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Abstract
This paper explores a sweet spot between flow-insensitive and flow-
sensitive subset-based points-to analysis. Flow-insensitive analysis
is efficient: it has been applied to million-line programs and even its
worst-case requirements are quadratic space and cubic time. Flow-
sensitive analysis is precise because it allows strong updates, so
that points-to relationships holding in one program location can be
removed from the analysis when they no longer hold in other lo-
cations. We propose a “Strong Update” analysis combining both
features: it is efficient like flow-insensitive analysis, with the same
worst-case bounds, yet its precision benefits from strong updates
like flow-sensitive analysis. The key enabling insight is that strong
updates are applicable when the dereferenced points-to set is a sin-
gleton, and a singleton set is cheap to analyze. The analysis there-
fore focuses flow sensitivity on singleton sets. Larger sets, which
will not lead to strong updates, are modelled flow insensitively to
maintain efficiency. We have implemented and evaluated the anal-
ysis as an extension of the standard flow-insensitive points-to anal-
ysis in the LLVM compiler infrastructure.

1. Introduction
One of the design decisions facing a developer selecting a sub-
set based points-to analysis is flow sensitivity. On one hand, flow-
insensitive analyses are well understood, and techniques have been
developed that make them quite efficient and scalable (e.g. [2, 11,
13, 17, 23, 24], among many others). On the other hand, flow-
sensitive analyses promise potentially more precise results. Re-
cently, there has been a resurgence of interest in techniques that
reduce the previously prohibitive cost of flow sensitivity [12, 20].

This paper proposes a hybrid subset-based analysis algorithm
that has desirable properties of both flow-insensitive and flow-
sensitive analyses. This “Strong Update” analysis provides the key
precision benefit that flow sensitivity brings, strong updates. How-
ever, its performance is comparable to that of flow-insensitive anal-
ysis: in the worst case, it requires quadratic space and cubic time,
and in practice, it is almost as fast as flow-insensitive analysis.
Sridharan and Fink showed that the cubic time bound is actually
quadratic in typical programs [26].

The idea that enables this good compromise is the realization
that the precise points-to sets that matter most are also cheap to
propagate, even flow sensitively. A strong update can only be per-
formed if the dereferenced may-point-to set is a singleton; other-
wise, the analysis could not guarantee that any one of the targets in
the set is definitely overwritten. In addition, when one strong update
improves the precision of a given points-to set, the more precise set
may enable a chain of further strong updates. Thus in order to be
precise overall, an analysis must model these small sets precisely.
Yet singleton sets are also very cheap to represent and propagate. In
particular, it is possible to propagate singleton sets flow-sensitively
without significantly increasing the asymptotic complexity of an
otherwise flow-insensitive analysis or its practical running time.
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Thus our strong update points-to analysis can be summarized as
follows. It is a flow-insensitive subset-based analysis extended with
flow-sensitive modeling of singleton sets, which are used to en-
able strong updates. The analysis maintains sound flow-insensitive
points-to sets for all pointers. In addition, it provides flow-sensitive
points-to sets for those pointers and at those program points where
the sets are singletons. When a flow-sensitive set is available, the
analysis uses it, possibly to perform a strong update. When no
flow-sensitive set is available (because it is not a singleton), the
analysis falls back to the flow-insensitive information. Although
we have described the analysis here as a combination of two sepa-
rate analyses, both analyses are intertwined in the actual algorithm
and performed at the same time so that they can query each other.
Thus the flow-sensitive analysis improves the precision of the flow-
insensitive analysis, and the flow-insensitive analysis provides a
fall-back to the flow-sensitive analysis when necessary.

This paper makes the following contributions:

• It identifies and discusses the characteristics of flow-sensitive
analyses that give rise to improved precision over flow-insensitive
analyses. It argues that strong updates are the most important
such characteristic.

• It presents the hybrid strong update analysis algorithm, first as
a system of constraints, and then as an algorithm extending the
flow-insensitive algorithm.

• It shows that the worst-case complexity of the strong update
analysis is the same as that of the flow-insensitive analysis,
quadratic in space and cubic in time.

• It describes an implementation of the strong update analysis in
the LLVM compiler infrastructure [22].

• It experimentally evaluates the implementation on the SPECINT 2000
and SPECCPU 2006 benchmark suites [27], shows that its prac-
tical performance is comparable to that of the flow-insensitive
analysis, and presents data on the precision benefits of strong
updates and flow sensitivity.

The paper is organized as follows. Section 2 presents back-
ground material. It first defines the form of the intermediate rep-
resentation on which the analyses work. It then presents a high
level specification, in the form of subset constraints, of a three
existing analyses: a flow-insensitive analysis and a flow-sensitive
analysis without and with strong updates. Section 3 presents the
high-level decisions guiding the design of the strong update anal-
ysis. It discusses the key benefits of flow sensitivity and assump-
tions about the intermediate representation that make analyses eas-
ier to express. It then presents, at the same high level of subset con-
straints, the strong update analysis for comparison with the existing
flow-insensitive and flow-sensitive analyses. Section 4 presents the
strong update analysis algorithm in detail. It also proves the worst-
case complexity results. Section 5 presents details of the implemen-
tation of the strong update analysis in LLVM as an extension of the
flow-insensitive analysis already existing in that framework. Sec-
tion 6 presents results of an experimental evaluation of the strong
update analysis measuring both its practical efficiency and the ben-
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p = &a {a} ⊆ pt(p) [ADDROF]
p = q pt(q) ⊆ pt(p) [COPY]
∗p = q ∀a ∈ pt(p) . pt(q) ⊆ pt(a) [STORE]
p = ∗q ∀a ∈ pt(q) . pt(a) ⊆ pt(p) [LOAD]

Figure 1. Constraints for flow-insensitive subset-based points-to
analysis

efits to precision. The results show that the performance of the
strong update analysis is comparable to that of the flow-insensitive
analysis. Section 7 surveys other work related to efficient flow-
sensitive points-to analysis. Finally, Section 8 concludes.

2. Background
This section defines the program model and notation that will be
used in the rest of the paper, briefly reviews flow-insensitive subset-
based points-to analysis (often called Andersen’s analysis [1]), and
specifies a flow-sensitive extension of that analysis.

The program model commonly used in the points-to analysis
literature and in the points-to analysis implementation in LLVM
represents the program using a control flow graph containing the
four kinds of pointer-manipulating instructions shown in the left
column of Figure 1. More complicated statements that manipulate
pointers (such as statements containing multiple levels of indirec-
tion) are decomposed into these basic instructions. The ADDROF
instruction is used to model all statements that cause a pointer p to
point to some new target a. This includes not only statements that
take the address of a variable, but also statements that allocate new
objects dynamically, in which case the pointer target is the state-
ment at which the allocation takes place, the allocation site. The
COPY instruction is used to model all copying of one pointer to an-
other, including interprocedural copying of arguments to procedure
parameters due to procedure calls. The STORE and LOAD instruc-
tions model dereferencing of and writes and reads through pointers.

For simplicity of presentation, we follow the LLVM conven-
tion of separating variables into two disjoint sets of top-level and
address-taken variables. The setA is defined to contain all possible
targets of a pointer, including address-taken variables and dynamic
allocation sites. The set P contains all top-level pointer variables.
The instructions in Figure 1 are restricted to operate only on top-
level pointers p, q ∈ P , except for the ADDROF instruction that
takes the address of an address-taken variable a ∈ A. If a program
contains a variable v violating this restriction (i.e. it has its address
taken, and is also used in a copy, store, or load instruction), the
program is transformed into an equivalent program that replaces
v with a separate top-level pointer pv and target variable av by
adding the instruction pv = &av and replacing all occurrences of
v in the original program with ∗pv . The set of all variables is de-
noted V = P ∪ A. We use a, b, and c to range over A, p, q, and r
to range over P , and v and w to range over V .

The flow-insensitive points-to relation pt : V → 2A, is defined
as the least solution to the subset constraints shown in Figure 1. For
each pointer in the program, it provides a set of targets to which the
pointer may point. The solution can be computed by initializing
all points-to set to the empty set, then iteratively choosing a sub-
set constraint that is violated and propagating the contents of the
points-to set on the left-hand-side of the constraint into the right-
hand-side, thereby satisfying the constraint. In formal terms, this
process is equivalent to applying a monotone function on the carte-
sian product lattice of the powerset lattices 2A associated with each
of the individual points-to sets. The height of this lattice is finite.
The constraints therefore have a unique least solution, and the iter-
ative process converges to it [9].

The feature that distinguishes a flow-sensitive analysis from a
flow-insensitive one is that the flow-sensitive analysis takes control
flow between instructions into account and computes a possibly

` : p = &a {a} ⊆ pt[•`](p) [ADDROF]
` : p = q pt[•`](q) ⊆ pt[•`](p) [COPY]
` : ∗p = q ∀a ∈ pt[•`](p) . pt[•`](q) ⊆ pt[•`](a) [STORE]
` : p = ∗q ∀a ∈ pt[•`](q) . pt[•`](a) ⊆ pt[•`](p) [LOAD]
`1 ∈ pred(`2) ∀v ∈ V . pt[•`1](v) ⊆ pt[•`2](v) [CFLOW]
` ∈ L ∀v ∈ V \ kill(`) . pt[•`](v) ⊆ pt[•`](v) [PRESERVE]

Figure 2. Constraints for flow-sensitive subset-based points-to
analysis

different result for each program point. The subset-based points-to
analysis can be extended to be flow-sensitive as shown in Figure 2.
Each instruction is annotated with a label ` ∈ L to indicate its
position in the control flow graph. The points-to relation is extended
with an extra parameter that dictates the program point at which
the points-to information applies. The notation •` and •` indicates
the program points immediately before and after the instruction
labelled `, respectively. For example, pt[•`](v) gives the points-
to set of pointer v after the instruction labelled `. The subset
constraints modelling the four kinds of instructions are similar
to those in the flow-insensitive analysis, except they now relate
a points-to set before each instruction with a points-to set after
that instruction. The new CFLOW constraints model the effect of
control flow: whenever `2 follows `1 in the control flow graph,
the points-to sets before `2 contain everything contained in the
points-to sets after `1. The new PRESERVE constraint accounts for
the fact that any pointers not affected by an instruction maintain
the values that they had before the instruction executed. For each
pointer v not in the kill set of the instruction, the points-to set after
the instruction contains all the targets that were in the points-to
set before the instruction. For a simple implementation of a flow-
sensitive analysis, it is sufficient (and sound) to define all the kill
sets to be empty, so that the PRESERVE subset constraints apply to
every pointer at every instruction.

Additional precision can be obtained using strong updates,
which are implemented in the analysis by defining kill sets that
are not empty. A strong update occurs when it is known that an in-
struction completely overwrites a previous value of a given pointer.
In this case, the pointer is listed in the kill set of the instruction to
prevent the PRESERVE constraints from propagating the previous
value of the pointer through the instruction.

To soundly include an abstract pointer v in the kill set, we
must be sure that the instruction definitely writes to v, and that the
abstract pointer v represents no more than a single concrete pointer
in the execution of the program. For example, if v is a dynamic
allocation site, an instruction may overwrite one but not all of the
objects allocated there, so it would be unsound to include v in the
kill set. In Section 5, we will define a set singletons ⊆ V of abstract
pointers corresponding to a single concrete pointer at run time.

Precise kill sets to implement strong updates are defined in Fig-
ure 3. Each of the ADDROF, COPY, and LOAD instructions over-
writes a target top-level pointer p, so that pointer is in the kill set.
For a STORE instruction ∗p = q, the kill set depends on the points-
to set of p before the instruction. If its size is greater than 1, the
analysis cannot determine which of the targets will be overwritten,
so the kill set is empty (because no specific target is certain to be
overwritten). If its size is exactly 1, and the unique target a is in
singletons, then the instruction will definitely overwrite a, so a is
in the kill set.

For correctness, we must also consider the case when the points-
to set of p is empty. It is tempting but incorrect to suggest that in this
case, the instruction cannot have any effect (except to dereference
a null pointer, halting the program), so the kill set should be empty.
Such a definition would violate the monotonicity of the subset
constraints, which would invalidate the guarantee of a unique least
solution and cause the analysis to loop forever on some programs
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kill(` : p = . . .) , {p}

kill(` : ∗p = q) ,

8>>><>>>:
{} if |pt[•`](p)| > 1

{} if pt[•`](p) = {a} ∧ a 6∈ singletons
{a} if pt[•`](p) = {a} ∧ a ∈ singletons
V if pt[•`](p) = {}

Figure 3. Definition of kill sets
without converging to a fixed point. Concretely, suppose the points-
to set of p before ` : ∗p = q were empty, so that PRESERVE
constraints would be created at ` for all variables. Later, some target
a might be added to the points-to set of p and therefore to the kill
set of `. This would entail the removal of the PRESERVE constraint
for a. But this constraint may have caused a to be in the points-to
set of p, so fully removing the constraint would require removing a
from the points-to set of p, thus forcing the constraint to be added
back again. Thus the analysis would loop forever.

When the points-to set of p is empty, the correct definition of
the kill is V , the set of all variables. As a result, no PRESERVE
constraints are generated until the points-to set of p becomes non-
empty. No subset constraints ever need to be removed after they
are generated, so the non-monotonicity of the constraints and non-
termination of the analysis are avoided. Suggesting that a derefer-
ence of an empty points-to set kills the values of all pointers may
be surprising, but it is sound. If p can only point to null, dereferenc-
ing p causes the program to abort, and therefore the values of any
pointers before the null dereference cannot be observed anywhere
in the program after the dereference.

3. Design Overview
In this section, we present the design objectives for the points-to
analysis with cheap strong updates. We begin with a discussion of
the beneficial effects of flow sensitivity in a points-to analysis that
are desirable in our strong-update analysis. We then discuss the per-
formance tradeoffs made to achieve those precision improvements.

3.1 Benefits of flow sensitivity
The advantage of flow sensitivity can be classified into two bene-
fits: handling of straight-line code and strong updates. Of the two,
strong updates generally provide the greater improvement in pre-
cision. The strong update algorithm that we will present aims to
provide the benefit of strong updates at a cost comparable to that of
a flow-insensitive analysis.

The flow-sensitive points-to analysis that was presented in Fig-
ure 2 provides some improvement in precision even without strong
updates (i.e. when all of the kill sets are defined to be empty). If the
program being analyzed contains code that is not inside any loop
and can never be executed more than once, a flow-sensitive anal-
ysis can determine that facts established at the end of such code
do not yet hold at the beginning of such code. For example, con-
sider the short program in Figure 4. The program sets pointer a to
point to b in line 4 and then to c in line 5. A flow-insensitive anal-
ysis would report that pt(a) = {b, c}. A flow-sensitive analysis,
even one without strong updates, would determine that after line 4,
a does not yet point to c: pt[•4](a) = {b}. Thus flow sensitivity
improves precision for this program even without strong updates.

However, this benefit is brittle: if the same code appeared inside
a loop, the analysis would determine that pt[`](a) = {b, c} at all
points `. More generally, we can show that the points-to sets at
every point inside a given loop are always identical:

Proposition 1. Suppose that there is a cycle in the interprocedural
control flow graph leading from `1 to `2 and back to `1. Then if all

1 : pa = &a

2 : pb = &b

3 : pc = &c

4 : ∗pa = pb

5 : ∗pa = pc

Figure 4. Example of straight-line code on which flow sensitivity
improves precision

the kill sets are empty, pt[•`1](v) = pt[•`2](v) for every variable
v.

Proof. The cycle in the control flow graph induces a similar cy-
cle of CFLOW and PRESERVE constraints pt[•`1](v) ⊆ · · · ⊆
pt[•`2](v) ⊆ · · · ⊆ pt[•`1](v). Thus pt[•`1](v) = pt[•`2](v).

Most of the code of most programs is found inside loops.
Many compiler optimizations target loops because loop bodies are
where the most frequently executed code appears. Even many long
straight-line sequences of code find themselves inside a large outer
loop. For example, long-running programs such as web servers
or database servers run most of their code inside an outer loop
that handles individual requests. As a more synthetic example, the
benchmarks in many benchmark suites are usually run from a test
harness that executes the benchmark several times; thus the whole
benchmark is inside a loop. In all of these cases, due to Propo-
sition 1, a flow-sensitive analysis without strong updates would
compute the same points-to sets at all program points inside the
loop. That is, its result would be no more precise than that of a
flow-insensitive analysis.

We therefore focus the design of the strong update analysis
algorithm on providing the benefits of strong updates at low cost.
The benefit of precisely handling straight-line code is minimal, and
it is difficult to achieve without an expensive analysis that maintains
distinct, large points-to sets at different program points. On the
other hand, we will show how to achieve the more significant
benefit of strong updates within the quadratic space and cubic time
bounds of a flow-insensitive analysis.

3.2 Using SSA form for strong updates of top-level variables
The kill sets from Figure 3 define strong updates of both top-level
variables (the first definition in the figure) and of address-taken
pointer targets (the second definition). The effect of strong updates
of top-level variables can be easily achieved by first converting
the program to Static Single Assignment (SSA) form [8]. In SSA
form, every variable is written to only once. Conversion to SSA
form requires identifying all of the writes to a variable. Therefore,
for a program with pointers, SSA conversion requires points-to
information to enumerate the indirect writes to variables through
pointers, so full SSA conversion cannot be done before the points-
to analysis. However, since top-level variables cannot be accessed
through pointers, it is possible to convert the top-level variables
into SSA form prior to points-to analysis. Specifically, we require
the program to be converted to strict SSA form, which enforces that
every use of a variable is dominated by its (unique) definition. We
can show that for a program whose top-level variables are in strict
SSA form, a flow-insensitive analysis provides the precision of
flow-sensitive analysis with strong updates for top-level variables:

Proposition 2. Given a program whose top-level variables are
in strict SSA form, a top-level variable p whose unique definition
is at `d and an arbitrary label `u at which p is used, a flow-
sensitive points-to analysis with strong updates will determine that
pt[•`u](p) = pt[•`d](p).
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` : p = &a {a} ⊆ pt(p) [ADDROF]
` : p = q pt(q) ⊆ pt(p) [COPY]
` : ∗p = q ∀a ∈ pt(p) . pt(q) ⊆ pt[•`](a) [STORE]
` : p = ∗q ∀a ∈ pt(q) . pt[•`](a) ⊆ pt(p) [LOAD]
`1 ∈ pred(`2) ∀a ∈ A . pt[•`1](a) ⊆ pt[•`2](a) [CFLOW]
` ∈ L ∀a ∈ A \ kill(`) . pt[•`](a) ⊆ pt[•`](a) [PRESERVE]

Figure 5. Constraints for flow-sensitive subset-based points-to
analysis on SSA form

Proof. Since the program is in strict SSA form, there is a path in
the ICFG from `d to `u, so pt[•`d](p) ⊆ · · · ⊆ pt[•`u](p) (using
CFLOW and PRESERVE constraints and the fact that no instruction
other than `d kills p). Consider all of the subset constraints having
any points-to set pt[∗](p) on their right-hand side, where ∗ can
be any program point. Notice that all of these constraints have a
points-to set of p at some label on their left-hand side (except for
the constraints modelling the effect of `d). Therefore, one solution
to all of these subset constraints is ∀∗ ∈ •L ∪ •L . pt[∗](p) =
pt[•`d](p). Since the analysis finds the least solution, the analysis
will find a solution for which pt[•`u](p) ⊆ pt[•`d](p). Since
we also showed that pt[•`d](p) ⊆ pt[•`u](p), we conclude that
pt[•`u](p) = pt[•`d](p).

As a result of Proposition 2, we can merge all of the flow-
sensitive points-to sets pt[∗](p) of p into a single flow-insensitive
points-to set pt(p) without reducing the precision of the analy-
sis. The subset constraints after this simplification are shown in
Figure 5. Note that the CFLOW and PRESERVE constraints for a
top-level variable p reduce to the trivial pt(p) ⊆ pt(p) and are
therefore not needed. While this analysis is as precise as the flow-
sensitive analysis, it has regained some of the simplicity of the flow-
insensitive analysis. The space required to store the points-to sets
has been reduced from O(|V||L||A|) to O(|P||A|+ |A|2|L|).

3.3 Quadratic-space representation of points-to sets of
pointer targets

To achieve space requirements that are quadratic in the size of the
program, we must further reduce the |A|2|L| term in the above
bound, which is due to the size of the points-to sets pt[`](a).
The strong update algorithm does this by taking advantage of the
following insights:

• Most of the precision benefit of flow-sensitivity comes from
strong updates.

• A strong update requires the points-to set of the dereferenced
pointer to contain at most one pointer target.

• A singleton points-to set is cheap to store and manipulate.
• Any larger points-to set will not directly enable strong updates,

so there is little benefit in spending much space or time on it.

Therefore, the strong update analysis stores points-to sets of pointer
targets flow sensitively when they are singletons, and only flow
insensitively when they are larger.

To implement this, we define the singleton-set lattice S as
shown in Figure 6. An element of S is either the empty set, a sin-
gleton set, or > indicating some larger set. For each program point
` and pointer target a, the analysis stores an element su[`](a) of
this lattice. The analysis also stores a flow-insensitive points-to set
pt(a) for each pointer target a. The STORE constraint updates both
pt(a) and su[`](a) if the points-to set of the variable q being stored
is a singleton (and sets su[`](a) to > if it is not). When the LOAD
constraint needs the points-to set of a at `, it first consults su[`](a)
for a possible singleton; if this returns>, it falls back on the points-
to set pt(a). This is implemented by the ptsu function in Figure 7.
Only the small su sets need to be propagated flow-sensitively along

>

{}

{a} {b} {c} · · ·

Figure 6. The singleton-set lattice S
` : p = &a {a} ⊆ pt(p) [ADDROF]
` : p = q pt(q) ⊆ pt(p) [COPY]
` : ∗p = q ∀a ∈ pt(p) . pt(q) v su[•`](a) [STORE]

∀a ∈ pt(p) . pt(q) ⊆ pt(a)
` : p = ∗q ∀a ∈ pt(q) . ptsu[•`](a) ⊆ pt(p) [LOAD]
`1 ∈ pred(`2) ∀a ∈ A . su[•`1](a) v su[•`2](a) [CFLOW]
` ∈ L ∀a ∈ A \ kill(`) . su[•`](a) v su[•`](a) [PRESERVE]

Where ptsu[`](a) ,

(
su[`](a) if su[`](a) 6= >
pt(a) if su[`](a) = >

Figure 7. Constraints for Strong Update Analysis

the control flow edges of the program, so the CFLOW and PRE-
SERVE constraints act only on these sets. The possibly large pt sets
are stored only once for the whole program. As a result, the space
bound of this representation isO(|P||A|+ |A|2 + |L||A|), reflect-
ing the space requirements of the points-to sets of P , the points-to
sets of A, and the sets su, respectively.

Although the asymptotic complexity is low, we should also con-
sider actual behaviour on realistic programs. In most programs,
only a small number of pointer targets a will have singleton points-
to sets at a given label. Thus the representation of the sets su[`] at
each program point ` should be worst-case linear not only in |A|,
but also in the (much smaller) subset of pointer targets a for which
su[`](a) is a singleton. If su[`](a) = > for most values of a, we
could use a hash table storing only those pointer targets whose as-
sociated value is not >, and default to > when we do not find a
particular pointer target in the table. However, there are also pro-
gram points at which su[`](a) = {} for all values of a, namely the
program points following a store through a pointer p whose points-
to set is empty. For these program points, this representation would
require a hash table with |A| entries. Fortunately, the analysis never
encounters a case in which an incoming su value is all {} and only
some of the keys have their values changed; that is, at no point in
the analysis do we need to represent an su[`](a) function that is {}
for most but not all values of a. Therefore, in our implementation,
we use a hybrid data structure to represent su[`]. A boolean flag
dictates whether su[`](a) is {} for all a or not. When this flag is
false, a hash map then stores the values of su[`](a) other than >,
and > is returned when a pointer target is not found in the hash
map. When the boolean flag is true, the hash map is unnecessary
and is simply ignored. This hybrid representation is compact in all
of the common use cases.

3.4 Sparse Allocation of Labels
The analysis can be simplified and made more efficient by remov-
ing redundant labels from the program representation. In our dis-
cussion thus far, every instruction was assigned its own unique label
`. But most instructions do not change the points-to sets of address
taken variables a ∈ A. That is, most instructions do not affect the
flow-sensitive su sets. The su value after a given instruction is equal
to the su value after the immediate control flow predecessor of the
instruction except when the instruction is a STORE, when the in-
struction has multiple control flow predecessors (i.e. it is a control
flow merge), or when the instruction has no control flow predeces-
sors because it is the very first instruction in the program.
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1 foreach ADDROF constraint p = &a do pt(p) ∪= {a}; worklist ∪= {p} od
2 foreach COPY constraint p = q do graph ∪= {q → p} od
3 while worklist 6= {} do
4 remove a variable v from worklist
5 ∆← pt(v) \ oldpt(v)
6 oldpt(v)← pt(v)
7 foreach STORE constraint ∗v = q do foreach a ∈ ∆ do AddEdge(q, a) od od
8 foreach LOAD constraint p = ∗v do ProcessLoad(p, ∆) od
9 foreach v → w ∈ graph do
10 pt(w) ∪= ∆
11 if pt(w) changed then worklist ∪= {w} fi
12 od
13 od
14 proc ProcessLoad(p, ∆)
15 foreach a ∈ ∆ do AddEdge(a, p) od
16 endproc
17 proc AddEdge(v, w)
18 if v → w 6∈ graph then graph ∪= {v → w}; pt(w) ∪= pt(v); if pt(w) changed then worklist ∪= {w} fi fi
19 endproc

Figure 8. Original Flow-insensitive Points-to Analysis Algorithm in LLVM

When it is certain that the su sets at one instruction are identical
to those at its predecessor, we can assign both instructions the same
label. Specifically, we relabel the instructions in the program in
the following way. First, every STORE instruction is assigned a
unique label. Second, at every control flow merge point, we add
a new no-op instruction and give it a unique label. The su value
computed at this label will be the join of the su values at the
control flow predecessors. Third, we add a no-op instruction at
the very beginning of the program and also give it a unique label.
The su value computed at this label will be λa.>, meaning that no
flow-sensitive information is known. Finally, we label every other
instruction with the label of its (unique) control flow predecessor.
As a result, every label in the program can be classified as either
a store, a merge, or a clear (the beginning of the program). In
particular, every LOAD instruction in the program is now labelled
with the same label as the most recent instruction at which the su
value may have changed (i.e. a store, a merge, or a clear).

4. Strong Update Analysis Algorithm
This section presents the Strong Update Analysis Algorithm used
to solve the constraints of Figure 7. The algorithm is an extension
of the flow-insensitive subset-based points-to analysis algorithm
already implemented in LLVM and other compilers. We therefore
begin with a brief review of that algorithm, and follow it with an
explanation of the extensions that enable strong updates.

The original flow-insensitive algorithm that solves the con-
straints of Figure 1 is shown in Figure 8. The core data structure,
graph, maintains a set of edges corresponding to the subset con-
straints being solved. The presence of the edge v → w corresponds
to the subset constraint pt(v) ⊆ pt(w). The graph is initialized
with the constraints corresponding to COPY instructions in Line 2,
and the constraints induced by STORE and LOAD instructions are
added to it as they are discovered during the analysis. The worklist
keeps track of the variables v ∈ V whose points-to set has grown
since the variable was last processed. The body of main loop in
Lines 3 to 13 is executed for each such variable. In Lines 9 to 12,
the new elements are propagated along the edges in the constraint
graph; as a result, all of the subset constraints with v on their left-
hand side become satisfied. Any other variables whose points-to
sets grow in the process are added to the worklist. Lines 7 and 8
and the ProcessLoad and AddEdge helper procedures add new

subset constraints induced by STORE and LOAD instructions to the
graph. Whenever a new constraint v → w is added, the AddEdge
procedure immediately propagates the existing contents of pt(v)
into pt(w) in Line 18. This is necessary because the normal propa-
gation in Lines 9 to 12 propagates only the part of the points-to set
that was added since the last propagation. The algorithm maintains
the invariant that if for any variable v, there may be a constraint
pt(v) ⊆ pt(w) that is not satisfied, then v is on the worklist. There-
fore, once the worklist empties, all of the constraints are satisfied.
Every iteration increases the size of oldpt(v), and since every oldpt
is a subset of A, the iteration must eventually terminate.

The extended algorithm that enables strong updates and solves
the constraints of Figure 7 is shown in Figure 9. The lines marked
with asterisks are additions to the original flow-insensitive algo-
rithm. Lines not marked with asterisks are identical to or only triv-
ially changed from corresponding lines in the flow-insensitive al-
gorithm of Figure 8.

An important change is in the worklist: in the strong update
algorithm, the worklist holds not only variables v whose subset
constraints need to be reprocessed, but additionally labels ` whose
su constraints need to be reprocessed. More precisely, the algorithm
maintains the following invariants:

1. If there is a constraint pt(v) ⊆ pt(w) that is not satisfied, then
v is on the worklist.

2. If there is a LOAD or STORE instruction dereferencing p that
induces subset constraints not already in graph, then p is on the
worklist.

3. If there is a constraint ptsu[`](a) ⊆ pt(p) induced by a LOAD
that is not satisfied, then a is on the worklist.

4. If there is a constraint of the form su[`](a) v su[`′](a′) that is
not satisfied, then ` is on the worklist.

5. If there is a STORE instruction (` : ∗p = q) that induces the
constraint pt(q) v su[`](a) and this constraint is not satisfied,
then ` is on the worklist.

The first two invariants were already present in the original flow-
insensitive points-to analysis algorithm. Invariant 3 is a variation
of Invariant 1 adapted to the modified constraint involving ptsu
that is induced by a LOAD instruction. Invariants 4 and 5 ensure
that all violated constraints involving su are tracked by the worklist
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1 foreach ADDROF constraint p = &a do pt(p) ∪= {a}; worklist ∪= {p} od
2 foreach COPY constraint p = q do graph ∪= {q → p} od
3 while worklist 6= {} do
4 remove a variable v or a label ` from worklist
5 if a variable v was removed then
6 ∆← pt(v) \ oldpt(v)
7 oldpt(v)← pt(v)
8* foreach STORE constraint ` : ∗v = q do worklist ∪= {`} od
9* worklist ∪= affected[v]
10 foreach STORE constraint ` : ∗v = q do foreach a ∈ ∆ do AddEdge(q, a) od od
11 foreach LOAD constraint ` : p = ∗v do ProcessLoad(`, p, ∆) od
12 foreach v → w ∈ graph do
13 pt(w) ∪= ∆
14 if pt(w) changed then worklist ∪= {w} fi
15 od
16* else // a label ` was removed
17* if ` is a clear then su[`]← λa.>
18* else if ` is a merge then su[`]←

F
`′∈pred(`) su[`′]

19* else // ` is a store ∗p = q
20* if pt(p) = {} then continue fi
21* su[`]← su[pred(`)]
22* if |pt(q)| ≤ 1 then affected[q] ∪= {`} else affected[q] \= {`} fi
23* if pt(p) = {a} and a ∈ singletons
24* then su[`](a)← PtToSu(q) // strong update
25* else foreach a ∈ pt(p) do su[`](a) t= PtToSu(q) od fi // weak update
26* fi
27* if su[`] changed then
28* worklist ∪= succ(`)
29* foreach LOAD constraint ` : p = ∗q do ProcessLoad(`, p, pt(q)) od
30* fi
31 fi od
32 proc ProcessLoad(`, p, ∆)
33 foreach a ∈ ∆ do
34* if su[`](a) = >
35 then AddEdge(a, p)
36* else pt(p) ∪= su[`](a); if pt(p) changed then worklist ∪= {p} fi fi
37 od endproc
38 proc AddEdge(v, w)
39 if v → w 6∈ graph then graph ∪= {v → w}; pt(w) ∪= pt(v); if pt(w) changed then worklist ∪= {w} fi fi
40 endproc
41* proc PtToSu(q)
42* if |pt(q)| ≤ 1 and pt(q) ⊆ singletons then return pt(q) else return > fi
43* endproc

Figure 9. Strong Update Points-to Analysis Algorithm

and eventually established. We will explain how the invariants are
maintained shortly.

First, however, we explain how the algorithm processes a label
` appearing on the worklist. As was explained in Section 3.4, each
label is associated with either a clear, a control flow merge, or a
unique store instruction ` : ∗p = q. The first two possibilities are
handled in the obvious manner in Lines 17 and 18. The interesting
case is that of a STORE instruction. If pt(p) is empty, then su[•`]
remains at⊥ (i.e. λa.{}), as was explained in Section 2, so nothing
needs to be done (Line 20). Note that it is not possible for pt(p)
to be empty when su[`] is not ⊥, because all of the code that
modifies su[`] is conditional on pt(p) being non-empty, and pt(p)
never shrinks, so once it is non-empty, it can never become empty
again. When pt(p) is non-empty, the algorithm needs to establish
the constraints ∀a ∈ pt(p) . pt(q) v su[`](a) due to the STORE
instruction. The algorithm first converts pt(q) into an element of
the singleton set lattice of Figure 6, substituting > if pt(q) is not a
singleton set; this is done by the PtToSu procedure. Then a strong or

weak update is done to su[`]. If the points-to set of p is a singleton
{a}, the target a of p is certain to be overwritten by the store, so
the algorithm simply assigns PtToSu(q) to su[`](a), overwriting
the existing value (which came from the control flow predecessor
of ` in Line 21). This is a strong update (Line 24). If pt(p) is
not a singleton, weak updates to all the locations a in pt(p) are
performed, by joining PtToSu(q) with the existing value of su[`](a)
which came from the control flow predecessor of ` (Line 25).

The processing of LOAD instructions is updated to take advan-
tage of the flow-sensitive information available in su in Lines 34
and 36. These lines simply implement the ptsu function and the
modified LOAD constraint that uses it from Figure 7. Whereas in
the original flow-insensitive algorithm, a subset constraint a → p
was added to graph unconditionally, it is now done only when
su[`](a) is >; otherwise, only su[`](a) is propagated to pt(p).

The algorithm must maintain the invariants enumerated earlier.
Invariants 1 and 2 are guaranteed by the existing code from the
original flow-insensitive algorithm and by the similar addition of
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p to the worklist in Line 36. Invariant 3 for a LOAD ` : ∗p = q
can be violated when, for some a ∈ pt(p), either su[`](a) changes,
or su[`](a) = > and pt(a) changes. The first case is handled by
Line 29, which calls ProcessLoad, which updates pt(p) to restore
the invariant in Line 36. The second case is handled the same
way as in the original flow-insensitive algorithm: when su[`](a)
becomes >, an edge a → p is added to graph in Line 35, which
establishes the invariant and ensures that it remains established in
response to changes in pt(a) using the normal propagation code of
Lines 12 to 15. Invariant 4 applies to constraints modelling control
flow in the program. Line 28 restores the invariant by ensuring that
whenever su[`] changes, every control-flow successor of ` is added
to the worklist. Invariant 5 is the most complicated. For a given
STORE ` : ∗p = q, the invariant can be invalidated when either
pt(p) or pt(q) grows. Growth of pt(p) is detected by the loop on
Line 8. Growth of pt(q) is handled by Line 9, by adding all affected
stores to the worklist. The affected array is used to keep track of
all the STORES ` : ∗p = q whose invariant may be invalidated by
a change in pt(q). These are all stores whose right-hand side is q,
but excluding those for which pt(q) was already seen to be a non-
singleton in Line 22 and whose su values are therefore already >.
Line 22 ensures that the affected array is correctly maintained.

The invariants ensure that when the worklist is empty, all of the
constraints of Figure 7 are satisfied. A variable v is added to the
worklist only when pt(v) grows. A label ` is added to the worklist
only when some su[`′] grows or when ` labels a STORE ∗p = q and
either pt(p) or pt(q) has grown. Since each pt(v) and su[`] can grow
only a finite number of times, the algorithm eventually terminates
at a fixed point that satisfies all of the constraints. Since each update
of pt(v) or su[`] is the application of a monotone function, and since
the algorithm begins with all of these values at⊥, the fixed point at
which it converges is the least fixed point of all the constraints.

4.1 Worst-case complexity
As we have already discussed in Section 3.3, the Strong Update al-
gorithm maintains the quadratic space bound of the flow-insensitive
points-to analysis algorithm. We will now show that it also main-
tains the cubic time bound of the flow-insensitive algorithm.

For the worst-case analysis, we assume that the set propagation
operation s1 ∪= s2 takes time proportional to the size of the set
being propagated (i.e. O(|s2|) time).

Lemma 1. The total number of times that a variable is removed
from the worklist is O(|V||A|), and the sum of the sizes of all the
sets ∆ computed in Line 6 is also O(|V||A|).

Proof. A given variable v is added to the worklist only when pt(v)
changes. Since the maximum size of pt(v) is |A|, and elements
are never removed from pt(v), pt(v) can only change |A| times.
Moreover, the sum of all the increases in the size of pt(v) is at most
|A|. Thus a variable is added to the worklist O(|V||A|) times and
the sum of the sizes of ∆ is also O(|V||A|).

Lemma 2. The total number of times that a label is removed from
the worklist is O(E|A|), where E is the number of edges in the
interprocedural control flow graph.

Proof. A given label ` is added to the worklist only when su[`′]
changes for some `′ ∈ pred(`), or, if ` is a store ∗p = q, when
pt(p) or pt(q) changes. The total number of times that the former
can happen is at most 2E|A|, since for any given a ∈ A, su[`′](a)
can change at most twice (from an empty set to a singleton, then
to >). The total number of times that the latter can happen is 2|A|
for any given store, or a total of 2|L||A| times. Since every label
in the control flow graph has a predecessor (else it would not be
reachable), |L| < E, and so the total number of times that a label
can be added to the worklist is O(E|A|).

>

⊥

p q r · · ·

Figure 10. The top-level variable equivalence lattice

Theorem 1. The worst-case running time of the Strong Update
algorithm is O(E|V|2), where E is the number of edges in the
interprocedural control flow graph. Thus it is cubic in the size of
the program being analyzed.

Proof. By Lemma 1, the block from Line 6 to 15 is executed at
most O(|V||A|) times. Most of the lines in this block take at most
O(max{|V|, |L|}) time. The only exceptions are Lines 10 and 13,
which take O(|L||∆|) and O(|V||∆|) time. Since the sum of the
sizes of all the ∆ sets is O(|V||A|), the total time spent in these
lines isO(|V||A|(|L|+ |V|)). Since |V| is inO(|L|), the total time
spent in the block from Line 6 to 15 is O(|V||A||L|).

By Lemma 2, the block from Line 17 to 26 is executed at most
O(E|A|) times. All of the operations in it complete inO(|A|) time,
so the total time spent in this block is O(|A|2|L|).

For each load ` : p = ∗q, ProcessLoad is called only when su[`]
or pt(q) changes, each of which can happen O(|A|) times. Each
call to ProcessLoad completes in O(A) time. Therefore the total
time spent in ProcessLoad is O(|A|2|L|).

AddEdge does a propagation takingO(|A|) time, but only when
a new edge is added to graph, which can happen at most O(|V|2)
times, so the total time spent in AddEdge is O(|V|2|A|).

The total time spent in each section of the algorithm is in
O(E|V2|), so the algorithm completes in O(E|V2|) time.

4.2 A minor improvement
The precision of the strong update algorithm can be further im-
proved “for free” by a small extension to the lattice from which
su[`](a) values are chosen. Given a store ∗p = q where pt(p) =
{a}, the lattice presented so far (and shown in Figure 6) can repre-
sent the fact pt(a) is a singleton set after the store, if pt(q) happens
to be a singleton set. However, the analysis can be easily extended
to track that pt(a) = pt(q) even when pt(q) is not a singleton, and
this extension has no effect on the asymptotic complexity. In the
extended analysis, su[`] maps each address taken variable a to a
pair 〈α, β〉. The α component is a value from the singleton set lat-
tice, as in the original analysis. The β component is an element of
the lattice shown in Figure 10: it is either a top-level variable p, or
> or ⊥. For example, the pair su[`](a) = 〈{b}, p〉 indicates that
at `, pt(a) = {b} = pt(p), while su[`](a) = 〈>, p〉 indicates that
although pt(p) may not be a singleton set, pt(a) = pt(p).

To adapt the algorithm to this extended lattice, only minor
changes are needed. The if statement in Line 42 is updated to return
〈pt(q), q〉 in the then clause and 〈>, q〉 in the else clause. To take
advantage of the additional information, an extra else-if clause is
added to the if statement in Line 34. When su[`](a) is 〈>, q〉 but not
〈>,>〉, this new clause calls AddEdge(q, p) so that the contents
of pt(q) (which the su information says are equal to pt(a)) are
propagated to pt(p).

This simple extension increases the height of the lattice that
su[`](a) ranges over from 3 to only 4, so it does not affect the
asymptotic complexity of the algorithm and has a negligible effect
on actual running times. Knowing that pt(a) = pt(p) when pt(p) is
not a singleton may not directly enable additional strong updates,
but it can yield some improvement in analysis precision.
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5. Implementation
We have implemented the strong update algorithm by extending
the existing flow-insensitive subset-based points-to analysis that is
included in the LLVM compiler infrastructure [22], version 2.6.
The base analysis is an implementation of the flow-insensitive
algorithm of Figure 8, so extending it to implement the strong
update analysis algorithm was straightforward, with only a few
issues that we will explain in this section.

Before and during points-to set propagation, the existing LLVM
points-to analysis simplifies the points-to constraints using Hybrid
Cycle Detection [13] and Pointer Equivalence [14]. These trans-
formations reduce the number of subset constraints by merging
variables whose points-to sets are provably equal and eliminating
the redundant constraints. That is, they reduce the number of con-
straints while guaranteeing the same analysis output. However, this
guarantee assumes a fully flow-insensitive analysis; applying the
same transformations when instructions are related by control flow
would be incorrect because it would change the output of the analy-
sis. Therefore, we have disabled these transformations in the imple-
mentation. We conjecture that similar simplifying transformations
that do correctly take control flow information into account could
be devised, but we leave this to future work.

An implementation detail that is important for soundness is
identifying which address-taken variables are completely overwrit-
ten by strong updates (i.e. what the singletons set should be). First,
we strongly update only variables that are the same size as a pointer,
because, for example, a store to an array of multiple pointers would
only update one element of the array, so the analysis should not
strongly update the whole array. Second, we strongly update only
global variables and local variables of procedures that are not re-
cursive (either directly or mutually through other procedures). A
local variable of a recursive procedure can have many instances on
the stack at the same time, and a store only updates one of those
instances, so a strong update would be unsound. Finally, we never
apply strong updates to dynamically allocated variables, since mul-
tiple instances of them can be created by repeating the allocation.

Another important implementation detail is the handling of in-
direct function calls and of calls to external code that is unavail-
able for analysis. We use a simple approach to model these calls
soundly: before and after any indirect or external call, we insert a
“clear” node like the one at the beginning of the program, which
sets su[`] to λa.>; i.e. it discards all flow-sensitive information.
If such calls are rare, the reduction in flow-sensitive precision is
small (and even in the worst case, this is no less precise than the
original flow-insensitive analysis). If more precision is needed, the
analysis algorithm can be extended to use the computed points-to
sets to determine targets of indirect calls, as proposed by Emami
et al. [10], at the cost of increasing the asymptotic running time.
The existing LLVM implementation contains simulations of the ef-
fect of common C standard library functions, and we reuse these
(flow-insensitive) simulations in the strong update analysis.

To test the correctness of the implementation, we enabled the
LLVM transformations that take advantage of points-to informa-
tion and used the analysis to compile the SPEC CINT 2000 and
SPEC CPU 2006 benchmarks [27] that are written in C, except for
400.perlbench and 403.gcc, which will be discussed in the next sec-
tion. The SPEC harness validated that all of the compiled bench-
marks generated the correct output. On these benchmarks, with
these test inputs, and for these LLVM transformations using the
analysis results, our implementation of the strong update analysis
is sound.

6. Empirical Evaluation
We compared the strong update analysis with the original flow-
insensitive points-to analysis by running both of them on the
C benchmarks from the SPECINT 2000 and the SPECCPU 2006
suites [27]. The first column of Table 1 gives the name of the bench-
marks, and the following four columns give various measurements
of the size of each benchmark. Column 2 shows the number of
lines of source code. The next three columns show the number of
top-level pointers, the number of address-taken pointer targets, and
the number of labels in the sparse labelling defined in Section 3.4.

The next two columns show the running times of the flow-
insensitive analysis and the strong update analysis. The evaluation
was done on a machine with an AMD Phenom X4 9100e proces-
sor (4 cores, 1.8 GHz, .5/2/2 MB L1/2/3 cache) and 4GB RAM
running Linux 2.6.28, using one of the cores. The times shown are
means of ten runs. On two of the SPECCPU 2006 benchmarks,
400.perlbench and 403.gcc, neither the original flow-insensitive nor
the strong update analysis completed within two hours, preventing
further observations. In most of the benchmarks, most of the points-
to sets remain small, but these two benchmarks give rise to very
large points-to sets that spread to many pointers, leading to very
slow propagation. This pathological behaviour is a characteristic of
the benchmarks themselves, rather than purely their size: on several
benchmarks larger than 400.perlbench, both analyses completed in
reasonable time. Also, 253.perlbmk (an earlier version of 400.perl-
bench) has very similar size characteristics as 254.gap, yet it takes
hundreds of times longer to analyze.

Relative to the flow-insensitive analysis, the strong update anal-
ysis performs consistently very well. On average (geometric mean
of ratios), the strong update analysis takes only 10% longer than
the flow-insensitive analysis. The relative slowdowns range from
0% to 23%, except for 55% on 176.gcc. Thus, the performance
of the strong update analysis is comparable with that of the flow-
insensitive analysis not only in theory, but also in practice.

The next two columns of the table present counts of stores. The
first column counts the number of stores at which a strong update
can be performed (i.e. the if statement in Line 23 of the algorithm
in Figure 9 succeeds), while the second column counts the total
number of stores. On average (geometric mean), strong updates
can be performed at 81% of the stores, and this percentage ranges
from 61% to 97% among the benchmarks. This high proportion
is largely due to the LLVM technique of separating top-level and
address-taken variables described in Section 2. For every address-
taken variable a in the original code, LLVM creates a top-level
pointer p pointing only to a, and all writes to a are transformed
into stores through p. Since the points-to set of p is a singleton,
the strong update analysis can perform strong updates on a as if it
were a top-level variable whose address had not been taken (except,
of course, at program points where a actually is modified through
other pointers). In contrast, the original flow-insensitive analysis
is forced to model all such accesses to address-taken variables
imprecisely as weak updates.

The final three columns of the table present counts of loads
in each benchmark. Load instructions are where the difference
between the two analyses is observed because they are the only
instructions in the LLVM IR in which address-taken variables are
read. Every other instruction works directly only with top-level
variables; if an address-taken variable is to be used, it must first
be loaded into a top-level variables using a load instruction. The
right-most column counts the total number of loads. Of those,
the middle column counts the number of loads ` : p = ∗q at
which su[`](a) is not > for at least one a ∈ pt(q). In other
words, this column counts the number of loads at which some
flow-sensitive information relevant to the load is available. The
average (geometric mean) is 20%, but there is much benchmark-
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Analysis Time (s) Stores Loads
Benchmark kSLOC |P| |A| |L| FI SU SU total more precise non-> total
164.gzip 8.6 2708 1237 2818 0.14 0.17 235 246 23 232 618
175.vpr 17.8 12252 3625 7025 0.38 0.40 802 916 53 651 4419
176.gcc 230.5 258452 30822 117121 37.20 57.54 23062 26546 653 19441 91078
181.mcf 2.5 1988 376 821 0.07 0.07 204 304 9 279 967
186.crafty 21.2 8091 2609 10671 0.40 0.42 405 509 22 224 1774
197.parser 11.4 12227 3188 8509 0.65 0.77 1355 2024 5 666 5385
253.perlbmk 87.1 89678 14348 49584 1515.91 1533.13 9175 14925 424 7464 45230
254.gap 71.5 82980 14175 45431 2.00 2.46 10060 12179 478 10736 40984
255.vortex 67.3 49150 17745 30759 1.63 1.80 3786 4511 219 2836 20490
256.bzip2 4.7 1632 707 1590 0.11 0.11 29 30 0 33 339
300.twolf 20.5 28720 3607 11650 0.65 0.69 1446 1829 4 2369 12773
400.perlbench 169.9 178811 26509 93793 >7200 >7200
401.bzip2 8.3 9825 1191 3243 0.26 0.29 220 301 49 1024 3987
403.gcc 521.1 567212 71888 272420 >7200 >7200
429.mcf 2.7 2029 375 823 0.08 0.09 199 300 6 289 987
433.milc 15.0 13661 3041 5954 0.36 0.37 893 944 2 1159 3707
445.gobmk 197.2 74832 47709 41769 42.22 42.75 1931 2206 27 1592 8577
456.hmmer 36.0 37978 6739 17186 0.90 1.06 2216 2880 181 2494 17129
458.sjeng 13.9 6710 1852 6544 0.27 0.30 114 120 0 168 823
462.libquantum 4.4 4155 1176 1652 0.14 0.15 140 171 9 135 871
464.h264ref 51.6 67920 7986 22951 1.58 1.67 1778 2143 104 3143 24813
470.lbm 1.2 1309 235 322 0.06 0.06 45 53 4 414 599
482.sphinx3 25.1 20792 5220 10332 0.55 0.63 1542 1906 58 1636 8742

Table 1. Benchmark characteristics, analysis running times, and precision measurements

specific variation: the proportions range from 10% to 69%. The
flow-sensitive information is > when the value of the address-
taken variable read in the load differs depending on the control
flow path taken from the last store of the variable to the load. Thus
benchmarks that write through pointers within complicated control
flow structures and benchmarks that read through pointers far away
from the write tend to have a low proportion of non-> loads.

Finally, the third-last column in the table counts the number of
loads ` : p = ∗q at which the flow-sensitive points-to set of ∗q is
strictly smaller (i.e. more precise) than the flow-insensitive points-
to set of ∗q (i.e. ∪a∈pt(q)ptsu[`](a) ( ∪a∈pt(q)pt(a)). At these
loads, a smaller set is propagated to p than would be if the analysis
were fully flow-insensitive. All but two of the benchmarks con-
tain such loads, and therefore benefit from the flow-sensitivity of
the strong update analysis. In the pointer-intensive 176.gcc bench-
mark, 653 loads benefit. On the other hand, on average (geometric
mean), the number of these loads is only 3% of the number of non-
> loads. However, this is not as negative a result as it appears for
two reasons. First, it indicates that in addition to the loads for which
flow sensitivity makes a difference, there are many (i.e. the other
97%) loads for which even the flow-insensitive analysis generates
very precise points-to sets: these sets must be singletons because
they are representable in the strong update lattice. This precision
of even the flow insensitive analysis stems from the many short-
lived local variables whose address is taken. The LLVM IR turns
accesses to them into stores and loads, and because they are short
lived, even the flow-insensitive analysis analyzes them precisely.
The existence of many easily-analyzed variables is an artifact of
the intermediate representation and is independent of the variables
for which flow sensitivity is beneficial. Second, this ratio is not
specific to the strong update analysis; it would be similar with ev-
ery other flow-sensitive analysis. The non-> loads are those for
which the strong update lattice is already sufficient to encode the
full flow-sensitive points-to set. In a fully flow-sensitive analysis,
these points-to sets would not be any smaller, since they are already
singletons. The only sets on which a fully flow-sensitive analysis

would differ would be those that are so large that they are conser-
vatively approximated as > in the strong update analysis. But by
definition, they have nothing to do with the proportion of non->
sets that provide greater precision than the flow-insensitive infor-
mation. In summary, the benchmarks contain hundreds of loads for
which the strong update information is beneficial, though the form
of the intermediate representation also generates many others for
which it is not.

7. Related Work
The study of flow-sensitive pointer analyses has a long history.
Choi et al. [5] presented an early flow-sensitive alias pair analysis as
an instantiation of the standard dataflow analysis framework [21].
The analysis was applied on a Sparse Evaluation Graph [4]; that
is, a control flow graph with irrelevant nodes removed. In order to
improve efficiency further, Choi et al. [6] devised one of the first
extensions of SSA form [8] to represent indirect writes through
pointers. Their Factored SSA (FSSA) form allowed “preserving”
definitions, analogous to weak updates that may or may not over-
write the value of a variable.

Chow et al. [7] proposed a different extension of SSA form for
handling pointers, Hashed SSA (HSSA) form. This intermediate
representation added two new kinds of nodes. A χ node was placed
after every store to indicate that address-taken variables may or may
not have been updated (similar to a preserving definition). A µ node
was used to indicate a possible use of an address-taken variable.

Emami et al. [10] defined a points-to analysis that was not only
flow-sensitive but also context-sensitive. Each points-to relation-
ship was annotated as either possible or definite to enable strong
updates. Like earlier analyses, the analysis was implemented as a
dataflow analysis on the control flow graph.

Wilson and Lam [31] presented a context-sensitive pointer
analysis based on partial transfer functions (PTF) summarizing
the effects of procedures. Each PTF was constructed using a
flow-sensitive analysis, which was efficient because it was intra-
procedural. The PTFs were then combined to obtain context-
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sensitive interprocedural results. They presented experimental re-
sults on programs of up to 5 kLOC. This work sparked a line of sim-
ilar points-to analyses that were flow-sensitive intra-procedurally
and generated procedure summaries that could be instantiated at
call sites [25, 29, 30]. However, these analyses performed strong
updates only on top-level variables.

Hasti and Horwitz [16] proposed a technique that iteratively
builds SSA form for variables with known aliasing, then performs
alias analysis to increase the set of variables for which aliasing is
known. It remains an open question whether the fixed point of this
technique matches the results of a flow-sensitive alias analysis.

Hind and Pioli [18, 19] performed an empirical study of the
benefits of flow sensitivity in alias analysis as well as of techniques
to improve its performance. Like us, they found that for some
pointers, flow sensitivity improves precision, but many pointers are
used in such trivial ways that flow insensitivity is sufficient.

Zhu and Calman [32] took initial steps towards using Bi-
nary Decision Diagrams (BDDs) [3] to efficiently represent flow-
sensitive points-to sets.

Tok et al. [28] presented a technique to speed up flow-sensitive
dataflow analysis on a control flow graph using computed def-use
chains for address-taken variables. As the analysis discovers new
def-use chains, the chains are used to reorder the instructions in the
worklist to reduce the analysis time.

Hardekopf and Lin [15] presented a semi-sparse algorithm to
improve the running time of a fully flow-sensitive subset-based
points-to analysis. The analysis was sparse in that it did not process
CFG nodes as a whole, but instead followed def-use chains to di-
rectly find the stores that produce the values for each load. Because
def-use chains for address-taken variables are not fully known until
the analysis completes, the analysis was semi-sparse in that it was
sparse only on top-level variables. The analysis also used BDDs to
keep the memory requirements of full flow sensitivity manageable.
It was the first fully flow-sensitive subset-based points-to analysis
that successfully scaled to benchmarks of hundreds of kLOC.

8. Conclusion
We presented a subset-based points-to analysis algorithm that com-
bines the key advantages of flow-insensitive and flow-sensitive
analyses. Like a flow-sensitive analysis, the algorithm enables
strong updates, which are the main precision benefit of flow sensi-
tivity. Like a flow-insensitive analysis, the strong update algorithm
requires, in the worst case, quadratic space and cubic time. We have
shown that its running time in practice is comparable to that of the
flow-insensitive analysis. These benefits of the algorithm stem from
the notion that it is the precise points-to sets that enable strong up-
dates (and therefore further precision), yet it is also these sets that
can be manipulated efficiently. Thus the strong update algorithm
focuses attention onto these sets to gain the precision benefits of
flow sensitivity and the efficiency benefits of flow insensitivity.
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