12,13]). The pruning techniques presented
in this paper are independent of the techniques used by lo-
cal query plans. We therefore omit a detailed description of
local plan generation.

For the purpose of illustration, Figure 16 shows a set of
local plans based on structural joins (p1 throughp4), which
correspond to the local QTPsq1 throughq4, respectively.

4.2.3 Distributed execution plans

To obtain the overall query result, the results of local plans
need to be “combined” based on the IDs of their proxy and
root proxy nodes. Adistributed execution planspecifies how
exactly this is done. In this section, we explore how dis-
tributed execution plans can be constructed and what their
properties are.

Definition 7 LetP = {p1, . . . , pn} be the set of local query
plans corresponding to a queryq. For eachpi ∈ P , let fi

denote the vertical fragment corresponding topi. Further,
let P ′ ⊆ P . ThenGP ′ is adistributed execution planfor P ′

iff
1. P ′ = {pi} andG′

P = pi, or
2. P ′ = P ′

a ∪ P ′

b, Pa ∩ Pb = ∅; pi ∈ Pa, pj ∈ Pb,
pi = parent(pj); GP ′

a
andGP ′

b
are distributed execu-

tion plans forP ′

a andP ′

b, respectively; andGP ′ = GP ′

a

1
P

i→j
∗ .id=RP

i→j
∗ .id

GP ′

b
.

If GP is a distributed execution plan forP (the entire
set of local query plans), thenGq = GP is a distributed
execution plan forq.
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Π{P 1→3
∗

,P 1→2
∗

}

1author//P 1→3
∗

1author/P 1→2
∗

scan(author) scan(P 1→2
∗ )

scan(P 1→3
∗ )

(a) p1

Π{RP 1→2
∗

}

σfirst=′William′

1name/first

σlast=′Shakespeare′

1name/last

1RP 1→2
∗

/name

scan(RP 1→2
∗ ) scan(name)

scan(last)

scan(first)

(b) p2

Π{RP 1→3
∗

,P 3→4
∗

}

1book//P 3→4
∗

1RP 1→3
∗

//book

scan(RP 1→3
∗ ) scan(book)

scan(P 3→4
∗ )

(c) p3

Π{RP 3→4
∗

,reference}

1RP 3→4
∗

//reference

scan(RP 3→4
∗ ) scan(reference)

(d) p4

Fig. 16 Local plans

A distributed execution plan must contain all the local
plans corresponding to the query. As shown in the recur-
sive definition above, an execution plan for a single local
plan is simply the local plan itself (condition 1). For a set of
multiple local plansP ′ we assume thatP ′

a andP ′

b are two
non-overlapping subsets ofP ′ such thatP ′

a ∪ P ′

b = P ′. We
require thatP ′

a contains the parent local planpi for some lo-
cal planpj in P ′

b. An execution plan forP ′ is then defined by
combining execution plans forP ′

a andP ′

b using a join whose
predicate compares the IDs of root proxy nodes derived from
pj to the IDs of corresponding proxy nodes derived frompi

(condition 2). We refer to this join as across-fragment join.

If G′

P consists of a single local planpi, then the set of
attributes returned byG′

P (referred to asMG′

P
) is identi-

cal to the set of attributes returned bypi. If GP ′ = GP ′

a

1P 1→3
∗

.id=RP 1→3
∗

.id

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 p2

1P 3→4
∗

.id=RP 3→4
∗

.id

p3 p4

Fig. 17 Initial distributed execution plan
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∗ .id
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b
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P
= MGP ′

a
∪ MGP ′

b

\

{P i→j
∗ , RP i→j

∗ }.
Figure 17 shows a distributed execution plan that com-

bines the results of the local plans shown in Figure 16. There
are usually many different vertical execution plans that all
yield the correct result but that may vary in cost. Since the
focus of this paper is on localization and pruning, we do not
discuss the problem of picking the most advantageous plan.

4.2.4 Skipping fragments

The localization strategy for vertical fragmentation avoids
accessing fragments whose node types are not reached by
the global QTP. It does not, however, address a scenario
where node types in a fragment are reached by the global
QTP but no constraints are placed on these node types. Con-
sider, for example, the local QTP shown in Figure 15(c),
which is evaluated on fragmentfV

3
. Its sole purpose is to de-

termine which proxy nodes infV
1

lead to which root proxy
nodes in fragmentfV

4
. Since the only way from a root proxy

node infV
3

to a proxy node in the same fragment is through
a book node, no further constraints are placed onfV

3
. We

now propose a technique that allows us to avoid accessing
such intermediate fragments, and, thereby, prunes the local
QTPs corresponding to these fragments from a distributed
query plan.

We achieve this by storing information that allows us to
identify all ancestor proxy nodes for any given root proxy
node. Using this information, we can then determine for any
root proxy node infV

4
which proxy node infV

1
is its an-

cestor. This, in turn, allows us to answer the query without
accessingfV

3
or evaluating the local QTP shown in Figure

15(c). The benefits of this are twofold: it reduces load on the
intermediate fragments (since they are not accessed) and it
avoids the cost of computing intermediate results and join-
ing them together.

While it would be possible to store the ancestor-descen-
dant join information in a centralized (or replicated) index
structure, this could severely limit the scalability of distribu-
ted query processing. In addition, it would make update man-
agement more difficult. Therefore, we store the join infor-
mation by numbering proxy nodes according to a scheme
based on the Dewey decimal system2 [14].

2 We have also experimented with other numbering schemes, such
as one where each proxy pair is identified by its pre-order andpost-
order position in the collection. Our techniques are applicable to these
alternate representations as well.
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1RP 3→4
∗

.id.startswith(P 1→3
∗

.id)

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 p2

p3

Fig. 18 Skipping vertical plan

To define this numbering scheme, we need to distin-
guish between the following two cases:(i) If a document
subtree does not have a root proxy node as its root (i.e., if
the subtree contains the root element of a document tree in
the collection, which can only occur in the root fragment),
then the proxy nodes in this subtree (and, of course, the
root proxy nodes in other fragments that correspond to these
proxy nodes) receive simple numeric IDs. In the collection
shown in Figure 2, this can be seen in all subtrees in frag-
mentfV

1
. The proxy nodes in this fragment therefore receive

numeric IDs, which means that all(R)P 1→2

∗
and(R)P 1→3

∗

are already numbered in accordance with our numbering
scheme.(ii) If a document subtree is rooted at a root proxy
node then the ID of each of its proxy nodes is prefixed by
the ID of the root proxy node of the subtree, followed by a
numeric identifier that is unique within this subtree. In Fig-
ure 2, fragmentsfV

2
, fV

3
andfV

4
consist of subtrees that are

rooted at a root proxy. However, only fragmentfV
3

contains
proxy nodes. Therefore, onlyP 3→4

18
, P 3→4

19
andP 3→4

20
have

to be renumbered.P 3→4

18
is part of a subtree that is rooted

at the root proxy nodeRP 1→3

12
. We would therefore have

to renumber it toP 3→4

12.1 . Similarly, P 3→4

19
would be renum-

bered toP 3→4

14.1 andP 3→4

20
to P 3→4

16.1 .
If all proxy pairs are numbered according to this scheme,

a root proxy node is the descendant of a proxy node pre-
cisely when the ID of the proxy node is a prefix of the ID of
the root proxy node. When evaluating query patterns, we can
exploit this information by removing local QTPs from the
distributed query plan if they contain no value or structural
constraints, and no extraction point nodes other than those
corresponding to proxies. These local QTPs are only needed
to determine whether a root proxy node in some other frag-
ment is a descendant of a proxy node in a third fragment,
which we can now infer from the skipping IDs. Using this
optimization, we can rewrite the query plan from Figure 17
to the simpler plan shown in Figure 18, which avoids access-
ing fragmentfV

3
.

It is important to note that our numbering scheme does
not complicate update management. Subtrees can be inserted
or removed from a document collection without having to
modify other parts of the collection and without having to
maintain a centralized index.

4.2.5 Structural constraints in skipped fragments

While skipping IDs allow us to skip fragments on which
no constraints are placed, sometimes structural constraints
make it necessary to access intermediate fragments, even

author

agent

OPT

(a) fV ′

1

name

first

ONCE

#text

last

ONCE

#text

(b) fV ′

2

pubs

book

MULT

article

MULT

(c) fV ′

3

chapter

reference

OPT ONCE

(d) fV ′

4

ONCE

ONCE

ONCE

MULT

MULT

Fig. 19 A modified fragmentation schema

if they are not needed for evaluating value constraints. To
illustrate this, consider the modified fragmentation schema
shown in Figure 19, which adds the additional type of pub-
licationarticle. If we evaluate the local QTPs shown in
Figure 15 on this modified schema, we can no longer elimi-
nate the local QTP in Figure 15(c) because skipping the cor-
responding fragment would mean that we could no longer
distinguish between the subtrees in fragmentfV ′

4
that are

part of abook and those that are part of anarticle.
We propose a technique that allows us to skip such frag-

ments. In addition to storing skipping IDs, we use the proxy
IDs to keep track of some structural information for cases
where there is ambiguity. We define structural ambiguity as
follows:
Definition 8 Letfa be a fragment whose subtrees are rooted
at root proxy nodes and assume that subtrees infa contain
proxy nodes that refer to fragmentfb. Thenfa is structurally
ambiguouswith respect tofb if there is more than one path
in the schema offa that leads from a root proxy node infa

to a proxy node infa that corresponds tofb.
If fa is structurally ambiguous with respect tofb, then

we add label path information to the proxy ID of each proxy
node infa that corresponds tofb. This information consists
of the labels encountered on a path from the root proxy of
the subtree in which the proxy occurs to the proxy itself.
Since the label path information is part of the locally unique
identifier specified by our numbering scheme, it is also part
of the prefix of the IDs of proxy nodes that are descendants
of the proxy node for which it was inserted.

In the case of the fragmentation schema shown in Figure
19, there is one instance of structural ambiguity: fragment
fV ′

3
is structurally ambiguous with respect tofV ′

4
. This is

because there are two label paths from a root proxy infV ′

3

that could lead to a proxy node that corresponds tofV ′

4
:

pubs/book andpubs/article. We therefore store the
label path as part of the ID of each proxy node infV ′

3
that

corresponds tofV ′

4
. Figure 20 shows a sample instance of

fragmentfV ′

3
with label path IDs.
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RP 3→4
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book

RP 3→4
12.1[pubs/book]

RP 3→4
14

pubs

article

RP 3→4
14.1[pubs/article]

Fig. 20 FragmentfV
3

with label path IDs

1RP 3→4
∗

.id.startswith(P 1→3
∗

.id)

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 p2

σRP3→4
∗

.label=pubs/book

p4

Fig. 21 Label path plan

Label paths as defined here can be viewed as a materi-
alization of structural selections on linear paths througha
particular fragment. Thus, they contain sufficient informa-
tion to evaluate structural constraints in a linear path, asin
the QTP shown in Figure 15(c). In combination with skip-
ping IDs, label paths therefore allow us to evaluate the query
using the plan shown in Figure 21, which avoids accessing
fV ′

3
.

4.2.6 Analysis

Assuming that we use the unrolling technique presented in
the section on horizontal localization, the upper bound on
the total size of local QTPs obtained by vertical localiza-
tion isO(|EQTP

child|+ |EQTP
desc||Σ|). In practice, where schema

graphs tend to be sparse, we can expect the total size of all
local QTPs to be close to the size of the original QTP.

Both skipping IDs and label paths are inserted at frag-
mentation time and whenever data are added to the collec-
tion. Since they are not replicated, local insertions and dele-
tions can be handled without having to modify other frag-
ments.

The vertical pruning techniques proposed here operate
solely on the QTP and the fragmented schema graph. They
are independent of the size of the data and of the constants
used in value constraints. This allows us to perform prun-
ing at query compile time, thereby minimizing the run-time
overhead introduced by our technique.

Label paths are useful not only for localization but also
for pruning irrelevant subtrees within fragments [2]. Study-
ing further uses of label paths in a distributed context is the
subject of future research.

5 Workload-aware fragmentation of collections

In this section, we propose a set of fragmentation algorithms
that determine a fragmentation schema that optimizes per-
formance for a given query workload. The previous section
has identified a number of properties that a fragmentation
schema needs to possess in order for localization and prun-
ing to achieve high query performance. In the case of hor-

izontal fragmentation, it is important that the FTPs are de-
fined such that for a given QTP in the workload contradic-
tions can be found that allow us to exclude some of the frag-
ments. For vertical fragmentation, a suitable fragmentation
schema should aim to maximize parallelism between the
(non-skippable) sub-queries of a given query while avoiding
excessively large intermediate results. In either case, what
constitutes a good fragmentation schema cannot be defined
independently of the query evaluation strategy used. While
in practice fragmentation is performed before query eval-
uation, we have chosen to present our fragmentation algo-
rithms after our query evaluation strategies in order to better
illustrate this dependency.

5.1 Horizontal fragmentation

Horizontal fragmentation allows us to directly apply a frag-
mentation algorithm that was originally developed for re-
lational systems. This relational fragmentation algorithm is
based on minterm predicates, which are conjunctions of sim-
ple predicates on individual attributes. Minterm predicates
are obtained by extracting the predicates found in the query
workload, decomposing them into simple predicates consist-
ing of a single (in)equality and finally combining these sim-
ple predicates such that all possible combinations of simple
predicates are covered [1].

In order to apply this technique, we need to transform
the predicates found in tree patterns into simple predicates
from which minterm predicates can be constructed. We do
this by first unrolling descendant steps into child steps (using
the same procedure employed in Algorithm 2). Then, each
value constraint in the pattern can be transformed into a set
of simple predicates whose left-hand side is the path from
the root of the unrolled tree pattern to the node with which
the value constraint is associated.

Performing this transformation for the workload shown
in Table 2 yields the constraints shown in Table 3. We then
extract the simple predicates from these constraints, i.e.pred-
icates that do not contain conjuction or disjunction. The re-
sult of this is shown in Table 1.

/author/name/last==‘‘Shakespeare’’
/author/name/last==‘‘John’’
/author/name/first==‘‘William’’

Table 1 Simple Predicates

From these simple predicates, we can then construct min-
term predicates using the same techniques applied to the re-
lational scenario. The minterm predicates derived from the
simple predicates in Table 1 are shown in Table 4. Based on
these minterm predicates, we can then apply the relational
fragmentation algorithm.

5.2 Vertical fragmentation

To evaluate a query over a vertically fragmented collection,
we evaluate each sub-query on its corresponding fragment
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Q1 /author[name/last=’’Shakespeare’’ or name/last=’’John’’]/pubs/book
Q2 /author[name/first=’’William’’]/pubs/book

Table 2 Sample workload

Path Constraint

/author/name/last .==‘‘Shakespeare’’ ∨ .==‘‘John’’
/author/name/first .==‘‘William’’

Table 3 Constraints

/author/name/last==‘‘Shakespeare’’ ∧ /author/name/first==‘‘William’’
/author/name/last==‘‘Shakespeare’’ ∧ /author/name/first!=‘‘William’’
/author/name/last==‘‘John’’ ∧ /author/name/first==‘‘William’’
/author/name/last==‘‘John’’ ∧ /author/name/first!=‘‘William’’
/author/name/last!=‘‘Shakespeare’’ ∧ /author/name/last!=‘‘John’’ ∧ /author/name/first==‘‘William’’
/author/name/last!=‘‘Shakespeare’’ ∧ /author/name/last!=‘‘John’’ ∧ /author/name/first!=‘‘William’’

Table 4 Minterm Predicates

and then join the intermediate results to obtain the over-
all query result. Depending on how the collection is frag-
mented, the intermediate results may be large and the sub-
queries may be expensive to evaluate. In extreme cases, this
can lead to a scenario where it is more expensive to evalu-
ate a query on a vertically distributed collection than it isto
evaluate the same query in a centralized fashion. In order to
avoid this situation and to take full advantage of the potential
of vertical distribution, we have to ensure that the vertical
fragmentation schema is well suited to the query workload.

In the following, we propose a vertical fragmentation al-
gorithm that chooses a suitable vertical fragmentation sche-
ma for a given query workload. Our algorithm is based on
a cost model, which estimates the response time of a query
when evaluated over a vertically fragmented collection.

5.2.1 Cost model

We define the following cost metrics for each local planpj

and its corresponding fragmentf(pj):

– cost(pj), the response time of evaluatingpj onf(pj),
– scancost(pj), the time it takes to scan the root proxy

nodes inf(pj) that are accessed bypj ,
– card(pj), the number of tuples returned bypj when eval-

uated onf(pj),
– snip(pj), the number of document subtrees inf(pj) that

are accessed bypj .

While it is possible to obtain these metrics experimen-
tally, this can be expensive and in practice it may be prefer-
able to estimate these values using various cost estimation
techniques that have been developed for the centralized eval-
uation of XML queries. For notational convenience, we do
not distinguish between estimated cost metrics and their pre-
cise counterparts.

Since the local plans can be evaluated independently of
each other in parallel, we can model the cost of a queryq
as cost(q) = max{cost(pj) | pj ∈ P} whereP is the set
of local plans (after pruning) corresponding toq for a given
vertical fragmentation schema.

5.2.2 Heuristic fragmentation algorithm

The näıve strategy for determining the best fragmentation
schema for a given workload would be to exhaustively enu-
merate all possible vertical fragmentation schemas, compute
the total cost for each of them and then choose the schema
with the lowest cost. While this is guaranteed to yield the
optimal result, the large number of possible vertical frag-
mentation schemas generally makes this strategy infeasible
(there areBn alternatives, whereBn is thenth Bell number
andn is the number of node types in the schema).

To obtain a feasible fragmentation algorithm, we instead
propose a heuristic strategy that starts out with an initial
fragmentation schema in which each node type is placed in
its own fragment and then greedily merges fragments until
we can no longer reduce the estimated workload cost. While
this strategy is not guaranteed to find the global optimum,
our experiments show that it performs well in practice.

In the following, we explain how the greedy algorithm
works for a single query. Details are shown in Algorithm 5.
After determining the local cost metrics for each local plan
based on the initial fragmentation, we identify the plan with
the highest local costpmax (ignoring local plans that can be
pruned) and its corresponding fragmentf(pmax). Since the
overall cost of the query is determined by the cost of the
most expensive local plan, we can focus on decreasing the
cost ofpmax.

To do this, we attempt to mergef(pmax) with one of
its ancestor fragments. We start withf(pmax)’s parent frag-
ments. For each parent fragmentfi, we mergef(pmax) and
fi, and then determine the cost of each non-prunable local
plan corresponding tofi ∪f(pmax). If the cost of all of these
plans is lower than cost(pj), we removefi andf(pmax) from
the fragmentation schema and insertfi ∪ f(pmax). We then
repeat the procedure by determining the most expensive lo-
cal plan for the modified fragmentation schema and attempt-
ing to reduce its cost.

If none of the parent fragments off(pmax) allow us to re-
duce the maximum local plan cost, we tryf(pmax)’s “grand-
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parent” fragments, “great grand-parent” fragments, and so
forth. When merging with an ancestor fragmentfi that is
not a direct parent off(pmax), we merge all the fragments
on the path fromf(pmax) to fi. If no ancestor fragment of
f(pmax) allows us to reduce the maximum local plan cost,
the algorithm terminates without making further modifica-
tions to the fragmentation schema.

Algorithm 5 : Vertical fragmentation
input : query planp, schema(Σ, Ψ, s, m, ρ)

output : vertical fragmentation schema{Σ′ ⊆ Σ}
I ← {{σ} | σ ∈ Σ}1
imax ← i ∈ I s.t. cost(pi(i)) = max{cost(pj(j)) | j ∈ I}2
for iancestor∈ ancestor(imax) do3

imerged← imax∪ . . . ∪ iancestor4
if cost(pimax(imax)) > cost(p()) then5

I ← (I ∪ imerged) \ imax, . . . , iancestor6
goto27

return (I)8

5.2.3 Estimating local plan costs after merging

Our fragmentation algorithm relies on frequent tentative mer-
ges between fragments. While it is possible to re-estimate
the cost of all affected local plans after each such merge,
this can be expensive. To address this, we propose a method
for estimating the cost of a local planpij corresponding to
the fragmentf(pi) ∪ f(pj) based on cost estimates forpi

(corresponding tof(pi)) andpj (corresponding tof(pi)’s
parent fragmentf(pj)):

cost(pij) = cost(pj) +
card(pj)

snip(pi)

(

cost(pi) − scancost(pi)
)

The rationale behind this is as follows: cost(pij) includes
all of the cost of the local plan corresponding to the parent
fragment, cost(pj). The cost of the child fragment is scaled
by the selectivity of the parent fragment, represented as the
fraction of the subtrees inf(pi) for which corresponding
proxy nodes are returned bypj . We also subtract the portion
of the cost that can be attributed to scanning the root proxy
nodes inf(pi). Our experiments show that this approxima-
tion does not prevent us from identifying good vertical frag-
mentation schemas.

5.2.4 Handling multiple-query workloads

So far, for simplicity, we have focused on identifying a frag-
mentation schema for a single query. In practice, however,
workloads generally consist of more than one query. It is
possible to adapt our algorithm by modifying the termina-
tion condition: instead of terminating when the cost of the
most expensive local plan cannot be reduced further, we
check the most expensive local plans of each query in de-
scending order of cost and only terminate once we cannot
further reduce the cost of any of those.

6 Performance evaluation

We have enhanced the native XML database system NATIX
[12] with distributed capabilities and implemented our tech-
niques within this system. This allows us to validate our ap-
proach and to perform realistic experiments.

The goal of our experiments is to show that our tech-
niques can improve the performance of query processing
through distribution and pruning. To achieve this, we first
focus on stress-testing the distribution techniques presented
in this paper. We pay particular attention to how our pruning
algorithms limit query execution to a subset of the fragments
in a distributed collection and carefully analyze how this af-
fects performance. Then, we run a number of experiments
that represent realistic use cases based on the XPathMark
benchmark [15].

All of our experiments rely on collections of on-line auc-
tion data generated by the XMark benchmark [16], which
is a standard benchmark for evaluating XML query perfor-
mance. The experiments are conducted on virtualized Linux
machines within Amazon’s Elastic Compute Cloud [17]. We
use a separate instance (providing 1.7 GB of memory and
a single-core 32 bit CPU) for each fragment, with an ad-
ditional instance for dispatching queries. All instances run
in the same availability zone, ensuring low-latency, high-
throughput communication.

6.1 Horizontal fragmentation
For the horizontal fragmentation model, the goal of our eval-
uation is twofold: First, we want to verify that horizontal dis-
tribution allows us to improve both query response time and
throughput. Then, we want to show that our pruning tech-
niques allow us to further improve throughput beyond the
level achieved by distributed execution alone without any
adverse effects on response time.

Since our definition of horizontal fragmentation assumes
a multiple-document collection, we conduct these experi-
ments on an XMark collection that has been decomposed
into multiple small documents. We do this by by placing
eachopen auction element into its own document along
with its descendants and document subtrees referenced via
ID/IDREF. This results in documents of regular structure
with an average size of approximately 30 KB. We scale this
collection to 350 MB, 3.5 GB and 35 GB.

6.1.1 Balanced fragmentation

Eachopen auction element generated by XMark con-
tains an auction end date and these dates are uniformly dis-
tributed across the years 1998-2001. We can therefore ob-
tain a balanced horizontal fragmentation schema (i.e., a frag-
mentation schema in which all fragments are approximately
the same size) by dividing this date range into non-overlap-
ping periods of equal lengths, with each such period corre-
sponding to one horizontal fragment. For this experiment,
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H
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ta
l Q1 /open auction[./interval/end[.= xs:date(’12/28/2001’)]][initial > 120]//item/name

Q2 /open auction[./interval/end[.>= xs:date(’01/01/1998’)][.< xs:date(’12/28/1998’)]][initial > 120]//item/name
Q3 /open auction[./interval/end[.>= xs:date(’01/01/1998’)][.< xs:date(’12/28/1999’)]][initial > 120]//item/name
Q4 /open auction[./interval/end[.>= xs:date(’01/01/1998’)][.< xs:date(’12/28/2000’)]][initial > 120]//item/name
Q5 /open auction[./interval/end[.>= xs:date(’01/01/1998’)][.< xs:date(’12/28/2001’)]][initial > 120]//item/name

Ve
rt

ic
al

Q6 /open auction[initial > 200 ]/interval/end
Q7 /open auction//person//category[id=’category10’]
Q8 /open auction/bidder//person//category[id=’category10’]
Q9 /open auction/bidder//person[creditcard]//category[id=’category10’]
Q10 /open auction/bidder//person[creditcard]/profile[education]//category[id=’category10’]

X
P

at
hM

ar
k

A1 /site/closed auctions/closed auction/annotation/description/text/keyword
A2 //closed auction//keyword
A3 /site/closed auctions/closed auction//keyword
A4 /site/closed auctions/closed auction[annotation/description/text/keyword]/date
A5 /site/closed auctions/closed auction[descendant::keyword]/date
A6 /site/people/person[profile/gender and profile/age]/name
B7 //person[profile/@income]/name

Table 5 Queries used in experiments

we use fragmentation schemas consisting of 1, 2, 4, 8, 16,
32, 64 and 99 fragments3.

On this distributed collection, we evaluate 5 classes of
queries. Q1 consists of queries that contain a point predicate
on the auction end date, i.e., each query returns auctions that
end on exactly one date within the 4 year period. Q2-Q5 rep-
resent range queries that cover 25%, 50%, 75%, and 100%
of the date range, respectively. It is important to note that
each time we run a query in one of these classes, we ran-
domly choose a date/date range within the 4-year range. Ta-
ble 5 shows an example of a query in each class.

We first measure the response time of evaluating the que-
ries on the horizontally distributed collection. As in all mea-
surements in this paper, the results reported in Figure 22 in-
clude the cost of constructing sub-query results at the indi-
vidual sites, shipping them to the dispatcher and assembling
them to the overall query result. In the case of the 35 GB
collection, some data points are missing for centralized exe-
cution and the fragmentation schemas with a lower number
of fragments. In these cases, the query did not finish within
2 hours.

When interpreting the results, we can see that horizontal
distribution allows us to reduce query response time when
compared to centralized execution (i.e., the scenario witha
single fragment on a single machine). The more machines
we add to the system (by fragmenting the collection into
more fragments), the faster response time becomes. Simi-
larly, adding more machines allows us to manage larger col-
lections while maintaining the same level of response time.
We can also observe that pruning does not result in a major
improvement of response time when compared to distributed
execution without pruning. This is expected since pruning is
primarily intended to improve throughput. It is important,
however, to point out that pruning has no negative impact on
response time.

3 We were limited to 100 EC2 instances running simultaneously.
Since one instance is needed for the dispatcher, this means thatwe can
use at most 99 instances to store fragments.

Next, we consider the throughput impact of distribution
and pruning. To measure query throughput, we use multiple
dispatcher processes to keep the system loaded with queries.
In Figure 23, we report the maximum throughput rates we
were able to achieve for each class of queries. Even with-
out pruning, distribution significantly increases throughput
and this increase in throughput is proportional to the number
of fragments. Enabling pruning further improves throughput
by a significant margin. Naturally, the impact of pruning is
most pronounced for the class of point queries Q1, where
a single date is selected and where our pruning algorithm
can therefore avoid accessing all but one of the fragments
for each query. Pruning also helps for the queries that in-
volve a range of dates, particularly when this range is small,
though the effect is less pronounced. For Q4 and Q5, where
a large portion of the fragments or all fragments have to be
inspected, pruning offers no advantage over simple distribu-
tion but it also does not harm performance (apart from some
insignificant anomalies in the case of the 35 GB collection
where throughput rates are very low).

This illustrates the importance of a fragmentation sche-
ma that is well suited to the workload: fragmenting on at-
tributes on which single-value selections are performed leads
to greater pruning opportunities than fragmenting on attri-
butes that are used in wide range predicates. Even in the lat-
ter case, however, distributed evaluation by far outperforms
centralized querying.

Our results also show that once a throughput of approxi-
mately 20 queries per second is achieved, further increasing
the number of machines does not lead to improved perfor-
mance. This can be explained by the fact that, at this point,
the dispatcher is saturated, and distributed query evaluation
is no longer the bottleneck in the system.

6.1.2 Skewed fragmentation

While pruning performs well on a balanced fragmentation,
in practice it is not always possible to achieve this balance.
We therefore measure the effect of pruning with a skewed
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(c) Q3, 350 MB
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Fig. 22 Response time, balanced horizontal fragmentation
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(f) Q1, 3.5 GB
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Fig. 23 Throughput, balanced horizontal fragmentation
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Fig. 24 Throughput, balanced and skewed horizontal fragmentation

fragmentation consisting of 8 fragments. Our skewed frag-
mentation is defined as follows: The first fragment contains
half of the entire collection (corresponding to the first 2 years
of the 4-year period), the next fragment contains half of the
remaining collection (i.e., 25% of the data), and so forth,
with the last fragment containing the remainder of the col-
lection data.

Figure 24 shows the throughput rates achieved by cen-
tralized query execution (which is vanishingly low in some
of the cases shown), as well as distributed query execution
(with and without pruning) on a balanced fragmentation con-
sisting of 2, 4 and 8 fragments and on the skewed fragment-
ation. We use queries Q1 and Q2, for which pruning has
been shown to be particularly effective. Even in the pres-
ence of skew, distribution results in a significant boost in
performance over centralized querying in all cases. As with
a balanced fragmentation schema, pruning further improves
throughput.

The throughput rates obtained on the skewed fragment-
ation tend to fall between that of a balanced fragmentation
with 2 fragments and 4 fragments. This can be explained
by the fact that the largest fragment in the skewed frag-
mentation, which is the same size as a fragment in the bal-
anced fragmentation with 2 fragments, represents a through-
put bottleneck.

To further improve querying performance on a skewed
distribution, it could be beneficial to replicate the most heav-
ily loaded fragments. We plan to examine replication as part
of our future work.

6.1.3 Pruning efficacy

In addition to evaluating the performance impact of pruning,
we are interested in how effectively the pruning technique
limits query execution to the fragments that actually yield
part of the result. To determine this, we measure the fraction
of those sites accessed by a pruned query plan that yield part
of the query result. The results (based on a balanced frag-
mentation consisting of 16 fragments) are shown in Figure
25. We omitted Q1 from this experiment, since it can be an-
swered using a single fragment. We vary the cut-off value for
the initial bid of the auction, which affects the selectivity of

the queries, with a lower value yielding more query results.
We can see that pruning is more effective for the queries that
select a large number of results (corresponding to lower bid
values). This is because a query that selects a larger portion
of the collection is more likely to find a match within a given
fragment. The results reported here are derived from the 35
GB collection. With the smaller collections, efficacy tends
to be slightly lower, which can be attributed to the lower
numbers of results derived from these collections.
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6.2 Vertical fragmentation
The experimental evaluation of our vertical techniques fo-
cuses on response times. In a vertically fragmented system,
a single type of query always accesses the same fragments
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Fig. 26 Vertical fragmentation schema (vertical experiments)
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Fig. 27 Response time, vertical fragmentation

resulting in a closed system in which throughput can only
be improved by reducing the response time. This makes a
separate study of throughput unnecessary.

We again use the multiple-document XMark collection
described in the previous section, which we partition into
six vertical fragments based on the fragmentation schema
shown in simplified form in Figure 26. This results in a
skewed fragmentation because different node types in the
collection occur with different frequencies. We scale the col-
lection to 350 MB and 3.5 GB.

We evaluate queries Q6-Q10 shown in Table 5. Q6 only
involves a single fragment (shown in Figure 26(a)). Previ-
ous work has shown that this is the ideal case for vertical
fragmentation [18]. The remaining queries, however, reach
five of the six fragments in the collection (Figure 26(a), (c),
(d), (e) and (f)). Traversing such a large number of vertical
fragments poses a challenge for distributed query evaluation
because the large number of joins required to assemble the
results from individual fragments can degrade performance.
A carefully designed fragmentation schema will therefore
aim to avoid this scenario, although this is not always pos-
sible. One of the goals of this experiment is to show that
our distributed execution and pruning techniques allow us
to achieve good performance even in this adversarial case.
While Q7 to Q10 reach the same number of fragments, they
differ in the number of structural and value constraints they
contain, which increases as we go from Q7 to Q10.

Figure 27 shows, for each collection and query, the re-
sponse time obtained by centralized query execution, dis-

Fragments accessed
Query Dist Skip Label

Q6 1 1 1
Q7 5 1 1
Q8 5 2 1
Q9 5 3 2

Q10 5 4 3

Table 6 Number of fragments accessed, vertical fragmentation

tributed execution without any pruning, distributed execu-
tion with pruning based on skipping IDs and distributed ex-
ecution with pruning based on skipping IDs as well as la-
bel paths. We can observe that distributed execution signifi-
cantly outperforms centralized execution in all cases.

In order to closely analyze the impact of the various dis-
tributed techniques, it is useful to consider the number of
fragments that they access for each query, which is shown
in Table 6. For Q6, which can be answered by accessing a
single fragment, all distributed execution techniques yield
approximately the same response time. For Q7, naı̈ve dis-
tributed execution needs to access 5 fragments, whereas both
pruning techniques access only a single fragment. This ex-
plains why both pruning techniques yield comparable re-
sponse times, which are approximately half of that of naı̈ve
distributed execution. In the case of Q8, pruning with skip-
ping IDs performs better than naı̈ve distributed execution
and pruning with label paths in turn performs better than
pruning with skipping IDs. Again, these results are reflected
in the number of fragments accessed by each of these tech-
niques. For Q9 and Q10, finally, where even with pruning
a large number of fragments need to be accessed, response
times for all distributed techniques are approximately on par
with each other.

6.3 XPathMark

In order to measure the performance of our techniques in a
realistic context, we use a subset of the queries in the XPath-
Mark benchmark (those that can be expressed in our query
model, i.e., A1-A6 and B7, as shown in Table 5). We eval-
uate these queries on a multiple-document XMark collec-
tion consisting of documents with an average size of 60 MB
(we did not transform the collection for this experiment).
We scale this collection to 120 MB, 1.2 GB, and 12 GB and
fragment it in 2 different ways: First, we use our vertical
fragmentation algorithm to obtain a fragmentation schema
(shown in Figure 28). Then, we use a hybrid fragmentation
based on the vertical fragmentation schema shown in Figure
29, where we horizontally fragment the fragments marked
with ∗ based on the label path components of their root
proxy IDs.

In Figure 30, we report the response times obtained by
centralized query execution on an un-fragmented collection,
distributed execution (with all optimizations presented in
this paper) on the vertically fragmented collection, and dis-
tributed execution on the collection with hybrid fragment-
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ation. We can see that for all queries, vertically fragmented
execution performs significantly better than centralized ex-
ecution. Query execution on the hybrid fragmentation per-
forms even better and is in some cases more than 50 times
faster than centralized execution.

6.4 Other techniques

Since this is the first pruning technique proposed for frag-
mented XML data, there is little opportunity for direct com-
parison with other approaches. Since fragment pruning is
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Fig. 30 Response time, vertical and hybrid fragmentation

decoupled from other query processing steps, our techniques
can easily be combined with other distributed query process-
ing techniques. The work presented here is also orthogonal
to local XML query evaluation strategies, which have been
the subject of intense research and which can be used to fur-
ther improve the results shown here.

7 Related work

There exist significant bodies of work on both querying XML
data in a centralized environment and distributed query eval-
uation in relational systems. Due to space constraints, we
will restrict our discussion of related work to XML query
evaluation in distributed systems and to techniques that are
directly related to our work.

7.1 Specifying XML Fragmentation

Existing work has focused on two main approaches to frag-
menting a collection of XML data:ad-hoc fragmentation
andstructure-based fragmentation.
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7.1.1 Ad-hoc fragmentation

Ad-hoc fragmentation is a flexible fragmentation model that
does not rely on an explicit fragmentation specification. In-
stead, it allows us to fragment XML data by arbitrarily cut-
ting edges in XML documents.

One approach that follows the ad-hoc fragmentation mo-
del is Active XML, which represents cross-fragment edges
as calls to remote functions. When such a function call is ac-
tivated, the data corresponding to the remote fragment is re-
trieved and is then available for local query processing [19–
22].

Cong et al.’s work on partial query evaluation is also
based on ad-hoc fragmentation although their single-docu-
ment data model allows the authors to infer certain structural
relationships between fragments, which can then be used for
distributed query optimization [23,24]. Therefore, this work
can be considered a hybrid case that has certain structure-
based characteristics.

The representation of cross-fragment edges as pairs of
proxy nodes is a technique that has been used successfully
to fragment XML document trees onto pages in the native
XML database system NATIX, albeit at a much smaller level
of granularity than in the work presented here [12].

7.1.2 Structure-based fragmentation

Structure-based fragmentation is based on the concept of
fragmenting a collection based on some properties of the
schema or the data itself. As in the relational context, we can
distinguish betweenhorizontal fragmentation, which defines
fragments byselectingsubsets of the collection, andvertical
fragmentation, in which fragments are defined byprojecting
to different parts of the schema. In addition to these options,
it is possible to define ahybrid fragmentationby concate-
nating selection and projection steps.

One of the first attempts to transfer the relational con-
cepts of horizontal and vertical fragmentation to the realmof
XML was made by Ma and Schewe [25,26]. However, their
definition of vertical fragmentation is limited to elements
whose content is a sequence of other elements. Under these
constraints, it is straightforward to extend the relational defi-
nition of vertical fragmentation by treating the containing el-
ement type as a relation that contains attributes correspond-
ing to the contained element types. As in the relational case,
we can then simply project to subsets of the contained el-
ements. The authors also assume a single-document query
model, which means that a horizontal fragmentation step al-
ways has to be preceeded by an implicit vertical fragment-
ation step. In addition, their approach is based on modify-
ing the schema by renaming elements and rearranging their
nesting. Therefore, unlike later techniques, it is not transpar-
ent and it requires queries to be formulated explicitly for a
particular fragmentation specification.

Bremer et al. present another mechanism for specifying
a vertical fragmentation of XML data [27]. They call such
a specification a Repository Guide. In a Repository Guide,
a fragment is defined by a selection path expression iden-
tifying the root nodes of the subtrees contained, as well as
a set of exclusion paths representing nodes whose descen-
dants are excluded from the fragment. The set of fragments
is required to be both disjoint and complete. The authors
argue that this approach can be expanded to horizontal frag-
mentation by allowing branching and value constraints in
the defining path expressions. However, this would make it
more difficult to enforce completeness and disjointness.

Andrade et al. expand Bremer’s specification method by
adding explicit support for horizontal and hybrid fragment-
ation [18]. They define each horizontal fragment by giving
a selection predicate in the form of a Boolean path expres-
sion with value constraints. This predicate is used to deter-
mine whether a given document is part of the fragment. The
predicates are required to cover all documents (complete-
ness) and be mutually exclusive (disjointness). The authors
also make the observation that by nesting horizontal and
vertical fragmentation, both single-document and multiple-
document scenarios can be accommodated.

In addition to predicate-based horizontal fragmentation,
Kido et al. introduce a novel definition of vertical fragment-
ation that is based on partitioning the schema graph, rather
than on inclusion and exclusion paths [28]. This definition
closely resembles the the way we define vertical fragment-
ation.

While not directly related to fragmentation, Marian et
al. propose a technique that improves query performance by
projecting away irrelevant portions of an XML collection
[29].

In summary, we can observe that ad-hoc fragmentation
offers great flexibility in how a collection can be distributed.
This flexibility, however, comes at the cost of decreased op-
portunity for distributed query optimization. Structure-based
fragmentation, on the other hand, is less flexible but yieldsa
well-defined specification of the fragmentation layout, which
is a valuable asset during distributed query optimization.

7.2 Representing XML Schema Information

A concise graph representation of the schema of an XML
collection has been used to convert XML data to relational
tuples [3]. As in our work, the authors capture only the rele-
vant aspects of the original DTD or XML Schema.

7.3 Query Evaluation

A number of techniques have been developed to evaluate
queries on distributed XML collections. In this section, we
classify these existing techniques based on their approachto
optimizing distributed query evaluation.
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7.3.1 Query models

Query models similar to XQ and their connection to stan-
dard XPath and XQuery have been considered in related
work [4,5]. The representation of such queries as tree pat-
terns is also an established technique [6,7].

7.3.2 Fragmentation in Centralized Query Processing

The problem of centralized query processing on fragmented
collections of XML data has been studied within the con-
text of streamed XML data on devices with limited resources
[30] and as a means to implement publish/subscribe systems
[31]. Fragmentation-aware query evaluation techniques have
also been used within the context of a centralized XML data-
base system [32].

7.3.3 Distributed Query Language Extensions

A simple way to query distributed collections is to make the
distribution explicit in the query language. Zhang and Boncz
have developed the query language XRPC [33,34], which is
a superset of XQuery that has been enriched with facilities
for shipping queries to remote sites. When XRPC queries
are evaluated, these requests are forwarded and the results
are used during local query processing. If a remote site does
not support XRPC but supports plain XQuery, an adapter
can be used to translate. This allows queries to make use of
remote data sources without requiring any changes to those
sources, which is desirable since a user might not have ad-
ministrative control over them. While Zhang and Boncz do
not describe any optimizations that go beyond what is ex-
plicitly specified in the query, XRPC may be well suited to
serve as a target language for a distributed optimizer.

XQueryD [35] and DXQ [36] provide XQuery exten-
sions that are similar to XRPC. All these approaches cater
primarily to a data integration scenario. They might, how-
ever, be useful as a backend language for a distributed data-
base system.

7.3.4 Pruning Irrelevant Fragments

Pruning is an important step in distributed query optimiza-
tion. The idea behind pruning is to identify which fragments
are irrelevant for a given query and then refraining from ac-
cessing these fragments altogether. This can help improve
the query throughput of a distributed system and can also
reduce latency by eliminating the need to wait for process-
ing of irrelevant fragments to finish.

Based on their partial evaluation strategy, Cong et al.
present a simple technique for pruning fragments [24]. They
identify fragments that can be pruned by examining the struc-
tural relationship between fragments. Unlike our pruning
techniques, however, they cannot eliminate intermediate frag-
ments. Their pruning technique is therefore largely equiva-
lent to the initial vertical localization we perform beforeap-
plying our more advanced pruning techniques.

Within the context of Active XML, Abiteboul et al. pres-
ent a technique that avoids calling certain remote functions
and thereby limits the number of fragments that have to be
retrieved in order to answer a given query [19]. Due to the
ad-hoc fragmentation of Active XML documents, it is not
possible to identify in advance the set of irrelevant frag-
ments. Instead, a lazy approach to retrieving fragments is
employed, and fragments are only shipped to the central
query processing site when the corresponding function call
is reached during query evaluation. This is consistent with
Active XML’s focus on querying over integrated XML data
services.

On the structure-based side, Andrade et al. allude to the
possibility of pruning irrelevant horizontal fragments but do
not provide details on how this pruning could be performed
[18,37] .

7.3.5 Distributed Query Execution

An important consideration when evaluating queries on a
distributed system is the trade-off between shipping data and
shipping queries. On one hand, it is possible to ship all rel-
evant data to a central location where all query processing
is performed. On the other hand, it is possible to ship the
query or parts of the query to the sites storing the individ-
ual fragments and perform as much as possible of the query
processing work distributed throughout the system, shipping
only the (partial) results derived from each fragment.

While most of the literature on Active XML employs a
data shipping approach [19,20] there has been some work on
distributing query processing [22]. Distributing query pro-
cessing is complicated by the ad-hoc fragmentation of Ac-
tive XML, which makes it difficult to determine which part
of the query has to be executed on which fragments.

Based on a hybrid of ad-hoc and structure-based frag-
mentation, Cong et al. present a distributed query evaluation
strategy that computes partial matches at each fragment and
then combines them at a central location [23,24]. The main
goal of this strategy is to limit the number of times that each
fragment has to be accessed and to provide a bound on the
amount of network traffic incurred. The authors start with
a technique that is designed to answer Boolean queries and
then expand the scope of their work to include data-selecting
queries with a single extraction point while maintaining im-
pressive performance guarantees.

Within the context of vertical fragmentation, there is a
large optimization space in how sub-queries are executed
and how there results are combined to the overall query re-
sult. We discuss this problem in [2] and suggest a number of
plan alternatives that improve query performance. Another
aspect of this problem is related to how distributed joins are
ordered and executed. This has been studied in detail in the
relational context and many of those results are applicable
here [1].
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7.3.6 Query Decomposition

Another important aspect of distributed query evaluation,
particularly in the context of vertical fragmentation, is the
problem of decomposing a query into sub-queries that can
be evaluated on the individual fragments.

Suciu describes a limited class of queries that can be de-
composed and for which it can be shown that evaluating the
decomposed queries is efficient [38].

Based on the XRPC extension of XQuery, Zhang et al.
describe a technique that transforms a centralized, data ship-
ping-oriented query into a distributed, query shipping equiv-
alent [39]. This is achieved by decomposing the query and
pushing part of the query execution to remote sites. This
work supports all of XQuery, although certain query primi-
tives make it impossible to perform effective query decom-
position while maintaining result correctness. In these cases,
the technique falls back to a data shipping approach.

Le et al. present a schema-based technique for decom-
posing a global query into local queries within the context
of a data integration system [40]. They identify which of
the local schemas contain information that can be mapped
to the global schema types used in the query. While their
technique is not directly applicable to the distributed data-
base scenario, one might employ a similar method to iden-
tify which fragments in a vertically fragmented collection
are relevant for a given query.

7.3.7 Representing Partial Results

A common problem encountered when using a query ship-
ping approach to distributed query evaluation is how to rep-
resent the partial results that need to be shipped from one
site to another. If multiple of these results contain the same
node, it may be advantageous not to send multiple copies of
this redundant node.

Tajima and Fukui present a technique that can be used to
solve this problem by sending a minimal view that contains
all results rather than sending each result separately [41].
While their work is primarily intended for querying a single
XML database instance over a network, it could also be used
to ship partial results within a distributed system.

7.3.8 Index Structures

Another option for enabling distributed query processing is
the use of index structures, which can provide a compact
summary of the data stored in other fragments and thereby
enable some amount of local query processing over remote
data.

Bremer et al. employ this approach to evaluate queries
on a collection that is fragmented based on structure [27].
One of their indexes stores label path information for all the
nodes in the collection. Our technique, on the other hand,
only stores label path information for proxy nodes and only
if there is ambiguity. By replicating the indexes across the

system the bulk of the query processing work can be per-
formed efficiently and at a single site. Remote fragments
only need to be accessed in order to evaluate value con-
straints in the query. While replicated indexes allow the au-
thors to achieve good query performance, this comes at the
potential cost of decreased scalability and more complicated
update management (since replicated indexes have to be up-
dated when changes are made to the collection). The cen-
tralized nature of index-based query processing might also
lead to reduced intra-query parallelism and can potentially
cause bottlenecks in the system when queries are not evenly
distributed across all sites.

Koloniari and Pitoura present a Bloom filter-based in-
dex structure that can be used to derive top-k results for an
approximate structural query on a distributed XML collec-
tion [42]. This index is used to prune fragments that will not
yield top-k results. It can also serve to determine the order
in which fragments are accessed, with the most promising
fragments being accessed first.

Dewey IDs, first proposed in [14] are another technique
that has been used to index structural information within the
context of XML documents [43].

8 Conclusion

We have shown how tree pattern queries can be evaluated
in a distributed system by employing a predicate-based def-
inition of horizontal fragmentation and a schema-based def-
inition of vertical fragmentation. We have proposed a prun-
ing algorithm for horizontal fragments that significantly im-
proves the query throughput in a distributed XML database
system, without incurring a significant response time penalty.
In the case of vertical fragmentation, we have shown that
our pruning techniques can significantly improve response
times even for queries that span many fragments. This al-
lows greater flexibility in choosing a vertical fragmentation
schema. The related problem of distributed query optimiza-
tion is discussed in our companion paper [2].

One direction of future work is to examine the optimiza-
tion opportunities of our fragmentation model that go be-
yond localization and pruning. Expanding our query model
such that it can express a larger subset of XQuery is another
important goal. It would also be interesting to investigate
what additional optimizations are possible for a hybrid of
vertical and horizontal fragmentation and how we can deter-
mine hybrid fragmentation schemas automatically.
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2. P. Kling, M. T.Özsu, and K. Daudjee, “Generating efficient exe-
cution plans for vertically partitioned XML databases,” inProc. of
VLDB, 2011, (to appear).



25

3. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt,
and J. F. Naughton, “Relational databases for querying XML doc-
uments: Limitations and opportunities,” inProc. of ICDE, 1999,
pp. 302–314.

4. G. Miklau and D. Suciu, “Containment and equivalence for a frag-
ment of XPath,”J. ACM, vol. 51, no. 1, pp. 2–45, 2004.

5. Z. G. Ives, A. Y. Halevy, and D. S. Weld, “An XML query engine
for network-bound data,”VLDB Journal, vol. 11, no. 4, pp. 380–
402, 2002.

6. N. Bruno, N. Koudas, and D. Srivastava, “Holistic twig joins: op-
timal XML pattern matching,” inProc. of ACM SIGMOD, 2002,
pp. 310–321.

7. N. Zhang, V. Kacholia, and M. T.̈Ozsu, “A succinct physical stor-
age scheme for efficient evaluation of path queries in XML,” in
Proc. of ICDE, 2004, pp. 54–65.

8. S. Buswell, S. Devitt, A. Diaz, P. Ion, R. Miner, N. Pop-
pelier, B. Smith, N. Soiffer, R. Sutor, and S. Watt, “Mathe-
matical Markup Language (MathML) 1.01 Specification,” 1999,
http://www.w3.org/TR/REC-MathML/.

9. P. Murray-Rust, “Chemical markup language,”World Wide Web
Journal, vol. 2, no. 4, pp. 135–147, 1997.
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