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Abstract Distributing data collections by fragmenting them is an effective way of
improving the scalability of a database system. While the distribution of relational
data is well understood, the unique characteristics of XML data and its query model
present challenges that require different distribution techniques. In this paper, we
show how XML data can be fragmented horizontally and vertically. Based on this, we
propose solutions to two of the problems encountered in distributed query processing
and optimization on XML data, namely localization and pruning. Localization takes
a fragmentation-unaware query plan and converts it to a distributed query plan that
can be executed at the sites that hold XML data fragments in a distributed system.
We then show how the resulting distributed query plan can be pruned so that only
those sites are accessed that can contribute to the query result. We demonstrate that
our techniques can be integrated into a real-life XML database system and that they
significantly improve the performance of distributed queryexecution.

Keywords Distributed· XML · Localization· Pruning

1 Introduction

Over the past decade, XML has become a commonly used format for storing and ex-
changing data in a wide variety of systems. Due to this widespread use, the problem
of effectively and efficiently managing XML collections hasattracted significant at-
tention in both the research community and in commercial products. One can claim
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that techniques for the management and querying of XML data residing on a single
system are now well understood. However, because these techniques are inherently
based on centralized execution on a single machine, their scalability is limited when
presented with large collections (or single, large documents) and heavy query work-
loads.

In relational database systems, these scalability challenges have been success-
fully addressed by partitioning data collections and processing queries in parallel in
a distributed system [1]. Our work is focused on similarly exploiting distribution in
the context of XML database systems. While there are some similarities between the
way relational database systems can be distributed and the opportunities for distribut-
ing XML database systems, the significant differences in both data and query models
make it impossible to directly apply relational techniquesto XML. Therefore, new
solutions need to be developed to distribute XML database systems.

While there has been research interest in distributed XML query processing for a
while, much of the existing work has focused on the problem ofintegrating multiple
repositories into a single XML view [2–4]. It is important topoint out that, while data
integration also deals with optimizing queries over fragmented collections of XML
data, its goals and the constraints it faces are decidedly different from those seen in
a scenario where we are distributing to improve scalability. For instance, whereas
data integration requires a fragmentation model that can express the complex ways in
which we might need to integrate individual and possibly redundant data sources, in
this work, we optimize our fragmentation model entirely forquery performance.

A few publications have focused on distribution as a means toimprove scalability.
These either rely heavily on replicated index structures that complicate the handling
of updates [5] or they focus primarily on minimizing networkcommunication cost
[6–8]. In this paper, in contrast, we look at end-to-end solutions and take into account
all components of the cost of query evaluation, including communication and pro-
cessing. Our experiments show that our technique, which is specifically designed for
this purpose, outperforms techniques that focus on communication cost alone.

In this paper, we focus on the following three aspects of the problem of improving
the scalability of XML query evaluation through distribution:

– First, we present adistribution modelfor XML. We have chosen to focus on a
fragmentation approach that partitions the collection based on characteristics of
its content and structure. A key advantage of this model is that it is simple and yet
sufficiently powerful to significantly improve the scalability of distributed query
evaluation. This simplicity makes it easier to identify a suitable fragmentation for
a given query workload.
Our distribution model supports horizontal fragmentation(based on selection op-
erators and predicates) and vertical fragmentation (basedon a partitioning of the
set of element types in a schema). Both types of fragmentation are designed to be
orthogonal, which means they can be used together to achievehybrid fragment-
ation. While the semantics of this model are inspired by relational fragmentation
techniques, it is important to point out that the characteristics of XML, such as
its nested data model and structure-based queries, lead to aset of challenges and
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optimization opportunities that differ significantly fromwhat is encountered in
the relational context.

– Second, we focus on the problem oflocalization and pruningin distributed XML
database systems. We propose a localization technique thattransforms a frag-
mentation-unaware query into sub-queries that can be evaluated in parallel at the
individual sites in the system. We then present a novel technique that allows us to
identify fragments that are irrelevant for answering a given query and prune them
from the query plan.
While localization and pruning represent only the first step of distributed query
evaluation, we show that even with these techniques alone wecan achieve signif-
icant improvements in performance. Further optimizationsthat can be performed
after localization and pruning have been published separately [9] and further work
along these lines is the subject of ongoing research.
We point out that all of our query evaluation techniques workwithout relying
on a globally replicated index structure, because using such a structure could
limit the scalability of a distributed system and negatively affect the performance
of updates. In addition, our techniques work independentlyof the local query
evaluation strategies used for evaluating sub-queries at the individual sites in the
system, allowing for maximum flexibility.

– Based on our localization techniques, we then propose a set of workload-aware
fragmentation algorithms. These algorithms are designed to determine a frag-
mentation layout that will optimize performance for a givenset of queries.

To motivate our work, consider the following example. Figure 1 shows a hori-
zontally fragmented data collection consisting of four documents representing infor-
mation about authors and their publications. The horizontal fragmentation is defined
based on the first letter of the authors’ last names, placing “John Adams” in fragment
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Fig. 2 A vertically fragmented collection

fH
1

, “Jane Dean” in fragmentfH
2

and “John Smith” as well as “William Shakespeare”
in fragmentfH

3
.

Figure 2 shows a similar collection that has been fragmentedvertically. Ignoring
the nodes labeled asP i→j

k andRP i→j
k for now, we can see thatauthor andagent

nodes are stored in fragmentfV
1

, the nodes related to the author’s name are stored in
fragmentfV

2
, pubs andbook nodes are stored in fragmentfV

3
andchapter and

reference nodes are stored in fragmentfV
4

.
Consider evaluating the following XPath query (q):

/author[name[first = ’William’ and
last = ’Shakespeare’]]//book//reference

In the horizontal case, it is easy to see that the fragmentsfH
1

and fH
2

cannot
possibly contribute to the result of this query since they correspond to authors whose
last names start with the letters “A” and “D”, respectively.Pruning these fragments
allows us to answer the query without contacting the sites atwhich they are stored.

If we evaluateq on the vertically fragmented collection, in the general case, we
have to access all four fragments. FragmentfV

2
is needed to evaluate the value con-

straint predicates, fragmentfV
4

is needed to obtain result nodes and fragmentsfV
1

and
fV
3

are needed to evaluate structural constraints. We will later present a technique that
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allows us to avoid accessing some of the fragments only needed for structural con-
straints.

We propose a general technique that detects situations in which fragments are
not needed to answer a query and then prunes these irrelevantfragments from a dis-
tributed query plan. This greatly improves the performanceof distributed query eval-
uation and allows us to fully benefit from distribution as a means to overcome the
scalability challenges faced by large XML collections. Thespecific contributions of
the work presented here are the following:

1. We formally define a fragmentation model for XML that allows us to fragment
and distribute a collection in order to improve query performance. Along with
this model, we propose a succinct method for specifying the horizontal or vertical
fragmentation of a collection of XML documents, which can then be used as the
basis for distributed query optimization.

2. Using this specification, we then show how a query can be transformed into a
distributed query plan.

3. Based on our fragmentation model, we propose a complete suite of techniques
for identifying and pruning irrelevant fragments from a distributed query plan.

4. We propose algorithms for fragmenting a collection of XMLdocuments to im-
prove the performance of a given workload (when evaluated using our pruning
techniques).

5. We have implemented these techniques within a real-life distributed XML data-
base system, which has allowed us to verify that our techniques significantly im-
prove performance and scalability, both compared to centralized query evaluation
and to existing distributed techniques.

The remainder of this paper is structured as follows: Section 2 describes the tech-
nical background of our work. Section 3 introduces our modelof horizontal and ver-
tical fragmentation. In Section 4, we propose techniques for evaluating queries over
distributed collections and describe how distributed query evaluation can be opti-
mized through localization and pruning. Based on these query evaluation techniques,
Section 5 describes our algorithms for fragmenting an XML collection such that per-
formance for a given workload is optimized. In Section 6, we present a thorough
evaluation of the performance impact of the techniques presented in this paper. Sec-
tion 7 discusses related work. In Section 8, we summarize ourwork and present our
conclusions.

2 Background

2.1 Data model

An XML collection can be described as a set of labeled, ordered trees. While XML is
a self-describing format that can be used without a schema, in practice, the structure
of document trees is usually constrained by a schema that specifies how elements may
be nested and what the domain of their textual content is. A schema is usually defined
in a language such as DTD or XML Schema. In this paper, we use a simple directed
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Fig. 3 A schema

graph representation that covers only the aspects of the schema that are important for
our purposes. For example, our representation ignores the distinction between XML
elements and attributes by treating both of them uniformly as nodes. Similarly, we
refer to element types and attribute names asnode types. Assuming that the original
schema definition does not contain unspecified portions (such as those defined using
the DTD keywordANY), it is straightforward to extract the information captured by
our graph representation from a DTD1 or an XML Schema. Extracting schema infor-
mation yields a schema graph that may be less restrictive than the original schema,
but since the schema graph is never used for the validation ofdocuments this does
not pose a problem [10].

Definition 1 An XML schema graphis defined as a 5-tuple〈Σ,Ψ, s,m, ρ〉 where
Σ is an alphabet of node types,ρ is the root node type,Ψ ⊆ Σ × Σ is a set of
directed edges between node types,s : Ψ → {ONCE, OPT,MULT} andm : Σ →
{string}.

The semantics of this definition are as follows: An edgeψ = (σ1, σ2) ∈ Ψ
denotes that a node of typeσ1 may contain a node of typeσ2. s(ψ) denotes the
cardinality of the containment represented by this edge: Ifs(ψ) = ONCE, then a
node of typeσ1 must contain exactly one node of typeσ2. If s(ψ) = OPT, then a
node of typeσ1 may or may not contain a node of typeσ2. If s(ψ) = MULT, then
a node of typeσ1 may contain multiple nodes of typeσ2. m(σ) denotes the domain
of the text content of a node of typeσ, represented as the set of all strings that may
occur inside such a node. Note that the definition ofm(σ) may include both the direct
content of a node of typeσ as well as the content of node types nested inσ. Figure 3
shows an example of a schema, represented both as a simplifiedDTD and as a schema
graph.

When translating a DTD or an XML Schema into the graph representation, at-
tributes are always assigned a cardinality of either ONCE orOPT, corresponding to
mandatory and optional attributes, respectively. Elements, on the other hand, may oc-
cur with any of the three cardinalities, since both DTD and XML Schema allow for
the specification of elements with exactly one, zero or one, or multiple occurrences.
In addition to these three cases, XML Schema allows a more fine-grained specifi-
cation of the number of occurrences of an element. We handle this by assigning a
cardinality of MULT whenever the XML Schema definition allows for an element to
occur more than once.

1 Note that a DTD does not explicitly specify the root element type of a document. However, the root
element type can be inferred from the DOCTYPE declarations ofdocuments conforming to a DTD.
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2.2 Query model and tree patterns

The query model used in this paper is a subset of XPath, which we call XQ. XQ con-
sists of absolute location paths consisting of node tests with and without wildcards,
child (/) and descendant (//) axes and predicates. Predicates may consist of (i) a
relative location path with the same restrictions (with XPath’s existential semantics);
(ii) a textual constraint of the form “. θs s”, where s is a string constant andθs is
either= or!=; or (iii) a numeric constraint of the form “. θn n”, wheren is a numeric
constant andθn is one of<, <=, =, >, >=, or!=. As in XPath, XQ steps return nodes
in document order (since both axes we support are forward axes).

XQ queries are not only commonly used on their own, but they also represent
an important building block of more complex XQuery queries [11,12]. Therefore,
solving the problem of evaluating XQ queries in a distributed fashion is an important
contribution to distributed XQuery evaluation.

It is convenient to represent XQ queries as tree patterns [13,14], which we for-
malize as follows:

Definition 2 Let 〈Σ,Ψ, s,m, ρ〉 be a schema. Atree patternis a 7-tuple〈N,E, r, ν,
ǫ, T, c〉 whereN is a set of pattern nodes,E ⊆ N ×N is a set of pattern edges and
〈N,E, r〉 is a tree rooted atr ∈ N . For eachn ∈ N , ν(n) ∈ Σ ∪ {∗} denotes a node
test. For eache ∈ E, ǫ(e) ∈ {child, descendant} denotes the axis type.T ⊆ N
denotes the set of extraction points. For eachn ∈ N , c(n) ⊆ m(ν(n)) denotes a
value constraint on the text content of nodes of typeν(n).

author

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

book

//

reference

//

Fig. 4 Query tree pattern (QTP) representation of queryq

In the following, we will refer to the tree pattern representation of a query as a
query tree pattern(QTP). It is interesting to note that, in addition to XQ queries,
QTPs can be used to express queries with multiple extractionpoints. While this may
be useful for supporting a larger class of queries, in this paper, our focus is on que-
ries with a single extraction point. Sub-queries resultingfrom vertical fragmentation,
however, frequently contain multiple extraction points.

The QTP depicted in Figure 4 is equivalent to queryq from Section 1. The double-
outlined node labeled withreference is an extraction point and the edge labels “/”
and “//” denote child and descendant steps, respectively.

A match for a QTP assigns a node from the document to each pattern node such
that all node tests, value constraints, and structural constraints (expressed as axis
relationships) are satisfied. While all pattern nodes in the QTP have to be matched to
nodes in a document, only the nodes associated with pattern nodes that are designated
as extraction points are returned as part of the result.
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3 Fragmentation

Distribution of an XML collection over multiple sites requires the fragmentation of
the collection. In this work, the motivation for distributing data is query performance
and scalability (rather than integrating data from multiple sources) and our fragment-
ation model reflects this motivation.

We have developed a fragmentation model that partitions a collection based on
characteristics of the content and the structure of the XML data. This yields a succinct
specification for a given fragmentation layout, which – as wewill show – is a valuable
asset when optimizing query evaluation.

It is important to realize that our fragmentation model doesnot aim to capture
arbitrary fragmentation of XML collections, as would be needed in a data integration
scenario but instead focuses on simplicity and utility for query optimization. Also,
while our focus is on partitioning a collection, other techniques, which replicate all
or part of the collection, can be used in conjunction with ourtechniques for further
performance improvement.

In particular, our work is based on two techniques for fragmenting XML collec-
tions. Horizontal fragmentation is based on predicates andresults in a collection that
is partitioned into fragments that all follow the same schema. Vertical fragmentation,
on the other hand, is based on partitioning the schema.

3.1 Horizontal fragmentation

The first type of fragmentation we support is horizontal fragmentation, which is par-
ticularly useful for improving query response times. Intuitively, this is because in a
horizontally fragmented collection, query evaluation caneasily be parallelized. When
combined with the pruning techniques presented later in this paper, horizontal frag-
mentation can also lead to a significant improvement in querythroughput, corre-
sponding to a reduction in the amount of data that needs to be processed to answer
each query.

Our model of horizontal fragmentation assumes a collectionthat consists of mul-
tiple document trees. These document trees can either be entire XML documents or
they can be the result of a previous fragmentation step. In either case, we require
that all document trees correspond to the same schema. Multiple-document collec-
tions where all documents follow the same schema are a commonuse case for XML.
Popular examples include MathML [15] and CML [16].

A horizontal fragmentation is defined by a set of fragmentation predicates. Each
fragment consists of the document trees that match the corresponding predicate. To
ensure that the fragmentation is lossless and that the fragments are disjoint, we require
that whenever a document tree conforms to the schema of the collection, it matches
exactly one of the predicates.

Definition 3 Let D = {d1, d2, . . . , dn} be a collection of document trees such that
eachdi ∈ D corresponds to the same schema〈Σ,Ψ, s,m, ρ〉. Then we can define
a set ofhorizontal fragmentation predicatesP = {p0, p1, . . . , pl−1} such that∀d ∈



9

D : ∃ uniquepi ∈ P wherepi(d). If this holds, thenF = {{d ∈ D | pi(d)} | pi ∈
P} is a set of horizontal fragments corresponding to collectionD and predicatesP .

We represent the fragmentation predicates as Boolean tree patterns, i.e., tree pat-
terns with no extraction points. In the following, we will refer to them asfragment-
ation tree patterns(FTPs). Based on this representation, the losslessness of afrag-
mentation can be enforced by carefully crafting value constraints so that they cover
the entire domain of the values to which they refer.

If we assume that the document trees in the fragmented collection shown in Figure
1 conform to the schema in Figure 3 and thatm(last) is the set of strings that
start with upper-case letters of the English alphabet, thenthe fragmentation of this
collection can be described by the set of FTPs shown in Figure5.

author

name

/

last

/

startswith(’A’)

. . . author

name

/

last

/

startswith(’S’)

. . . author

name

/

last

/

startswith(’Z’)

Fig. 5 Set of fragmentation tree patterns (FTPs)

3.2 Vertical fragmentation

Vertical fragmentation allows us to improve both query response time and through-
put. The main difference between both types of fragmentation is that vertical frag-
mentation defines fragments based on the structure of the data, whereas horizontal
fragmentation defines them based on the content. As we will see later, this heavily
influences how efficiently we can answer certain types of queries.

Our model of vertical fragmentation can handle collectionsthat consist of a single
or multiple document trees. Again, it is possible that thesetrees are the result of
a previous fragmentation step, which allows us to combine horizontal and vertical
fragmentation.

A vertical fragmentation schemais defined by fragmenting the schema graph of
the collection into connected subgraphs:

Definition 4 Let 〈Σ,Ψ, s,m, ρ〉 be a schema graph. Avertical fragmentation schema
is defined by a partitioningFΣ of the set of node typesΣ.

The dashed outlines in Figure 6 show how the node types in thisschema have
been fragmented into four disjoint subgraphs. FragmentfV

1
consists of the node

typesauthor andagent; fragmentfV
2

consists of the node typesname, first
andlast along with their text content; fragmentfV

3
consists ofpubs andbook;

fragmentfV
4

includes the node typeschapter andreference.
Since we require the schema graph to be connected, after fragmentation, there

will be graph edges that cross fragment boundaries. Wheneverthe schema contains
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Fig. 6 A vertical fragmentation schema

an edge from a fragmentfVi to another fragmentfVj , we refer tofVj as achild
fragmentof fVi and tofVi as aparent fragmentof fVj . There is exactly one fragment
fVρ ∈ FΣ that contains the root node typeρ. We refer tofVρ as theroot fragment.
While the schema graph may contain cycles, for performance reasons, we require
that the fragmentation schema be a DAG (i.e., each cycle has to be contained within
a single fragment).

When a collection is partitioned according to a vertical fragmentation schema,
there will be document edges that cross fragment boundaries. We represent a docu-
ment edge from fragmentfVi to fragmentfVj by inserting a pair of artificial nodes

P i→j
k andRP i→j

k into fragmentsfVi andfVj , respectively.P i→j
k denotes aproxy

nodein fragmentfVi (the originating fragment) with IDk, whereasRP i→j
k denotes

a root proxy nodein fragmentfVj (the target fragment) with IDk. SinceP i→j
k and

RP i→j
k share the same ID (k) and reference the same fragments (i → j), they cor-

respond to each other and together represent a single cross-fragment edge in the col-
lection.

The collection shown in Figure 2 has been fragmented according to the verti-
cal fragmentation schema shown in Figure 6. The proxy pair consisting ofP 1→2

11
in

fragmentfV
1

andRP 1→2

11
in fragmentfV

2
, for example, represents an edge from an

author node infV
1

to aname node infV
2

.
Vertical fragments generally consist of multiple unconnected pieces of XML data,

which we refer to asdocument subtrees. In Figure 2, for example, fragmentfV
1

con-
tains three subtrees, each of which consists of theauthor andagent nodes of one
of the documents in the collection.

4 Querying distributed collections

In this section, we propose techniques for evaluating queries over horizontally and
vertically distributed collections. For each type of fragmentation, we start with a naı̈ve
query evaluation strategy and then present optimizations,with special focus on the
problem of pruning the set of fragments that need to be accessed to answer a given
query.
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In relational systems, distributed query optimization is usually done based on an
algebraic representation of a distributed query [1]. For many of the optimizations
presented here, however, the QTP represents a simpler abstraction that contains all
the information necessary to make pruning decisions. We therefore describe many of
our techniques in terms of QTP manipulations.

4.1 Horizontal fragmentation

Based on the definition of horizontal fragmentation, we can define a näıve strategy
for evaluating QTPs on a horizontally fragmented collection of data. In an approach
that resembles horizontal localization in the relational context [1], we can evaluate a
query by computing the union of all fragments and then executing a fragmentation-
unaware plan over the result. Since the definition of horizontal fragmentation (Def.
3) requires that the set of document treesD is the union of all fragmentsf ∈ F and
because our query model does not allow for structural constraints involving nodes in
different documents, this leads to the correct result:

q(D) = q(
⋃

f∈F

f)

Our query model implies that each result is derived from exactly one document
tree in the collection. This allows us to push the (unchanged) fragmentation-unaware
query plans down to the individual fragments:

Definition 5 If q is a plan that evaluates the query on an un-fragmented collection of
document treesD andF is a horizontal fragmentation ofD, then

qf (F ) := sort(
⊙

f∈F

q(f))

is anäıve horizontal query planthat evaluates the same query onF , where⊙ denotes
concatenation of results, andqf (F ) = q(D).

As shown in the definition, it may be necessary to sort the results received from
the individual fragments in order to return them in a stable global order as required
by the XQuery data model [17]. For unordered queries, or if weare willing to relax
the ordering constraint, we can reduce the amount of sorting-induced buffering by
only maintaining a stable order between nodes in the same document. This may be a
reasonable trade-off in many use cases.

4.1.1 Pruning fragments

As discussed before, to answer the query shown in Figure 4 on the fragmented col-
lection from Figure 1, only the documents contained in the fragmentfH

3
need to

be accessed. The naı̈ve plan, in contrast, accesses every fragment in the collection,
which can significantly reduce query throughput.



12

In this section, we propose a procedure that detects irrelevant fragments and
prunes them from a distributed query plan. This procedure relies on the schema of
the collection and the FTPs that define the fragmentation. Both of these are static
over time, do not depend on the size of the collection and can be encoded in a com-
pact manner. This makes it feasible to replicate them at all sites as metadata.

Our pruning algorithm works based on the QTP representationof the query before
converting the result to an algebraic plan. This allows us toreduce the problem of
pruning horizontal fragments to that of determining the subset of FTPs that can be
shown to be unsatisfiable at the same time as the QTP.

To eliminate a fragment from the distributed query plan, we need to show that the
FTP corresponding to this fragment cannot be satisfied by a document that matches
the QTP. While this problem could be solved by a general-purpose query intersection
algorithm, we present a schema-aware algorithm that supports QTPs with multiple
extraction points as are frequently encountered in hybrid fragmentation (for a discus-
sion of this, see Section 7.3.4).

As a first step, the algorithm transforms QTP and FTP into a simplified form.
While this form is less expressive than general tree patterns, it is sufficient to detect
contradictions. We then traverse both simplified patterns simultaneously, pruning all
but the shared branches, and check for contradictory constraints. If we find such a
contradiction, there cannot be any results for the query in the fragment corresponding
to the FTP and the fragment can thus be eliminated from the distributed plan.

4.1.2 Transformation to simplified form

The goal of transforming tree patterns into a simplified formis to make sure that each
pattern node refers to a unique node within the context of a single document tree.
In general, pattern nodes may match more than one node in a given document tree.
A constraint associated with such a pattern node is satisfiedif one of the matching
nodes conforms to the constraint. This makes it impossible to exploit contradictory
constraints associated with such pattern nodes. Even if theconstraints themselves are
contradictory, they may be satisfied by different nodes in the same document.

With QTPs, there are three sources of pattern nodes that may match multiple
nodes in the same document tree:

Node types reached via MULT edges. Node types that are reached via an edge
in the schema that has a cardinality of MULT may occur multiple times in the same
context. Based on the schema in Figure 3, for example, the step pubs/book may
yield multiplebook nodes corresponding to a singlepubs node.

Descendant stepscan also yield multiple results in the same context. In the QTP
shown in Figure 7(a), for example, the descendant edge betweenauthor andname
can be satisfied either by aname node that is the direct child of a givenauthor
node or by aname node that is reachable through an intermediateagent node. Be-
cause of this, even though the constraints on the author’s last name imposed by the
FTP shown in Figure 7(b) and the QTP shown in Figure 7(a) seem to cause these
two patterns to be contradictory, they actually are not. Document trees in the frag-
ment corresponding to the FTP predicate will only contain information about authors
whose last names start with the letter “A”. The QTP, on the other hand, matches
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.=’Shakespeare’

book
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reference
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(a) QTP
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Fig. 7 QTP and FTP that are not contradictory

books that are either authored by “William Shakespeare” or by someone whose agent
is “William Shakespeare” and whose last name might well start with the letter “A”.

Wildcardsare another source of multiple matches in the same context whenever
the schema specifies that a node type may contain multiple other node types.

We define simplified tree patterns as tree patterns that do notcontain any of these
primitives:

Definition 6 A tree pattern〈N,E, r, ν, ǫ, T, c〉 is a simplified tree pattern iff∀n ∈ N ,
ν(n) ∈ Σ and∀(x, y) ∈ E, ǫ((x, y)) = child∧(ν(x), ν(y)) ∈ Ψ∧s((ν(x), ν(y)))
6= MULT.

In order to convert a tree pattern into a simplified tree pattern, all disallowed
primitives have to either be removed or converted into an equivalent simplified form.
It is important to note that simplified tree patterns are strictly less expressive than
arbitrary tree patterns. Therefore, when a tree pattern is transformed to a simplified
tree pattern, the result is not generally equivalent to the original tree pattern. Instead,
the simplified tree pattern matches a superset of the document trees that match the
original tree pattern. Since simplified tree patterns are only used to identify fragments
that can be pruned, but not for the subsequent query evaluation on those fragments,
this loss of expressiveness does not pose a problem. Nevertheless, it is important that
the transformation retains as much of the information present in the original pattern
as possible so that this information can be exploited for pruning.

Algorithm 1 performs the transformation of a tree pattern into a canonical tree
pattern based on the following principles:

– Using schema information, descendant steps are unrolled into equivalent paths
comprised entirely of child steps (procedure shown as Algorithm 2). If there is
more than one path, artificial nodes representing a choice (denoted as⊕) are
inserted and the branch below the descendant step becomes reachable via more
than one path, thus turning the tree pattern into a directed,acyclic graph (DAG).

– Wildcard node tests are converted to non-wildcard node tests wherever this is un-
ambiguously possible. Otherwise, the corresponding pattern nodes are removed
along with their descendants.

– Pattern nodes matching nodes from the collection for which the schema allows
multiple occurrences in the same position are removed alongwith the branches
below them.
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Algorithm 1: pattern transformation algorithm
input : pattern tree(N,E, r, ν, ǫ, T, c), schema(Σ,Ψ, s,m, ρ)
output : pattern graph(N ′, E′, r′, ν′, ǫ′, T ′, c′)
variable : Q // represents pattern nodes whose children have yet to be checked
variable : N ′′ // set of pattern nodes to be inserted
variable : E′′ // set of pattern edges to be inserted

1 r′ ← new node
2 ν′(r′)← ν(r)
3 c′(r′)← c(r)
4 N ′ ← {r′}
5 E′ ← ∅
6 T ′ ← ∅
7 Q← {(r, r′)}
8 while Q 6= ∅ do
9 // while there are pattern nodes to be processed, pick one

10 (q, q′)← some (q, q′) ∈ Q
11 Q← Q \ {(q, q′)}
12 // for all outgoing edges ofq
13 for e = (x, y) ∈ E, withx = q do
14 y′ ← new node
15 c′(y′)← c(y)
16 if ǫ(e) = child then
17 // case 1: child axis
18 if ν(y) 6= ∗ then
19 ν′(y′) = ν(y)

20 else if∃(σ1, σ2) ∈ Ψ unique withν(x) = σ1 then
21 ν′(y′)← σ2

22 else
23 continue

24 if ψ = (ν(x), ν(y)) ∈ Ψ, s(ψ) 6= MULT then
25 // add this pattern node to the simplified tree
26 N ′ ← N ′ ∪ {y′}
27 E′ ← E′ ∪ {(q′, y′)}
28 Q← Q ∪ {(y, y′)}

29 else ifν(y) 6= ∗ then
30 // case 2: descendant axis
31 Σ′ ← {σ ∈ Σ | σ reachable fromν(x),
32 ν(y) reachable fromσ in (Σ,Ψ)}
33 Ψ ′ ← {(σ1, σ2) ∈ Ψ | σ1, σ2 ∈ Σ′}
34 if (Σ′, Ψ ′) is acyclic and∄ψ ∈ Ψ ′ with s(ψ) = MULT then
35 ν′(y)← ν(y)
36 (N ′′, E′′)← unrolldesc(q′, y′, Σ′, Ψ ′, ν(x))
37 N ′ ← N ′ ∪N ′′ ∪ {y′}
38 E′ ← E′ ∪ E′′

39 Q← Q ∪ {(y, y′)}

40 ∀e′ ∈ E′, ǫ′(e′)← child
41 return (N ′, E′, r′, ν′, ǫ′, T ′, c′)
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Algorithm 2: unrolldesc(x, y,Σ′, Ψ ′, ρ′) unrolls descendant step
input : origin nodex, target nodey, transformed schema(Σ′, Ψ ′)
output : pattern nodesN ′′, pattern edgesE′′

variable: S // pattern nodes yet to be processed
1 N ′′ ← ∅
2 E′′ ← ∅
3 S ← {x}
4 for s ∈ S do
5 if ∃(σ1, σ2), (σ3, σ4) ∈ Ψ ′, σ2 6= σ4, ν(s) = σ1 = σ3 then
6 // more than one outgoing edge froms
7 // insert⊕ node
8 n⊕ ← new node
9 ν′(n⊕)← ⊕

10 c′(n⊕)← ⊥
11 N ′′ ← N ′′ ∪ {n⊕}
12 E′′ ← E′′ ∪ {(s, n⊕)}
13 s← n⊕

14 // insert edges
15 for (σ1, σ2) ∈ Ψ ′, ν(s) = σ1 do
16 if σ2 = ν(y) then
17 nσ2

← y

18 else
19 nσ2

← new node
20 ν′(nσ2

)← σ2
21 c′(nσ2

)← ⊥
22 N ′′ ← N ′′ ∪ {nσ2

}
23 S ← S ∪ {nσ2

}

24 E′′ ← E′′ ∪ {(nσ , nσ2
)}

25 return(N ′′, E′′)

4.1.3 Unrolling descendant steps

The unrolling of descendant steps can be succinctly implemented as a manipulation
of the directed graph representation of the schema (Algorithm 1, lines 31-33). In
order to unroll a descendant step from a pattern node labeleda to a pattern node
labeledb, we consider the subgraph of the schema graph that consists of all nodes
that are reachable froma and from whichb is reachable. This yields a graph that
contains all the intermediate node types that may occur on a downward path from
a to b. In the example shown in Figure 8, the nodes that are used to unroll the step
author//name are highlighted.

If there exists a cycle in this schema subgraph, we discard the descendant step
and all the pattern nodes that occur below it (Algorithm 1, line 34). This is necessary
because the presence of a cycle implies that a matching node may occur at different
levels in the document tree. This creates ambiguity, makingit impossible to take
advantage of the value constraints associated with such a node. Assume, for example,
that we want to unroll the stepbook//reference. We can observe that there is a
cycle involving the node typeschapter andreference. This corresponds to the
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author

name

ONCE

first

ONCE

#text

last

ONCE

#text

agent

OPT

pubs

ONCE

book

MULT

chapter

MULT

reference

OPT

ONCE

ONCE

Fig. 8 Schema restricted to nodes reachable fromauthor and from whichname is reachable

fact that the path can be satisfied either by a reference in a chapter of the book where
we start out, or by a reference in a chapter referenced by thischapter, and so on.

If the subgraph is acyclic (as in the example shown in Figure 8), we introduce a
new pattern node for each of the intermediate schema nodes such that the node test of
the pattern node matches the name of the corresponding schema node (Algorithm 2,
lines 19-22). In cases where a schema node has more than one child, an intermediate
choice node is inserted (lines 8-11, denoted by⊕), which signifies that the subsequent
branch of the pattern can be satisfied by a match for any of the child nodes.

After these intermediate nodes have been inserted, the pattern has been trans-
formed from a tree into a DAG. We can reconstruct a tree representation by dupli-
cating nodes that are reachable through more than one path. In general, however, this
is not necessary since we can directly traverse the more compact DAG, which yields
the same result as traversing the equivalent tree.

author

⊕

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

agent

/

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

book

/

Fig. 9 Pattern after unrolling descendant steps

Figure 9 shows the tree representation of the unrolled version of the QTP given in
Figure 7(a). Note that while the stepauthor//book can simply be unrolled into a
sequence of child steps, unrollingauthor//name requires the insertion of a choice
node and the duplication of the branch below it. This is because there are two paths
from author to name, as is shown in Figure 8.

4.1.4 Removing wildcard nodes

We convert wildcard nodes whenever they unambiguously refer to a specific node
type (Algorithm 1, lines 20 and 21). For example, by relying on the schema shown
in Figure 3, we can determine that the stepagent/* can be translated to the step
agent/name. It is also possible to convert wildcard nodes that can referto more
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than one node type by introducing choice nodes into the pattern in a procedure that is
largely analogous to the way descendant steps are unrolled.

4.1.5 Removing nodes referring to nodes with multiple occurrences in the same
context

In general, a meaningful conversion of pattern nodes corresponding to nodes with
multiple occurrences in the same context is not possible andwe need to eliminate
these nodes from the pattern. One exception to this is the scenario where the pattern
node is associated with an explicit positional constraint that disambiguates between
multiple occurrences of a matching node (for example,pubs/book[1]). In this
case, we can retain the pattern node and exploit its associated constraints for pruning.
In the example from Figure 9, we need to remove thebook node since the schema
indicates that apubs node may have multiple children of typebook. The resulting
simplified pattern is shown in Figure 10.

author

⊕

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

agent

/

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

Fig. 10 Simplified pattern

4.1.6 Traversal and pruning

After transforming both QTP and FTP into simplified tree patterns, we traverse both
patterns simultaneously as described in Algorithm 3. Only pattern nodes occurring
in both patterns are visited. For each pair of correspondingpattern nodes, we check
whether the value constraints in one pattern contradict those in the other pattern.
Since in simplified tree patterns each pattern node corresponds to a unique node from
the collection within the context of a single document tree,a contradiction between
patterns allows us to immediately eliminate the fragment corresponding to the FTP
from further consideration.

Special care has to be taken when a choice node is encountered. In this case, a
contradiction exists only if we can find contradictory constraints regardless of which
branch of the choice we follow. If there is at least one choicewithout a contradiction,
which may be a choice that leads to a branch that is not presentin the other pattern,
it is not possible to conclude that the fragment can be eliminated (lines 3-18).

In the example shown in Figure 11, the traversal algorithm proceeds as follows.
First, theauthor nodes in QTP and FTP are visited. Since there is no value con-
straint associated with this node in either pattern, there is no conflict, therefore we
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Algorithm 3: traverse((N,E, r, ν, ǫ, T, c) , (N ′, E′, r′, ν′, ǫ′, T ′, c′)) finds con-
tradictions

input : predicate pattern(N,E, r, ν, ǫ, T, c) , query pattern(N ′, E′, r′, ν′, ǫ′, T ′, c′)
output : true iff constraints are satisfiable
variable : result

1 if ν(r) = ν′(r′) and c(r) ∧ c′(r′) is not satisfiablethen
2 result← false// constraint violation found

3 else ifν(r) = ⊕ then
4 // check if at least one choice leads to satisfiable constraints
5 result← false
6 for n ∈ N with (r, n) ∈ E do
7 if ∃(x, y) ∈ E′ with x = r′ ∧ (ν′(y) = ν′(n) ∨ ν′(y) = ⊕) then
8 result← result ∨ traverse((N,E, n), (N ′, E′, y))

9 else
10 result← true

11 else ifν′(r′) = ⊕ then
12 // check if at least one choice leads to satisfiable constraints
13 result← false
14 for n′ ∈ N ′ with (r′, n′) ∈ E′ do
15 if ∃(x, y) ∈ E with x = r ∧ (ν(y) = ν′(n) ∨ ν(y) = ⊕) then
16 result← result ∨ traverse((N,E, y), (N ′, E′, n′))

17 else
18 result← true

19 else
20 // check all child nodes
21 result← true
22 for n ∈ N with (r, n) ∈ E do
23 if ∃(x, y) ∈ E′ with x = r′ ∧ (ν′(y) = ν(n) ∨ ν′(y) = ⊕ ∨ ν(n) = ⊕) then
24 result← result ∧ traverse((N,E, n), (N ′, E′, y))

25 return result

move on to the children of theauthor nodes. Thepubs node is only present in the
QTP and is therefore not visited. As the other child of theauthor node, the QTP
contains a choice node. We now have to check both branches forconflict. The left
branch leads to thename node, for which there is an equivalent node in the FTP.
In both patterns thename node has a child with node testlast. When inspecting
the value constraints associated with thelast nodes, the algorithm detects a con-
tradiction because the content of the corresponding document node cannot be equal
to the string ‘Shakespeare’ and at the same time start with the letter ‘A’. Therefore,
we know that there is a contradiction for the left branch of the choice node. In order
for there to be a global contradiction, however, the patterns have to be contradictory
for both branches of the choice node. Therefore, the algorithm still has to inspect
the right branch, for which it encounters a node with the nodetestagent. For this
node, there is no equivalent in the FTP and therefore no contradiction. Since the algo-
rithm only found a contradiction for one branch of the choicenode, there is no global
contradiction and the fragment corresponding to the FTP cannot be pruned.
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author

⊕

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

agent

/

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

(a) QTP

author

name

/

last

/

startswith(’A’)

(b) FTP

Fig. 11 Simplified QTP and FTP that are not contradictory

For the example in Figure 12, on the other hand, the traversalalgorithm does de-
tect a contradiction. After inspecting theauthor andname nodes in both patterns,
the algorithm reaches thelast nodes and their contradicting value constraints. This
time, thelast node does not occur as the descendant of a choice node so this con-
tradiction is sufficient to prune the fragment corresponding to the FTP.

author

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

(a) QTP

author

name

/

last

/

startswith(’A’)

(b) FTP

Fig. 12 Simplified QTP and FTP that are contradictory

4.1.7 Optimization

Since horizontal fragmentation is defined as a partitioningof the data collection, FTPs
need to be disjoint and cover the entire collection. Becauseof this, we expect that in
many instances the FTPs will only differ in their value constraints but not in their
structure. It is therefore possible to simplify the traversal process by traversing the
QTP together with a single abstract FTP rather than with eachFTP in the fragment-
ation. In this abstract FTP, value constraints are replacedwith variables. Traversal
of QTP and abstract FTP results in an expression that describes the conditions un-
der which there is a contradiction between the QTP and an FTP.Figure 13(b) shows
an abstract FTP, in which a value constraint has been replaced with the variablex.
Traversing this abstract FTP with the QTP in Figure 13(a) shows that there is a con-
tradiction if¬(.=’Shakespeare’∧ x) holds.

We can now instantiatex with the corresponding value constraint from each of
the original simplified FTPs, i.e., with the expressions

startswith(’A’), . . . , startswith(’S’), . . . , startswith(’Z’)

Solving this formula yields a contradiction for all of thesecases exceptx =
startswith(’S’). A similar optimization is possible for the QTPs if we assume that
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author

name

/

first

/

.=’William’

last

/

.=’Shakespeare’

pubs

/

(a) QTP

author

name

/

last

/

x

(b) FTP

Fig. 13 Simplified QTP and abstract FTP

the structure of a query is known at compile time whereas the constants used in value
constraints are known only at run time.

4.1.8 Analysis

While it may seem that the transformation and traversal of QTPand FTPs could
pose a significant overhead, there are a number of considerations that reduce this
impact. The transformation of the FTPs only has to be performed once when the
fragmentation is set up. Therefore, it does not pose a run-time overhead during query
execution.

For the transformation of the QTP, we make the following observations: child
steps are either copied from the QTP to the canonical QTP or omitted. Both the size
of the canonical QTP and the time consumed by the transformation are therefore lin-
ear in|EQTP

child|, which is the number of child steps in the QTP. For each descendant
step, in the worst case, Algorithm 2 introduces one choice node and one non-choice
pattern node for eachσ in Σ. Therefore, the size of the canonical QTP is linear
in |EQTP

desc| |Σ|. In order to analyze the time complexity, we also have to takeinto
account the time consumed by computing the reachable schemasubgraph and by
detecting cycles in the resulting graph. We can compute the subgraph consisting of
nodes that are reachable from nodea and from whichb is reachable by first mark-
ing all nodes reachable froma, then marking all nodes from whichb is reachable
and finally choosing all nodes that were marked both times. Assuming a suitable
representation of the graph, this can be done inO(|Σ| + |Ψ |) time. Using Tarjan’s
algorithm [18], we can detect cycles inO(|Σ| + |Ψ |) time. Therefore, the transfor-
mation of a QTP takesO(|EQTP

child| + |EQTP
desc| (|Σ| + |Ψ |)) time and yields a result

containingO(|EQTP
child|+ |EQTP

desc| |Σ|) nodes. Since the result is also a directed graph,
in which nodes may be shared among multiple branches, the equivalent tree pattern
is of sizeO(|EQTP

desc| |Σ| |EQTP
child| + |EQTP

desc|
2 |Σ|2). This is important, because the

time consumed by the subsequent traversal step depends on the size of the equivalent
tree.

The time required to traverse the QTP and the FTPs is linear inthe size of the tree
representations of the canonical QTP and the FTPs. Because the traversal has to be
performed for each fragment, it is also linear in the number of fragments. This leads to
an overall time complexity ofO((|EQTP

desc| |Σ| |EQTP
child|+ |EQTP

desc|
2 |Σ|2) (|EFTP

desc| |Σ|
|EFTP

child|+ |EFTP
desc|

2 |Σ|2) |F |). Note that run-time of the pruning algorithm depends
solely on the size of the patterns, the number of fragments and the size of the schema.
It is independent of the size of the collection.
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4.2 Localization and pruning with vertical fragmentation

In this section, we define an initial strategy for evaluatingQTPs on a vertically frag-
mented collection based on the following steps:

– First, we decompose the global QTP into a set oflocal QTPscorresponding to
the individual fragments.

– Then, we use an existing tree pattern evaluation strategy toevaluate the local
QTPs on the fragments (the specific strategy is left to each site to decide).

– After that, we combine the partial results generated at eachsite by joining the
matches derived from individual fragments based on their proxy/root proxy IDs.
How this is done is specified by adistributed execution plan.

We then improve upon this initial strategy and present two techniques that allow
us to eliminate certain fragments from the distributed execution plan.

4.2.1 Localization of QTPs

Localization is the process of determining which fragmentsare relevant to a given
query and decomposing the query into sub-queries that can beevaluated on indi-
vidual fragments. As mentioned before, QTPs provide a convenient abstraction for
decomposing a global query into sub-queries that are local to a single fragment. We
have therefore chosen to perform query decomposition at theQTP level before trans-
forming the resulting local QTPs into algebraic query plansat the individual sites.

The decomposition of a global QTP into a set of local QTPs directly follows the
schema graph. After unrolling wildcard nodes (using a procedure similar to Algo-
rithm 2), Algorithm 4 divides the global QTP into a set of sub-patterns, each of which
consists of pattern nodes that match nodes in the same fragment. Edges between pat-
tern nodes in the same subtree are assigned the same axis typeas the corresponding
edge in the global QTP.

A child edge from a pattern node in sub-patterna to one in sub-patternb is con-
verted to a pattern node matching a proxy ina and a pattern node matching a root
proxy inb. These new pattern nodes are marked as extraction points because they are
needed to join the results of local QTPs to generate the final result.

When descendant edges across fragment boundaries are encountered, we need to
identify all paths in the fragmentation schema that satisfythe descendant edge. This
can be achieved, for example, by unrolling the descendant step into child steps ac-
cording to the same procedure that is used by the horizontal transformation algorithm
(i.e., Algorithm 2). It is important to note that this unrolling may turn a single cross-
fragment descendant step into multiple cross-fragment child steps. This corresponds
to the case where a descendant step traverses multiple fragments. Consider, for ex-
ample, the descendant stepauthor//reference. When this step is unrolled, it
yields two cross-fragment child steps:author/pubs andbook/chapter. Thus,
an additional local QTP corresponding to fragmentfV

3
(which contains thepubs

andbook node types) is introduced, even if there is no pattern node inthe global
QTP that refers to node types in this fragment.
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Algorithm 4: Vertical localization
input : global QTP(N,E, r, ν, ǫ, T, c), schema(Σ,Ψ, s,m, ρ), vertical fragmentation

functionφ : Σ → FΣ

output : set of local QTPs with fragment they are evaluated on
Q = {((N ′, E′, r′, ν′, ǫ′, T ′, c′), f ′ ∈ FΣ)}

1 Q← {(N ′, E′, r′, ν′, ǫ′, T ′, c′) maximal | (∃f ∈ FΣ , ∀n
′ ∈ N ′ : φ(ν(n′)) = f) ∧ (E′ =

E ∩ (N ′ ×N ′)) ∧ ((N ′, E′) is connected and rooted atr′) ∧ (ν′ = ν) ∧ (ǫ′ = ǫ) ∧ (T ′ =
T ∩N ′) ∧ (c′ = c)} // construct local QTPs without cross-fragment edges

2 for (n1, n2) ∈ E, φ(ν(n1)) 6= φ(ν(n2)) do
3 i← unique ID
4 q1 ← (N1, E1, r1, ν1, ǫ1, T1, c1) ∈ Q,n1 ∈ N1

5 q2 ← (N2, E2, r2, ν2, ǫ2, T2, c2) ∈ Q,n2 ∈ N2

6 pi ← new pattern node
7 rpi ← new pattern node
8 N1 ← N1 ∪ {pi}
9 N2 ← N2 ∪ {rpi}

10 ν1(pi)← proxy i
11 ν2(rpi)← root proxyi
12 T1 ← T1 ∪ {pi}
13 T2 ← T2 ∪ {rpi}
14 E1 ← E1 ∪ {(n1, pi)}
15 E2 ← E2 ∪ {(rpi, n2)}
16 ǫ((n1, pi))← ǫ((n1, n2))
17 ǫ((rpi, n2))← ǫ((n1, n2))
18 r2 ← rpi

If the global QTP does not reach a certain fragment (because even after unrolling
no constraints are placed on the node types contained in thisfragment) and if no
intermediate QTP has to be generated for it because of cross-fragment descendant
steps, then the localized plan derived from the local QTPs will not access this frag-
ment. Therefore, the localization technique eliminates some vertical fragments even
without further pruning.

Localizing the global QTP shown in Figure 4 yields the set of local QTPs shown
in Figure 14(a)–(d). Each cross-fragment edge in the globalQTP is represented by a
pair of pattern nodes that match a proxy/root proxy pair. Theedge fromauthor to
name, for example, is replaced by the pattern nodeRP 1→2

∗
in q2 and the pattern node

P 1→2

∗
in q1. The pattern nodeRP 1→2

∗
matches all of the root proxy nodesRP 1→2

i

in q2’s fragmentf2. The pattern nodeP 1→2

∗
matches the proxy nodesP 1→2

i in f2’s
parent fragmentf1; these are the proxy nodes that correspond toRP 1→2

i . Since the

author

P 1→2
∗

/

P 1→3
∗

//

(a) q1

RP 1→2
∗

name

/

last

/

.=’Shakespeare’

first

/

.=’William’

(b) q2

RP 1→3
∗

book

//

P 3→4
∗

//

(c) q3

RP 3→4
∗

reference

//

(d) q4

Fig. 14 Local QTPs
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original pattern edge is a child edge, edges to and from the generated pattern nodes
are also child edges. In the case where the original pattern edge is a descendant edge
(such as the edge betweenauthor andbook, which is represented by the pattern
nodes labeledP 1→3

∗
andRP 1→3

∗
), edges to and from the generated pattern nodes are

also descendant edges.
Whenever we decompose a global QTPq, there will be exactly one local QTP

that does not contain a pattern node that matches a root proxynode. We refer to this
local QTP as theroot QTP. In our example,q1 is the root QTP. All other local QTPs
contain exactly one pattern node that matches root proxy nodes in their fragments. If
local QTPqs contains a pattern node labeledRP i→j

∗ and local QTPqt contains the
corresponding pattern node labeledP i→j

∗ , then we callqs a child QTPof qt andqt a
parent QTPof qs.

4.2.2 Conversion of Local QTPs to Local Plans

Each local QTPqi is then transformed into a local query planpi. This is done at the
site holding the fragment corresponding toqi, using centralized XML query eval-
uation strategies (e.g., [19,20]). The pruning techniquespresented in this paper are

Π{P 1→3
∗

,P 1→2
∗

}

1author//P 1→3
∗

1author/P 1→2
∗

scan(author) scan(P 1→2
∗ )

scan(P 1→3
∗ )

(a) p1

Π{RP 1→2
∗

}

σfirst=′William′

1name/first

σlast=′Shakespeare′

1name/last

1RP 1→2
∗

/name

scan(RP 1→2
∗ ) scan(name)

scan(last)

scan(first)

(b) p2

Π{RP 1→3
∗

,P 3→4
∗

}

1book//P 3→4
∗

1RP 1→3
∗

//book

scan(RP 1→3
∗ ) scan(book)

scan(P 3→4
∗ )

(c) p3

Π{RP 3→4
∗

,reference}

1RP 3→4
∗

//reference

scan(RP 3→4
∗ ) scan(reference)

(d) p4

Fig. 15 Local plans
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independent of the techniques used by local query plans. We therefore omit a detailed
description of local plan generation.

For the purpose of illustration, Figure 15 shows a set of local plans based on
structural joins (p1 throughp4), which correspond to the local QTPsq1 throughq4,
respectively.

4.2.3 Distributed execution plans

To obtain the overall query result, the results of local plans need to be “combined”
based on the IDs of their proxy and root proxy nodes. Adistributed execution plan
specifies how exactly this is done. In this section, we explore how distributed execu-
tion plans can be constructed and what their properties are.

Definition 7 Let P = {p1, . . . , pn} be the set of local query plans corresponding to
a queryq. For eachpi ∈ P , let fi denote the vertical fragment corresponding topi.
Further, letP ′ ⊆ P . ThenGP ′ is adistributed execution planfor P ′ iff

1. P ′ = {pi} andG′

P = pi, or
2. P ′ = P ′

a ∪ P ′

b, Pa ∩ Pb = ∅; pi ∈ Pa, pj ∈ Pb, pi = parent(pj); GP ′

a
and

GP ′

b
are distributed execution plans forP ′

a andP ′

b, respectively; andGP ′ = GP ′

a

1
P

i→j
∗ .id=RP

i→j
∗ .id

GP ′

b
.

If GP is a distributed execution plan forP (the entire set of local query plans),
thenGq = GP is a distributed execution plan forq.

A distributed execution plan must contain all the local plans corresponding to
the query. As shown in the recursive definition above, an execution plan for a single
local plan is simply the local plan itself (condition 1). Fora set of multiple local
plansP ′ we assume thatP ′

a andP ′

b are two non-overlapping subsets ofP ′ such that
P ′

a ∪ P ′

b = P ′. We require thatP ′

a contains the parent local planpi for some local
planpj in P ′

b. An execution plan forP ′ is then defined by combining execution plans
for P ′

a andP ′

b using a join whose predicate compares the IDs of root proxy nodes
derived frompj to the IDs of corresponding proxy nodes derived frompi (condition
2). We refer to this join as across-fragment join.

If G′

P consists of a single local planpi, then the set of attributes returned byG′

P

(referred to asMG′

P
) is identical to the set of attributes returned bypi. If GP ′ = GP ′

a

1
P

i→j
∗ .id=RP

i→j
∗ .id

GP ′

b
, thenMG′

P
=MGP ′

a
∪MGP ′

b

\ {P i→j
∗ , RP i→j

∗ }.

Figure 16 shows a distributed execution plan that combines the results of the local
plans shown in Figure 15. There are usually many different vertical execution plans

1P 1→3
∗

.id=RP 1→3
∗

.id

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 p2

1P 3→4
∗

.id=RP 3→4
∗

.id

p3 p4

Fig. 16 Initial distributed execution plan



25

that all yield the correct result but that may vary in cost. Since the focus of this paper
is on localization and pruning, we do not discuss the problemof picking the most
advantageous plan.

4.2.4 Skipping fragments

The localization strategy for vertical fragmentation avoids accessing fragments whose
node types are not reached by the global QTP. It does not, however, address a scenario
where node types in a fragment are reached by the global QTP but no constraints are
placed on these node types. Consider, for example, the localQTP shown in Figure
14(c), which is evaluated on fragmentfV

3
. Its sole purpose is to determine which

proxy nodes infV
1

lead to which root proxy nodes in fragmentfV
4

. Since the only
way from a root proxy node infV

3
to a proxy node in the same fragment is through

abook node, no further constraints are placed onfV
3

. We now propose a technique
that allows us to avoid accessing such intermediate fragments, and, thereby, prunes
the local QTPs corresponding to these fragments from a distributed query plan.

We achieve this by storing information that allows us to identify all ancestor proxy
nodes for any given root proxy node. Using this information,we can then determine
for any root proxy node infV

4
which proxy node infV

1
is its ancestor. This, in turn,

allows us to answer the query without accessingfV
3

or evaluating the local QTP
shown in Figure 14(c). The benefits of this are twofold: it reduces load on the inter-
mediate fragments (since they are not accessed) and it avoids the cost of computing
intermediate results and joining them together.

While it would be possible to store the ancestor-descendant join information in
a centralized (or replicated) index structure, this could severely limit the scalabil-
ity of distributed query processing. In addition, it would make update management
more difficult. Therefore, we store the join information by numbering proxy nodes
according to a scheme based on the Dewey decimal system2 [21].

To define this numbering scheme, we need to distinguish between the following
two cases:(i) If a document subtree does not have a root proxy node as its root (i.e.,
if the subtree contains the root element of a document tree inthe collection, which
can only occur in the root fragment), then the proxy nodes in this subtree (and, of
course, the root proxy nodes in other fragments that correspond to these proxy nodes)
receive simple numeric IDs. In the collection shown in Figure 2, this can be seen
in all subtrees in fragmentfV

1
. The proxy nodes in this fragment therefore receive

numeric IDs, which means that all(R)P 1→2

∗
and(R)P 1→3

∗
are already numbered in

accordance with our numbering scheme.(ii) If a document subtree is rooted at a root
proxy node then the ID of each of its proxy nodes is prefixed by the ID of the root
proxy node of the subtree, followed by a numeric identifier that is unique within this
subtree. In Figure 2, fragmentsfV

2
, fV

3
andfV

4
consist of subtrees that are rooted

at a root proxy. However, only fragmentfV
3

contains proxy nodes. Therefore, only
P 3→4

18
, P 3→4

19
andP 3→4

20
have to be renumbered.P 3→4

18
is part of a subtree that is

2 We have also experimented with other numbering schemes, such asone where each proxy pair is
identified by its pre-order and post-order position in the collection. Our techniques are applicable to these
alternate representations as well.
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1RP 3→4
∗

.id.startswith(P 1→3
∗

.id)

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 p2

p3

Fig. 17 Skipping vertical plan

rooted at the root proxy nodeRP 1→3

12
. We would therefore have to renumber it to

P 3→4

12.1 . Similarly,P 3→4

19
would be renumbered toP 3→4

14.1 andP 3→4

20
to P 3→4

16.1 .
If all proxy pairs are numbered according to this scheme, a root proxy node is the

descendant of a proxy node precisely when the ID of the proxy node is a prefix of
the ID of the root proxy node. When evaluating query patterns,we can exploit this
information by removing local QTPs from the distributed query plan if they contain
no value or structural constraints, and no extraction pointnodes other than those
corresponding to proxies. These local QTPs are only needed to determine whether a
root proxy node in some other fragment is a descendant of a proxy node in a third
fragment, which we can now infer from the skipping IDs. Usingthis optimization,
we can rewrite the query plan from Figure 16 to the simpler plan shown in Figure 17,
which avoids accessing fragmentfV

3
.

It is important to note that our numbering scheme does not complicate update
management. Subtrees can be inserted or removed from a document collection with-
out having to modify other parts of the collection and without having to maintain a
centralized index.

4.2.5 Structural constraints in skipped fragments

While skipping IDs allow us to skip fragments on which no constraints are placed,
sometimes structural constraints make it necessary to access intermediate fragments,
even if they are not needed for evaluating value constraints. To illustrate this, consider
the modified fragmentation schema shown in Figure 18, which adds the additional
type of publicationarticle. If we evaluate the local QTPs shown in Figure 14
on this modified schema, we can no longer eliminate the local QTP in Figure 14(c)
because skipping the corresponding fragment would mean that we could no longer
distinguish between the subtrees in fragmentfV

′

4
that are part of abook and those

that are part of anarticle.
We propose a technique that allows us to skip such fragments.In addition to stor-

ing skipping IDs, we use the proxy IDs to keep track of some structural information
for cases where there is ambiguity. We define structural ambiguity as follows:

Definition 8 Let fa be a fragment whose subtrees are rooted at root proxy nodes and
assume that subtrees infa contain proxy nodes that refer to fragmentfb. Thenfa is
structurally ambiguouswith respect tofb if there is more than one path in the schema
of fa that leads from a root proxy node infa to a proxy node infa that corresponds
to fb.
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author

agent

OPT

(a) fV
′

1

name

first

ONCE

#text

last

ONCE

#text

(b) fV
′

2

pubs

book

MULT

article

MULT

(c) fV
′

3

chapter

reference

OPT ONCE

(d) fV
′

4

ONCE

ONCE

ONCE

MULT

MULT

Fig. 18 A modified fragmentation schema

If fa is structurally ambiguous with respect tofb, then we add label path infor-
mation to the proxy ID of each proxy node infa that corresponds tofb. This infor-
mation consists of the labels encountered on a path from the root proxy of the subtree
in which the proxy occurs to the proxy itself. Since the labelpath information is part
of the locally unique identifier specified by our numbering scheme, it is also part of
the prefix of the IDs of proxy nodes that are descendants of theproxy node for which
it was inserted.

In the case of the fragmentation schema shown in Figure 18, there is one instance
of structural ambiguity: fragmentfV

′

3
is structurally ambiguous with respect tofV

′

4
.

This is because there are two label paths from a root proxy infV
′

3
that could lead to a

proxy node that corresponds tofV
′

4
: pubs/book andpubs/article. We there-

fore store the label path as part of the ID of each proxy node infV
′

3
that corresponds

to fV
′

4
. Figure 19 shows a sample instance of fragmentfV

′

3
with label path IDs.

Label paths as defined here can be viewed as a materializationof structural se-
lections on linear paths through a particular fragment. Thus, they contain sufficient
information to evaluate structural constraints in a linearpath, as in the QTP shown
in Figure 14(c). In combination with skipping IDs, label paths therefore allow us to
evaluate the query using the plan shown in Figure 20, which avoids accessingfV

′

3
.

RP 3→4
12

pubs

book

RP 3→4
12.1[pubs/book]

RP 3→4
14

pubs

article

RP 3→4
14.1[pubs/article]

Fig. 19 FragmentfV
3

with label path IDs
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1RP 3→4
∗

.id.startswith(P 1→3
∗

.id)

1P 1→2
∗

.id=RP 1→2
∗

.id

p1 p2

σRP3→4
∗

.label=pubs/book

p4

Fig. 20 Label path plan

4.2.6 Analysis

Assuming that we use the unrolling technique presented in the section on horizontal
localization, the upper bound on the total size of local QTPsobtained by vertical
localization isO(|EQTP

child| + |EQTP
desc||Σ|). In practice, where schema graphs tend to

be sparse, we can expect the total size of all local QTPs to be close to the size of the
original QTP.

Both skipping IDs and label paths are inserted at fragmentation time and when-
ever data are added to the collection. Since they are not replicated, local insertions
and deletions can be handled without having to modify other fragments.

The vertical pruning techniques proposed here operate solely on the QTP and the
fragmented schema graph. They are independent of the size ofthe data and of the con-
stants used in value constraints. This allows us to perform pruning at query compile
time, thereby minimizing the run-time overhead introducedby our technique.

Label paths are useful not only for localization but also forpruning irrelevant
subtrees within fragments [9]. Studying further uses of label paths in a distributed
context is the subject of ongoing research.

5 Workload-aware fragmentation of collections

To obtain the maximum benefit from our distribution techniques, it is important to
choose a fragmentation layout that is suitable for the workload at hand. There are two
main considerations when deciding between horizontal and vertical fragmentation (or
when designing a hybrid fragmentation consisting of both):

– Since horizontal fragmentation defines fragments based on the textual content of
XML nodes, it is particularly suitable for a query workload that contains a large
number of constraints on these values. Furthermore, for pruning to be effective,
the nodes on which such constraints are placed in the workload should be used
when defining fragmentation predicates.

– Vertical fragmentation, on the other hand, is based on a fragmentation of the
schema. Therefore, it is especially useful when queries consist mainly of struc-
tural constraints (i.e., path expressions) because this scenario maximizes pruning
opportunity and allows us to limit query processing to few, small fragments.

In the remainder of this section, we propose a set of fragmentation algorithms
that determine a suitable horizontal and vertical fragmentation for a given workload.
While a complete solution to the problem of finding the best fragmentation of any
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type is the subject of ongoing research, these algorithms serve as valuable building
blocks.

In the case of horizontal fragmentation, it is important that the FTPs are defined
such that for a given QTP in the workload contradictions can be found that allow us to
exclude some of the fragments. For vertical fragmentation,a suitable fragmentation
schema should aim to maximize parallelism between the (non-skippable) sub-queries
of a given query while avoiding excessively large intermediate results. In either case,
what constitutes a good fragmentation schema cannot be defined independently of the
query evaluation strategy used. While in practice fragmentation is performed before
query evaluation, we have chosen to present our fragmentation algorithms after our
query evaluation strategies in order to better illustrate this dependency.

5.1 Horizontal fragmentation

Horizontal fragmentation allows us to directly apply a fragmentation algorithm that
was originally developed for relational systems. This relational fragmentation algo-
rithm is based on minterm predicates, which are conjunctions of simple predicates
on individual attributes. Minterm predicates are obtainedby extracting the predicates
found in the query workload, decomposing them into simple predicates consisting
of a single (in)equality and finally combining these simple predicates such that all
possible combinations of simple predicates are covered [1].

In order to apply this technique, we need to transform the predicates found in tree
patterns into simple predicates from which minterm predicates can be constructed.
We do this by first unrolling descendant steps into child steps (using the same pro-
cedure employed in Algorithm 2). Then, each value constraint in the pattern can be
transformed into a set of simple predicates whose left-handside is the path from
the root of the unrolled tree pattern to the node with which the value constraint is
associated.

Performing this transformation for the workload shown in Table 1 yields the con-
straints shown in Table 2. We then extract the simple predicates from these con-
straints, i.e. predicates that do not contain conjuction ordisjunction. The result of
this is shown in Table 3.

From these simple predicates, we can then construct mintermpredicates using the
same techniques applied to the relational scenario. The minterm predicates derived
from the simple predicates in Table 3 are shown in Table 4. Based on these minterm
predicates, we can then apply the relational fragmentationalgorithm.

Q1 /author[name/last=’Shakespeare’ or name/last=’John’]
/pubs/book

Q2 /author[name/first=’William’]/pubs/book

Table 1 Sample workload
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Path Constraint

/author/name/last .==’Shakespeare’ ∨ .==’John’
/author/name/first .==’William’

Table 2 Constraints

/author/name/last==’Shakespeare’
/author/name/last==’John’
/author/name/first==’William’

Table 3 Simple Predicates

/author/name/last==’Shakespeare’ ∧ /author/name/first==’William’
/author/name/last==’Shakespeare’ ∧ /author/name/first!=’William’
/author/name/last==’John’ ∧ /author/name/first==’William’
/author/name/last==’John’ ∧ /author/name/first!=’William’
/author/name/last!=’Shakespeare’ ∧ /author/name/last!=’John’ ∧

/author/name/first==’William’
/author/name/last!=’Shakespeare’ ∧ /author/name/last!=’John’ ∧

/author/name/first!=’William’

Table 4 Minterm Predicates

5.2 Vertical fragmentation

To evaluate a query over a vertically fragmented collection, we evaluate each sub-
query on its corresponding fragment and then join the intermediate results to obtain
the overall query result. Depending on how the collection isfragmented, the inter-
mediate results may be large and the sub-queries may be expensive to evaluate. In
extreme cases, this can lead to a scenario where it is more expensive to evaluate a
query on a vertically distributed collection than it is to evaluate the same query in a
centralized fashion. In order to avoid this situation and totake full advantage of the
potential of vertical distribution, we have to ensure that the vertical fragmentation
schema is well suited to the query workload.

In the following, we propose a vertical fragmentation algorithm that chooses a
suitable vertical fragmentation schema for a given query workload. Our algorithm is
based on a cost model, which estimates the response time of a query when evaluated
over a vertically fragmented collection.

5.2.1 Cost model

We define the following cost metrics for each local planpj and its corresponding
fragmentf(pj):

– cost(pj), the response time of evaluatingpj onf(pj),
– scancost(pj), the time it takes to scan the root proxy nodes inf(pj) that are

accessed bypj ,
– card(pj), the number of tuples returned bypj when evaluated onf(pj),
– subt(pj), the number of document subtrees inf(pj) that are accessed bypj .
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While it is possible to obtain these metrics experimentally,this can be expensive
and in practice it may be preferable to estimate these valuesusing various cost esti-
mation techniques that have been developed for the centralized evaluation of XML
queries. For notational convenience, we do not distinguishbetween estimated cost
metrics and their precise counterparts.

Since the local plans can be evaluated independently of eachother in parallel, we
can model the cost of a queryq as cost(q) = max{cost(pj) | pj ∈ P} whereP is the
set of local plans (after pruning) corresponding toq for a given vertical fragmentation
schema.

5.2.2 Heuristic fragmentation algorithm

The näıve strategy for determining the best fragmentation schemafor a given work-
load would be to exhaustively enumerate all possible vertical fragmentation schemas,
compute the total cost for each of them and then choose the schema with the lowest
cost. While this is guaranteed to yield the optimal result, the large number of possible
vertical fragmentation schemas generally makes this strategy infeasible (there areBn

alternatives, whereBn is thenth Bell number andn is the number of node types in
the schema).

To obtain a feasible fragmentation algorithm, we instead propose a heuristic strat-
egy that starts out with an initial fragmentation schema in which each node type is
placed in its own fragment and then greedily merges fragments until we can no longer
reduce the estimated workload cost. While this strategy is not guaranteed to find the
global optimum, our experiments show that it performs well in practice.

In the following, we explain how the greedy algorithm works for a single query.
Details are shown in Algorithm 5. After determining the local cost metrics for each
local plan based on the initial fragmentation, we identify the plan with the highest
local costpmax (ignoring local plans that can be pruned) and its corresponding frag-
mentf(pmax). Since the overall cost of the query is determined by the costof the
most expensive local plan, we can focus on decreasing the cost of pmax.

To do this, we attempt to mergef(pmax) with one of its ancestor fragments. We
start withf(pmax)’s parent fragments. For each parent fragmentfi, we mergef(pmax)
andfi, and then determine the cost of each non-prunable local plancorresponding

Algorithm 5: Vertical fragmentation
input : query planp, schema(Σ,Ψ, s,m, ρ)
output : vertical fragmentation schema{Σ′ ⊆ Σ}

1 I ← {{σ} | σ ∈ Σ}
2 imax← i ∈ I s.t. cost(pi(i)) = max{cost(pj(j)) | j ∈ I}
3 for iancestor∈ ancestor(imax) do
4 imerged← imax∪ . . . ∪ iancestor

5 if cost(pimax(imax)) > cost(p()) then
6 I ← (I ∪ imerged) \ imax, . . . , iancestor

7 goto2

8 return (I)
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to fi ∪ f(pmax). If the cost of all of these plans is lower than cost(pj), we remove
fi and f(pmax) from the fragmentation schema and insertfi ∪ f(pmax). We then
repeat the procedure by determining the most expensive local plan for the modified
fragmentation schema and attempting to reduce its cost.

If none of the parent fragments off(pmax) allow us to reduce the maximum lo-
cal plan cost, we tryf(pmax)’s “grand-parent” fragments, “great grand-parent” frag-
ments, and so forth. When merging with an ancestor fragmentfi that is not a direct
parent off(pmax), we merge all the fragments on the path fromf(pmax) to fi. If
no ancestor fragment off(pmax) allows us to reduce the maximum local plan cost,
the algorithm terminates without making further modifications to the fragmentation
schema.

5.2.3 Estimating local plan costs after merging

Our fragmentation algorithm relies on frequent tentative merges between fragments.
While it is possible to re-estimate the cost of all affected local plans after each such
merge, this can be expensive. To address this, we propose a method for estimating
the cost of a local planpij corresponding to the fragmentf(pi)∪f(pj) based on cost
estimates forpi (corresponding tof(pi)) and pj (corresponding tof(pi)’s parent
fragmentf(pj)):

cost(pij) = cost(pj) +
card(pj)
subt(pi)

(

cost(pi)− scancost(pi)
)

The rationale behind this is as follows: cost(pij) includes all of the cost of the local
plan corresponding to the parent fragment, cost(pj). The cost of the child fragment
is scaled by the selectivity of the parent fragment, represented as the fraction of the
subtrees inf(pi) for which corresponding proxy nodes are returned bypj . This is
because pipelined execution allows us to restrict local evaluation to these subtrees
[9]. We also subtract the portion of the cost that can be attributed to scanning the root
proxy nodes inf(pi). Our experiments show that using this approximation does not
prevent us from identifying good vertical fragmentation schemas.

5.2.4 Handling multiple-query workloads

So far, for simplicity, we have focused on identifying a fragmentation schema for
a single query. In practice, however, workloads generally consist of more than one
query. It is possible to adapt our algorithm by modifying thetermination condition:
instead of terminating when the cost of the most expensive local plan cannot be re-
duced further, we check the most expensive local plans of each query in descending
order of cost and only terminate once we cannot further reduce the cost of any of
those.

6 Performance evaluation

We have enhanced the native XML database system NATIX [19] with distributed ca-
pabilities and implemented our techniques within this system. This allows us to val-
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idate our approach and to perform realistic experiments. Our experiments are struc-
tured as follows:

– The first set of experiments evaluate how our techniques improve the performance
of distributed query evaluation in a realistic scenario. Todo this, we conduct a set
of experiments based on the XPathMark benchmark [22] that combine both the
horizontal and the vertical techniques presented in this paper and verify that they
lead to a significant improvement in performance when compared to centralized
techniques (Section 6.1).

– In the second set of experiments, we compare our approach with existing tech-
niques (Section 6.2) by implementing the core phases of these techniques within
our NATIX testbed.

– Finally, to analyze how our techniques improve performance, a third set of exper-
iments perform a number of stress tests that explore the behaviour of horizontal
(Section 6.3) and vertical fragmentation (Section 6.4) separately. For these exper-
iments, we use a set of carefully selected queries and fragmentation layouts that
exercise the different scenarios our localization and pruning techniques may en-
counter, ranging from a case in which the fragmentation is highly advantageous
for answering the query at hand to one where it is adversarial.

All of our experiments rely on collections of on-line auction data generated by
the XMark benchmark [23], which is one of the standard benchmarks for evaluat-
ing XML query performance. The experiments are conducted onvirtualized Linux
machines within Amazon’s Elastic Compute Cloud [24], each providing 1.7 GB of
memory and a single CPU core. We use a separate instance for each fragment, with an
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A1 /site/closed auctions/closed auction/annotation/description/text/keyword
A2 //closed auction//keyword
A3 /site/closed auctions/closed auction//keyword
A4 /site/closed auctions/closed auction[annotation/description/text/keyword]

/date
A5 /site/closed auctions/closed auction[descendant::keyword]/date
A6 /site/people/person[profile/gender and profile/age]/name
B7 //person[profile/@income]/name

H
or

iz
on

ta
ls

tr
es

s

Q1 /open auction[./interval/end[.= xs:date(’12/28/2001’)]]
[initial > 120]//item/name

Q2 /open auction[./interval/end
[.>= xs:date(’01/01/1998’)][.< xs:date(’12/28/1998’)]]
[initial > 120]//item/name

Q3 /open auction[./interval/end
[.>= xs:date(’01/01/1998’)][.< xs:date(’12/28/1999’)]]
[initial > 120]//item/name

Q4 /open auction[./interval/end
[.>= xs:date(’01/01/1998’)][.< xs:date(’12/28/2000’)]]
[initial > 120]//item/name

Q5 /open auction[./interval/end
[.>= xs:date(’01/01/1998’)][.< xs:date(’12/28/2001’)]]
[initial > 120]//item/name

Ve
rt

ic
al

st
re

ss Q6 /open auction[initial > 200 ]/interval/end
Q7 /open auction//person//category[id=’category10’]
Q8 /open auction/bidder//person//category[id=’category10’]
Q9 /open auction/bidder//person[creditcard]//category[id=’category10’]
Q10 /open auction/bidder//person[creditcard]/profile[education]

//category[id=’category10’]

Table 5 Queries used in experiments



34

additional instance for dispatching queries. All instances run in the same availability
zone, ensuring low-latency, high-throughput communication.

6.1 XPathMark benchmark

To evaluate the performance of our techniques in a realisticscenario, we use a subset
of the queries in the XPathMark benchmark (those that can be expressed in our query
model, i.e., A1-A6 and B7, as shown in Table 5). We evaluate these queries on an
XMark collection consisting of documents that are approximately 40 MB each. To
evaluate the scalability of our techniques, we use 3 different collection sizes: 120
MB, 1.2 GB and 12 GB. We distribute these collections in 2 different ways. First,
we vertically fragment the collection using a fragmentation schema derived by our
vertical fragmentation algorithm (shown on the left of Figure 21). Then, we use a
manually tuned hybrid fragmentation (shown on the right of Figure 21; the vertical
fragments marked with∗ are further fragmented horizontally, based on the label path
components of their root proxy IDs).

In Figure 22, we show the response time results obtained by centralized query
execution over an un-fragmented collection (central), distributed execution with all
optimizations presented in this paper over the vertically fragmented collection (ver-
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Fig. 21 Fragmentation schemas used in XPathMark experiments
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Fig. 22 Response time, vertical and hybrid fragmentation

tical), and fully optimized distributed execution over the collection with hybrid frag-
mentation (hybrid). We can see that for all queries, vertically fragmented execution
outperforms centralized execution by a significant margin.Optimized query execu-
tion over the hybrid fragmentation yields even better results. The performance advan-
tage of the hybrid technique over centralized execution increases with the collection
size, illustrating the superior scalability of this technique. For the largest collection
size, hybrid fragmentation is in some cases more than 30 times faster than central-
ized execution. Together, these results confirm that our techniques for localization
and pruning significantly improve the performance of distributed query execution in
realistic scenarios.

6.2 Comparison with other techniques

While much of the existing work either focuses primarily on data integration [2–4] or
relies heavily on a replicated index structure [5], there are two techniques that follow
a performance motivation that is similar to ours: Cong et al.’s technique for distributed
query evaluation [6] and Suciu’s query evaluation technique for semistructured data
[8]. While both papers use a definition of performance that is somewhat different
from ours (focusing primarily on communication cost ratherthan end-to-end response
time), they are nevertheless the best candidates for a direct comparison.
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Cong et al. present two multi-phase algorithms for distributed query evaluation,
named PaX3 and PaX2. Both algorithms feature a phase during which all fragments
are traversed in their entirety and in parallel (phase 2 in PaX3 and phase 1 in PaX2).
Based on the description in their paper, we suspected that this phase would dominate
the overall response time of their technique. Therefore, for our comparison, we have
chosen to implement this traversal within NATIX. In Figure 23, we report the re-
sponse time (PaX) of executing this traversal on those hybrid fragments of the 12 GB
collection that remain after applying their simple pruningstrategy3. While this does
not capture the total response time cost of evaluating PaX3 or PaX2, the traversal is a
necessary step for either algorithm that cannot be avoided or parallelized with other
phases. Therefore, the time consumed by this parallel traversal can serve as a lower
bound on the overall response time of PaX3 and PaX2.

For Suciu’s distributed evaluation algorithm, we use a similar insight: while the
paper does not give any experimental results, we suspected that the response time cost
of applying this technique would be dominated by the generation of partial results
using an automaton that accepts the query. Unlike our work, this technique does not
take advantage of a fragmentation specification. Therefore, the starting state of the
automaton at a given root proxy node cannot be determined andall states have to be
examined, increasing the processing cost of this phase.

We have implemented the partial result generation phase of Suciu’s algorithm
within NATIX and report the response time asdistevalin Figure 23. As in the case
of Cong et al.’s work, this phase is not parallelized with other phases of the algorithm
and it cannot be avoided, which allows us to use it to obtain a lower bound on the per-
formance of Suciu’s algorithm. The query model used in Suciu’s paper is somewhat
different from the XPath-based models seen in more recent work and only appears
to support linear path queries. Therefore, we only report results for the linear queries
A1-A3 for this technique.

Comparing the lower bounds on the cost of the existing techniques with the total
cost of our techniques allows us to make a number of observations:

3 For both Cong et al.’s and Suciu’s technique, the hybrid fragmentation turned out to be more advanta-
geous, which is why we have omitted results for running these techniques on the vertical fragmentation.
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– Most importantly, our best technique (hybrid) achieves the best (lowest) response
time for all queries and collection sizes and is always significantly better than
both of the existing techniques.

– The result of comparing the existing techniques to our vertical technique varies.
We suspect that the cases where our vertical technique does worse are caused by
the larger fragment sizes of the 3-fragment vertical fragmentation compared to
the 5-fragment hybrid fragmentation.

Overall, these results are encouraging because they allow us to show that our
techniques successfully improve the scalability of distributed query evaluation. While
both Cong’s and Suciu’s technique offer impressive guarantees with regard to com-
munication cost, we have shown that when optimizing for end-to-end performance,
our technique, which is specifically designed for this purpose, yields significantly
better results.

6.3 Horizontal fragmentation stress test

We now take a closer look at our horizontal techniques. The goal of this evaluation
is twofold: First, we want to verify that horizontal distribution allows us to improve
both query response time and throughput. Then, we want to show that our pruning
techniques allow us to further improve throughput beyond the level achieved by dis-
tributed execution alone without any adverse effects on response time.

Since our definition of horizontal fragmentation assumes a multiple-document
collection, we conduct these experiments on an XMark collection that has been de-
composed into multiple small documents, placing eachopen auction element
into its own document along with its descendants and document subtrees referenced
via ID/IDREF. This results in documents of regular structure with an average size of
approximately 30 KB. We scale this collection to 350 MB, 3.5 GB and 35 GB4.

6.3.1 Balanced fragmentation

Eachopen auction element generated by XMark contains an auction end date and
these dates are uniformly distributed across the years 1998-2001. We can therefore
obtain a balanced horizontal fragmentation schema (i.e., afragmentation schema in
which all fragments are approximately the same size) by dividing this date range into
non-overlapping periods of equal length, with each such period corresponding to one
horizontal fragment. For this experiment, we use fragmentation schemas consisting
of 1, 2, 4, 8, 16, 32, 64 and 99 fragments5.

On this distributed collection, we evaluate 5 classes of queries, which we have
chosen to illustrate the behaviour of our techniques in different scenarios. Q1 consists
of queries that contain a point predicate on the auction end date, i.e., each query re-
turns auctions that end on exactly one date within the 4 year period. Q2-Q5 represent

4 Since the decomposition of the collection increases the sizeby a factor of about three, the collections
used in this experiment correspond to the same data as the collections used in the previous experiments.

5 We were limited to 100 EC2 instances running simultaneously. Since one instance is needed for the
dispatcher, this means that we can use at most 99 instances to store fragments.
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range queries that cover 25%, 50%, 75%, and 100% of the date range, respectively.
These queries correspond to different scenarios for our horizontal pruning algorithm:
whereas Q1 can be answered using a single fragment, Q2-Q5 need to access an in-
creasingly large fraction of all fragments. Thus, Q1 is a good fit for this fragmentation
and Q5 is an extremely poor fit. It is important to note that each time we run a query in
one of these classes, we randomly choose a date/date range within the 4-year range.
Table 5 shows an example of a query in each class.

We first measure the response time of evaluating the queries on the horizontally
distributed collection. As in all measurements in this paper, the results reported in
Figure 24 include the cost of constructing sub-query results at the individual sites,
shipping them to the dispatcher and assembling them to the overall query result6.
In the case of the 35 GB collection, some data points are missing for centralized
execution and the fragmentation schemas with a lower numberof fragments. In these
cases, the query did not finish within 2 hours.

When interpreting the results, we can see that horizontal distribution allows us
to reduce query response time when compared to centralized execution (i.e., the sce-
nario with a single fragment on a single machine). The more machines we add to
the system (by fragmenting the collection into more fragments), the faster response
time becomes. Similarly, adding more machines allows us to manage larger collec-
tions while maintaining the same level of response time. We can also observe that
pruning does not result in a major improvement of response time when compared
to distributed execution without pruning. This is expectedsince pruning is primarily
intended to improve throughput. It is important, however, to point out that pruning
has no negative impact on response time.

Next, we consider the impact of distribution and pruning on throughput. To mea-
sure query throughput, we use multiple dispatcher processes to keep the system
loaded with queries. In Figure 25, we report the maximum throughput rates we were
able to achieve for each class of queries. Even without pruning, distribution signif-
icantly increases throughput and this increase in throughput is proportional to the
number of fragments. Enabling pruning further improves throughput by a significant
margin. Naturally, the impact of pruning is most pronouncedfor the class of point
queries Q1, where a single date is selected and where our pruning algorithm can
therefore avoid accessing all but one of the fragments for each query. Pruning also
helps for the queries that involve a range of dates, particularly when this range is
small, though the effect is less pronounced. For Q4 and Q5, where a large portion of
the fragments or all fragments have to be inspected, pruningoffers no advantage over
simple distribution but it also does not harm performance (apart from some insignif-
icant anomalies in the case of the 35 GB collection where throughput rates are very
low).

This illustrates the importance of a fragmentation schema that is well suited to the
workload: fragmenting on attributes on which single-valueselections are performed
leads to greater pruning opportunities than fragmenting onattributes that are used in
wide range predicates. Even in the latter case, however, distributed evaluation by far
outperforms centralized querying.

6 Note that we use a logarithmic scale on the x-axis.
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Fig. 24 Response time, balanced horizontal fragmentation
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Fig. 25 Throughput, balanced horizontal fragmentation
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Our results also show that once a throughput of approximately 20 queries per sec-
ond is achieved, further increasing the number of machines does not lead to improved
performance. This is because, for simplicity, our experimental setup uses a single dis-
patcher, which becomes saturated at this point so that distributed query evaluation is
no longer the bottleneck. In practice, this problem can easily be avoided by dispatch-
ing queries from multiple sites.

6.3.2 Skewed fragmentation

While pruning performs well on a balanced fragmentation, in practice it is not al-
ways possible to achieve this balance. We therefore measurethe effect of pruning
with a skewed fragmentation consisting of 8 fragments. Our skewed fragmentation
is defined as follows: The first fragment contains half of the entire collection (corre-
sponding to the first 2 years of the 4-year period), the next fragment contains half of
the remaining collection (i.e., 25% of the data), and so forth, with the last fragment
containing the remainder of the collection data.

Figure 26 shows the throughput rates achieved by centralized query execution
(which is vanishingly low in some of the cases shown), as wellas distributed query
execution (with and without pruning) on a balanced fragmentation consisting of 2, 4
and 8 fragments and on the skewed fragmentation. We use queries Q1 and Q2, for
which pruning has been shown to be particularly effective. Even in the presence of
skew, distribution results in a significant boost in performance over centralized query-
ing in all cases. As with a balanced fragmentation schema, pruning further improves
throughput.
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Fig. 26 Throughput, balanced and skewed horizontal fragmentation
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The throughput rates obtained on the skewed fragmentation tend to fall between
that of a balanced fragmentation with 2 fragments and 4 fragments. This can be ex-
plained by the fact that the largest fragment in the skewed fragmentation, which is the
same size as a fragment in the balanced fragmentation with 2 fragments, represents a
throughput bottleneck.

To further improve querying performance on a skewed distribution, it could be
beneficial to replicate the most heavily loaded fragments. We plan to examine repli-
cation as part of our future work.

6.3.3 Pruning efficacy

In addition to evaluating the performance impact of pruning, we are interested in
how effectively the pruning technique limits query execution to the fragments that
actually yield part of the result. To determine this, we measure the fraction of those
sites accessed by a pruned query plan that yield part of the query result. The results
(based on a balanced fragmentation consisting of 16 fragments) are shown in Figure
27. We omitted Q1 from this experiment, since it can be answered using a single
fragment. We vary the cut-off value for the initial bid of theauction, which affects
the selectivity of the queries, with a lower value yielding more query results. We
can see that pruning is more effective for the queries that select a large number of
results (corresponding to lower bid values). This is because a query that selects a
larger portion of the collection is more likely to find a matchwithin a given fragment.
The results reported here are derived from the 35 GB collection. With the smaller
collections, efficacy tends to be slightly lower, which can be attributed to the lower
numbers of results derived from these collections.
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6.4 Vertical fragmentation stress test

The experimental evaluation of our vertical techniques focuses on response times.
In a vertically fragmented system, a single type of query always accesses the same
fragments resulting in a closed system in which throughput can only be improved by
reducing the response time. This makes a separate study of throughput unnecessary.
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We again use the multiple-document XMark collection described in the previous
section, which we partition into six vertical fragments based on the fragmentation
schema shown in simplified form in Figure 28. This results in askewed fragmentation
because different node types in the collection occur with different frequencies. We
scale the collection to 350 MB and 3.5 GB.

We evaluate queries Q6-Q10 shown in Table 5. Q6 only involvesa single frag-
ment (shown in Figure 28(a)). Previous work has shown that this is the ideal case
for vertical fragmentation [25]. The remaining queries, however, reach five of the
six fragments in the collection (Figure 28(a), (c), (d), (e)and (f)). Traversing such a
large number of vertical fragments poses a challenge for distributed query evaluation
because the large number of joins required to assemble the results from individual
fragments can degrade performance. A carefully designed fragmentation schema will
therefore aim to avoid this scenario, although this is not always possible. One of the
goals of this experiment is to show that our distributed execution and pruning tech-
niques allow us to achieve good performance even in this adversarial case. While Q7
to Q10 reach the same number of fragments, they differ in the number of structural
and value constraints they contain, which increases as we gofrom Q7 to Q10.

Figure 29 shows, for each collection and query, the responsetime obtained by
centralized query execution, distributed execution without any pruning, distributed
execution with pruning based on skipping IDs and distributed execution with prun-
ing based on skipping IDs as well as label paths. We can observe that distributed
execution significantly outperforms centralized execution in all cases.

In order to closely analyze the impact of the various distributed techniques, it is
useful to consider the number of fragments that they access for each query, which is
shown in Table 6. For Q6, which can be answered by accessing a single fragment,
all distributed execution techniques yield approximatelythe same response time. For
Q7, näıve distributed execution needs to access 5 fragments, whereas both pruning
techniques access only a single fragment. This explains whyboth pruning techniques
yield comparable response times, which are approximately half of that of näıve dis-
tributed execution. In the case of Q8, pruning with skippingIDs performs better than
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Fig. 29 Response time, vertical fragmentation

näıve distributed execution and pruning with label paths in turn performs better than
pruning with skipping IDs. Again, these results are reflected in the number of frag-
ments accessed by each of these techniques. For Q9 and Q10, finally, where even
with pruning a large number of fragments need to be accessed,response times for all
distributed techniques are approximately on par with each other.

Fragments accessed
Query Dist Skip Label

Q6 1 1 1
Q7 5 1 1
Q8 5 2 1
Q9 5 3 2

Q10 5 4 3

Table 6 Number of fragments accessed, vertical fragmentation

7 Related work

There exist significant bodies of work on both querying XML data in a centralized
environment and distributed query evaluation in relational systems. Due to space con-
straints, we will restrict our discussion of related work toXML query evaluation in
distributed systems and to techniques that are directly related to our work.

7.1 Specifying XML Fragmentation

Existing work has focused on two main approaches to fragmenting a collection of
XML data:ad-hoc fragmentationandstructure-based fragmentation.

7.1.1 Ad-hoc fragmentation

Ad-hoc fragmentation is a flexible fragmentation model thatdoes not rely on an ex-
plicit fragmentation specification. Instead, it allows us to fragment XML data by
arbitrarily cutting edges in XML documents.
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One approach that follows the ad-hoc fragmentation model isActive XML, which
represents cross-fragment edges as calls to remote functions. When a remote function
call is activated, the data corresponding to the remote fragment is retrieved and is
then available for local query processing [4,26–28]. Active XML provides a flexible
model for describing how multiple sources of XML data can be integrated.

Based on this work, Abiteboul et al. present a technique for ensuring that an Ac-
tive XML document conforms to a specified type [2]. This is achieved by reasoning
about how the types of individual document fragments affectthe overall type of a
document, thereby combining Active XML with a more structure-based fragment-
ation approach.

Cong et al.’s work on partial query evaluation is also based on ad-hoc fragment-
ation although their single-document data model allows theauthors to infer certain
structural relationships between fragments, which can then be used for distributed
query optimization [6,7]. Therefore, this work can be considered a hybrid case that
has certain structure-based characteristics.

Deutsch and Tannen describe a technique for publishing an XML view over ex-
isting relational and XML data [3]. Their model uses XQuery expressions to map
between the published view and the (possibly redundant) data sources. While the au-
thors do not describe their work in a distributed context, they present a query rewriting
technique that could be used to answer queries in a data integration scenario. When
distributing to improve scalability, their technique seems less useful since the rewrit-
ing procedure is relatively complex and the complete freedom given by an XQuery-
based fragmentation model with overlapping fragments would further increase the
already large search space encountered when fragmenting for a given workload.

The representation of cross-fragment edges as pairs of proxy nodes is a technique
that has been used successfully to fragment XML document trees onto pages in the
native XML database system NATIX, albeit at a much smaller level of granularity
than in the work presented here [19].

7.1.2 Structure-based fragmentation

Structure-based fragmentation is based on the concept of fragmenting a collection
based on some properties of the schema or the data itself. As in the relational context,
we can distinguish betweenhorizontal fragmentation, which defines fragments by
selectingsubsets of the collection, andvertical fragmentation, in which fragments are
defined byprojectingto different parts of the schema. In addition to these options, it
is possible to define ahybrid fragmentationby concatenating selection and projection
steps.

One of the first attempts to transfer the relational conceptsof horizontal and ver-
tical fragmentation to the realm of XML was made by Ma and Schewe [29,30]. How-
ever, their definition of vertical fragmentation is limitedto elements whose content
is a sequence of other elements. Under these constraints, itis straightforward to ex-
tend the relational definition of vertical fragmentation bytreating the containing ele-
ment type as a relation that contains attributes corresponding to the contained element
types. As in the relational case, we can then simply project to subsets of the contained
elements. The authors also assume a single-document collection, which means that
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a horizontal fragmentation step always has to be preceeded by an implicit vertical
fragmentation step. In addition, their approach is based onmodifying the schema by
renaming elements and rearranging their nesting. Therefore, unlike later techniques,
it is not transparent and it requires queries to be formulated explicitly for a particular
fragmentation specification.

Bremer et al. present another mechanism for specifying a vertical fragmentation
of XML data [5]. They call such a specification a Repository Guide. In a Repository
Guide, a fragment is defined by a selection path expression identifying the root nodes
of the subtrees contained, as well as a set of exclusion pathsrepresenting nodes whose
descendants are excluded from the fragment. The set of fragments is required to be
both disjoint and complete. The authors argue that this approach can be expanded to
horizontal fragmentation by allowing branching and value constraints in the defining
path expressions. However, this would make it more difficultto enforce completeness
and disjointness.

Andrade et al. expand Bremer’s specification method by adding explicit support
for horizontal and hybrid fragmentation [25]. They define each horizontal fragment
by giving a selection predicate in the form of a Boolean path expression with value
constraints. This predicate is used to determine whether a given document is part
of the fragment. The predicates are required to cover all documents (completeness)
and be mutually exclusive (disjointness). The authors alsomake the observation that
by nesting horizontal and vertical fragmentation, both single-document and multiple-
document scenarios can be accommodated.

In addition to predicate-based horizontal fragmentation,Kido et al. introduce a
novel definition of vertical fragmentation that is based on partitioning the schema
graph, rather than on inclusion and exclusion paths [31]. This definition closely re-
sembles the way we define vertical fragmentation.

While not directly related to fragmentation, Marian et al. propose a technique
that improves query performance by projecting away irrelevant portions of an XML
collection [32]. The goal of this technique is to reduce the size of the relevant portion
of the collection and thus be able to process the query in mainmemory.

In summary, we can observe that ad-hoc fragmentation offersgreat flexibility
in how a collection can be distributed, which makes it a good candidate for a data
integration scenario. This flexibility, however, comes at the cost of decreased oppor-
tunity for distributed query optimization. Structure-based fragmentation, on the other
hand, is less flexible but yields a well-defined specificationof the fragmentation lay-
out, which is a valuable asset during distributed query optimization and which makes
structure-based fragmentation a good candidate when fragmenting for performance
reasons.

7.2 Representing XML Schema Information

A concise graph representation of the schema of an XML collection has been used to
convert XML data to relational tuples [10]. As in our work, the authors capture only
the relevant aspects of the original DTD or XML Schema.
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7.3 Query Evaluation

A number of techniques have been developed to evaluate queries on distributed XML
collections. In this section, we classify these existing techniques based on their ap-
proach to optimizing distributed query evaluation.

7.3.1 Query models

Query models similar to XQ and their connection to standard XPath and XQuery
have been considered in related work [11,12]. The representation of such queries as
tree patterns is also an established technique [13,14].

7.3.2 Fragmentation in Centralized Query Processing

The problem of centralized query processing on fragmented collections of XML data
has been studied within the context of streamed XML data on devices with lim-
ited resources [33] and as a means to implement publish/subscribe systems [34].
Fragmentation-aware query evaluation techniques have also been used within the
context of a centralized XML database system [35].

7.3.3 Distributed Query Language Extensions

A simple way to query distributed collections is to make the distribution explicit in
the query language. Zhang and Boncz have developed the querylanguage XRPC [36,
37], which is a superset of XQuery that has been enriched withfacilities for ship-
ping queries to remote sites. When XRPC queries are evaluated, these requests are
forwarded and the results are used during local query processing. If a remote site
does not support XRPC but supports plain XQuery, an adapter can be used to trans-
late. This allows queries to make use of remote data sources without requiring any
changes to those sources, which is desirable since a user might not have administra-
tive control over them. While Zhang and Boncz do not describe any optimizations
that go beyond what is explicitly specified in the query, XRPCmay be well suited to
serve as a target language for a distributed optimizer.

XQueryD [38] and DXQ [39] provide XQuery extensions that aresimilar to
XRPC. All these approaches cater primarily to a data integration scenario. They
might, however, be useful as a backend language for a distributed database system.

7.3.4 Pruning Irrelevant Fragments

Pruning is an important step in distributed query optimization. The idea behind prun-
ing is to identify which fragments are irrelevant for a givenquery and then refraining
from accessing these fragments altogether. This can help improve the query through-
put of a distributed system and can also reduce latency by eliminating the need to
wait for processing of irrelevant fragments to finish.

Based on their partial evaluation strategy, Cong et al. present a simple technique
for pruning fragments [6]. They identify fragments that canbe pruned by examining
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the structural relationship between fragments. Unlike ourpruning techniques, how-
ever, they cannot eliminate intermediate fragments. Theirpruning technique is there-
fore largely equivalent to the initial vertical localization we perform before applying
our more advanced pruning techniques.

Within the context of Active XML, Abiteboul et al. present a technique that avoids
calling certain remote functions and thereby limits the number of fragments that have
to be retrieved in order to answer a given query [4]. Due to thead-hoc fragmentation
of Active XML documents, it is not possible to identify in advance the set of irrel-
evant fragments. Instead, a lazy approach to retrieving fragments is employed, and
fragments are only shipped to the central query processing site when the correspond-
ing function call is reached during query evaluation. This is consistent with Active
XML’s focus on querying over integrated XML data services.

On the structure-based side, Andrade et al. allude to the possibility of pruning
irrelevant horizontal fragments but do not provide detailson how this pruning could
be performed [25,40] .

Hammerschmidt et. al have developed a technique that uses automata to deter-
mine whether two XPath expressions intersect [41]. While this technique could be
used as an alternate strategy for pruning horizontal fragments, the authors do not
appear to support queries with multiple extraction points,as are frequently encoun-
tered in sub-queries resulting from vertical fragmentation, preventing us from using
this technique in a hybrid scenario. Furthermore, the automaton-based technique is
likely to be less performant since (potentially large) product automata have to be
constructed, whereas our technique aggressively prunes branches that are not shared
between QTP and FTP.

7.3.5 Distributed Query Execution

An important consideration when evaluating queries on a distributed system is the
trade-off between shipping data and shipping queries. On one hand, it is possible to
ship all relevant data to a central location where all query processing is performed. On
the other hand, it is possible to ship the query or parts of thequery to the sites storing
the individual fragments and perform as much as possible of the query processing
work distributed throughout the system, thereby taking advantage of parallelism and
reducing communication cost; finally, only the (partial) results derived from each
fragment are shipped back to the originating site.

While most of the literature on Active XML employs a data shipping approach
[4,26] there has been some work on distributing query processing [28]. Distributing
query processing is complicated by the ad-hoc fragmentation of Active XML, which
makes it difficult to determine which part of the query has to be executed on which
fragments.

Based on a hybrid of ad-hoc and structure-based fragmentation, Cong et al. pres-
ent a distributed query evaluation strategy that computes partial matches at each frag-
ment and then combines them at a central location [6,7]. The authors start with a
technique that is designed to answer Boolean queries and then expand the scope of
their work to include data-selecting queries with a single extraction point while main-
taining impressive performance guarantees. The main goal of their strategy is to limit
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the number of times that each fragment has to be accessed and to provide a bound
on the amount of network traffic incurred. Our technique, in contrast, considers the
overall cost of evaluating a query, including the computation cost at each site. Our
performance evaluation shows that our technique indeed yields better results when
optimizing for overall cost (cf. Section 6.2). Also, unlikeour technique, Cong et al.’s
partial evaluation approach requires that a specific technique be used for local sub-
query evaluation at each fragment, limiting the potential for local query optimization.

Suciu presents a technique for evaluating queries on an ad-hoc distributed col-
lection of semistructured data [8]. As in Cong et al.’s work,the main focus is on
bounding the number of communication steps and the amount ofdata transferred,
rather than on overall query performance, which explains why our technique leads to
better performance when considering overall query cost (asshown experimentally in
Section 6.2).

Within the context of vertical fragmentation, there is a large optimization space
in how sub-queries are executed and how their results are combined to the overall
query result. We discuss this problem in [9] and suggest a number of plan alterna-
tives that improve query performance. Another aspect of this problem is related to
how distributed joins are ordered and executed. This has been studied in detail in the
relational context and many of those results are applicablehere [1].

7.3.6 Query Decomposition

Another important aspect of distributed query evaluation,particularly in the context
of vertical fragmentation, is the problem of decomposing a query into sub-queries
that can be evaluated on the individual fragments.

Suciu describes a limited class of queries that can be decomposed and for which
it can be shown that evaluating the decomposed queries is efficient [8].

Based on the XRPC extension of XQuery, Zhang et al. describe atechnique that
transforms a centralized, data shipping-oriented query into a distributed, query ship-
ping equivalent [42]. This is achieved by decomposing the query and pushing part
of the query execution to remote sites. This work supports all of XQuery, although
certain query primitives make it impossible to perform effective query decomposition
while maintaining result correctness. In these cases, the technique falls back to a data
shipping approach.

Le et al. present a schema-based technique for decomposing aglobal query into
local queries within the context of a data integration system [43]. They identify which
of the local schemas contain information that can be mapped to the global schema
types used in the query. While their technique is not directlyapplicable to the dis-
tributed database scenario, one might employ a similar method to identify which
fragments in a vertically fragmented collection are relevant for a given query.

7.3.7 Representing Partial Results

A common problem encountered when using a query shipping approach to distributed
query evaluation is how to represent the partial results that need to be shipped from
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one site to another. If more than one of these results containthe same node, it may be
advantageous not to send multiple copies of this redundant node.

Tajima and Fukui present a technique that can be used to solvethis problem by
sending a minimal view that contains all results rather thansending each result sepa-
rately [44]. While their work is primarily intended for querying a single XML data-
base instance over a network, it could also be used to ship partial results within a
distributed system.

7.3.8 Index Structures

Another option for enabling distributed query processing is the use of index struc-
tures, which can provide a compact summary of the data storedin other fragments
and thereby enable some amount of local query processing over remote data.

Bremer et al. employ this approach to evaluate queries on a collection that is frag-
mented based on structure [5]. One of their indexes stores label path information for
all the nodes in the collection. Our technique, on the other hand, only stores label
path information for proxy nodes and only if there is ambiguity. By replicating the
indexes across the system the bulk of the query processing work can be performed
efficiently and at a single site. Remote fragments only need to be accessed in order to
evaluate value constraints in the query. While replicated indexes allow the authors to
achieve good query performance, this comes at the potentialcost of decreased scala-
bility and more complicated update management (since replicated indexes have to be
updated when changes are made to the collection). The centralized nature of index-
based query processing might also lead to reduced intra-query parallelism and can
potentially cause bottlenecks in the system when queries are not evenly distributed
across all sites.

Koloniari and Pitoura present a Bloom filter-based index structure that can be
used to derive top-k results for an approximate structural query on a distributed XML
collection [45]. This index is used to prune fragments that will not yield top-k results.
It can also serve to determine the order in which fragments are accessed, with the
most promising fragments being accessed first.

Dewey IDs, first proposed in [21] are another technique that has been used to
index structural information within the context of XML documents [46].

8 Conclusion

We have shown how tree pattern queries can be evaluated in a distributed system by
employing a predicate-based definition of horizontal fragmentation and a schema-
based definition of vertical fragmentation. We have proposed pruning techniques for
horizontal and vertical fragmentation. Our performance experiments show that, when
combined, these techniques lead to a significant improvement in query performance,
both when compared to centralized query execution and to existing distributed tech-
niques.

One direction of future work is to examine the optimization opportunities of our
fragmentation model that go beyond localization and pruning. One such optimiza-
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tion is discussed in our companion paper [9]. Expanding our query model such that
it can express a larger subset of XQuery is another importantgoal. It would also be
interesting to investigate what additional optimizationsare possible for a hybrid of
vertical and horizontal fragmentation and how we can determine hybrid fragment-
ation schemas automatically.
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