
Reonstruting hv-onvex multi-oloured polyominoesAdam Bains� Therese Biedl�Tehnial report CS-2009-33AbstratIn this paper, we onsider the problem of reonstruting polyominoes from infor-mation about the thikness in vertial and horizontal diretions. We fous on the asewhere there are multiple disjoint polyominoes (of di�erent olours) that are hv-onvex,i.e., any intersetion with a horizontal or vertial line is ontiguous. We show thatreonstrution of suh polyominoes is polynomial if the number of olours is onstant,but NP-hard for an unbounded number of olours.1 IntrodutionThe �eld of disrete tomography onerns reonstrution of objets given information aboutthe thikness of the objet in various projetions. See the books by Herrman and Kuba [5, 6℄for an extensive overview of this exiting �eld with many appliations in medial imaging.One speial ase is when the objet to be reonstruted is a binary matrix with m rowsand n olumns, and the given information are the row and olumn-sums of the matrix.Testing whether suh a matrix exists and �nding it an be done easily with ow-methods.However, of more interest is the ase when the objet is supposed to be a polyomino, i.e.,from every blak ell (an entry of the matrix that is 1) to every other blak ell, there existsa path along blak ells that are adjaent horizontally or vertially.Reonstruting polyominoes is NP-hard, even if all blak ells within eah row are on-tiguous (the polyomino is h-onvex) or all blak ells within eah olumn are ontiguous(the polyomino is v-onvex.) Surprisingly, if the polyomino must hv-onvex (i.e., both h-onvex and v-onvex,) reonstruting it from row- and olumn-sums beomes polynomial.See Chapter 7 of [5℄ for referenes and an overview of these results.We study here reonstrution of objets that are the union of multiple disjoint objets,eah of whih has a di�erent olour. This has appliations in the reonstrution of polyatomirystals: the number of atoms of eah kind in a projetion an be determined using a high-resolution transmission eletron mirosope. See [7, 9℄ for details. This problem also appearsin a rereational puzzle alled \Color Pi-a-pix"; see www.oneptispuzzles.om. The generalproblem (with no restrition on the shape of the objets) was proved to be NP-hard even for 3�David R. Cheriton Shool of Computer Siene, University of Waterloo, Waterloo, ON N2L 3G1, Canada,e-mail fabains,biedlg�uwaterloo.a. Supported by NSERC.1



olours [3℄, and very reently even for 2 olours [4℄. Sine the NP-hard ases for single-olourtransfer, the only ase that ould possibly be polynomial is the ase of multiple hv-onvexpolyominoes.We resolve this ase here, and hene study the following problem: Given C oloursf1; : : : ; Cg, and C sets of density-vetors (hi) and (vj) for i = 1; : : : ;m, j = 1; : : : ; n and = 1; : : : ; C, do there exist C binary matries (xi;j) suh that for eah  the matrix (xi;j) isan hv-onvex polyomino with row-sums and olumn-sums (hi) and (vj), and suh that forany i; j we have P xi;j � 1? We all this the C-olour hv-onvex polyomino reonstrutionproblem.We show that this problem is polynominal if the number of olours is a onstant, butbeomes NP-hard if the number of olours is unbounded.2 Few oloursThe natural approah to reonstrut C hv-onvex polyominoes is to take one of the existingalgorithms to reonstrut a single hv-onvex polyomino and modify it so that it handlesmultiple polyominoes and ensures that they are disjoint. This an in fat be done easily withthe algorithm by Barui et al. [1℄, and yields an algorithm for the C-olour reonstrutionthat takes time O(C2m2C+2n2C+2). We will not give the details of this, sine with a di�erentapproah the time omplexity an be improved signi�antly.There are faster algorithms for single-olour hv-onvex polyomino reonstrution, andwe tried to generalize the urrently fastest known, whih is by Chrobak and D�urr [2℄ andtakes O(minfm;ng2mn) time. We did not sueed to generalize this algorithm to multipleolours. The main diÆulty is that this algorithm stores the omputed polyomino impliitly(by storing the \blank area" around it), and hene there is no easy way to add a onstraintto ensure that multiple polyominoes are disjoint.In this paper, we �rst develop a di�erent algorithm for single-oloured hv-onvex poly-omino reonstrution, whih mathes the run-time of Chrobak and D�urr. We then show thatit an be generalized to multiple olours easily, yielding a run-time of O(C2minfm;ng2Cmn).2.1 Single-olour reonstrutionWe �rst explore the single-olour hv-onvex polyomino reonstrution. So assume we aregiven vetors (hi) and (vj) and we want to �nd a binary matrix (xi;j) that is an hv-onvexpolyomino and has row-sums (hi) and olumn-sums (vj). Note that neessarilyPi hi = Pj vj,sine otherwise no solution an exist. We also assume hi > 0 and vj > 0. As before, we saythat ell (i; j) is blak if and only if xi;j = 1 and white otherwise.A foot of a polyomino is the intersetion of the polyomino with the leftmost/rightmostolumn or top/bottom row, and eah of the four feet is named after the meridial diretions.For our algorithm, assume that m � n after possible rotation. Try every possible west-footand east-foot, i.e., all possible indies w; e 2 f1; : : : ;mg. 1 We say that a polyomino respetsthese feet if ells (w; 1) and (e; n) are blak. We now show how to �nd a polyomino that1Using feet and the \spine" SWE is inspired by [1℄.2



respets these feet, if one exists, in O(nm) time using 2-SAT. We give the algorithm onlyfor the ase where w � e; the other ase is similar.Barui et al. [1℄ used as one of their main ingredients that in any row between w ande, they an �nd ells that are guaranteed to be in any polyomino respeting the feet. Morepreisely, let SWE be the set of all ells (i; j) with w � i � e, Pjk=1 vk � Pi�1k=1 hk, andPik=1 hk �Pj�1k=1 vk. Set SW to be the �rst hw ells in row w and let SE to be the last he ellsin row e. Exatly as in [1℄, one an show that any ell in SW [ SE [ SWE must be blak inany polyomino that respets the west and east foot. Furthermore, the ells in SW [SE[SWEform a polyomino that ontains at least one ell in every olumn.Now de�ne a 2-SAT instane. We have two variables xi;j and Ri;j for every ell, wherexi;j = TRUE means that ell (i; j) is blak, and Ri;j = TRUE means that ell (i; j) is tothe right of the polyomino, i.e., it and all ells to its right are white.2 For every olumn j,let �j be suh that (�j; j) is in SWE [ SW [ SE; reall that at least one suh ell must existfor any j, and it must be blak in any polyomino respeting the feet.Add the following lauses for all j = 1; : : : ; n:3xi;j = TRUE for i = �jxi;j = FALSE for i 62 [�j � vj + 1; �j + vj � 1℄xi;j , xi+vj ;j for i 2 [�j � vj + 1; �j � 1℄xi;j ) xi+1;j for i 2 [�j � vj; �j � 2℄xi;j ) xi�1;j for i 2 [�j + 2; �j + vj℄One an easily verify that these lauses ensure that xi;j is true for exatly vj ells inolumn j, and these ells are ontiguous. For eah i and j, also add the lausesRi;j ) Ri;j+1 and Ri;j ) xi;j and xi;j ) Ri;j+hi ;whih ensures that Ri;j desribes indeed the white region to the right of the polyomino inrow i, and row i ontains at most hi ells for whih xi;j is true.If this 2-SAT instane has a solution, then de�ne a ell to be blak if and only if xi;j istrue. Then the total number of ells that are blak is exatly Pj vj and at most Pi hi, whihimplies equality sinePi hi = Pj vj. Sine SW [SE[SWE was onneted and every olumn isontiguous, the resulting polyomino is also onneted, and hene the desired reonstrution.Computing the set SWE, building the 2-SAT instane, and solving it an be done inO(mn) time. Trying this for theO(minfm;ng2) possible foot on�gurations yields the answerto the reonstrution problem in O(minfm;ng2mn) time, whih mathes the run-time byChrobak and D�urr [2℄.2.2 Fast multi-oloured reonstrutionOur single-olour algorithm easily generalizes to multiple olours. For eah olour , �nd theleftmost/rightmost olumn with vj > 0. Choose an east and west foot for the polyomino2This is loosely inspired by the variables for white orner regions used by Chrobak and D�urr [2℄.3To ease notation we allow here indies of variables to be outside [1 : : :m℄� [1 : : :n℄; any lause ontainingsuh variables an be omitted. 3



of olour  in these olumns and build the 2-SAT for olour , using variables xi;j and Ri;j.Combine all these 2-SAT instanes for all C olours into one 2-SAT instane with O(Cnm)variables and O(Cnm) lauses.To ensure that no two olours use a same ell, add the exlusion lausex1i;j ) x2i;j for all olours 1 6= 2.This adds O(C2mn) lauses. Hene the time to build and solve the 2-SAT instane for one�xed set of foot on�gurations is O(C2mn).Eah olour has at most m2 possible foot on�gurations (assuming m � n after possibleon�gurations), so the total number of ombinations of foot on�gurations is minfm;ng2C.Running 2-SAT for eah of them hene omputes disjoint hv-onvex polyominoes, if theyexist, in O(minfm;ng2CmnC2) time.Theorem 1 The C-olour reonstrution problem for hv-onvex polyominoes an be solvedin time O(minfm;ng2CmnC2).2.3 VariantsThe variables Ri;j for the \white region to the right" turn out to be useful for two variantsof the C-olour reonstrution problem. The �rst variant onerns ordered reonstrution.As de�ned, a C-olour reonstrution problem gives the row/olumn-sums as an unorderedset (one for eah olour.) A variant would be to give an ordered set, suh that all ells ofolour 1 must be to the left of all ells of olour 2, et.We an solve this variant easily. Whenever olour 1 must be left of olour 2 in row i, addthe lause x2i;j ) R1i;j for all j. So if the ell has olour 2, then it must be in the right regionwith respet to olour 1, so all ells of olour 1 must be to its left as desired. Similarly wean add lauses for olumns, after de�ning another variable (say Bi;j) that expresses that aell is below all ells of olour .If the order of olours is total, and we add this lause only for onseutive olours, thenwe an even drop the exlusion lauses (whih are then always satis�ed), whih redues therun time of our algorithm to O(minfm;ng2CmnC).A seond variant onerns the shape of the union of all oloured polyominoes. Theurrent setup does not put any restrition on this shape. But if we wanted the union to beh-onvex, we ould simply add the lause x1i;j ) R2i;j+hi , for any i; j; 1; 2, where hi = P hi .Row i then an ontain at most hi ells of any olour, whih ensures that oloured ells areontiguous. Similarly (again after adding variables Bi;j) we an ensure v-onvexity of theunion.3 NP-hardness resultsThe previous setion gave a polynomial algorithm for multiolour reonstrution for a on-stant number C of olours. The dependeny on C is exponential, and as suh it is of nosurprise that if C is not onstant, the problem beomes NP-omplete. We prove this now.4



Surely C-olour reonstrution is in NP. To see that it is NP-hard, we use a redutionfrom 3-SAT. We use three gadgets: a transmitter gadget, a splitter gadget, and a rossergadget (see Figure 1.) Eah ourrene of a gadget has its own unique olour (and 3 oloursfor a splitter gadget.)
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������� 5rowsofxi olumns of `j1 1 1 3 1 1 1 11051500 1757111 1 1 1 14 6 4 6 4Figure 1: The transmitter gadget, the splitter gadget, and the rosser gadget. We omit therow-/olumn-sums for the splitter gadget to avoid onfusion among the three olours.Assumewe are given an instane of 3-SAT with variables x1; : : : ; xN and lauses 1; : : : ; M ,where eah lause ontains exatly three literals. We dediate 6 rows to every variable and7 olumns for eah of literal of a lause. At the plae where the rows for variable xi meetsthe olumns of literal `j , we plae a splitter gadget if `j uses xi (i.e., if `j = xi or `j = xi),a rosser gadget if `j uses some xh with h < i, and a transmitter gadget otherwise. SeeFigure 2.
_x2x1xnx3 transmittersplitterrosserx1 x3 xnxn x1 x2_ _ _Figure 2: The overall layout.Eah gadget has some \legs" stiking out, i.e., plaes where it enters the region of adjaentgadgets. A transmitter gadget and a splitter gadget have two possible realizations: eitherthe upper leg (in row 2) stiks out to the left and the lower leg (in row 4) stiks out tothe right, or vie versa. For the splitter gadget, this also determines whether the leg to thebottom stiks out in olumn 3 or 5. A rosser gadget has four legs stiking out (in row 2and 4 and olumns 3 and 5), and four possible realizations. See Figure 3 for some alternatelayouts.Note that all gadgets within one row must either all have their upper legs to the left orall to the right; otherwise they would overlap. Given a realization of this oloured polyomino5
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���� 5rowsofxi olumns of `j1 1 1 3 1 1 1 11051500 1757111 1 1 1 14 6 4 6 4Figure 3: Alternative layouts of the transmitter gadget, splitter gadget, and rosser gadget.instanes, set variable xi to be true if all upper legs in gadgets in the rows assigned to xistik out to the left. If `j = xi or `j = xi, then this also means that in the olumns of `j , theleg of the splitter gadget (in the rows of xi) stiks out to the bottom in olumn 3, and thistransmits along all rosser gadgets below the rows of xi.Finally we de�ne 8 di�erent lause gadgets (depending on the negation status of theliterals in the lause), and plae for eah lause the orresponding gadget in the olumns ofthe lause, below all other gadgets. Figure 4 shows the lause-gadget for xj1 _ xj2 _ xj3 andxj1 _ xj2 _ xj3 . Generally, the olumn-sum vetor for this gadget is(0 : : : 0| {z }a1 4 5 : : : 5| {z }6�a1 5 : : : 5| {z }a2 7 5 : : : 5| {z }6�a2 5 : : : 5| {z }a3 3 0 : : : 0| {z }6�a3 );where ai = 4 if the ith literal of the lause is positive and ai = 2 otherwise. The row-sumvetor is (1; 1;W;W;W;W;W; 1; 1), where W = 14 + a3 � a1.`j1 = xj1 lastvariable 111 0 0 5 5 5 5 5 5 5 5 5 0 01 5 74 30 0 0 01212121212111 0 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 03711616161616 `j3 = xj3 `j1 = xj1 `j2 = xj2 `j3 = xj30 `j2 = xj2 rows ofFigure 4: Two of the eight possible lause-gadgets.The lause gadget has W + 1 non-zero olumns and 5 rows with density W ; this impliesthat all non-zero olumns exept the �rst and last have blak ells in these rows. Therefore,the leg that stiks out at the top of the lause-gadget must our in one of the speial olumns,whih are the olumns with density 4, 7, or 3. On the other hand, for eah of these threespeial olumns, there indeed exists a reonstrution of the lause-gadget where the leg is inthis olumn; Figure 4 shows two of them.The lause gadget has been on�gured suh that the speial olumns oinide exatlywith the olumn where the gadget in the rows above has a leg stiking out if this literal isfalse. So if the oloured polyomino instane an be realized, then to avoid overlap for everylause there must be at least one true literal, so 3-SAT has a solution. Similarly one showsthat any 3-SAT solution gives a realization, whih �nishes the redution.6



Clearly the redution is polynomial: it uses O(N) rows, O(M) olumns, and O(NM)olours.Theorem 2 C-olour hv-onvex reonstrution is NP-omplete if C is part of the input.4 Conlusion and open problemsIn this note, we showed that reonstrution of multiple disjoint hv-onvex polyominoes fromtheir projetions is polynomial if the number of olours is onstant, but NP-hard if thenumber of olours is unbounded.The main remaining open problem is to determine the dependeny on the number ofolours C. Is it possible to separate the exponentiality in C from the size of the grid, inother words, is the problem �xed-parameter tratable in the number of olours? (See forexample Niedermeier [8℄ for an introdution to �xed-parameter tratability.) We suspetthat this is the ase, but have not been able to prove it; the main obstale is that footpositions of di�erent olours need not be in the same olumn, and we have not been able tobound the number of relevant foot positions in terms of C only.Finally, are there faster algorithms for single-oloured hv-onvex polyomino reonstru-tion? And an they be generalized to multiple olours?Referenes[1℄ E. Barui, A. Del Lungo, M. Nivat, and R. Pinzani. Median of polyominoes: a propertyfor the reonstrution. International Journal of Imaging Systems and Tehnology, 9(2-3):69{77, 1998.[2℄ M. Chrobak and C. D�urr. Reonstruting hv-onvex polyominoes from orthogonal pro-jetions. Information Proessing Letters, 69:283{289, 1999.[3℄ M. Chrobak and C. D�urr. Reonstruting polyatomi strutures from disrete x-rays:NP-ompleteness proof for three atoms. Theoretial Computer Siene, 259(1-2):81{96,2001.[4℄ C. D�urr, F. Guinez, and M. Matamala. Reonstruting 3-olored grids from horizontaland vertial projetions is np-hard, 2009. arXiv:0904.3169.[5℄ G.T. Herman and A. Kuba, editors. Disrete Tomography: Foundations, Algorithms,and Appliations. Birkh�auser, 1999.[6℄ G.T. Herman and A. Kuba, editors. Advanes in Disrete Tomography and Its Applia-tions. Birkh�auser, 2007.[7℄ C. Kisielowski, P. Shwander, F.H. Baumann, M. Seibt, Y. Kim, and A. Ourmazd. Anapproah to quantitative high-resolution transmission eletron mirosopy of rystallinematerials. Ultramirosopy, 58(2):131{155, 1995.7
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