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Abstract Distributing data collections by fragmenting them is areefive way of
improving the scalability of a database system. While théridigion of relational
data is well understood, the unique characteristics of XMtadand its query model
present challenges that require different distributiochteques. In this paper, we
show how XML data can be fragmented horizontally and vellficBased on this, we
propose solutions to two of the problems encountered inibliged query processing
and optimization on XML data, namely localization and pngiLocalization takes
a fragmentation-unaware query plan and converts it to ailoliséd query plan that
can be executed at the sites that hold XML data fragments istatdited system.
We then show how the resulting distributed query plan canrbeqd so that only
those sites are accessed that can contribute to the queity, k&% demonstrate that
our techniques can be integrated into a real-life XML dasetsystem and that they
significantly improve the performance of distributed quexgcution.

Keywords Distributed- XML - Localization- Pruning

1 Introduction

Over the past decade, XML has become a commonly used formsiidng and ex-

changing data in a wide variety of systems. Due to this witksspuse, the problem
of effectively and efficiently managing XML collections hafracted significant at-
tention in both the research community and in commerciatipets. One can claim
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that techniques for the management and querying of XML dzdaling on a single
system are now well understood. However, because theseigeels are inherently
based on centralized execution on a single machine, thedmlsitity is limited when
presented with large collections (or single, large docusjeand heavy query work-
loads.

In relational database systems, these scalability clgdlemave been success-
fully addressed by patrtitioning data collections and pssg®y queries in parallel in
a distributed system [1]. Our work is focused on similarlpleiting distribution in
the context of XML database systems. While there are soméesitigis between the
way relational database systems can be distributed anghfeetanities for distribut-
ing XML database systems, the significant differences ih bata and query models
make it impossible to directly apply relational techniqe@sKML. Therefore, new
solutions need to be developed to distribute XML databastesys.

While there has been research interest in distributed XMloygpecessing for a
while, much of the existing work has focused on the problenmi@grating multiple
repositories into a single XML view [2—4]. Itis importantpoint out that, while data
integration also deals with optimizing queries over fragted collections of XML
data, its goals and the constraints it faces are decidefibraht from those seen in
a scenario where we are distributing to improve scalabikty instance, whereas
data integration requires a fragmentation model that cparess the complex ways in
which we might need to integrate individual and possiblyurethnt data sources, in
this work, we optimize our fragmentation model entirely foery performance.

A few publications have focused on distribution as a meaimpoove scalability.
These either rely heavily on replicated index structuras tomplicate the handling
of updates [5] or they focus primarily on minimizing netwar&mmunication cost
[6-8]. In this paper, in contrast, we look at end-to-end ohs and take into account
all components of the cost of query evaluation, includinghownication and pro-
cessing. Our experiments show that our technique, whigbesiically designed for
this purpose, outperforms techniques that focus on conuation cost alone.

In this paper, we focus on the following three aspects of tbelpm of improving
the scalability of XML query evaluation through distriborti

— First, we present distribution modelfor XML. We have chosen to focus on a
fragmentation approach that partitions the collectioredasn characteristics of
its content and structure. A key advantage of this modekisitlis simple and yet
sufficiently powerful to significantly improve the scalatyilof distributed query
evaluation. This simplicity makes it easier to identify éable fragmentation for
a given query workload.

Our distribution model supports horizontal fragmentatioased on selection op-
erators and predicates) and vertical fragmentation (basedpartitioning of the
set of element types in a schema). Both types of fragmentati® designed to be
orthogonal, which means they can be used together to achydwra fragment-
ation. While the semantics of this model are inspired by i@tat fragmentation
techniques, it is important to point out that the charastiess of XML, such as
its nested data model and structure-based queries, leagsktooé challenges and



optimization opportunities that differ significantly fromhat is encountered in
the relational context.

— Second, we focus on the problemlotalization and pruningn distributed XML
database systems. We propose a localization techniquérémsforms a frag-
mentation-unaware query into sub-queries that can be &ealun parallel at the
individual sites in the system. We then present a novel tgclerthat allows us to
identify fragments that are irrelevant for answering a gigeery and prune them
from the query plan.

While localization and pruning represent only the first stédistributed query
evaluation, we show that even with these techniques aloreawachieve signif-
icant improvements in performance. Further optimizatitwas can be performed
after localization and pruning have been published seglsrig] and further work
along these lines is the subject of ongoing research.

We point out that all of our query evaluation techniques watthout relying
on a globally replicated index structure, because usingy sustructure could
limit the scalability of a distributed system and negathaffect the performance
of updates. In addition, our techniques work independeatlthe local query
evaluation strategies used for evaluating sub-queridseantividual sites in the
system, allowing for maximum flexibility.

— Based on our localization techniques, we then propose & sedrixload-aware
fragmentation algorithmsThese algorithms are designed to determine a frag-
mentation layout that will optimize performance for a gisat of queries.

To motivate our work, consider the following example. Fegdr shows a hori-
zontally fragmented data collection consisting of fourutpents representing infor-
mation about authors and their publications. The horizdragmentation is defined
based on the first letter of the authors’ last names, placlogri Adams” in fragment

(first ) (CTast ) (_book ) i (first ) (CTast ) (_book ) I

(first ) (CTast ) (Cbook ) (first ) (CTast ) (Cbook )

—_———_——_——_ -

Fig. 1 A horizontally fragmented collection
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Fig. 2 A vertically fragmented collection

fi,“Jane Dean” in fragment and “John Smith” as well as “William Shakespeare”
in fragmentf L.

Figure 2 shows a similar collection that has been fragmeveetitally. Ignoring
the nodes labeled @& 7/ andRP, "’ for now, we can see thatut hor andagent
nodes are stored in fragmefy , the nodes related to the author’s name are stored in
fragmentfy’, pubs andbook nodes are stored in fragmefif andchapt er and
r ef er ence nodes are stored in fragmefy .

Consider evaluating the following XPath query:(

[author[nang[first = "WIlliani and
| ast = ' Shakespeare’]]//book//reference

In the horizontal case, it is easy to see that the fragmg¢fitand ¥ cannot
possibly contribute to the result of this query since theyespond to authors whose
last names start with the letters “A” and “D”, respectivéyuning these fragments
allows us to answer the query without contacting the siteghath they are stored.

If we evaluateg on the vertically fragmented collection, in the generakegase
have to access all four fragments. Fragmghtis needed to evaluate the value con-
straint predicates, fragmefil’ is needed to obtain result nodes and fragmgHtand
fy are needed to evaluate structural constraints. We will faesent a technique that



allows us to avoid accessing some of the fragments only mefedestructural con-
straints.

We propose a general technique that detects situations ichvitagments are
not needed to answer a query and then prunes these irrefesgmtents from a dis-
tributed query plan. This greatly improves the performaofadistributed query eval-
uation and allows us to fully benefit from distribution as aame to overcome the
scalability challenges faced by large XML collections. ®pecific contributions of
the work presented here are the following:

1. We formally define a fragmentation model for XML that allbws to fragment
and distribute a collection in order to improve query parfance. Along with
this model, we propose a succinct method for specifying trzbintal or vertical
fragmentation of a collection of XML documents, which caaritbe used as the
basis for distributed query optimization.

2. Using this specification, we then show how a query can bestoamed into a
distributed query plan.

3. Based on our fragmentation model, we propose a compléte afutechniques
for identifying and pruning irrelevant fragments from atdizsuted query plan.

4. We propose algorithms for fragmenting a collection of Xbacuments to im-
prove the performance of a given workload (when evaluatétusur pruning
techniques).

5. We have implemented these techniques within a real-iffgibduted XML data-
base system, which has allowed us to verify that our teclasigignificantly im-
prove performance and scalability, both compared to ckrgchquery evaluation
and to existing distributed techniques.

The remainder of this paper is structured as follows: Se@idescribes the tech-
nical background of our work. Section 3 introduces our mad&lorizontal and ver-
tical fragmentation. In Section 4, we propose techniqueg¥aluating queries over
distributed collections and describe how distributed gumraluation can be opti-
mized through localization and pruning. Based on theseygieluation techniques,
Section 5 describes our algorithms for fragmenting an XMllembion such that per-
formance for a given workload is optimized. In Section 6, wesent a thorough
evaluation of the performance impact of the techniquesgnmtesl in this paper. Sec-
tion 7 discusses related work. In Section 8, we summarizevouk and present our
conclusions.

2 Background
2.1 Data model

An XML collection can be described as a set of labeled, odigees. While XML is
a self-describing format that can be used without a schemaaictice, the structure
of document trees is usually constrained by a schema theifiggehow elements may
be nested and what the domain of their textual content ish&msa is usually defined
in a language such as DTD or XML Schema. In this paper, we usaesdirected
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Fig. 3 A schema

graph representation that covers only the aspects of tlerscthat are important for
our purposes. For example, our representation ignoresistieation between XML
elements and attributes by treating both of them unifornsip@des Similarly, we
refer to element types and attribute names@de typesAssuming that the original
schema definition does not contain unspecified portiond(aathose defined using
the DTD keywordANY), it is straightforward to extract the information capiuitey
our graph representation from a D¥Br an XML Schema. Extracting schema infor-
mation yields a schema graph that may be less restrictivettieoriginal schema,
but since the schema graph is never used for the validaticlo@iments this does
not pose a problem [10].

Definition 1 An XML schema graplis defined as a 5-tupleX, ¥, s, m, p) where
X is an alphabet of node types,is the root node typef C X x X is a set of
directed edges between node types@ — {ONCE, OPT,MULT } andm : X~ —

{string}.

The semantics of this definition are as follows: An edge= (01,02) € ¥
denotes that a node of typa may contain a node of types. s(v) denotes the
cardinality of the containment represented by this edge(yJf) = ONCE, then a
node of types; must contain exactly one node of type. If s()) = OPT, then a
node of types; may or may not contain a node of type. If s()) = MULT, then
a node of typer; may contain multiple nodes of typs,. m (o) denotes the domain
of the text content of a node of type represented as the set of all strings that may
occur inside such a node. Note that the definitiomgs) may include both the direct
content of a node of type as well as the content of node types nestedl.iRigure 3
shows an example of a schema, represented both as a simplifizdnd as a schema
graph.

When translating a DTD or an XML Schema into the graph repitesen, at-
tributes are always assigned a cardinality of either ONCBI®T, corresponding to
mandatory and optional attributes, respectively. Elesyent the other hand, may oc-
cur with any of the three cardinalities, since both DTD and IXSthema allow for
the specification of elements with exactly one, zero or oneyuatiple occurrences.
In addition to these three cases, XML Schema allows a moregfia@ed specifi-
cation of the number of occurrences of an element. We hah@eby assigning a
cardinality of MULT whenever the XML Schema definition allsior an element to
occur more than once.

1 Note that a DTD does not explicitly specify the root elemeipietypf a document. However, the root
element type can be inferred from the DOCTYPE declaratiom®otfiments conforming to a DTD.



2.2 Query model and tree patterns

The query model used in this paper is a subset of XPath, whictall XQ. XQ con-
sists of absolute location paths consisting of node tests avid without wildcards,
child (/ ) and descendant () axes and predicates. Predicates may consist of (i) a
relative location path with the same restrictions (with ¥Paexistential semantics);
(i) a textual constraint of the form.?¥, s”, where s is a string constant anfl, is
either=or! =; or (iii) a numeric constraint of the form 8,, n”, wheren is a numeric
constant and,, is one of<, <=, =, >, >=, or! =. As in XPath, XQ steps return nodes
in document order (since both axes we support are forwars)axe

XQ queries are not only commonly used on their own, but thep atpresent
an important building block of more complex XQuery queri&4,[L2]. Therefore,
solving the problem of evaluating XQ queries in a distrilbufisshion is an important
contribution to distributed XQuery evaluation.

It is convenient to represent XQ queries as tree patternd{13which we for-
malize as follows:

Definition 2 Let (X', ¥, s, m, p) be a schema. Aee patternis a 7-tuple(N, E, r, v,

e, T, c) whereN is a set of pattern node&, C N x N is a set of pattern edges and
(N, E,r)is atreerooted at € N. For eachm € N, v(n) € X' U {x} denotes a node
test. Foreach € E, ¢(e) € {chi | d, descendant } denotes the axis typ&. C N
denotes the set of extraction points. For eack N, ¢(n) C m(v(n)) denotes a
value constraint on the text content of nodes of type).

Fig. 4 Query tree pattern (QTP) representation of query

In the following, we will refer to the tree pattern repressitn of a query as a
query tree patterr(QTP). It is interesting to note that, in addition to XQ ¢y
QTPs can be used to express queries with multiple extraptiorts. While this may
be useful for supporting a larger class of queries, in thjgepaour focus is on que-
ries with a single extraction point. Sub-queries resulfiogn vertical fragmentation,
however, frequently contain multiple extraction points.

The QTP depicted in Figure 4 is equivalent to qugfsom Section 1. The double-
outlined node labeled withef er ence is an extraction point and the edge labels “/”
and “//” denote child and descendant steps, respectively.

A match for a QTP assigns a node from the document to eaclrpattele such
that all node tests, value constraints, and structuraltcaings (expressed as axis
relationships) are satisfied. While all pattern nodes in tfie Qave to be matched to
nodes in a document, only the nodes associated with patbelesrthat are designated
as extraction points are returned as part of the result.



3 Fragmentation

Distribution of an XML collection over multiple sites reqas the fragmentation of
the collection. In this work, the motivation for distribngj data is query performance
and scalability (rather than integrating data from muétipburces) and our fragment-
ation model reflects this motivation.

We have developed a fragmentation model that partitiondlaction based on
characteristics of the content and the structure of the XisladThis yields a succinct
specification for a given fragmentation layout, which — asmileshow — is a valuable
asset when optimizing query evaluation.

It is important to realize that our fragmentation model dnesaim to capture
arbitrary fragmentation of XML collections, as would be ded in a data integration
scenario but instead focuses on simplicity and utility faexy optimization. Also,
while our focus is on partitioning a collection, other teicfues, which replicate all
or part of the collection, can be used in conjunction with taahniques for further
performance improvement.

In particular, our work is based on two techniques for fragtimg XML collec-
tions. Horizontal fragmentation is based on predicategresudlts in a collection that
is partitioned into fragments that all follow the same scheXtertical fragmentation,
on the other hand, is based on partitioning the schema.

3.1 Horizontal fragmentation

The first type of fragmentation we support is horizontal fregtation, which is par-

ticularly useful for improving query response times. Ititly, this is because in a
horizontally fragmented collection, query evaluation easily be parallelized. When
combined with the pruning techniques presented later sxghper, horizontal frag-
mentation can also lead to a significant improvement in quieryughput, corre-

sponding to a reduction in the amount of data that needs todmegsed to answer
each query.

Our model of horizontal fragmentation assumes a colledtiahconsists of mul-
tiple document trees. These document trees can either ve EML documents or
they can be the result of a previous fragmentation step.threecase, we require
that all document trees correspond to the same schema.pMuttbcument collec-
tions where all documents follow the same schema are a coms®oase for XML.
Popular examples include MathML [15] and CML [16].

A horizontal fragmentation is defined by a set of fragmeatafiredicates. Each
fragment consists of the document trees that match thesponeling predicate. To
ensure that the fragmentation is lossless and that the &atgare disjoint, we require
that whenever a document tree conforms to the schema of teetian, it matches
exactly one of the predicates.

Definition 3 Let D = {d;,d>,...,d,} be a collection of document trees such that
eachd; € D corresponds to the same schefda ¥, s, m, p). Then we can define
a set ofhorizontal fragmentation predicatd3 = {po, p1,- .., pi—1} such thatvd ¢



D : Juniquep; € P wherep;(d). If this holds, thenF' = {{d € D | p;(d)} | p; €
P} is a set of horizontal fragments corresponding to colleciioand predicate®.

We represent the fragmentation predicates as Booleanadtesms, i.e., tree pat-
terns with no extraction points. In the following, we willfeg to them agragment-
ation tree patterngFTPs). Based on this representation, the losslessnesfraf-a
mentation can be enforced by carefully crafting value aaists so that they cover
the entire domain of the values to which they refer.

If we assume that the document trees in the fragmented toleshown in Figure
1 conform to the schema in Figure 3 and thafl ast ) is the set of strings that
start with upper-case letters of the English alphabet, therfragmentation of this
collection can be described by the set of FTPs shown in Figure

Fig. 5 Set of fragmentation tree patterns (FTPs)

3.2 Vertical fragmentation

Vertical fragmentation allows us to improve both query msge time and through-
put. The main difference between both types of fragmemasdhat vertical frag-
mentation defines fragments based on the structure of tlae whereas horizontal
fragmentation defines them based on the content. As we véllager, this heavily
influences how efficiently we can answer certain types ofigaer

Our model of vertical fragmentation can handle collectitrag consist of a single
or multiple document trees. Again, it is possible that thizees are the result of
a previous fragmentation step, which allows us to combingzbotal and vertical
fragmentation.

A vertical fragmentation schemia defined by fragmenting the schema graph of
the collection into connected subgraphs:

Definition 4 Let (X, ¥, s, m, p) be a schema graph.\vertical fragmentation schema
is defined by a partitioning’s; of the set of node typeks.

The dashed outlines in Figure 6 show how the node types irstiisma have
been fragmented into four disjoint subgraphs. Fragmygntconsists of the node
typesaut hor andagent ; fragmentf;” consists of the node typesane, fi r st
andl ast along with their text content; fragmerff” consists ofpubs andbook;
fragmentf) includes the node typeshapt er andr ef er ence.

Since we require the schema graph to be connected, aftendratgtion, there
will be graph edges that cross fragment boundaries. Whetieeeschema contains
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Fig. 6 A vertical fragmentation schema

an edge from a fragment” to another fragmenf)”, we refer tof}" as achild
fragmentof £V and tof" as aparent fragmenof f]V. There is exactly one fragment
f;/ € F's; that contains the root node type We refer tof;/ as theroot fragment
While the schema graph may contain cycles, for performanasores, we require
that the fragmentation schema be a DAG (i.e., each cycledhas tontained within
a single fragment).

When a collection is partitioned according to a vertical in@gtation schema,
there will be document edges that cross fragment boundaklesepresent a docu-
ment edge from fragment" to fragmentf}’ by inserting a pair of artificial nodes

P77 and RP;™7 into fragmentsf}” and fY, respectively.P, "’ denotes groxy
nodein fragmentf) (the originating fragment) with IO, whereasRP,fﬁj denotes
aroot proxy nodan fragmenthV (the target fragment) with 1&x. Since P, and

RP,i‘” share the same 1D} and reference the same fragmerits{ j), they cor-
respond to each other and together represent a singlefcaggsent edge in the col-
lection.

The collection shown in Figure 2 has been fragmented aaugrii the verti-
cal fragmentation schema shown in Figure 6. The proxy paisisting of P{;?2 in
fragmentf!” and RP};>% in fragmentf)’, for example, represents an edge from an
aut hor node inf)” to anane node inf, .

Vertical fragments generally consist of multiple uncorted@ieces of XML data,
which we refer to aslocument subtreetn Figure 2, for example, fragmerf” con-
tains three subtrees, each of which consists oatlehor andagent nodes of one
of the documents in the collection.

4 Querying distributed collections

In this section, we propose techniques for evaluating ggesver horizontally and
vertically distributed collections. For each type of fragmtation, we start with a ifee
query evaluation strategy and then present optimizatieith, special focus on the
problem of pruning the set of fragments that need to be aeddssanswer a given
query.
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In relational systems, distributed query optimizationssially done based on an
algebraic representation of a distributed query [1]. Fonynaf the optimizations
presented here, however, the QTP represents a simpleactimtrthat contains all
the information necessary to make pruning decisions. Wethee describe many of
our techniques in terms of QTP manipulations.

4.1 Horizontal fragmentation

Based on the definition of horizontal fragmentation, we cefing a né&ve strategy
for evaluating QTPs on a horizontally fragmented collettd data. In an approach
that resembles horizontal localization in the relatioraitext [1], we can evaluate a
guery by computing the union of all fragments and then exegut fragmentation-
unaware plan over the result. Since the definition of hotaloinagmentation (Def.
3) requires that the set of document tréegs the union of all fragmentg € F' and
because our query model does not allow for structural caimssrinvolving nodes in
different documents, this leads to the correct result:

9(D) =q(|J /)
fer
Our query model implies that each result is derived from #yame document
tree in the collection. This allows us to push the (unchapffadmentation-unaware
guery plans down to the individual fragments:

Definition 5 If ¢ is a plan that evaluates the query on an un-fragmented totheaf
document tree® and F' is a horizontal fragmentation dp, then

q7(F) == so( () a(f))

fer

is anaive horizontal query plathat evaluates the same queryBywhere® denotes
concatenation of results, agg(F') = ¢(D).

As shown in the definition, it may be necessary to sort thelteseceived from
the individual fragments in order to return them in a staldtdbgl order as required
by the XQuery data model [17]. For unordered queries, or ifwewilling to relax
the ordering constraint, we can reduce the amount of sentidigced buffering by
only maintaining a stable order between nodes in the samantkerat. This may be a
reasonable trade-off in many use cases.

4.1.1 Pruning fragments

As discussed before, to answer the query shown in Figure Aefragmented col-
lection from Figure 1, only the documents contained in ttegfinent £ need to
be accessed. The'iva plan, in contrast, accesses every fragment in the tiofec
which can significantly reduce query throughput.
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In this section, we propose a procedure that detects iastefragments and
prunes them from a distributed query plan. This proceduiesren the schema of
the collection and the FTPs that define the fragmentatioth Bb these are static
over time, do not depend on the size of the collection and eagnicoded in a com-
pact manner. This makes it feasible to replicate them atteli as metadata.

Our pruning algorithm works based on the QTP representafitre query before
converting the result to an algebraic plan. This allows ugethuce the problem of
pruning horizontal fragments to that of determining thesstof FTPs that can be
shown to be unsatisfiable at the same time as the QTP.

To eliminate a fragment from the distributed query plan, wedto show that the
FTP corresponding to this fragment cannot be satisfied bycardent that matches
the QTP. While this problem could be solved by a general-memuery intersection
algorithm, we present a schema-aware algorithm that stgp@¥Ps with multiple
extraction points as are frequently encountered in hybégrhentation (for a discus-
sion of this, see Section 7.3.4).

As a first step, the algorithm transforms QTP and FTP into gkied form.
While this form is less expressive than general tree pattérisssufficient to detect
contradictions. We then traverse both simplified pattermsianeously, pruning all
but the shared branches, and check for contradictory @ntr If we find such a
contradiction, there cannot be any results for the queryérfragment corresponding
to the FTP and the fragment can thus be eliminated from theldited plan.

4.1.2 Transformation to simplified form

The goal of transforming tree patterns into a simplified figrto make sure that each
pattern node refers to a unique node within the context ohglsidocument tree.
In general, pattern nodes may match more than one node irea document tree.
A constraint associated with such a pattern node is satigfmte of the matching
nodes conforms to the constraint. This makes it impossibkxploit contradictory
constraints associated with such pattern nodes. Even dfthstraints themselves are
contradictory, they may be satisfied by different nodes ensdéime document.

With QTPs, there are three sources of pattern nodes that naégghnmultiple
nodes in the same document tree:

Node types reached via MULT edgéode types that are reached via an edge
in the schema that has a cardinality of MULT may occur mugtifaines in the same
context. Based on the schema in Figure 3, for example, tipepstbs/ book may
yield multiplebook nodes corresponding to a singlabs node.

Descendant stepsn also yield multiple results in the same context. In th&QT
shown in Figure 7(a), for example, the descendant edge betg hor andnane
can be satisfied either byreame node that is the direct child of a giveaut hor
node or by anane node that is reachable through an intermedsatent node. Be-
cause of this, even though the constraints on the auth@ts\teme imposed by the
FTP shown in Figure 7(b) and the QTP shown in Figure 7(a) seecause these
two patterns to be contradictory, they actually are not.ueent trees in the frag-
ment corresponding to the FTP predicate will only contaforimation about authors
whose last names start with the letter “A’. The QTP, on theeptiand, matches
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Fig. 7 QTP and FTP that are not contradictory

books that are either authored by “William Shakespeare¥y@dmeone whose agent
is “William Shakespeare” and whose last name might welk stih the letter “A’.
Wildcardsare another source of multiple matches in the same conteathevier
the schema specifies that a node type may contain multipés atide types.
We define simplified tree patterns as tree patterns that doomd&in any of these
primitives:

Definition 6 Atree patternN, E,r,v, ¢, T, ¢) is a simplified tree pattern iffn € N,
v(n) € X andv(z,y) € E,e((x,y)) =chi l dA(v(z),v(y)) € TAs((v(z),v(y)))
=# MULT.

In order to convert a tree pattern into a simplified tree pattall disallowed
primitives have to either be removed or converted into arvedgnt simplified form.
It is important to note that simplified tree patterns arec8iriless expressive than
arbitrary tree patterns. Therefore, when a tree pattenaistormed to a simplified
tree pattern, the result is not generally equivalent to tigiral tree pattern. Instead,
the simplified tree pattern matches a superset of the dodutme&s that match the
original tree pattern. Since simplified tree patterns akg @sed to identify fragments
that can be pruned, but not for the subsequent query evatuati those fragments,
this loss of expressiveness does not pose a problem. Nelegghit is important that
the transformation retains as much of the information presethe original pattern
as possible so that this information can be exploited fonimgt

Algorithm 1 performs the transformation of a tree patterto ia canonical tree
pattern based on the following principles:

— Using schema information, descendant steps are unroltedenuivalent paths
comprised entirely of child steps (procedure shown as Adgor 2). If there is
more than one path, artificial nodes representing a choierofdd as®) are
inserted and the branch below the descendant step becoautsbe via more
than one path, thus turning the tree pattern into a direei®dlic graph (DAG).

— Wildcard node tests are converted to non-wildcard nods telserever this is un-
ambiguously possible. Otherwise, the corresponding pattedes are removed
along with their descendants.

— Pattern nodes matching nodes from the collection for whiehschema allows
multiple occurrences in the same position are removed alatigthe branches
below them.
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Algorithm 1: pattern transformation algorithm

input :patterntred N, E,r,v,¢,T, c), schemad X, &, s, m, p)

output : pattern grap{N’, E',r', v/ €, T’,c)

variable: @Q // represents pattern nodes whose children have yet to lekete
variable: N’ /] set of pattern nodes to be inserted

variable: E'’ I/ set of pattern edges to be inserted

1 7’ + new node

2 V(r') + v(r)

3 d(r") « ¢(r)

4 N « {r'}

5 B« 0

6 T+ 0

7Q {(rr)}

8 while @ # 0 do

9 I/l while there are pattern nodes to be processed, pick one
10 (¢,4") < some (q,q') €Q

1 Q+ Q\{(q,d")}

12 /I for all outgoing edges of

13 for e = (z,y) € E, withz = gdo

14 y’ < new node

15 ' (y') « cy)

16 if e(e) = chi | dthen

17 /l case 1: child axis

18 if v(y) # * then

19 | V() =v(y)

20 else ifd(o1,02) € ¥ unique withv(z) = o then
21 | V() + o2
22 else
23 | continue
24 if v = (v(z),v(y)) € ¥, s(¢) # MULT then
25 [/l add this pattern node to the simplified tree
26 N «+ N U{y'}
27 E' + E' u{(¢.v)}
28 QR+ QU{(y.y)}
29 else ifv(y) # = then
30 Il case 2: descendant axis
31 Y’ + {0 € X'| oreachable fromv(z),
32 v(y) reachable fronr in (X, %)}
33 ¥« {(01,02) €V | 01,02 € X'}
34 if (X7,%’) is acyclic andfyy € ¥’ with s(1)) = MULT then
35 V' (y) < v(y)
36 (N",E") < unrol | desc(¢,y', X", ¥/, v(x))
37 N+ N'UN"uU{y'}
38 E' '+ E'UE"
39 Q<+ Qui(yy)}

40 Ve’ € E’,é'(e¢/) « child
41 return (N', E',v', V', €', T, )
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Algorithm 2: unrolldescg, y, X7, %', p') unrolls descendant step

input  : origin nodex, target nodey, transformed schem@’, ¥’)
output : pattern node®V’’, pattern edge&’”’

variable: S // pattern nodes yet to be processed

N" 0

E" 0

S+ {z}

for s € S do

if 3(0’1,0’2), (0'3,0'4) cv og #* 0'4,11(8) = 01 = o3 then
/I more than one outgoing edge fram

/I insert® node

ng < new node

V(ng) « @

d(ng)+ L

N" + N"U{ng}

E" «+ E"U{(s,ng)}

S < Nng

00N WNER

el =
W N Rk O ©

Il insert edges
for (o1,02) € ¥/, v(s) = o1 do
if o2 = v(y) then

Noy <Y

S N
~N o o b

else
Nngy < New node
V' (Ngy) < 02
d(ngy) + L
N" +— N"U{ng,}
S+ SU{ng,}

| B+ E"U{(no,n0,)}

NNNDN R
W NP O O o

N}
iN

25 return(N",E")

4.1.3 Unrolling descendant steps

The unrolling of descendant steps can be succinctly imphateas a manipulation
of the directed graph representation of the schema (Algorit, lines 31-33). In
order to unroll a descendant step from a pattern node lalzekeda pattern node
labeledb, we consider the subgraph of the schema graph that con§ialsrmdes
that are reachable from and from whichb is reachable. This yields a graph that
contains all the intermediate node types that may occur oovanelard path from

a to b. In the example shown in Figure 8, the nodes that are usedrtdl time step
aut hor// nane are highlighted.

If there exists a cycle in this schema subgraph, we discadig@scendant step
and all the pattern nodes that occur below it (Algorithmrig [B4). This is necessary
because the presence of a cycle implies that a matching nageocur at different
levels in the document tree. This creates ambiguity, makimigpossible to take
advantage of the value constraints associated with suctiea Assume, for example,
that we want to unroll the stedpook/ / r ef er ence. We can observe that there is a
cycle involving the node typeshapt er andr ef er ence. This corresponds to the
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OPT ONCE

Fig. 8 Schema restricted to nodes reachable fearhhor and from whichnane is reachable

fact that the path can be satisfied either by a reference iaptehof the book where
we start out, or by a reference in a chapter referenced bygliaigter, and so on.

If the subgraph is acyclic (as in the example shown in Figyrevé introduce a
new pattern node for each of the intermediate schema nodkdfsat the node test of
the pattern node matches the name of the corresponding aahashe (Algorithm 2,
lines 19-22). In cases where a schema node has more thanitthenhntermediate
choice node is inserted (lines 8-11, denoteddywhich signifies that the subsequent
branch of the pattern can be satisfied by a match for any oftie modes.

After these intermediate nodes have been inserted, therpdtas been trans-
formed from a tree into a DAG. We can reconstruct a tree reptasion by dupli-
cating nodes that are reachable through more than one pajankral, however, this
is not necessary since we can directly traverse the more @G, which yields
the same result as traversing the equivalent tree.

Fig. 9 Pattern after unrolling descendant steps

Figure 9 shows the tree representation of the unrolledaeisithe QTP given in
Figure 7(a). Note that while the steyit hor / / book can simply be unrolled into a
sequence of child steps, unrolliagit hor / / name requires the insertion of a choice
node and the duplication of the branch below it. This is beedhere are two paths
fromaut hor toname, as is shown in Figure 8.

4.1.4 Removing wildcard nodes

We convert wildcard nodes whenever they unambiguously tefa specific node
type (Algorithm 1, lines 20 and 21). For example, by relyingtbe schema shown
in Figure 3, we can determine that the stggent / * can be translated to the step
agent / nane. It is also possible to convert wildcard nodes that can refanore
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than one node type by introducing choice nodes into thenpeitiea procedure that is
largely analogous to the way descendant steps are unrolled.

4.1.5 Removing nodes referring to nodes with multiple aecwes in the same
context

In general, a meaningful conversion of pattern nodes cporeding to nodes with
multiple occurrences in the same context is not possiblevemdieed to eliminate
these nodes from the pattern. One exception to this is threascewhere the pattern
node is associated with an explicit positional constrdiat tlisambiguates between
multiple occurrences of a matching node (for examplebs/ book][ 1] ). In this
case, we can retain the pattern node and exploit its asedaianstraints for pruning.
In the example from Figure 9, we need to removeltbek node since the schema
indicates that pubs node may have multiple children of typok. The resulting
simplified pattern is shown in Figure 10.

Fig. 10 Simplified pattern

4.1.6 Traversal and pruning

After transforming both QTP and FTP into simplified tree pats, we traverse both
patterns simultaneously as described in Algorithm 3. Omlitgzn nodes occurring
in both patterns are visited. For each pair of correspongattern nodes, we check
whether the value constraints in one pattern contradicdehio the other pattern.
Since in simplified tree patterns each pattern node cornelspim a unique node from
the collection within the context of a single document ti@epntradiction between
patterns allows us to immediately eliminate the fragmemtesponding to the FTP
from further consideration.

Special care has to be taken when a choice node is encounitertbis case, a
contradiction exists only if we can find contradictory caastts regardless of which
branch of the choice we follow. If there is at least one chaitbout a contradiction,
which may be a choice that leads to a branch that is not presémt other pattern,
it is not possible to conclude that the fragment can be ehiaith (lines 3-18).

In the example shown in Figure 11, the traversal algorithateeds as follows.
First, theaut hor nodes in QTP and FTP are visited. Since there is no value con-
straint associated with this node in either pattern, themsoi conflict, therefore we
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Algorithm 3: traverse(N, E,r,v,¢,T,c) ,(N',E',v' V' ¢, T’,¢")) finds con-
tradictions
input  : predicate patterN, E, r,v, ¢, T, c) , query patter{N’, E' v/ ,v' €', T, ')
output : true iff constraints are satisfiable
variable: result
if v(r) =v/(r") and ¢(r) A (') is not satisfiablehen

L result < false// constraint violation found

else ifv(r) = @ then
/I check if at least one choice leads to satisfiable constsain
result < false
for n € N with (r,n) € E do
if 3(z,y) € E' withz =+ AV (y) = v/ (n) vV (y) = ®) then
L result < result Vtraverse((N,E,n), (N, E',y))

else
L result < true

O ©W 0O~NO U A~®W NP

=

11 elseifv/(r') = @ then

12 /I check if at least one choice leads to satisfiable constsain

13 result < false

14 for n’ € N’ with (+',n’) € E’ do

15 if 3(z,y) € Ewithz =r A (v(y) =v'(n) Vv(y) = @) then
16 L result + result Vtraverse((N, E,y),(N’, E',n"))
17 else

18 L result < true

19 else

20 /I check all child nodes

21 result < true

22 for n € N with (r,n) € E do

23 if 3(z,y) € E'withz =7" A (V' (y) =v(n) Vi (y) =P Vr(n) =@)then
24 L | result < result Atraverse((N, E,n), (N, E',y))

25 return result

move on to the children of theut hor nodes. The@ubs node is only present in the
QTP and is therefore not visited. As the other child of ¢hg hor node, the QTP
contains a choice node. We now have to check both brancheoifdlict. The left
branch leads to theane node, for which there is an equivalent node in the FTP.
In both patterns theane node has a child with node tesast . When inspecting
the value constraints associated with trest nodes, the algorithm detects a con-
tradiction because the content of the corresponding dostimae cannot be equal
to the string ‘Shakespeare’ and at the same time start withetiter ‘A". Therefore,
we know that there is a contradiction for the left branch &f thoice node. In order
for there to be a global contradiction, however, the pastérave to be contradictory
for both branches of the choice node. Therefore, the algurstill has to inspect
the right branch, for which it encounters a node with the nedéagent . For this
node, there is no equivalent in the FTP and therefore noadiction. Since the algo-
rithm only found a contradiction for one branch of the chaiode, there is no global
contradiction and the fragment corresponding to the FTRaidoe pruned.
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Fig. 11 Simplified QTP and FTP that are not contradictory

For the example in Figure 12, on the other hand, the travatgafithm does de-
tect a contradiction. After inspecting tlaeit hor andnane nodes in both patterns,
the algorithm reaches theast nodes and their contradicting value constraints. This
time, thel ast node does not occur as the descendant of a choice node sorthis ¢
tradiction is sufficient to prune the fragment correspogdmthe FTP.

Fig. 12 Simplified QTP and FTP that are contradictory

4.1.7 Optimization

Since horizontal fragmentation is defined as a partitioniithe data collection, FTPs
need to be disjoint and cover the entire collection. Becafisieis, we expect that in
many instances the FTPs will only differ in their value coastts but not in their
structure. It is therefore possible to simplify the traatnsrocess by traversing the
QTP together with a single abstract FTP rather than with &8éhin the fragment-
ation. In this abstract FTP, value constraints are replagéd variables. Traversal
of QTP and abstract FTP results in an expression that desctiite conditions un-
der which there is a contradiction between the QTP and anFHgBre 13(b) shows
an abstract FTP, in which a value constraint has been replaith the variable.
Traversing this abstract FTP with the QTP in Figure 13(ajshihvat there is a con-
tradiction if =(.="ShakespeareA x) holds.

We can now instantiate with the corresponding value constraint from each of
the original simplified FTPs, i.e., with the expressions

startswith('A), ..., startswith('S’) ..., startswith('Z’)

Solving this formula yields a contradiction for all of thesases except =
startswith('S’). A similar optimization is possible foréhQTPs if we assume that
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N

Fig. 13 Simplified QTP and abstract FTP

the structure of a query is known at compile time whereasdhstants used in value
constraints are known only at run time.

4.1.8 Analysis

While it may seem that the transformation and traversal of @m& FTPs could
pose a significant overhead, there are a number of consmesahat reduce this
impact. The transformation of the FTPs only has to be perdrmnce when the
fragmentation is set up. Therefore, it does not pose a ma-tiverhead during query
execution.

For the transformation of the QTP, we make the following obestions: child
steps are either copied from the QTP to the canonical QTP dtesmBoth the size
of the canonical QTP and the time consumed by the transfwmate therefore lin-
ear in|EQLT |, which is the number of child steps in the QTP. For each defaren
step, in the worst case, Algorithm 2 introduces one choiaerand one non-choice
pattern node for each in X. Therefore, the size of the canonical QTP is linear
in |Ege.| |2]. In order to analyze the time complexity, we also have to iake
account the time consumed by computing the reachable schebgaaph and by
detecting cycles in the resulting graph. We can compute ubgraph consisting of
nodes that are reachable from nadand from whichb is reachable by first mark-
ing all nodes reachable from then marking all nodes from whidhis reachable
and finally choosing all nodes that were marked both timesukéng a suitable
representation of the graph, this can be don®{h¥’| + |¥|) time. Using Tarjan’s
algorithm [18], we can detect cycles @(|X| + |¥|) time. Therefore, the transfor-
mation of a QTP take®(|ES 4| + |ESee| (%] + |#])) time and yields a result
containingO(|EST 4|+ |ESST.| |£]) nodes. Since the result is also a directed graph,
in which nodes may be shared among multiple branches, theabejpt tree pattern
is of sizeO(|EQee| |Z| |EQW 4 + |EQL.? |2]2). This is important, because the
time consumed by the subsequent traversal step depends sizé¢tof the equivalent
tree.

The time required to traverse the QTP and the FTPs is lingheigize of the tree
representations of the canonical QTP and the FTPs. Bechegetersal has to be
performed for each fragment, itis also linear in the numlb&lagments. This leads to
an overall time complexity 0 ((|Eguse | || [Eghi] ol + | Eqosc|? [21%) (|E§E| 12
|EFIR ol + | ESEE 12 12)2) |F|). Note that run-time of the pruning algorithm depends
solely on the size of the patterns, the number of fragmentstansize of the schema.
It is independent of the size of the collection.
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4.2 Localization and pruning with vertical fragmentation

In this section, we define an initial strategy for evaluat@gPs on a vertically frag-
mented collection based on the following steps:

— First, we decompose the global QTP into a setoshl QTPscorresponding to
the individual fragments.

— Then, we use an existing tree pattern evaluation strategyvatuate the local
QTPs on the fragments (the specific strategy is left to edaeticdecide).

— After that, we combine the partial results generated at s#ehby joining the
matches derived from individual fragments based on theixyroot proxy IDs.
How this is done is specified bydistributed execution plan

We then improve upon this initial strategy and present twbniéues that allow
us to eliminate certain fragments from the distributed akiea plan.

4.2.1 Localization of QTPs

Localization is the process of determining which fragmearts relevant to a given
qguery and decomposing the query into sub-queries that cavddaated on indi-
vidual fragments. As mentioned before, QTPs provide a auewé abstraction for
decomposing a global query into sub-queries that are localsingle fragment. We
have therefore chosen to perform query decomposition @1felevel before trans-
forming the resulting local QTPs into algebraic query plahghe individual sites.

The decomposition of a global QTP into a set of local QTPsctliydollows the
schema graph. After unrolling wildcard nodes (using a pidoce similar to Algo-
rithm 2), Algorithm 4 divides the global QTP into a set of quétterns, each of which
consists of pattern nodes that match nodes in the same fragiadges between pat-
tern nodes in the same subtree are assigned the same axastthpecorresponding
edge in the global QTP.

A child edge from a pattern node in sub-patterto one in sub-patterdis con-
verted to a pattern node matching a proxwiand a pattern node matching a root
proxy inb. These new pattern nodes are marked as extraction poirdadethey are
needed to join the results of local QTPs to generate the fsailt.

When descendant edges across fragment boundaries are meduwe need to
identify all paths in the fragmentation schema that satiséydescendant edge. This
can be achieved, for example, by unrolling the descendaptisto child steps ac-
cording to the same procedure that is used by the horizaataformation algorithm
(i.e., Algorithm 2). It is important to note that this uniialy may turn a single cross-
fragment descendant step into multiple cross-fragmeitd shéps. This corresponds
to the case where a descendant step traverses multipledragnConsider, for ex-
ample, the descendant stapt hor// r ef er ence. When this step is unrolled, it
yields two cross-fragment child ste@ait hor / pubs andbook/ chapt er . Thus,
an additional local QTP corresponding to fragmégiit (which contains theubs
andbook node types) is introduced, even if there is no pattern nodbdrglobal
QTP that refers to node types in this fragment.
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Algorithm 4: Vertical localization

input :global QTP(N, E, r,v,¢,T, c), schemd X, ¥, s, m, p), vertical fragmentation
functiong : X' — Fy
output : set of local QTPs with fragment they are evaluated on
Q= {((N',E',r' v/ &, T", ), f' € Fx)}
Q+ {(N,E' vV e, T d)maximal | (3f € Fx,Vn' € N' : p(v(n')) = f)A(E' =
EnN(N’"x N") A ((N',E") is connected and rooted#f) A (v/ = v) A (€ =€) A(T' =
T N N'")A (¢ =c¢)} Il construct local QTPs without cross-fragment edges
2 for (n1,n2) € B, d(v(n1)) # ¢(v(n2)) do
3 i <— unique ID
4 q1 < (N1, E1,r1,v1,€e1,Th,c1) € Q,ny € Ny
5 g2 < (N2, E2,r2,v2,€2,T2,¢2) € Q,n2 € N2
6
7
8

=

p; < new pattern node
rp; < hew pattern node
N1+ N1 U {pi}

9 Ns < Ny U {’I”pi}

10 v1(pi) < Proxys

11 v2(rp;) < root proxyi
12 Ty <« T U {pl}

13 Ty < Tr U {T’pi}

14 Ey + E1 U{(n1,p:)}
15 Eo <—E2U{(7’pi,n2)}
16 €((n1,p:)) < e((n1,n2))
17 €((rpi, n2)) + e((n1,n2))
18 T9 — TD;

If the global QTP does not reach a certain fragment (becaweseadter unrolling
no constraints are placed on the node types contained irfrfgsment) and if no
intermediate QTP has to be generated for it because of tragsent descendant
steps, then the localized plan derived from the local QTRisnet access this frag-
ment. Therefore, the localization technique eliminatenesw@ertical fragments even
without further pruning.

Localizing the global QTP shown in Figure 4 yields the sebatl QTPs shown
in Figure 14(a)—(d). Each cross-fragment edge in the glQd& is represented by a
pair of pattern nodes that match a proxy/root proxy pair. &tige fromaut hor to
nane, for example, is replaced by the pattern ndtle! ~2 in ¢, and the pattern node
P}~2in q;. The pattern nod& P! ~2 matches all of the root proxy nodé&P! 2
in go's fragmentf,. The pattern nodé€!~2 matches the proxy noded' =2 in fa’s
parent fragmeny;; these are the proxy nodes that corresponf & —2. Since the

Cautno>
) ook >
a) q1 [ qa

(c) g3

Fig. 14 Local QTPs
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original pattern edge is a child edge, edges to and from thergéed pattern nodes
are also child edges. In the case where the original pattiye is a descendant edge
(such as the edge betweant hor andbook, which is represented by the pattern
nodes labeled®!—3 and RP!~3), edges to and from the generated pattern nodes are
also descendant edges.

Whenever we decompose a global Q4,Rhere will be exactly one local QTP
that does not contain a pattern node that matches a root piae. We refer to this
local QTP as theoot QTP. In our exampleg; is the root QTP. All other local QTPs
contain exactly one pattern node that matches root proxgsiodtheir fragments. If
local QTPg, contains a pattern node label&P; "’ and local QTR contains the
corresponding pattern node labelBfi”, then we cally, achild QTPof ¢, andg; a
parent QTPof g;.

4.2.2 Conversion of Local QTPs to Local Plans
Each local QTRy; is then transformed into a local query plan This is done at the

site holding the fragment correspondingd@ using centralized XML query eval-
uation strategies (e.g., [19,20]). The pruning techniquesented in this paper are

H(P*IHJA‘P*IHZ} H{RPJHZ}
Nauthor//PJ -3 Otirst="William’
Nauthor/P,}”2 Scaan,}HS) Dqname/first
Scanjauthor) Scar(PjﬁZ) O1last='Shakespeare’ Scal'(f iI’St)
(@) p1 |
Nname/last

/N

Mgrpi-2/mane  scarflast)

scar(RP*l/%) S>ir(name)
(b) p2
I rpi=s po-ty IT{pps—+ reterence}
Nbookl//Pfﬂ NJ?P;j%/!reference
MRPJ*‘//bék s;r(Pf”“) scadRPf{ﬂ Sca\r(reference)

/N (d) p4
scarfRP!™3) scar{book)
(©) p3

Fig. 15 Local plans
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independent of the techniques used by local query plansh&vefore omit a detailed
description of local plan generation.

For the purpose of illustration, Figure 15 shows a set ofliptans based on
structural joins $; throughp,), which correspond to the local QTRs throughg,,
respectively.

4.2.3 Distributed execution plans

To obtain the overall query result, the results of local plaped to be “combined”
based on the IDs of their proxy and root proxy nodedligributed execution plan
specifies how exactly this is done. In this section, we explaw distributed execu-
tion plans can be constructed and what their properties are.

Definition 7 Let P = {p1, ..., pn} be the set of local query plans corresponding to
a queryq. For eaclp; € P, let f; denote the vertical fragment corresponding o
Further, letP’ C P. ThenGp: is adistributed execution plafor P’ iff

1. P ={p;} andG’, = p;, or

2. P =P,UP,P,NP, =0, p; € Pa,pj € Py, p; = parentp;); Gp, and
G p; are distributed execution plans f6Y, and P}, respectively; and:p = G p:
Mpi”f.id:RP;”f.id GP,i-

If Gp is a distributed execution plan fd? (the entire set of local query plans),
thenG, = G p is a distributed execution plan for

A distributed execution plan must contain all the local glaoerresponding to
the query. As shown in the recursive definition above, anwgi@t plan for a single
local plan is simply the local plan itself (condition 1). Farset of multiple local
plansP’ we assume tha®, and P, are two non-overlapping subsets®f such that
P U P, = P’. We require thaiP, contains the parent local plan for some local
planp; in P/. An execution plan fo’ is then defined by combining execution plans
for P, and P} using a join whose predicate compares the IDs of root proxdeso
derived fromp; to the IDs of corresponding proxy nodes derived frpnfcondition
2). We refer to this join as eross-fragment join

If G'» consists of a single local plgn, then the set of attributes returned &y,
(referred to as\/s/,) is identical to the set of attributes returnedipylf Gp = Gp;

NPlﬁj id=RP:™7 id Gp/ thenMg/ = MGP’ U MGP/ \ {PZ_U RPZ_U}
Figure 16 shows a distributed execution plan that combimesgsults of the local
plans shown in Figure 15. There are usually many differertioa# execution plans

ijﬁ:s_i,izRP*HMd

7N

M p12id=rpi~2id  MWps—id=RrP3~4.id

D

Fig. 16 Initial distributed execution plan
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that all yield the correct result but that may vary in coshcgithe focus of this paper
is on localization and pruning, we do not discuss the probdémicking the most
advantageous plan.

4.2.4 Skipping fragments

The localization strategy for vertical fragmentation @saccessing fragments whose
node types are not reached by the global QTP. It does not Meryaeldress a scenario
where node types in a fragment are reached by the global Qffiffolmonstraints are
placed on these node types. Consider, for example, the @ERI shown in Figure
14(c), which is evaluated on fragmefi . Its sole purpose is to determine which
proxy nodes inf{ lead to which root proxy nodes in fragmefif . Since the only
way from a root proxy node irfy’ to a proxy node in the same fragment is through
abook node, no further constraints are placedfdh We now propose a technique
that allows us to avoid accessing such intermediate fratgnand, thereby, prunes
the local QTPs corresponding to these fragments from aldiséd query plan.

We achieve this by storing information that allows us to tifgmll ancestor proxy
nodes for any given root proxy node. Using this informatiwe,can then determine
for any root proxy node irf)” which proxy node inf) is its ancestor. This, in turn,
allows us to answer the query without accessfijg or evaluating the local QTP
shown in Figure 14(c). The benefits of this are twofold: ituees load on the inter-
mediate fragments (since they are not accessed) and itsath@dcost of computing
intermediate results and joining them together.

While it would be possible to store the ancestor-descendémipformation in
a centralized (or replicated) index structure, this cowdesely limit the scalabil-
ity of distributed query processing. In addition, it wouldhke update management
more difficult. Therefore, we store the join information bynmbering proxy nodes
according to a scheme based on the Dewey decimal sy$2dih

To define this numbering scheme, we need to distinguish leetvree following
two cases(i) If a document subtree does not have a root proxy node as it$i/®o
if the subtree contains the root element of a document tréledircollection, which
can only occur in the root fragment), then the proxy nodesis subtree (and, of
course, the root proxy nodes in other fragments that cooresto these proxy nodes)
receive simple numeric IDs. In the collection shown in Feg@r this can be seen
in all subtrees in fragment!. The proxy nodes in this fragment therefore receive
numeric IDs, which means that @lR) P} ~2 and(R) P! ~? are already numbered in
accordance with our numbering schertig.If a document subtree is rooted at a root
proxy node then the ID of each of its proxy nodes is prefixedhgylD of the root
proxy node of the subtree, followed by a numeric identifiat ik unique within this
subtree. In Figure 2, fragmenf§’, fY and f}” consist of subtrees that are rooted
at a root proxy. However, only fragmeyit” contains proxy nodes. Therefore, only
P37, P37t and P37t have to be renumbered;” is part of a subtree that is

2 We have also experimented with other numbering schemes, susheaghere each proxy pair is
identified by its pre-order and post-order position in thiembion. Our techniques are applicable to these
alternate representations as well.
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N Rp3-4.id startswith P1~3.id)
N p12 ia=RrPi=2id D3

r1 P2

Fig. 17 Skipping vertical plan

rooted at the root proxy nodBP};”3. We would therefore have to renumber it to
P34, Similarly, PPy would be renumbered t83;%* and Py, to P 3.

If all proxy pairs are numbered according to this schemepapxy node is the
descendant of a proxy node precisely when the ID of the pra@deris a prefix of
the ID of the root proxy node. When evaluating query pattenrescan exploit this
information by removing local QTPs from the distributed guplan if they contain
no value or structural constraints, and no extraction poodes other than those
corresponding to proxies. These local QTPs are only needddtermine whether a
root proxy node in some other fragment is a descendant ofa/prode in a third
fragment, which we can now infer from the skipping IDs. Usthg optimization,
we can rewrite the query plan from Figure 16 to the simplen glaown in Figure 17,
which avoids accessing fragmefi .

It is important to note that our numbering scheme does notptioate update
management. Subtrees can be inserted or removed from a dotuooilection with-
out having to modify other parts of the collection and withbaving to maintain a
centralized index.

4.2.5 Structural constraints in skipped fragments

While skipping IDs allow us to skip fragments on which no coaisits are placed,
sometimes structural constraints make it necessary teadacermediate fragments,
even if they are not needed for evaluating value constraintélustrate this, consider
the modified fragmentation schema shown in Figure 18, whilts dhe additional
type of publicationarti cl e. If we evaluate the local QTPs shown in Figure 14
on this modified schema, we can no longer eliminate the lodd @ Figure 14(c)
because skipping the corresponding fragment would meamtha@ould no longer
distinguish between the subtrees in fragmﬁ}ﬁ‘t that are part of ook and those
that are part of aar ti cl e.

We propose a technique that allows us to skip such fragmierasidition to stor-
ing skipping IDs, we use the proxy IDs to keep track of somecstiral information
for cases where there is ambiguity. We define structural ginityi as follows:

Definition 8 Let f, be a fragment whose subtrees are rooted at root proxy nodes an
assume that subtrees jp contain proxy nodes that refer to fragmeit Thenjf, is
structurally ambiguousvith respect taf;, if there is more than one path in the schema
of f, that leads from a root proxy node ffj to a proxy node iry, that corresponds

to fb-
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Fig. 18 A modified fragmentation schema

If f, is structurally ambiguous with respect fg, then we add label path infor-
mation to the proxy ID of each proxy node fij that corresponds tg,. This infor-
mation consists of the labels encountered on a path fronotiteroxy of the subtree
in which the proxy occurs to the proxy itself. Since the Igteth information is part
of the locally unique identifier specified by our numberingesme, it is also part of
the prefix of the IDs of proxy nodes that are descendants qdritrey node for which
it was inserted.

In the case of the fragmentation schema shown in Figure &8 fk one instance
of structural ambiguity: fragmentty” is structurally ambiguous with respect & .
This is because there are two label paths from a root proyy’ irthat could lead to a
proxy node that correspondsf@": pubs/ book andpubs/ arti cl e. We there-
fore store the label path as part of the ID of each proxy nod#’| inthat corresponds
to ff'. Figure 19 shows a sample instance of fragnfeg/r{twith label path IDs.

Label paths as defined here can be viewed as a materializ#tgtructural se-
lections on linear paths through a particular fragment.sThiuey contain sufficient
information to evaluate structural constraints in a lingath, as in the QTP shown
in Figure 14(c). In combination with skipping IDs, label patherefore allow us to
evaluate the query using the plan shown in Figure 20, whioida\accessing"g’/.

Fig. 19 Fragmentfy with label path IDs
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Fig. 20 Label path plan
4.2.6 Analysis

Assuming that we use the unrolling technique presentedeséiction on horizontal
localization, the upper bound on the total size of local Q®Ptined by vertical
localization isO(\ECQ,IF,’d| + |EZE || 2]). In practice, where schema graphs tend to
be sparse, we can expect the total size of all local QTPs téolse to the size of the
original QTP.

Both skipping IDs and label paths are inserted at fragmiemtaéime and when-
ever data are added to the collection. Since they are ndtadpdl, local insertions
and deletions can be handled without having to modify otregrhents.

The vertical pruning techniques proposed here operatéy/smighe QTP and the
fragmented schema graph. They are independent of the dize déta and of the con-
stants used in value constraints. This allows us to perfotmipg at query compile
time, thereby minimizing the run-time overhead introdubgaur technique.

Label paths are useful not only for localization but also fiouning irrelevant
subtrees within fragments [9]. Studying further uses o&lgiaths in a distributed
context is the subject of ongoing research.

5 Workload-aware fragmentation of collections

To obtain the maximum benefit from our distribution techmigjuit is important to
choose a fragmentation layout that is suitable for the vaattlat hand. There are two
main considerations when deciding between horizontal artical fragmentation (or
when designing a hybrid fragmentation consisting of both):

— Since horizontal fragmentation defines fragments basetetektual content of
XML nodes, it is particularly suitable for a query worklodtht contains a large
number of constraints on these values. Furthermore, foripguo be effective,
the nodes on which such constraints are placed in the watldbauld be used
when defining fragmentation predicates.

— Vertical fragmentation, on the other hand, is based on arfeaation of the
schema. Therefore, it is especially useful when queriesisbmainly of struc-
tural constraints (i.e., path expressions) because thisasio maximizes pruning
opportunity and allows us to limit query processing to fewad fragments.

In the remainder of this section, we propose a set of fragatient algorithms
that determine a suitable horizontal and vertical fragaubon for a given workload.
While a complete solution to the problem of finding the besgrinantation of any
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type is the subject of ongoing research, these algorithme s valuable building
blocks.

In the case of horizontal fragmentation, it is important tie FTPs are defined
such that for a given QTP in the workload contradictions aafolind that allow us to
exclude some of the fragments. For vertical fragmentatiosyitable fragmentation
schema should aim to maximize parallelism between the ghgrpable) sub-queries
of a given query while avoiding excessively large internagelresults. In either case,
what constitutes a good fragmentation schema cannot beedéfidependently of the
guery evaluation strategy used. While in practice fragmntamtas performed before
guery evaluation, we have chosen to present our fragmentatgorithms after our
query evaluation strategies in order to better illustrhie dependency.

5.1 Horizontal fragmentation

Horizontal fragmentation allows us to directly apply a fragntation algorithm that
was originally developed for relational systems. Thistieteal fragmentation algo-
rithm is based on minterm predicates, which are conjunstmfnsimple predicates
on individual attributes. Minterm predicates are obtaihgextracting the predicates
found in the query workload, decomposing them into simpkdjmates consisting
of a single (in)equality and finally combining these simptedicates such that all
possible combinations of simple predicates are covered [1]

In order to apply this technique, we need to transform thdipeges found in tree
patterns into simple predicates from which minterm pre@gaan be constructed.
We do this by first unrolling descendant steps into child st@sing the same pro-
cedure employed in Algorithm 2). Then, each value constiaithe pattern can be
transformed into a set of simple predicates whose left-lade is the path from
the root of the unrolled tree pattern to the node with whiad thlue constraint is
associated.

Performing this transformation for the workload shown il€sl yields the con-
straints shown in Table 2. We then extract the simple preéelickom these con-
straints, i.e. predicates that do not contain conjuctiolisjunction. The result of
this is shown in Table 3.

From these simple predicates, we can then construct mimexdicates using the
same techniques applied to the relational scenario. Theeminpredicates derived
from the simple predicates in Table 3 are shown in Table 4e8as these minterm
predicates, we can then apply the relational fragmentatigorithm.

Q1 | /author[nane/l ast =" Shakespeare’ or nane/l ast="John’]
/ pubs/ book
Q2 | /author[name/first="WIIiam]/pubs/book

Table 1 Sample workload
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[ Path | Constraint ]
[ aut hor/ nanme/ | ast . ==" Shakespeare’ Vv.=="John’
[ aut hor/ name/ first == Wi am

Table 2 Constraints

[ aut hor/ nane/ | ast ==" Shakespear e’
[ aut hor / nane/ | ast ==" John’
[aut hor/nane/first=="WIIiam

Table 3 Simple Predicates

[ aut hor/ nane/ | ast ==" Shakespeare’ A/author/name/first=="WIIiam

[ aut hor/ nane/ | ast ==" Shakespeare’ A/author/name/first!="WIIliam

[aut hor/ nanme/ | ast ==" John’ A/author/nane/first=="WIIiamn

[ aut hor/ nane/ | ast ==" John’ A/author/nane/first!="WIIiam

[ aut hor/ nane/ | ast! =" Shakespeare’ A/author/name/l ast!="John” A
/aut hor/name/first=="WIIiam

[ aut hor/ nane/ | ast! =" Shakespeare’ A/author/name/l ast!="John" A
[author/name/first!="WIIiam

Table 4 Minterm Predicates

5.2 Vertical fragmentation

To evaluate a query over a vertically fragmented collegtisa evaluate each sub-
guery on its corresponding fragment and then join the ingeliate results to obtain
the overall query result. Depending on how the collectiofragmented, the inter-

mediate results may be large and the sub-queries may be sixpea evaluate. In

extreme cases, this can lead to a scenario where it is moensixp to evaluate a
guery on a vertically distributed collection than it is tcalate the same query in a
centralized fashion. In order to avoid this situation antate full advantage of the

potential of vertical distribution, we have to ensure the vertical fragmentation

schema is well suited to the query workload.

In the following, we propose a vertical fragmentation aitjon that chooses a
suitable vertical fragmentation schema for a given querskisad. Our algorithm is
based on a cost model, which estimates the response timeuefra \@hen evaluated
over a vertically fragmented collection.

5.2.1 Cost model

We define the following cost metrics for each local pjgnand its corresponding
fragmentf (p;):

cos{(p; ), the response time of evaluatipgon f(p,),

scancogp;), the time it takes to scan the root proxy nodesfip,) that are
accessed by;,

cardp;), the number of tuples returned py when evaluated offi(p; ),

sub{p;), the number of document subtreesfifp,) that are accessed bpy.
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While it is possible to obtain these metrics experimentétli can be expensive
and in practice it may be preferable to estimate these vaisieg various cost esti-
mation techniques that have been developed for the car@daéivaluation of XML
gueries. For notational convenience, we do not distingbetiween estimated cost
metrics and their precise counterparts.

Since the local plans can be evaluated independently of@aehin parallel, we
can model the cost of a quepyas costg) = max{cos(p;) | p; € P} whereP is the
set of local plans (after pruning) corresponding for a given vertical fragmentation
schema.

5.2.2 Heuristic fragmentation algorithm

The nédve strategy for determining the best fragmentation schi@ma given work-
load would be to exhaustively enumerate all possible \@rtiagmentation schemas,
compute the total cost for each of them and then choose tlersclvith the lowest
cost. While this is guaranteed to yield the optimal resuét,liige number of possible
vertical fragmentation schemas generally makes thisegfyanhfeasible (there aig,,
alternatives, wherd,, is then™ Bell number and: is the number of node types in
the schema).

To obtain a feasible fragmentation algorithm, we insteagpse a heuristic strat-
egy that starts out with an initial fragmentation schema hiclv each node type is
placed in its own fragment and then greedily merges fragsnamtil we can no longer
reduce the estimated workload cost. While this strategy ignaranteed to find the
global optimum, our experiments show that it performs wefpiactice.

In the following, we explain how the greedy algorithm works & single query.
Details are shown in Algorithm 5. After determining the Ibcast metrics for each
local plan based on the initial fragmentation, we identtg plan with the highest
local costpmax (ignoring local plans that can be pruned) and its corresipgnilag-
ment f (pmax)- Since the overall cost of the query is determined by the abte
most expensive local plan, we can focus on decreasing th®tpgay.

To do this, we attempt to merg&pmax) With one of its ancestor fragments. We
start with f (pmax)'s parent fragments. For each parent fragmgnive mergef (pmax)
and f;, and then determine the cost of each non-prunable localqueresponding

Algorithm 5: Vertical fragmentation

input : query planp, schemg X, ¥, s, m, p)
output : vertical fragmentation scherfa” C X'}
I+ {{oc}|oceX}
imax < % € I S.t. costp; (7)) = max{cos(p;(j)) | 7 € I}
for iancestor€ ancestofimax) do

Imerged < tmax U . . . U Zancestor

if COS(Pipax(imax)) > cos(p()) then

L I+ (I U imergecﬁ \imax1 ..+, tancestor
goto2

No gabdwN R

8 return(l)
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to f; U f(pmax)- If the cost of all of these plans is lower than dgs), we remove
fi and f(pmax) from the fragmentation schema and insgrtJ f(pmax). We then
repeat the procedure by determining the most expensivé ptara for the modified
fragmentation schema and attempting to reduce its cost.

If none of the parent fragments ¢fpmax) allow us to reduce the maximum lo-
cal plan cost, we tryf (pmax)'s “grand-parent” fragments, “great grand-parent” frag-
ments, and so forth. When merging with an ancestor fragrfietfiat is not a direct
parent of f(pmax), we merge all the fragments on the path frgifpmax) to f;. If
no ancestor fragment gf(pmax) allows us to reduce the maximum local plan cost,
the algorithm terminates without making further modifioas to the fragmentation
schema.

5.2.3 Estimating local plan costs after merging

Our fragmentation algorithm relies on frequent tentatierges between fragments.
While it is possible to re-estimate the cost of all affectezhlgplans after each such
merge, this can be expensive. To address this, we propos¢hadnier estimating
the cost of a local plap;; corresponding to the fragmefitp;) U f (p;) based on cost
estimates forp; (corresponding tof (p;)) andp; (corresponding tof (p;)’s parent
fragmentf(p,)):

cardp;)
sub(p;)

The rationale behind this is as follows: cgst) includes all of the cost of the local
plan corresponding to the parent fragment, gost The cost of the child fragment
is scaled by the selectivity of the parent fragment, repreeskas the fraction of the
subtrees inf(p;) for which corresponding proxy nodes are returnedphyThis is
because pipelined execution allows us to restrict localuati@n to these subtrees
[9]. We also subtract the portion of the cost that can bebatteid to scanning the root
proxy nodes inf(p;). Our experiments show that using this approximation doés no
prevent us from identifying good vertical fragmentatiohemas.

costp,;) = costp;) + (costp;) — scancogp,))

5.2.4 Handling multiple-query workloads

So far, for simplicity, we have focused on identifying a fma@ntation schema for
a single query. In practice, however, workloads generallysest of more than one
query. It is possible to adapt our algorithm by modifying teemination condition:

instead of terminating when the cost of the most expensival lplan cannot be re-
duced further, we check the most expensive local plans df gaery in descending
order of cost and only terminate once we cannot further redoe cost of any of
those.

6 Performance evaluation

We have enhanced the native XML database system NATIX [18] distributed ca-
pabilities and implemented our techniques within thiseystThis allows us to val-
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idate our approach and to perform realistic experiments.eperiments are struc-
tured as follows:

— The first set of experiments evaluate how our techniquesdwgihe performance
of distributed query evaluation in a realistic scenariod®dhis, we conduct a set
of experiments based on the XPathMark benchmark [22] thatbawe both the
horizontal and the vertical techniques presented in thigepand verify that they
lead to a significant improvement in performance when coetgér centralized
techniques (Section 6.1).

— In the second set of experiments, we compare our approabhexisting tech-
niques (Section 6.2) by implementing the core phases oétteehniques within
our NATIX testbed.

— Finally, to analyze how our techniques improve performaadhird set of exper-
iments perform a number of stress tests that explore thevimhaof horizontal
(Section 6.3) and vertical fragmentation (Section 6.4 psafely. For these exper-
iments, we use a set of carefully selected queries and fratgien layouts that
exercise the different scenarios our localization and ipgutechniques may en-
counter, ranging from a case in which the fragmentationgéligiadvantageous
for answering the query at hand to one where it is adversarial

All of our experiments rely on collections of on-line auctidata generated by
the XMark benchmark [23], which is one of the standard berafisfor evaluat-
ing XML query performance. The experiments are conductedidnalized Linux
machines within Amazon'’s Elastic Compute Cloud [24], eaatviging 1.7 GB of
memory and a single CPU core. We use a separate instancefdiragment, with an

Al /'sitelcl osed._auctions/cl osed_aucti on/annotation/ descri ption/text/keyword
X | A2 /1 closed_auction//keyword
S [[A3 [ Tsitelclosed.auctions/cl osedauction// keyword
% Ad Isitelcl osed_auctions/cl osed_aucti on[ annot ati on/ descri ption/text/keyword]
a / dat e
=< A5 /sitelcl osed._auctions/cl osed_aucti on[ descendant: : keyword]/ date
A6 I'sitelpeopl e/ person[profile/gender and profile/age]/nane
B7 I'Tperson[profile/ @ncone]/ nane
o] Ql /open_auction[./interval/end[. = xs:date(’ 12/28/2001")]]
= [initial > 120]//item name
= | Q2 /open_auction[./interval/end
'g [.>= xs:date(’01/01/1998" )][. < xs:date(’12/28/1998")]]
N [initial > 120]//item name
2103 lopen_auction[./interval/end
[.>= xs:date(’01/01/1998 )][. < xs:date(’12/28/1999")]]
[initial > 120]//item nane
Q4 /open_auction[./interval/end
[.>= xs:date(’01/01/1998' )][. < xs:date(’12/28/2000")]]
[initial > 120]//item name
Q5 /open_auction[./interval/end
[.>= xs:date(’01/01/1998')][. < xs:date(’12/28/2001')]]
[initial > 120]//item name
§ Q6 /open_auction[initial > 200 ]/interval/end
=] Q7 /open_aucti on// person//category[id="categoryl0’]
= | Q8 Topen_aucti on/ bi dder//person//category[id="categoryl0’ ]
2 Q9 /open_aucti on/ bi dder// person[creditcard]//category[id=" categoryl0’]
§ Q10 | /open_auction/bi dder//person[creditcard]/profile[education]
//category[id="categoryl0’]

Table 5 Queries used in experiments
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additional instance for dispatching queries. All instaen in the same availability
zone, ensuring low-latency, high-throughput commundicati

6.1 XPathMark benchmark

To evaluate the performance of our techniques in a reatisgoario, we use a subset
of the queries in the XPathMark benchmark (those that caxpessed in our query
model, i.e., A1-A6 and B7, as shown in Table 5). We evalua¢sehgueries on an
XMark collection consisting of documents that are appratiely 40 MB each. To
evaluate the scalability of our techniques, we use 3 diffeoellection sizes: 120
MB, 1.2 GB and 12 GB. We distribute these collections in 2eatiéht ways. First,
we vertically fragment the collection using a fragmentatschema derived by our
vertical fragmentation algorithm (shown on the left of Figw®1). Then, we use a
manually tuned hybrid fragmentation (shown on the right igluFe 21; the vertical
fragments marked with are further fragmented horizontally, based on the labdi pat
components of their root proxy IDs).

In Figure 22, we show the response time results obtained biyatized query
execution over an un-fragmented collecti@ertral), distributed execution with all
optimizations presented in this paper over the verticathigifented collectionvér-

[closed auctions] [categories] [people]

|
|
i [closed auctions] [categories] [people]
|
\

| |
| |
| |
| |
] ]

Fig. 21 Fragmentation schemas used in XPathMark experiments
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Fig. 22 Response time, vertical and hybrid fragmentation

tical), and fully optimized distributed execution over the collen with hybrid frag-
mentation ybrid). We can see that for all queries, vertically fragmentedcatien
outperforms centralized execution by a significant mar@iptimized query execu-
tion over the hybrid fragmentation yields even better rssdlhe performance advan-
tage of the hybrid technique over centralized executioremses with the collection
size, illustrating the superior scalability of this teatuné. For the largest collection
size, hybrid fragmentation is in some cases more than 3Gstfaster than central-
ized execution. Together, these results confirm that oumigoes for localization
and pruning significantly improve the performance of disttéd query execution in
realistic scenarios.

6.2 Comparison with other techniques

While much of the existing work either focuses primarily otedategration [2—4] or
relies heavily on a replicated index structure [5], theeetar techniques that follow
a performance motivation that is similar to ours: Cong & tchnique for distributed
query evaluation [6] and Suciu’s query evaluation techeifpr semistructured data
[8]. While both papers use a definition of performance thatimewhat different
from ours (focusing primarily on communication cost rattiem end-to-end response
time), they are nevertheless the best candidates for & divatparison.
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Fig. 23 Response time, comparison to other techniques

Cong et al. present two multi-phase algorithms for disteduguery evaluation,
named PaX3 and PaX2. Both algorithms feature a phase dutirghwall fragments
are traversed in their entirety and in parallel (phase 2 X3and phase 1 in Pax?2).
Based on the description in their paper, we suspected tisgilthse would dominate
the overall response time of their technique. Therefomreofw comparison, we have
chosen to implement this traversal within NATIX. In Figur8, 2ve report the re-
sponse timeRaX) of executing this traversal on those hybrid fragments efith GB
collection that remain after applying their simple prunstcategy. While this does
not capture the total response time cost of evaluating PaXax2, the traversal is a
necessary step for either algorithm that cannot be avoidedrallelized with other
phases. Therefore, the time consumed by this parallelrsalvean serve as a lower
bound on the overall response time of PaxX3 and PaX2.

For Suciu’s distributed evaluation algorithm, we use a lsimnsight: while the
paper does not give any experimental results, we suspdwethe response time cost
of applying this technique would be dominated by the germaratf partial results
using an automaton that accepts the query. Unlike our whiktéchnique does not
take advantage of a fragmentation specification. Therefheestarting state of the
automaton at a given root proxy node cannot be determinedlasthtes have to be
examined, increasing the processing cost of this phase.

We have implemented the partial result generation phasesauS algorithm
within NATIX and report the response time distevalin Figure 23. As in the case
of Cong et al.'s work, this phase is not parallelized withesthhases of the algorithm
and it cannot be avoided, which allows us to use it to obtagwei bound on the per-
formance of Suciu’s algorithm. The query model used in Ssigaper is somewhat
different from the XPath-based models seen in more recerk wiod only appears
to support linear path queries. Therefore, we only repatlts for the linear queries
A1-AS for this technique.

Comparing the lower bounds on the cost of the existing teghes with the total
cost of our techniques allows us to make a number of obsensti

3 For both Cong et al.’s and Suciu’s technique, the hybridrfragtation turned out to be more advanta-
geous, which is why we have omitted results for running theskrtiques on the vertical fragmentation.
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— Most importantly, our best techniquieybrid) achieves the best (lowest) response
time for all queries and collection sizes and is always $icgntly better than
both of the existing techniques.

— The result of comparing the existing techniques to our aktiechnique varies.
We suspect that the cases where our vertical technique curse \are caused by
the larger fragment sizes of the 3-fragment vertical fragia#on compared to
the 5-fragment hybrid fragmentation.

Overall, these results are encouraging because they alotw show that our
techniques successfully improve the scalability of distréd query evaluation. While
both Cong’s and Suciu’s technique offer impressive guaemwith regard to com-
munication cost, we have shown that when optimizing for erdnd performance,
our technique, which is specifically designed for this pemoyields significantly
better results.

6.3 Horizontal fragmentation stress test

We now take a closer look at our horizontal techniques. Tted gbthis evaluation
is twofold: First, we want to verify that horizontal distution allows us to improve
both query response time and throughput. Then, we want to #hat our pruning
techniques allow us to further improve throughput beyordi¢ivel achieved by dis-
tributed execution alone without any adverse effects opaese time.

Since our definition of horizontal fragmentation assumesudtiple-document
collection, we conduct these experiments on an XMark cotiadhat has been de-
composed into multiple small documents, placing eaplen_auct i on element
into its own document along with its descendants and documiirees referenced
via ID/IDREF. This results in documents of regular struetwith an average size of
approximately 30 KB. We scale this collection to 350 MB, 3B énd 35 GHE.

6.3.1 Balanced fragmentation

Eachopen_auct i on element generated by XMark contains an auction end date and
these dates are uniformly distributed across the years-2008. We can therefore
obtain a balanced horizontal fragmentation schema (i#agmentation schema in
which all fragments are approximately the same size) byldigithis date range into
non-overlapping periods of equal length, with each suclogderorresponding to one
horizontal fragment. For this experiment, we use fragmertaschemas consisting
of1, 2, 4, 8, 16, 32, 64 and 99 fragmehts

On this distributed collection, we evaluate 5 classes ofigaewhich we have
chosen toillustrate the behaviour of our techniques irediffit scenarios. Q1 consists
of queries that contain a point predicate on the auction enel, de., each query re-
turns auctions that end on exactly one date within the 4 yedog. Q2-Q5 represent

4 Since the decomposition of the collection increases thebsizefactor of about three, the collections
used in this experiment correspond to the same data as thetmmieused in the previous experiments.

5 We were limited to 100 EC2 instances running simultaneoughgeSone instance is needed for the
dispatcher, this means that we can use at most 99 instancesddrsgments.
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range queries that cover 25%, 50%, 75%, and 100% of the dade reespectively.
These queries correspond to different scenarios for ouzdwatal pruning algorithm:
whereas Q1 can be answered using a single fragment, Q2-@3m@ecess an in-
creasingly large fraction of all fragments. Thus, Q1 is adjfitcfor this fragmentation
and Q5 is an extremely poor fit. It is important to note thahdame we run a query in
one of these classes, we randomly choose a date/date ratinge the 4-year range.
Table 5 shows an example of a query in each class.

We first measure the response time of evaluating the queni¢isechorizontally
distributed collection. As in all measurements in this pagee results reported in
Figure 24 include the cost of constructing sub-query resatitthe individual sites,
shipping them to the dispatcher and assembling them to taeathquery resuft
In the case of the 35 GB collection, some data points are ngjsfeir centralized
execution and the fragmentation schemas with a lower nuoflfexgments. In these
cases, the query did not finish within 2 hours.

When interpreting the results, we can see that horizont#iilolision allows us
to reduce query response time when compared to centralkesdigon (i.e., the sce-
nario with a single fragment on a single machine). The morehings we add to
the system (by fragmenting the collection into more fragtserhe faster response
time becomes. Similarly, adding more machines allows usdoage larger collec-
tions while maintaining the same level of response time. Afe also observe that
pruning does not result in a major improvement of response tvhen compared
to distributed execution without pruning. This is expectette pruning is primarily
intended to improve throughput. It is important, howeverpbint out that pruning
has no negative impact on response time.

Next, we consider the impact of distribution and pruninglmotighput. To mea-
sure query throughput, we use multiple dispatcher prosesdeep the system
loaded with queries. In Figure 25, we report the maximumughput rates we were
able to achieve for each class of queries. Even without pgyrdistribution signif-
icantly increases throughput and this increase in throughpproportional to the
number of fragments. Enabling pruning further improvestighput by a significant
margin. Naturally, the impact of pruning is most pronounéadthe class of point
queries Q1, where a single date is selected and where oumngraigorithm can
therefore avoid accessing all but one of the fragments foh e@ery. Pruning also
helps for the queries that involve a range of dates, padityulvhen this range is
small, though the effect is less pronounced. For Q4 and QB&ravé large portion of
the fragments or all fragments have to be inspected, pruwffegs no advantage over
simple distribution but it also does not harm performangalefrom some insignif-
icant anomalies in the case of the 35 GB collection whereutinput rates are very
low).

This illustrates the importance of a fragmentation schédrasis well suited to the
workload: fragmenting on attributes on which single-vadeéections are performed
leads to greater pruning opportunities than fragmentingtoibutes that are used in
wide range predicates. Even in the latter case, howevéndited evaluation by far
outperforms centralized querying.

6 Note that we use a logarithmic scale on the x-axis.
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Our results also show that once a throughput of approximateueries per sec-
ond is achieved, further increasing the number of machines dot lead to improved
performance. This is because, for simplicity, our expentaksetup uses a single dis-
patcher, which becomes saturated at this point so thattdistd query evaluation is
no longer the bottleneck. In practice, this problem canlgasi avoided by dispatch-
ing queries from multiple sites.

6.3.2 Skewed fragmentation

While pruning performs well on a balanced fragmentation, riacpice it is not al-
ways possible to achieve this balance. We therefore medisareffect of pruning
with a skewed fragmentation consisting of 8 fragments. Qawgd fragmentation
is defined as follows: The first fragment contains half of thiére collection (corre-
sponding to the first 2 years of the 4-year period), the negrfrent contains half of
the remaining collection (i.e., 25% of the data), and sdfontith the last fragment
containing the remainder of the collection data.

Figure 26 shows the throughput rates achieved by centdafipery execution
(which is vanishingly low in some of the cases shown), as aellistributed query
execution (with and without pruning) on a balanced fragmaton consisting of 2, 4
and 8 fragments and on the skewed fragmentation. We useequ@fi and Q2, for
which pruning has been shown to be particularly effectiweerkin the presence of
skew, distribution results in a significant boost in perfanoe over centralized query-
ing in all cases. As with a balanced fragmentation schemaipg further improves
throughput.
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Fig. 26 Throughput, balanced and skewed horizontal fragmentation
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The throughput rates obtained on the skewed fragmentatimhto fall between
that of a balanced fragmentation with 2 fragments and 4 feagm This can be ex-
plained by the fact that the largest fragment in the skewaghfientation, which is the
same size as a fragment in the balanced fragmentation witiggnents, represents a
throughput bottleneck.

To further improve querying performance on a skewed distidin, it could be
beneficial to replicate the most heavily loaded fragments plein to examine repli-
cation as part of our future work.

6.3.3 Pruning efficacy

In addition to evaluating the performance impact of pruniwg are interested in
how effectively the pruning technique limits query exeontio the fragments that
actually yield part of the result. To determine this, we nueaghe fraction of those
sites accessed by a pruned query plan that yield part of teeygasult. The results
(based on a balanced fragmentation consisting of 16 fratghare shown in Figure
27. We omitted Q1 from this experiment, since it can be ansteising a single

fragment. We vary the cut-off value for the initial bid of teection, which affects

the selectivity of the queries, with a lower value yieldingna query results. We
can see that pruning is more effective for the queries thatsa large number of
results (corresponding to lower bid values). This is beeausgjuery that selects a
larger portion of the collection is more likely to find a matetthin a given fragment.

The results reported here are derived from the 35 GB catlectiVith the smaller

collections, efficacy tends to be slightly lower, which canditributed to the lower

numbers of results derived from these collections.

Pruning efficacy (%)

300 400 500 600 700 800
Bid value

Fig. 27 Pruning efficacy

6.4 Vertical fragmentation stress test

The experimental evaluation of our vertical techniquesi$es on response times.
In a vertically fragmented system, a single type of queryagsvaccesses the same
fragments resulting in a closed system in which throughpatanly be improved by
reducing the response time. This makes a separate studsoaftiput unnecessary.
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Fig. 28 Vertical fragmentation schema (vertical experiments)

We again use the multiple-document XMark collection désatiin the previous
section, which we partition into six vertical fragments &don the fragmentation
schema shown in simplified form in Figure 28. This resultssk@wed fragmentation
because different node types in the collection occur witfedint frequencies. We
scale the collection to 350 MB and 3.5 GB.

We evaluate queries Q6-Q10 shown in Table 5. Q6 only invodvesgle frag-
ment (shown in Figure 28(a)). Previous work has shown thatishthe ideal case
for vertical fragmentation [25]. The remaining querieswiwer, reach five of the
six fragments in the collection (Figure 28(a), (c), (d), ey (f)). Traversing such a
large number of vertical fragments poses a challenge fanilolised query evaluation
because the large number of joins required to assemble skésdrom individual
fragments can degrade performance. A carefully desigrepafentation schema will
therefore aim to avoid this scenario, although this is netgbs possible. One of the
goals of this experiment is to show that our distributed akea and pruning tech-
niques allow us to achieve good performance even in thisradsial case. While Q7
to Q10 reach the same number of fragments, they differ in timeber of structural
and value constraints they contain, which increases as il®goQ7 to Q10.

Figure 29 shows, for each collection and query, the resptimseobtained by
centralized query execution, distributed execution withany pruning, distributed
execution with pruning based on skipping IDs and distriduggecution with prun-
ing based on skipping IDs as well as label paths. We can obgbat distributed
execution significantly outperforms centralized exequtioall cases.

In order to closely analyze the impact of the various distéld techniques, it is
useful to consider the number of fragments that they acoes=afch query, which is
shown in Table 6. For Q6, which can be answered by accessingyke fragment,
all distributed execution techniques yield approximatbly same response time. For
Q7, nave distributed execution needs to access 5 fragments,eatdioth pruning
techniques access only a single fragment. This explainshettypruning techniques
yield comparable response times, which are approximatdfyofi that of ndve dis-
tributed execution. In the case of Q8, pruning with skipdibg performs better than
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nave distributed execution and pruning with label paths m foerforms better than
pruning with skipping IDs. Again, these results are refldétethe number of frag-
ments accessed by each of these techniques. For Q9 and W, fwhere even
with pruning a large number of fragments need to be accessguhnse times for all
distributed techniques are approximately on par with edaéro

\ [[ Fragments accessed
| Query || Dist | Skip | Label |

Q6 1 1 1
Q7 5 1 1
Q8 5 2 1
Q9 5 3 2

Q10 5 1 3

Table 6 Number of fragments accessed, vertical fragmentation

7 Related work

There exist significant bodies of work on both querying XMltada a centralized
environment and distributed query evaluation in relatisyatems. Due to space con-
straints, we will restrict our discussion of related workdbIL query evaluation in
distributed systems and to techniques that are directiyadlto our work.

7.1 Specifying XML Fragmentation

Existing work has focused on two main approaches to fragmgat collection of
XML data: ad-hoc fragmentatioandstructure-based fragmentation

7.1.1 Ad-hoc fragmentation

Ad-hoc fragmentation is a flexible fragmentation model thaés not rely on an ex-
plicit fragmentation specification. Instead, it allows wsftagment XML data by
arbitrarily cutting edges in XML documents.
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One approach that follows the ad-hoc fragmentation mod&ttise XML, which
represents cross-fragment edges as calls to remote foacthen a remote function
call is activated, the data corresponding to the remotenfeag is retrieved and is
then available for local query processing [4,26—28]. AeML provides a flexible
model for describing how multiple sources of XML data canrftegrated.

Based on this work, Abiteboul et al. present a techniquerisugng that an Ac-
tive XML document conforms to a specified type [2]. This isiagkd by reasoning
about how the types of individual document fragments affeetoverall type of a
document, thereby combining Active XML with a more struetlrased fragment-
ation approach.

Cong et al.'s work on partial query evaluation is also basedarhoc fragment-
ation although their single-document data model allowsatlors to infer certain
structural relationships between fragments, which can thee used for distributed
query optimization [6, 7]. Therefore, this work can be cdeséd a hybrid case that
has certain structure-based characteristics.

Deutsch and Tannen describe a technique for publishing ah X over ex-
isting relational and XML data [3]. Their model uses XQuerpressions to map
between the published view and the (possibly redundard)stairces. While the au-
thors do not describe their work in a distributed contextytbresent a query rewriting
technique that could be used to answer queries in a dataanitmy scenario. When
distributing to improve scalability, their technique sesless useful since the rewrit-
ing procedure is relatively complex and the complete freediven by an XQuery-
based fragmentation model with overlapping fragments diduither increase the
already large search space encountered when fragmentiagyfeen workload.

The representation of cross-fragment edges as pairs of paes is a technique
that has been used successfully to fragment XML documees tvato pages in the
native XML database system NATIX, albeit at a much smallgell®f granularity
than in the work presented here [19].

7.1.2 Structure-based fragmentation

Structure-based fragmentation is based on the concepagifnting a collection
based on some properties of the schema or the data itseli.tAs relational context,
we can distinguish betwedmorizontal fragmentationwhich defines fragments by
selectingsubsets of the collection, ardrtical fragmentationin which fragments are
defined byprojectingto different parts of the schema. In addition to these opgti@n
is possible to define laybrid fragmentatiorby concatenating selection and projection
steps.

One of the first attempts to transfer the relational concept®rizontal and ver-
tical fragmentation to the realm of XML was made by Ma and 3&hg9, 30]. How-
ever, their definition of vertical fragmentation is limitéal elements whose content
is a sequence of other elements. Under these constrairgstitightforward to ex-
tend the relational definition of vertical fragmentationtbgating the containing ele-
ment type as a relation that contains attributes correspgrad the contained element
types. As in the relational case, we can then simply profestibsets of the contained
elements. The authors also assume a single-documenttamlewhich means that
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a horizontal fragmentation step always has to be preceegeoh implicit vertical
fragmentation step. In addition, their approach is baseshodifying the schema by
renaming elements and rearranging their nesting. Therefmlike later techniques,
it is not transparent and it requires queries to be formdlatelicitly for a particular
fragmentation specification.

Bremer et al. present another mechanism for specifying ticaéfragmentation
of XML data [5]. They call such a specification a Repositoryideu In a Repository
Guide, a fragment is defined by a selection path expressaoriifging the root nodes
of the subtrees contained, as well as a set of exclusion pgihssenting nodes whose
descendants are excluded from the fragment. The set of &aignis required to be
both disjoint and complete. The authors argue that thisagmbr can be expanded to
horizontal fragmentation by allowing branching and valoagtraints in the defining
path expressions. However, this would make it more diffituéinforce completeness
and disjointness.

Andrade et al. expand Bremer’s specification method by adebplicit support
for horizontal and hybrid fragmentation [25]. They definete&orizontal fragment
by giving a selection predicate in the form of a Boolean paifression with value
constraints. This predicate is used to determine whethévem glocument is part
of the fragment. The predicates are required to cover alishents (completeness)
and be mutually exclusive (disjointness). The authors lake the observation that
by nesting horizontal and vertical fragmentation, botlyErdocument and multiple-
document scenarios can be accommodated.

In addition to predicate-based horizontal fragmentatiGidp et al. introduce a
novel definition of vertical fragmentation that is based @atitioning the schema
graph, rather than on inclusion and exclusion paths [31is dbfinition closely re-
sembles the way we define vertical fragmentation.

While not directly related to fragmentation, Marian et alopose a technique
that improves query performance by projecting away ir@ieyportions of an XML
collection [32]. The goal of this technique is to reduce tize sf the relevant portion
of the collection and thus be able to process the query in maimory.

In summary, we can observe that ad-hoc fragmentation offexat flexibility
in how a collection can be distributed, which makes it a goaddidate for a data
integration scenario. This flexibility, however, comestet tost of decreased oppor-
tunity for distributed query optimization. Structure-bddragmentation, on the other
hand, is less flexible but yields a well-defined specificatibthe fragmentation lay-
out, which is a valuable asset during distributed querynoitation and which makes
structure-based fragmentation a good candidate when éating for performance
reasons.

7.2 Representing XML Schema Information

A concise graph representation of the schema of an XML didlethas been used to
convert XML data to relational tuples [10]. As in our workethuthors capture only
the relevant aspects of the original DTD or XML Schema.
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7.3 Query Evaluation

A number of techniques have been developed to evaluateegumridistributed XML
collections. In this section, we classify these existinghtéques based on their ap-
proach to optimizing distributed query evaluation.

7.3.1 Query models

Query models similar to XQ and their connection to standaRatk and XQuery
have been considered in related work [11,12]. The reprasentof such queries as
tree patterns is also an established technique [13, 14].

7.3.2 Fragmentation in Centralized Query Processing

The problem of centralized query processing on fragmentéieations of XML data
has been studied within the context of streamed XML data ancds with lim-
ited resources [33] and as a means to implement publistdshbssystems [34].
Fragmentation-aware query evaluation techniques hawelsen used within the
context of a centralized XML database system [35].

7.3.3 Distributed Query Language Extensions

A simple way to query distributed collections is to make tleribution explicit in
the query language. Zhang and Boncz have developed the langyage XRPC [36,
37], which is a superset of XQuery that has been enriched fadtiities for ship-
ping queries to remote sites. When XRPC queries are evaluhtesk requests are
forwarded and the results are used during local query psougslf a remote site
does not support XRPC but supports plain XQuery, an adaptebe used to trans-
late. This allows queries to make use of remote data souriteewt requiring any
changes to those sources, which is desirable since a uskt noighave administra-
tive control over them. While Zhang and Boncz do not descrie agptimizations
that go beyond what is explicitly specified in the query, XRR&y be well suited to
serve as a target language for a distributed optimizer.

XQueryD [38] and DXQ [39] provide XQuery extensions that aimilar to
XRPC. All these approaches cater primarily to a data integrascenario. They
might, however, be useful as a backend language for a distdidatabase system.

7.3.4 Pruning Irrelevant Fragments

Pruning is an important step in distributed query optim@atThe idea behind prun-
ing is to identify which fragments are irrelevant for a givgurery and then refraining
from accessing these fragments altogether. This can helpira the query through-
put of a distributed system and can also reduce latency hyirelting the need to
wait for processing of irrelevant fragments to finish.

Based on their partial evaluation strategy, Cong et al.gues simple technique
for pruning fragments [6]. They identify fragments that ¢esnpruned by examining
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the structural relationship between fragments. Unlike muning techniques, how-
ever, they cannot eliminate intermediate fragments. Tgreining technique is there-
fore largely equivalent to the initial vertical localizati we perform before applying
our more advanced pruning techniques.

Within the context of Active XML, Abiteboul et al. presentechnique that avoids
calling certain remote functions and thereby limits the banof fragments that have
to be retrieved in order to answer a given query [4]. Due taatinoc fragmentation
of Active XML documents, it is not possible to identify in aahce the set of irrel-
evant fragments. Instead, a lazy approach to retrievingniemnts is employed, and
fragments are only shipped to the central query procesgimgvben the correspond-
ing function call is reached during query evaluation. TBig€dnsistent with Active
XML’s focus on querying over integrated XML data services.

On the structure-based side, Andrade et al. allude to theilplity of pruning
irrelevant horizontal fragments but do not provide detaiishow this pruning could
be performed [25,40] .

Hammerschmidt et. al have developed a technique that usesiaia to deter-
mine whether two XPath expressions intersect [41]. While technique could be
used as an alternate strategy for pruning horizontal fragsneéhe authors do not
appear to support queries with multiple extraction poiassare frequently encoun-
tered in sub-queries resulting from vertical fragmentatjgreventing us from using
this technique in a hybrid scenario. Furthermore, the aatombased technique is
likely to be less performant since (potentially large) prodautomata have to be
constructed, whereas our technique aggressively pruaeshes that are not shared
between QTP and FTP.

7.3.5 Distributed Query Execution

An important consideration when evaluating queries on #iliged system is the
trade-off between shipping data and shipping queries. @rhamd, it is possible to
ship all relevant data to a central location where all queogessing is performed. On
the other hand, it is possible to ship the query or parts ofjthey to the sites storing
the individual fragments and perform as much as possibldefjuery processing
work distributed throughout the system, thereby takingaatige of parallelism and
reducing communication cost; finally, only the (partialsults derived from each
fragment are shipped back to the originating site.

While most of the literature on Active XML employs a data shigpapproach
[4,26] there has been some work on distributing query pinggd28]. Distributing
query processing is complicated by the ad-hoc fragmemtatié\ctive XML, which
makes it difficult to determine which part of the query has ¢celzecuted on which
fragments.

Based on a hybrid of ad-hoc and structure-based fragmentationg et al. pres-
ent a distributed query evaluation strategy that compudeisgbmatches at each frag-
ment and then combines them at a central location [6,7]. Titeoas start with a
technique that is designed to answer Boolean queries andettpand the scope of
their work to include data-selecting queries with a singlesestion point while main-
taining impressive performance guarantees. The main déladiv strategy is to limit



49

the number of times that each fragment has to be accessed @novide a bound

on the amount of network traffic incurred. Our technique,dntcast, considers the
overall cost of evaluating a query, including the compotattost at each site. Our
performance evaluation shows that our technique indeddsyletter results when
optimizing for overall cost (cf. Section 6.2). Also, unliker technique, Cong et al.’s
partial evaluation approach requires that a specific teglenbe used for local sub-
guery evaluation at each fragment, limiting the potentialdécal query optimization.

Suciu presents a technique for evaluating queries on aroadhstributed col-
lection of semistructured data [8]. As in Cong et al.’s wdtke main focus is on
bounding the number of communication steps and the amoudéataf transferred,
rather than on overall query performance, which explaing adr technique leads to
better performance when considering overall query costt{as/n experimentally in
Section 6.2).

Within the context of vertical fragmentation, there is gaoptimization space
in how sub-queries are executed and how their results ardicechto the overall
query result. We discuss this problem in [9] and suggest abeurof plan alterna-
tives that improve query performance. Another aspect af pindblem is related to
how distributed joins are ordered and executed. This has fteeied in detail in the
relational context and many of those results are applidadxe [1].

7.3.6 Query Decomposition

Another important aspect of distributed query evaluatgarficularly in the context
of vertical fragmentation, is the problem of decomposinguary into sub-queries
that can be evaluated on the individual fragments.

Suciu describes a limited class of queries that can be dezssdpand for which
it can be shown that evaluating the decomposed queriesdgeeffig].

Based on the XRPC extension of XQuery, Zhang et al. describeraique that
transforms a centralized, data shipping-oriented queoyardistributed, query ship-
ping equivalent [42]. This is achieved by decomposing thergwand pushing part
of the query execution to remote sites. This work suppottefakQuery, although
certain query primitives make it impossible to perform efifiee query decomposition
while maintaining result correctness. In these casesetteique falls back to a data
shipping approach.

Le et al. present a schema-based technique for decompogiobal query into
local queries within the context of a data integration sysi3]. They identify which
of the local schemas contain information that can be mappelet global schema
types used in the query. While their technique is not direafiplicable to the dis-
tributed database scenario, one might employ a similar odetb identify which
fragments in a vertically fragmented collection are refd\ar a given query.

7.3.7 Representing Partial Results

A common problem encountered when using a query shippingapp to distributed
guery evaluation is how to represent the partial resultsribad to be shipped from
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one site to another. If more than one of these results cotitaisame node, it may be
advantageous not to send multiple copies of this redundaig.n

Tajima and Fukui present a technique that can be used to #ot/problem by
sending a minimal view that contains all results rather $emding each result sepa-
rately [44]. While their work is primarily intended for queéng a single XML data-
base instance over a network, it could also be used to sht@lpasults within a
distributed system.

7.3.8 Index Structures

Another option for enabling distributed query processimdhie use of index struc-
tures, which can provide a compact summary of the data starether fragments
and thereby enable some amount of local query processingavete data.

Bremer et al. employ this approach to evaluate queries otiextion that is frag-
mented based on structure [5]. One of their indexes stobes peath information for
all the nodes in the collection. Our technique, on the otlardh only stores label
path information for proxy nodes and only if there is ambiguBy replicating the
indexes across the system the bulk of the query processingeam be performed
efficiently and at a single site. Remote fragments only nedxsbtaccessed in order to
evaluate value constraints in the query. While replicateéxes allow the authors to
achieve good query performance, this comes at the poteosabf decreased scala-
bility and more complicated update management (sincecatell indexes have to be
updated when changes are made to the collection). The beedraature of index-
based query processing might also lead to reduced intrarguagallelism and can
potentially cause bottlenecks in the system when queresatr evenly distributed
across all sites.

Koloniari and Pitoura present a Bloom filter-based indexcttire that can be
used to derive top-k results for an approximate structurahgion a distributed XML
collection [45]. This index is used to prune fragments thiditrvat yield top-k results.

It can also serve to determine the order in which fragmerdsaacessed, with the
most promising fragments being accessed first.

Dewey IDs, first proposed in [21] are another technique thaat een used to
index structural information within the context of XML daments [46].

8 Conclusion

We have shown how tree pattern queries can be evaluated stribdied system by
employing a predicate-based definition of horizontal fragtation and a schema-
based definition of vertical fragmentation. We have prodqeening techniques for
horizontal and vertical fragmentation. Our performangaeginents show that, when
combined, these techniques lead to a significant improvemejuery performance,
both when compared to centralized query execution and stiegidistributed tech-
nigues.

One direction of future work is to examine the optimizatigportunities of our
fragmentation model that go beyond localization and prgn®ne such optimiza-
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tion is discussed in our companion paper [9]. Expanding aeryjmodel such that
it can express a larger subset of XQuery is another impogwatt 1t would also be
interesting to investigate what additional optimizati@me possible for a hybrid of
vertical and horizontal fragmentation and how we can deterhybrid fragment-
ation schemas automatically.
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