
Design Principles for Robust Opportunistic
Communication

S. Keshav
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

Email: keshav@uwaterloo.ca
TR CS-2009-35

Abstract—A mobile device can simultaneously increase its
throughput and dramatically reduce energy and bandwidth usage
costs by exploiting transient communication opportunities. We
argue that this opportunistic communication mode will play
a significant role in future mobile communication systems.
We present some non-trivial applications that exploit oppor-
tunistic communication and their corresponding communication
requirements. We outline the Opportunistic Communication
Management Protocol, developed over the last four years at the
University of Waterloo, that meets most of these requirements.
We then focus on some design principles for robust opportunistic
communication drawing from our experiences in developing and
deploying several practical systems. We conclude with a sketch
of some areas for future research.

I. INTRODUCTION

With the proliferation of small, highly-functional wireless
devices such as smartphones, embedded vehicular telematic
systems, and wireless-enabled music players, it has become
increasingly important to support opportunistic communica-
tion between a device and the infrastructure and amongst
devices. In this mode of communication, data is exchanged
over a wireless connection (between two devices, or between
a device and a wireless access point) that lasts from a few tens
of seconds to a few minutes. Surprisingly, even these short
connection durations, if properly exploited, allow transfers of
several tens of megabytes among the communicating parties
[1]. This can enable innovative and useful applications, such
as the distribution of audio and video content amongst people
as they go about their daily routine–in effect, turning every-
day social interactions into a low-cost and efficient content
distribution network [2].

Although the potential for opportunistic communication
has been known for a few years, building robust systems
for opportunistic communication is surprisingly difficult. A
system can be said to be robust to a fault if it can carry
out its desired functionality, albeit with reduced performance,
despite the fault. Robust system design, therefore, requires us
to catalog a set of potential faults, and then prove, either by
analysis or by actual test, that the system is robust to the
fault. The designer of a robust communication system must
anticipate and deal with many potential faults. The problem
here is that, without actual deployment in the field, the set of
possible faults is nearly impossible to determine.

Over the past four years, we have built a series of systems
for opportunistic communication that we have deployed in the
field and tested under realistic conditions. Based on our experi-
ence, we have identified several failure modes for opportunistic
communication. These allow us to prescribe some principles
for designing robust opportunistic communications, which are
the primary focus of this paper.

The paper is laid out as follows. Section 2 presents some
motivating examples of applications that exploit opportunistic
communication. Section 3 presents the requirements for a
practical system for opportunistic communication. Section 4
outlines the Opportunistic Connection Management Protocol
(OCMP) architecture that meets these requirements. Section 5
describes the design principles in some detail. Finally, Section
6 presents our conclusions and directions for future work.

II. SOME APPLICATIONS

In this section, we present three examples of applications
that can use opportunistic communication.

Consider a mobile device that has an on-board camera.
Suppose that a user can take short videos using this cam-
era and store it locally. Also assume that the device has a
WiFi interface. The device could use this to opportunistically
distribute content to similar devices. Specifically, each video
clip could be annotated with a set of descriptive tags. On
meeting another mobile, the devices could exchange tags of
locally stored content. If one device wanted to obtain content
matching certain tags, it could request it from the other.
This would allow peer-to-peer wireless content dissemination.
Clearly, the design of this application requires opportunis-
tic communication. This example can be extended to allow
flooding of ‘want’ lists to a set of nodes, and when a ‘want’
request can be satisfied, the routing of content back to the
requester along an opportunistic path. It can also be extended
to allow a set of nodes to maintain a completely distributed
and self-indexed content database, similar to a peer-to-peer
database, where content resides, is indexed by, and is mutually
exchanged among a set of opportunistically communicating
wireless nodes, as addressed by the Haggle project [2], [3].

A second example of opportunistic communication is to
allow access to the Internet from moving vehicles [4]. Such
vehicles could gain access to the Internet from roadside



wireless access points. Symmetrically, content created by the
user of a mobile device could be placed into the infrastructure.
For example, pictures or video clips taken by a mobile device
user could be automatically uploaded to content sites such as
YouTube or Flickr. Alternatively, mobile users could download
e-mail and e-mail attachments as they drove past a wireless
access point. By avoiding onerous charges for data transfer
imposed by cellular providers, this mode of transfer makes it
possible for device users to access rich multimedia content
at low cost. This communication is opportunistic because
vehicles lose connectivity as they move past the access point.

A third example of opportunistic communication is its use
for rural communications. In this scenario, vehicles equipped
with a wireless router and a small on-board computer exchange
data with desktop computers in village kiosks [5], [6]. Packets
transferred from the desktop to the vehicle are physically
carried to other computers that provide a gateway into the
Internet. The first such system was DakNet, which was built
at MIT in in 2001 [5]. More recently, the VLink system from
the University of Waterloo provides a similar service [7]. The
use of opportunistic communication allows low-cost commu-
nication in areas where it is economically infeasible to deploy
infrastructure. Even where such infrastructure exists, oppor-
tunistic communication augments traditional communication
paths with a low-cost alternative. For instance, opportunistic
communication can be used to maintain synchronization be-
tween a home and work desktop by means of USB memory
stick (we describe this in more detail below).

In these examples the use of opportunistic communication
enables applications that could not otherwise be implemented.
Therefore, we believe that there is a need to support robust
opportunistic communications for such future applications.

III. REQUIREMENTS

In this section, we describe the requirements for any system
that provides opportunistic communication. These require-
ments are derived from a careful consideration of the system
support needed by the three applications presented in Section
II.

We will assume, as a necessary prerequisite, that the
applications are tolerant to both delay and delay variance.
Otherwise, the applications would not be suitable for oppor-
tunistic communication in the first place. This is an important
point: opportunistic communication is not feasible for all
applications. It does not permit real-time communication or
even interactive communication. It is best suited for moving
large amounts of data where cost is a constraint and delay is
not.

Here are the requirements for opportunistic communication:
• Should not require human intervention: to be useful,

opportunistic communication should not require active
participation of users who are likely to be engaged
in other activities. Communication should proceed as a
background process working on behalf of the user.

• Should recover from disconnections: Opportunistic com-
munication necessarily implies that disconnections will

be common. The system should recover from such dis-
connections, continuing existing data transfers from the
point where they left off instead of starting them from
scratch.

• Should be low cost: the system should make use of
unlicensed spectrum when possible, to reduce costs.

• Should be legacy compatible: This allows easy deploy-
ment in legacy infrastructure. There should be minimal
change to clients and servers and no change to underlying
protocols such as TCP and IP.

In addition, we believe there are four secondary require-
ments which may not apply in all situations: to minimize
device power usage, maximize use of communication oppor-
tunity, support both single and multi-hop communication, and
provide over-the-air security.

These requirements cannot be met using standard TCP/IP.
For example, on disconnection TCP goes into a series of
progressively longer timeouts, and on reconnection, if the
device acquires a new IP address, the communication state
is completely lost. Moreover, TCP does not have any notion
of communication cost. Therefore, it is as likely to use
an expensive WWAN NIC as a free WLAN NIC. Given a
choice of access points, TCP does not have any criterion
by which to choose one. Of course, these requirements can
be met by careful application design. However, this requires
every application supporting opportunistic communication to
implement the same functionality. Our goal instead is to design
a standard set of primitives that can be used by broad class of
applications.

It is difficult to meet these requirements primarily because
of disconnections, which cause changes to every layer of the
protocol stack. For instance, at the link layer, the presence
of disconnections makes rapid WiFi association and agile
selection of the data rate imperative. At the network layer, the
routing protocol needs to take into account the fact that not
all links are always available. At the transport layer, reliability
cannot be achieved by timeouts and retransmission alone:
every packet may need to be replicated for fault-tolerance.
Finally, at the application layer, the API should encourage
a send-and-wait programming style, rather than the current
paradigm of request-reply that arises naturally from the socket
API.

These changes and challenges motivate the design of a new
protocol architecture for opportunistic communication that
we call Opportunistic Communication Management Protocol
(OCMP) and is described next 1. OCMP is similar in spirit
to the DTN Reference Implementation architecture [8] and
Haggle [2].

IV. OCMP

OCMP is implemented at mobile devices and at a set of
distinguished nodes, called ‘proxies’, that serve as always-
available gateways for applications on clients to interact with
legacy servers on the Internet (Figure 1). At its heart, OCMP

1An earlier version of the OCMP architecture is described in Reference [6]



Fig. 1. OCMP software architecture

is a session layer that runs over both multi-hop paths and
standard end-to-end (one hop) TCP connections to provide
support for opportunistic communication. However, it is en-
hanced with an unusual application interface and support for
end-to-end security, leading to some additional complexity, as
described next.

We now describe the architecture layer by layer, starting at
the bottom layer.

A. Driver layer

The lowest layer of the architecture is the driver layer. This
corresponds to the device driver that provides a software inter-
face to hardware network interface cards (NICs). In addition
to standard communication interfaces, such as WiFi and wired
NICs, OCMP supports some unusual driver types. The ‘SMS
NIC’ allows data to be exchanged as SMS text messages and
the ‘USB memory key NIC’ stores packets in the form of files
on a USB memory key. These NICs are accessed directly by
OCMP, without the use of TCP/IP. However, the data units
sent on them (called bundles) are identical to those sent over
other NICs. OCMP is able to use such unusual NICs because it
does not assume the availability of end-to-end communication.
Other NIC types, such as VSAT, WiMAX, or long-range WiFi,
can easily be added to this architecture.

B. Transport layer

Transport over traditional NICs is provided by a standard
TCP/IP transport layer. We do not make any modification to
TCP/IP, thus allowing legacy compatibility.

C. Transport abstraction layer

The layer above the transport layer is the transport abstrac-
tion layer. We define a communication path to be session-
layer generalization of a TCP connection that allows com-
munication between two entities either over a single virtual
hop, or over multiple hops, where each hop corresponds to a
TCP-style connection. The communication path between two
mobile devices, or between a mobile device and a proxy, is
encapsulated by a connection object (CO) in this layer. Data
given to a CO by a higher layer is transmitted and routed to
the specified destination using the chosen path. We choose to
map communication objects to paths because communication
cost and delay is closely tied to the type of path.

Communication paths (and therefore, COs) fall into two
broad categories: end-to-end paths and hop-by-hop paths. End-
to-end paths allow a mobile device to communicate directly
with the Internet. However, communication goes through an
intermediate proxy for reasons such as disconnection tolerance
and security. Examples of such paths are TCP over WiFi
through an access point, corresponding to the ‘TCP CO’ (the
TCP CO should really be called the ‘end-to-end CO’, but
the name persists for historical reasons), an end-to-end SMS
connection corresponding to the SMS CO, and packet transfer
using an USB memory stick corresponding to the USB CO.
In contrast, with a hop-by-hop path, data transfer goes from
a mobile device to another mobile device. Examples are the
WiFi CO and the Bluetooth CO, which use WiFI and Blue-
tooth respectively to communicate with a neighbouring node.
There are similar COs for other end-to-end and hop-by-hop



TCP connections bound to each type of NIC (GPRS/EDGE,
WiMAX, dial-up, etc.).

Note that the distinction between hop-by-hop paths and end-
to-end paths is a matter of convenience and is used essentially
as a routing hint. Bundles carry a destination name, which is
either the name of a mobile device or of a proxy. These names
are opaque to a CO. When two devices connect, they check
if they have any bundles that can be given to the peer, either
because the peer’s name matches the bundle destination name,
or because a routing rule indicates that this peer has a path
to the destination. If so, bundle transfer happens. Because the
same rules are used both by hop-by-hop and end-to-end COs,
the distinction between them needed only to simplify the task
of routing (as discussed in Section ??.

COs are ephemeral and disappear when the corresponding
communication opportunity is no longer available. Therefore,
COs are instantiated and removed by a separate entity, called
the listener. The listener uses CO-specific methods to learn of
the presence of a communication opportunity and to instantiate
a corresponding CO. For example, it can use WiFi beacons
to instantiate a WiFi CO, or the presence of dial-tone to
instantiate a dial-up CO. Listeners are also responsible for
actually creating the connection between two COs. For end-
to-end connections, the connection is always initiated by the
client. For peer-to-peer connections, listeners set up persistent
TCP servers, and periodically initiate connection attempts to
a well-known port at each other’s IP address.

We note here that some physical NICs, such as a WiFi NIC,
support both hop-by-hop and end-to-end communication. That
is, bundles can be sent over such a NIC either to another
device or, in the presence of a WiFi access point, directly to
the Internet. It is the job of the listener to distinguish between
these two cases and instantiate the appropriate CO. Indeed,
if the mobile device is in the presence of multiple access
points, the listener sets up one CO corresponding to each
usable access point, since each access point could support a
different service quality.

D. Session layer

The OCMP session layer is responsible for scheduling
application data units onto transports encapsulated using COs.
It provides long-term database storage for application data
from potentially ephemeral applications (i.e. from application
that terminate after sending data). Finally, it exchanges control
messages with peer session layers for neighbour discovery and
bundle routing.

Unlike socket communication, where the loss of a com-
munication socket is fatal, the OCMP session layer assumes
that COs are ephemeral. Thus, it stores data, in the form of
bundles, in a local file or database, and, when it is alerted
to the availability of CO, establishes a connection path to the
OCMP destination, and transmits bundles on the CO.

OCMP allows applications to specify, for each application-
data unit, a prioritized list of COs on which it wishes to
transfer data. OCMP will try to send data on the highest-
priority CO that is available at that time. In an alternative

implementation, applications specify a deadline by which time
the data must be delivered and a scheduler within OCMP
chooses the least-cost path that meets this deadline. In the
latter design, the scheduler is augmented with a predictor,
that is either told of, or can guess, future communication
opportunities. The design of our system allows an application
to use sophisticated scheduling policies should it so desire.
For instance, an application can choose low-priority data to
be sent using a TCP connection bound to a WiFi NIC, and
high-priority data on the connection over a WWAN NIC.
The design of robust scheduling policies is an open area
of research. OCMP, however, provides the infrastructure for
the implementation and experimentation with a variety of
scheduling algorithms.

The OCMP routing protocol allows for both one-hop and
multi-hop routing. As discussed earlier, COs are marked as
end-to-end or hop-by-hop to facilitate routing. When a listener
discovers the ability to use TCP to connect to a well-known
port at the proxy, it instantiates a corresponding end-to-end
CO. The routing module in the session layer then uses this
CO to transfer bundles that are destined to the proxy (that
is, have a destination name corresponding to the proxy). In
the current implementation, all bundles to whom a hop-by-
hop path is not known are also sent to the proxy for further
routing [9].

If the listener cannot establish a TCP connection to the
proxy, it creates a hop-by-hop CO and exchanges control
messages with the peer session layer to determine the identity
of the peer. It is now up to the routing module to decide which
bundles should be transferred over this CO. In the current
implementation, the routing protocol is naive flooding, so all
bundles in the data store are sent to the peer. The design of
more efficient hop-by-hop routing protocols is an open area
of research.

E. Application programming interface

Applications communicate with OCMP using a ‘directory
API’. This essentially means reading files from and writing
files to a per-user per-application directory. Files written by an
application or plugin at a proxy to a communication directory
are eventually transferred to a corresponding user directory
on a client. In the other direction, files given to the proxy
from a particular user are demultiplexed and written into an
appropriate directory, and a handler designated by the plugin
is invoked to carry out application-specific forwarding actions.

The directory API is implemented by a software compo-
nent called a directory watcher. The watcher reads outgoing
directories and, when it notices a new file, it fragments the
file into bundles, saves the bundles in the data store, and
calls OCMP to send the bundles. Similarly, it registers with
OCMP to receive bundles on behalf of the plugins, and, when
called by OCMP, re-assembles files, and when a complete
file is received, writes the file into the application-specific
directories. Applications can specify configuration parameters
to the directory watcher by writing to a configuration file in



their communication directory. Details can be found in [6] or
in online documentation [10].

F. Application layer

The application layer is at the highest layer of the OCMP
stack. Recognizing the need for application-specific actions
at a proxy, OCMP supports application plugins. Each such
plugin is responsible for application-specific actions when
OCMP receives an application-data unit. For example, plugins
at the proxy are responsible for communicating with legacy
Internet servers at Flickr, FTP, and YouTube. A plugin interacts
with legacy servers using standard TCP/IP and hides client
disconnections and IP address changes from them.

G. Security layer

OCMP provides an optional security layer. A ‘secure di-
rectory watcher’ application reads data to and from a ‘secure
directory.’ When an application writes data to a secure direc-
tory, the watcher eventually notices it. It reads the destination
field and uses this to access a local key store and retrieve
the destination’s public key. The data is then encrypted with a
nonce and the nonce is encrypted with the destination’s public
key. This allows end-to-end secure communication.

Symmetrically, when encrypted data is received by an
application, the secure directory watcher application is invoked
and it uses the application’s private key (stored in the user’s
file system hierarchy) to decrypt the data and place it in the
secure directory. Thus, from the perspective of an application,
to send data securely to a destination, all it needs to do is
to write data to the secure directory, instead of to a standard
directory. This makes it trivial to write secure applications.

For this to work, the key store needs to be properly set up.
Our solution assumes the existence of a globally trusted third
party that signs all public key certificates. These certificates are
then flooded to key stores. This allows all mobile devices to
know the public keys of all other mobile devices. Our current
solution does not scale: the design of cheap, robust, secure,
and scaleable security for mobile devices is an open problem.
Details of our security architecture can be found in reference
[11].

V. THE DESIGN PRINCIPLES

Over the last four years, we have implemented the OCMP
architecture several different times. Our first implementation
only dealt with disconnections and supported only end-to-
end paths [12]. In our second implementation, we added
support for hop-by-hop paths, in particular, where this path
was provided by a bus or a car that carried a router and
provided ’mechanical backhaul’ [6]. We also added support
for security [11]. Our latest implementation, dubbed VLink,
supports program state persistence across crashes and COs for
USB- and SMS-based paths [7]. In parallel, the architecture
has been independently implemented by Astilbe Corporation,
a University of Waterloo spinoff, and is currently being used
in the field. Therefore, we have accumulated a wealth of
experience in the use of OCMP in the field. In this section,

Fig. 2. Loss rate as a function of RSSI

we present some design principles for robust opportunistic
communication based on this experience. The principles are
categorized according to the corresponding OCMP layer.

A. Driver layer

Avoid the wireless fringe.
Opportunistic communication frequently uses wireless links

such as WiFi and Bluetooth. These short-range technologies
offer good throughput when the received signal to noise ratio is
high. However, in their so-called ”fringe”, the signal-to-noise
ratio is low and frame loss rates are high.

During opportunistic communication, two nodes that are
initially out of range of each other come into range, exchange
frames, and then move out of range again. Control frames–
such as association and authentication request frames–sent
when the nodes just enter each other’s communication range
are likely to be lost, triggering retransmissions and wasted
communication capacity [1], [13]. The problem is exacerbated
by the use of fixed multi-second timeouts in most device
drivers. These timeouts nearly guarantee the loss of precious
seconds of communication opportunity because of lost control
frames.

These problems can be avoid by initiating communication
only when the the received signal strength is high. Specifically,
we found that loss rates during opportunistic communication
decrease dramatically when the signal-to-loss ratio is greater
than a threshold (which depends on the data rate), as shown
in Figure 2.

The rule, simply, is to initiate transmission only when the
signal strength exceeds this threshold. We found that, with
this simple rule, throughput achieved during a communication
opportunity can nearly double [1].

Note that this rule cannot be used in static scenarios, where
the SNR may never increase past the threshold. In such cases,
auto rate fallback is a better solution. But, with opportunistic
communication, where mobility is a given, and the SNR
is likely to improve as nodes move into range, deferring
transmission in the hopes of encountering better SNR is the
right decision.

Avoid performance coupling.



Performance coupling [14] refers to the dramatic decrease in
performance across a good-quality wireless link from a mobile
device to an access point because of the presence of a nearby
mobile device that communicates with the same access point
over a poor quality link. The problem arises due to 802.11’s
automatic selection of data rates. Nodes distant from an access
point (AP) use a lower data rate to compensate for a lower
signal-to-noise ratio on their communication path. This means
that they take longer to transmit a single bit - up to 54 times
slower than the best-possible bit transmission time in the case
of 802.11g. Consequently, the overall performance of a BSS
where some nodes have a lower communication capacity than
others is dominated by the slower communication paths. This
results in a single ‘bad’ node reducing performance for all
other nodes.

To avoid this problem, we proposed that an AP service
only those nodes that have good signal strength. This strategy,
called MV-MAX [15], results in considerable performance
improvement with only minor changes to the driver layer. The
obvious problem with this solution is that it is unfair to those
devices that are situated in a region with poor signal-to-noise
ratio. However, because devices are mobile, it is likely that
over time every device finds itself in a ‘good’ region. This
is particularly true when dealing with vehicular opportunistic
communication from a roadside access point, where every
vehicle on the road goes through a poor quality region as
well as a good-quality region, so that approximate fairness is
attained.

B. Transport layer

Use hop-by-hop TCP.
In a network with opportunistic communication, end-to-end

TCP is not always feasible [16]. Instead, we use hop-by-hop
TCP over wireless links. The advantage of using TCP over
UDP or raw IP is that provides flow control and reliability,
which make it much more likely that transfers from one node
to another succeed. Moreover, it exercises a heavily optimized
and debugged path, which adds robustness. We did consider
using our own implementation of an erasure code over UDP
as an alternative to TCP, but the gains from this approach are
yet to be proven.

C. Transport abstraction layer

Avoid wireless networks if possible.
Wireless networks, especially when used by mobile nodes,

tend to be both unreliable and hard to debug. We found that
the same device, moving through the same region of space in
the vicinity of an access point, can experience dramatically
different performance depending on the presence or absence
of other devices and the unpredictable effects of multi-path
interference. It is difficult to build a reliable system when the
capacity of the wireless link can vary by nearly two orders of
magnitude.

After considerable effort in trying to make wireless links re-
liable, we ultimately decided to provide, in addition to wireless
links, a USB-memory key based communication path, where

transfer between nodes occurs by physically carrying a USB-
memory key from device to device. This eliminates problems
with wireless networks. Because of the clean separation of
functionality in our architecture, adding this solution required
us to simply write a USB CO. The upper layers are indifferent
as to whether communication uses wireless COs or the USB
CO. Indeed, the USB memory key can be thought to hold
‘frozen’ packets, that are ‘thawed’ at the receiver.

This solution is far more cumbersome than one that relies
entirely on wireless communication. However, in the context
of rural communication, the added delay and loss of efficiency
is minimal. Moreover, we no longer need a computer in a
vehicle, greatly reducing costs.

D. Session layer

Use multi-copy routing.
A natural consequence of multi-hop opportunistic communi-

cation is that it is impossible to guarantee that a specific path
exists between a source and a destination node. Moreover,
node-to-node communication capacity is usually not a con-
strained resource. Therefore, instead of sending only a single
copy of a bundle from a source to a destination, it is better to
send multiple copies along more than one path - an approach
called multi-copy routing [17]. Note that this does not apply
for opportunistic communication between a mobile device and
an infrastructure node, such as an access point.

The first version of our system used reverse path forwarding
[6]. This is single-copy routing, and turned out to be efficient,
but not sufficiently robust. The simplest approach to multi-
copy routing is flooding. Here, a node gives a copy of every
bundle in its data store to every other node that it meets. By
exploring all possible paths in parallel, flooding-based routing
is very robust. The current version of our system uses this
approach.

The problems with naive flooding is that it is wasteful. To
reduce its overhead, either the number of flooded copies, or the
time-to-live of a packet can be adjusted [18]. Optimally choos-
ing these parameters depending on the degree of connectivity
in the underlying system is an open problem. Nevertheless,
the use of multi-copy routing has been widely studied [19]
and greatly increases the robustness of the system.

Use death certificates.
When the mobility pattern is unknown, naive flooding,

although costly, is often the only robust solution, and indeed,
the one we have adopted in our work. When node-to-node
communication is cheap, the primary cost of flooding is in the
storage of flooded bundles at intermediate nodes. There needs
to be some way to eliminate these stored copies. One way is to
remove bundles after some period of time, that is, on a timeout.
The problem with this approach is that it requires setting the
timeout value, which can be difficult to determine. If storage
is not constrained, then choosing a conservative value for the
timeout is a reasonable solution. However, there is a better
solution.

Instead of timing out flooded packets, the destination of a
bundle can acknowledge it by sending ‘death certificates’ [20].



These small bundles are also flooded and result in the removal
of the corresponding bundle from the data store of a receiving
node. Death certificates elegantly solve the problem of when
to remove bundles. Moreover, when a sender receives a death
certificate, it also gets a delivery acknowledgement, which is
useful.

The use of death certificates leads to the recursive problem
of how to remove the death certificates themselves. This is
easily solved by keeping the size of a death certificate small
and the time-to-live for a death certificate conservatively large.

Give higher priority to less-replicated data items.

When implementing flooding-based routing, we found that
the same bundle could be transmitted during several commu-
nication opportunities. For instance, the arrival of every bus to
a kiosk would result in the same bundle being transferred from
the kiosk to the bus and vice versa. This is correct behavior,
but results in a subtle denial-of-service problem: bundles that
have not been sent could be queued behind bundles that have
already been sent before, and may not be transmitted before
the end of the communication opportunity, leading to persistent
starvation.

Our solution is to prioritize those bundles that have been
replicated the least. This avoids starvation and makes it more
likely that they will make it to the destination. In practice,
we store a transmission count with each bundle in the node
database. We then query the database (using SQL) for all
bundles that have been transmitted zero times, one time, and
so on, using the results of these queries to determine the
transmission order.

Use databases to store volatile state.

Both mobile devices and computers in developing regions
can lose power, due to the battery running down, or grid
power outages. On power loss, a typical session layer loses
all program state and cannot known which bundles have been
sent, how often they have been sent, and which bundles need to
be acknowledged. To avoid this problem, the OCMP session
layer maintains all data and state in a database, treating in-
memory tables as a cache. Specifically, every in-memory table
corresponds one-to-one with a database table. Access method
to the tables are then modified so that the in-memory table
and the database table are updated simultaneously.

In case the session layer crashes or the mobile device
reboots, it refreshes all in-memory from the database. This
makes it robust to power failures. We found this approach
to be necessary in dealing with mobile devices and with
deployments in developing areas.

This degree of robustness comes at a cost: writes are very
expensive. Moreover, the amount of data that can be sent dur-
ing an opportunistic communication is bandwidth limited by
the database access throughput. We believe, nevertheless, that
given the deployment environment, this is the right tradeoff to
be made. In cases where the node is known to have access to
reliable power, we can simply modify the access methods to
not make database writes: a minor change in the code.

E. API layer

Consider using directory-based APIs.
Applications communicate with OCMP using a directory-

based API. Files that need to reach a particular destination
are placed in an ‘upload’ directory along with a metadata file
that contains information that would normally be in a packet
header, such as the destination, whether the file should be
encrypted, and its priority. Any application-specific control
information is also placed in the metadata file.

By using a file system as the communication API, applica-
tion developers do not attempt to use a request-reply paradigm,
which does not work in opportunistic communication net-
works. Instead, they adopt a ‘send-and-wait’ approach, which
is more appropriate. We found that these hints to application
programmers made it easy for them to write robust programs
in a disconnection-tolerant environment.

F. Overall

Choose simpler solutions.
The first version of our system used Hierarchical Identity-

Based Cryptography, flat names, Distributed Hash Tables, and
a very general routing protocol [6], [21]. Through a process of
simplification, we replaced these with PKI, hierarchical names,
DNS, and bus-and-kiosk-specific routing protocols. This made
our solution far more robust, though not so ‘exciting’ from
a research perspective. In general, there is a tension between
what we call ‘full buzzword compliance’ and building a system
that actually works. We have chosen the latter.

VI. RELATED WORK

OCMP is a disconnection tolerant protocol, and is a prac-
tical implementation of the concepts first presented by Fall
[16]. The work here is most closely related to two other
implementations of the DTN concept: the DTN Reference
implementation [8] and Haggle [2].

Both these implementations, like OCMP, store bundles
in a local data store and offer both single-hop and multi-
hop routing between nodes. They also incorporate ways to
encapsulate different connection paths and offer support for
experimenting with different routing and scheduling strategies.

Our work differs from the DTN Reference implementation
in three significant ways. First, we bind connection objects
to paths. In contrast, the equivalent to a CO, called a ‘con-
vergence layer’, is bound to a protocol type, such as TCP or
UDP. This prevents fine-grained control over scheduling and
routing policies. Second, the reference implementation uses a
socket-like API, instead of the directory-based API. Finally,
the security model for the reference implementation offers the
equivalent of link-level encryption unlike the seamless end-
to-end encryption provided by our architecture. Moreover, it
does not support a disconnection-tolerant mechanism for key
distribution and management. Nevertheless, many of our ideas
are derived from our long experience with using the DTN
reference implementation and we owe it many insights.

Our work also differs from Haggle in some critical aspects.
Haggle uses a non-layered architecture, where different agents



collaborate with each other to accomplish the forwarding task.
In contrast, our approach uses traditional layering. Second,
Haggle only supports multi-hop paths between devices and has
no support for proxies or the Internet infrastructure. Finally,
Haggle manages all data on behalf of applications: applications
never own data. Again, we take a more traditional approach,
where OCMP is responsible only for data transfer, not for
application-level data management.

VII. DISCUSSION

We believe that robust opportunistic communication re-
quires careful attention to every layer of the protocol stack. In
this paper, we describe our experiences in developing OCMP
and in making it more robust. We hope that these experiences
will prove useful to other researchers in the field.

There are still many open problems in designing, im-
plementing, and deploying systems based on opportunistic
communication. At the link or driver layer, there is a need
for agile data-rate selection algorithms that can exploit the
predictable increase and decrease in signal-to-noise ratio that
is characteristic of opportunistic communication. There is also
a need for association and authentication algorithms that are
insensitive to losses, or, at the very least, do not respond to
losses with a hardcoded long timeout.

At the transport layer, there is a need for adaptive erasure
codes that are optimized for opportunistic communication.
There is also the need for flow control algorithms that can
limit data rates from transmitters in the presence of network
congestion. The interaction of erasure codes with routing and
flow control algorithms is likely to be both a challenging and
an fruitful area of research.

At the session layer, a critical problem is to develop optimal
algorithms for multi-copy routing over temporal graphs, that
is, graphs whose topologies are time-dependant. There is
the intriguing possibility of using centralized controllers to
coordinate the actions of mobile nodes using lightweight
control messages.

Finally, at the application layer, there is the need for non-
trivial applications that can exploit opportunistic communi-
cation. Peer-to-peer media dissemination, distributed social
networks [3], and vehicular communication networks [4] are
examples of applications that have the potential to make the
use of opportunistic communication nearly ubiquitous.

ACKNOWLEDGMENTS

Figure 2 is due to David Hadeller and is from his unpub-
lished research. This work draws from the talents of a host of
graduate and undergraduate students at the University of Wa-
terloo. In particular, I would like to thank Aaditeshwar Seth,
Darcy Kroeker, David Hadaller, Matei Zaharia, Shimin Guo,
Hossein Falaki, Usman Ismail, Earl Oliver and Mohammad
Derakhshani for their many contributions.

REFERENCES

[1] D. Hadaller, S. Keshav, T. Brecht, and S. Agarwal, “Vehicular op-
portunistic communication under the microscope,” Proceeding of ACM
MOBISYS, 2007.

[2] J. Scott, P. Hui, J. Crowcroft, and C. Diot, “Haggle: A Networking
Architecture Designed Around Mobile Users,” in Proceeding of WONS,
2006.

[3] A. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot, “Mo-
biClique: Middleware for Mobile Social Networking,” in Proceedings
of the SIGCOMM 2009 Workshop on Online Social Networks (WOSN),
2009.

[4] J. Ott and D. Kutscher, “A Disconnection-Tolerant Transport for Drive-
thru Internet Environments,” in Proceedings of IEEE INFOCOM, 2005.

[5] A. Pentland, R. Fletcher, and A. Hasson, “Daknet: Rethinking connec-
tivity in developing nations,” Computer, vol. 37, no. 1, pp. 78–83, 2004.

[6] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshav, “Low-cost
Communication for Rural Internet Kiosks Using Mechanical Backhaul,”
in Proceedings of ACM MOBICOM, 2006.

[7] VLink project, Tetherless Computing Laboratory, University of Water-
loo., “http://blizzard.cs.uwaterloo.ca/vlink.”

[8] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and R. Patra, “Imple-
menting delay tolerant networking,” Intel Research, Berkeley, Technical
Report, IRB-TR-04-020, 2004.

[9] S. Guo, M. Falaki, U. Ismail, E. Oliver, S. U. Rahman, A. Seth,
M. Zaharia, and S. Keshav, “ Design and Implementation of the
KioskNet System (Extended Version),” University of Waterloo, Technical
Report, CS-2007-40, 2007.

[10] KioskNet, “OCMP Directory API,” in
http://blizzard.cs.uwaterloo.ca/tetherless/index.php/OCMP Directory API,
2009.

[11] S. Ur Rahman, U. Hengartner, I. Ismail, and S. Keshav, “Practical
Security for Rural Internet Kiosks,” in Proc. of ACM SIGCOMM
Workshop on Networked Systems for Developing Regions (NSDR 2008),
2008.

[12] A. Seth, S. Bhattacharyya, and S. Keshav, “Application Support for
Opportunistic Communication on Multiple Wireless Networks,” in
http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/05/ocmp.pdf,
2005.

[13] Z. Zhuang, T. Chang, R. Sivakumar, and A. Velayutham, “A 3:
application-aware acceleration for wireless data networks,” in Proceed-
ings of the 12th annual international conference on Mobile computing
and networking. ACM, 2006, p. 205.

[14] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Perfor-
mance Anomaly of 802.11b,” in Proceedings of IEEE INFOCOM, 2003.

[15] D. Hadaller, S. Keshav, and T. Brecht, “MV-MAX: Improving Wireless
Infrastructure Access for Multi-Vehicular Communication,” in ACM
SIGCOMM Workshop on Challenged Networks (CHANTS), 2006.

[16] K. Fall, “A delay-tolerant network architecture for challenged internets,”
in Proceedings of ACM SIGCOMM. ACM New York, NY, USA, 2003,
pp. 27–34.

[17] S. Jain, M. Demmer, R. Patra, and K. Fall, “Using redundancy to cope
with failures in a delay tolerant network,” ACM SIGCOMM Computer
Communication Review, vol. 35, no. 4, p. 120, 2005.

[18] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an
efficient routing scheme for intermittently connected mobile networks,”
in WDTN ’05: Proceeding of the 2005 ACM SIGCOMM workshop on
Delay-tolerant networking. New York, NY, USA: ACM Press, 2005,
pp. 252–259.

[19] E. Jones and P. Ward, “Routing strategies for delay-tolerant net-
works,” Preprint available from http://www.ieice.org/explorer/ITC-
CSCC2008/pdf/p1577 P2-46.pdf, 2006.

[20] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of ACM PODC. ACM
New York, NY, USA, 1987, pp. 1–12.

[21] A. Seth and S. Keshav, “Practical Security for Disconnected Nodes,” in
Proc. First Workshop on Secure Network Protocols, 2005.


