
Re
onstru
ting hv-
onvex multi-
oloured polyominoesAdam Bains� Therese Biedl�Te
hni
al report CS-2009-33Abstra
tIn this paper, we 
onsider the problem of re
onstru
ting polyominoes from infor-mation about the thi
kness in verti
al and horizontal dire
tions. We fo
us on the 
asewhere there are multiple disjoint polyominoes (of di�erent 
olours) that are hv-
onvex,i.e., any interse
tion with a horizontal or verti
al line is 
ontiguous. We show thatre
onstru
tion of su
h polyominoes is polynomial if the number of 
olours is 
onstant,but NP-hard for an unbounded number of 
olours.1 Introdu
tionThe �eld of dis
rete tomography 
on
erns re
onstru
tion of obje
ts given information aboutthe thi
kness of the obje
t in various proje
tions. See the books by Herrman and Kuba [5, 6℄for an extensive overview of this ex
iting �eld with many appli
ations in medi
al imaging.One spe
ial 
ase is when the obje
t to be re
onstru
ted is a binary matrix with m rowsand n 
olumns, and the given information are the row and 
olumn-sums of the matrix.Testing whether su
h a matrix exists and �nding it 
an be done easily with 
ow-methods.However, of more interest is the 
ase when the obje
t is supposed to be a polyomino, i.e.,from every bla
k 
ell (an entry of the matrix that is 1) to every other bla
k 
ell, there existsa path along bla
k 
ells that are adja
ent horizontally or verti
ally.Re
onstru
ting polyominoes is NP-hard, even if all bla
k 
ells within ea
h row are 
on-tiguous (the polyomino is h-
onvex) or all bla
k 
ells within ea
h 
olumn are 
ontiguous(the polyomino is v-
onvex.) Surprisingly, if the polyomino must hv-
onvex (i.e., both h-
onvex and v-
onvex,) re
onstru
ting it from row- and 
olumn-sums be
omes polynomial.See Chapter 7 of [5℄ for referen
es and an overview of these results.We study here re
onstru
tion of obje
ts that are the union of multiple disjoint obje
ts,ea
h of whi
h has a di�erent 
olour. This has appli
ations in the re
onstru
tion of polyatomi

rystals: the number of atoms of ea
h kind in a proje
tion 
an be determined using a high-resolution transmission ele
tron mi
ros
ope. See [7, 9℄ for details. This problem also appearsin a re
reational puzzle 
alled \Color Pi
-a-pix"; see www.
on
eptispuzzles.
om. The generalproblem (with no restri
tion on the shape of the obje
ts) was proved to be NP-hard even for 3�David R. Cheriton S
hool of Computer S
ien
e, University of Waterloo, Waterloo, ON N2L 3G1, Canada,e-mail fabains,biedlg�uwaterloo.
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olours [3℄, and very re
ently even for 2 
olours [4℄. Sin
e the NP-hard 
ases for single-
olourtransfer, the only 
ase that 
ould possibly be polynomial is the 
ase of multiple hv-
onvexpolyominoes.We resolve this 
ase here, and hen
e study the following problem: Given C 
oloursf1; : : : ; Cg, and C sets of density-ve
tors (h
i) and (v
j) for i = 1; : : : ;m, j = 1; : : : ; n and
 = 1; : : : ; C, do there exist C binary matri
es (x
i;j) su
h that for ea
h 
 the matrix (x
i;j) isan hv-
onvex polyomino with row-sums and 
olumn-sums (h
i) and (v
j), and su
h that forany i; j we have P
 x
i;j � 1? We 
all this the C-
olour hv-
onvex polyomino re
onstru
tionproblem.We show that this problem is polynominal if the number of 
olours is a 
onstant, butbe
omes NP-hard if the number of 
olours is unbounded.2 Few 
oloursThe natural approa
h to re
onstru
t C hv-
onvex polyominoes is to take one of the existingalgorithms to re
onstru
t a single hv-
onvex polyomino and modify it so that it handlesmultiple polyominoes and ensures that they are disjoint. This 
an in fa
t be done easily withthe algorithm by Bar
u

i et al. [1℄, and yields an algorithm for the C-
olour re
onstru
tionthat takes time O(C2m2C+2n2C+2). We will not give the details of this, sin
e with a di�erentapproa
h the time 
omplexity 
an be improved signi�
antly.There are faster algorithms for single-
olour hv-
onvex polyomino re
onstru
tion, andwe tried to generalize the 
urrently fastest known, whi
h is by Chrobak and D�urr [2℄ andtakes O(minfm;ng2mn) time. We did not su

eed to generalize this algorithm to multiple
olours. The main diÆ
ulty is that this algorithm stores the 
omputed polyomino impli
itly(by storing the \blank area" around it), and hen
e there is no easy way to add a 
onstraintto ensure that multiple polyominoes are disjoint.In this paper, we �rst develop a di�erent algorithm for single-
oloured hv-
onvex poly-omino re
onstru
tion, whi
h mat
hes the run-time of Chrobak and D�urr. We then show thatit 
an be generalized to multiple 
olours easily, yielding a run-time of O(C2minfm;ng2Cmn).2.1 Single-
olour re
onstru
tionWe �rst explore the single-
olour hv-
onvex polyomino re
onstru
tion. So assume we aregiven ve
tors (hi) and (vj) and we want to �nd a binary matrix (xi;j) that is an hv-
onvexpolyomino and has row-sums (hi) and 
olumn-sums (vj). Note that ne
essarilyPi hi = Pj vj,sin
e otherwise no solution 
an exist. We also assume hi > 0 and vj > 0. As before, we saythat 
ell (i; j) is bla
k if and only if xi;j = 1 and white otherwise.A foot of a polyomino is the interse
tion of the polyomino with the leftmost/rightmost
olumn or top/bottom row, and ea
h of the four feet is named after the meridial dire
tions.For our algorithm, assume that m � n after possible rotation. Try every possible west-footand east-foot, i.e., all possible indi
es w; e 2 f1; : : : ;mg. 1 We say that a polyomino respe
tsthese feet if 
ells (w; 1) and (e; n) are bla
k. We now show how to �nd a polyomino that1Using feet and the \spine" SWE is inspired by [1℄.2



respe
ts these feet, if one exists, in O(nm) time using 2-SAT. We give the algorithm onlyfor the 
ase where w � e; the other 
ase is similar.Bar
u

i et al. [1℄ used as one of their main ingredients that in any row between w ande, they 
an �nd 
ells that are guaranteed to be in any polyomino respe
ting the feet. Morepre
isely, let SWE be the set of all 
ells (i; j) with w � i � e, Pjk=1 vk � Pi�1k=1 hk, andPik=1 hk �Pj�1k=1 vk. Set SW to be the �rst hw 
ells in row w and let SE to be the last he 
ellsin row e. Exa
tly as in [1℄, one 
an show that any 
ell in SW [ SE [ SWE must be bla
k inany polyomino that respe
ts the west and east foot. Furthermore, the 
ells in SW [SE[SWEform a polyomino that 
ontains at least one 
ell in every 
olumn.Now de�ne a 2-SAT instan
e. We have two variables xi;j and Ri;j for every 
ell, wherexi;j = TRUE means that 
ell (i; j) is bla
k, and Ri;j = TRUE means that 
ell (i; j) is tothe right of the polyomino, i.e., it and all 
ells to its right are white.2 For every 
olumn j,let �j be su
h that (�j; j) is in SWE [ SW [ SE; re
all that at least one su
h 
ell must existfor any j, and it must be bla
k in any polyomino respe
ting the feet.Add the following 
lauses for all j = 1; : : : ; n:3xi;j = TRUE for i = �jxi;j = FALSE for i 62 [�j � vj + 1; �j + vj � 1℄xi;j , xi+vj ;j for i 2 [�j � vj + 1; �j � 1℄xi;j ) xi+1;j for i 2 [�j � vj; �j � 2℄xi;j ) xi�1;j for i 2 [�j + 2; �j + vj℄One 
an easily verify that these 
lauses ensure that xi;j is true for exa
tly vj 
ells in
olumn j, and these 
ells are 
ontiguous. For ea
h i and j, also add the 
lausesRi;j ) Ri;j+1 and Ri;j ) xi;j and xi;j ) Ri;j+hi ;whi
h ensures that Ri;j des
ribes indeed the white region to the right of the polyomino inrow i, and row i 
ontains at most hi 
ells for whi
h xi;j is true.If this 2-SAT instan
e has a solution, then de�ne a 
ell to be bla
k if and only if xi;j istrue. Then the total number of 
ells that are bla
k is exa
tly Pj vj and at most Pi hi, whi
himplies equality sin
ePi hi = Pj vj. Sin
e SW [SE[SWE was 
onne
ted and every 
olumn is
ontiguous, the resulting polyomino is also 
onne
ted, and hen
e the desired re
onstru
tion.Computing the set SWE, building the 2-SAT instan
e, and solving it 
an be done inO(mn) time. Trying this for theO(minfm;ng2) possible foot 
on�gurations yields the answerto the re
onstru
tion problem in O(minfm;ng2mn) time, whi
h mat
hes the run-time byChrobak and D�urr [2℄.2.2 Fast multi-
oloured re
onstru
tionOur single-
olour algorithm easily generalizes to multiple 
olours. For ea
h 
olour 
, �nd theleftmost/rightmost 
olumn with v
j > 0. Choose an east and west foot for the polyomino2This is loosely inspired by the variables for white 
orner regions used by Chrobak and D�urr [2℄.3To ease notation we allow here indi
es of variables to be outside [1 : : :m℄� [1 : : :n℄; any 
lause 
ontainingsu
h variables 
an be omitted. 3



of 
olour 
 in these 
olumns and build the 2-SAT for 
olour 
, using variables x
i;j and R
i;j.Combine all these 2-SAT instan
es for all C 
olours into one 2-SAT instan
e with O(Cnm)variables and O(Cnm) 
lauses.To ensure that no two 
olours use a same 
ell, add the ex
lusion 
lausex
1i;j ) x
2i;j for all 
olours 
1 6= 
2.This adds O(C2mn) 
lauses. Hen
e the time to build and solve the 2-SAT instan
e for one�xed set of foot 
on�gurations is O(C2mn).Ea
h 
olour has at most m2 possible foot 
on�gurations (assuming m � n after possible
on�gurations), so the total number of 
ombinations of foot 
on�gurations is minfm;ng2C.Running 2-SAT for ea
h of them hen
e 
omputes disjoint hv-
onvex polyominoes, if theyexist, in O(minfm;ng2CmnC2) time.Theorem 1 The C-
olour re
onstru
tion problem for hv-
onvex polyominoes 
an be solvedin time O(minfm;ng2CmnC2).2.3 VariantsThe variables Ri;j for the \white region to the right" turn out to be useful for two variantsof the C-
olour re
onstru
tion problem. The �rst variant 
on
erns ordered re
onstru
tion.As de�ned, a C-
olour re
onstru
tion problem gives the row/
olumn-sums as an unorderedset (one for ea
h 
olour.) A variant would be to give an ordered set, su
h that all 
ells of
olour 
1 must be to the left of all 
ells of 
olour 
2, et
.We 
an solve this variant easily. Whenever 
olour 
1 must be left of 
olour 
2 in row i, addthe 
lause x
2i;j ) R
1i;j for all j. So if the 
ell has 
olour 
2, then it must be in the right regionwith respe
t to 
olour 
1, so all 
ells of 
olour 
1 must be to its left as desired. Similarly we
an add 
lauses for 
olumns, after de�ning another variable (say B
i;j) that expresses that a
ell is below all 
ells of 
olour 
.If the order of 
olours is total, and we add this 
lause only for 
onse
utive 
olours, thenwe 
an even drop the ex
lusion 
lauses (whi
h are then always satis�ed), whi
h redu
es therun time of our algorithm to O(minfm;ng2CmnC).A se
ond variant 
on
erns the shape of the union of all 
oloured polyominoes. The
urrent setup does not put any restri
tion on this shape. But if we wanted the union to beh-
onvex, we 
ould simply add the 
lause x
1i;j ) R
2i;j+hi , for any i; j; 
1; 
2, where hi = P
 h
i .Row i then 
an 
ontain at most hi 
ells of any 
olour, whi
h ensures that 
oloured 
ells are
ontiguous. Similarly (again after adding variables B
i;j) we 
an ensure v-
onvexity of theunion.3 NP-hardness resultsThe previous se
tion gave a polynomial algorithm for multi
olour re
onstru
tion for a 
on-stant number C of 
olours. The dependen
y on C is exponential, and as su
h it is of nosurprise that if C is not 
onstant, the problem be
omes NP-
omplete. We prove this now.4



Surely C-
olour re
onstru
tion is in NP. To see that it is NP-hard, we use a redu
tionfrom 3-SAT. We use three gadgets: a transmitter gadget, a splitter gadget, and a 
rossergadget (see Figure 1.) Ea
h o

urren
e of a gadget has its own unique 
olour (and 3 
oloursfor a splitter gadget.)
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olumns of `j1 1 1 3 1 1 1 11051500 1757111 1 1 1 14 6 4 6 4Figure 1: The transmitter gadget, the splitter gadget, and the 
rosser gadget. We omit therow-/
olumn-sums for the splitter gadget to avoid 
onfusion among the three 
olours.Assumewe are given an instan
e of 3-SAT with variables x1; : : : ; xN and 
lauses 
1; : : : ; 
M ,where ea
h 
lause 
ontains exa
tly three literals. We dedi
ate 6 rows to every variable and7 
olumns for ea
h of literal of a 
lause. At the pla
e where the rows for variable xi meetsthe 
olumns of literal `j , we pla
e a splitter gadget if `j uses xi (i.e., if `j = xi or `j = xi),a 
rosser gadget if `j uses some xh with h < i, and a transmitter gadget otherwise. SeeFigure 2.
_x2x1xnx3 transmittersplitter
rosserx1 x3 xnxn x1 x2_ _ _Figure 2: The overall layout.Ea
h gadget has some \legs" sti
king out, i.e., pla
es where it enters the region of adja
entgadgets. A transmitter gadget and a splitter gadget have two possible realizations: eitherthe upper leg (in row 2) sti
ks out to the left and the lower leg (in row 4) sti
ks out tothe right, or vi
e versa. For the splitter gadget, this also determines whether the leg to thebottom sti
ks out in 
olumn 3 or 5. A 
rosser gadget has four legs sti
king out (in row 2and 4 and 
olumns 3 and 5), and four possible realizations. See Figure 3 for some alternatelayouts.Note that all gadgets within one row must either all have their upper legs to the left orall to the right; otherwise they would overlap. Given a realization of this 
oloured polyomino5
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olumns of `j1 1 1 3 1 1 1 11051500 1757111 1 1 1 14 6 4 6 4Figure 3: Alternative layouts of the transmitter gadget, splitter gadget, and 
rosser gadget.instan
es, set variable xi to be true if all upper legs in gadgets in the rows assigned to xisti
k out to the left. If `j = xi or `j = xi, then this also means that in the 
olumns of `j , theleg of the splitter gadget (in the rows of xi) sti
ks out to the bottom in 
olumn 3, and thistransmits along all 
rosser gadgets below the rows of xi.Finally we de�ne 8 di�erent 
lause gadgets (depending on the negation status of theliterals in the 
lause), and pla
e for ea
h 
lause the 
orresponding gadget in the 
olumns ofthe 
lause, below all other gadgets. Figure 4 shows the 
lause-gadget for xj1 _ xj2 _ xj3 andxj1 _ xj2 _ xj3 . Generally, the 
olumn-sum ve
tor for this gadget is(0 : : : 0| {z }a1 4 5 : : : 5| {z }6�a1 5 : : : 5| {z }a2 7 5 : : : 5| {z }6�a2 5 : : : 5| {z }a3 3 0 : : : 0| {z }6�a3 );where ai = 4 if the ith literal of the 
lause is positive and ai = 2 otherwise. The row-sumve
tor is (1; 1;W;W;W;W;W; 1; 1), where W = 14 + a3 � a1.`j1 = xj1 lastvariable 111 0 0 5 5 5 5 5 5 5 5 5 0 01 5 74 30 0 0 01212121212111 0 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 03711616161616 `j3 = xj3 `j1 = xj1 `j2 = xj2 `j3 = xj30 `j2 = xj2 rows ofFigure 4: Two of the eight possible 
lause-gadgets.The 
lause gadget has W + 1 non-zero 
olumns and 5 rows with density W ; this impliesthat all non-zero 
olumns ex
ept the �rst and last have bla
k 
ells in these rows. Therefore,the leg that sti
ks out at the top of the 
lause-gadget must o

ur in one of the spe
ial 
olumns,whi
h are the 
olumns with density 4, 7, or 3. On the other hand, for ea
h of these threespe
ial 
olumns, there indeed exists a re
onstru
tion of the 
lause-gadget where the leg is inthis 
olumn; Figure 4 shows two of them.The 
lause gadget has been 
on�gured su
h that the spe
ial 
olumns 
oin
ide exa
tlywith the 
olumn where the gadget in the rows above has a leg sti
king out if this literal isfalse. So if the 
oloured polyomino instan
e 
an be realized, then to avoid overlap for every
lause there must be at least one true literal, so 3-SAT has a solution. Similarly one showsthat any 3-SAT solution gives a realization, whi
h �nishes the redu
tion.6



Clearly the redu
tion is polynomial: it uses O(N) rows, O(M) 
olumns, and O(NM)
olours.Theorem 2 C-
olour hv-
onvex re
onstru
tion is NP-
omplete if C is part of the input.4 Con
lusion and open problemsIn this note, we showed that re
onstru
tion of multiple disjoint hv-
onvex polyominoes fromtheir proje
tions is polynomial if the number of 
olours is 
onstant, but NP-hard if thenumber of 
olours is unbounded.The main remaining open problem is to determine the dependen
y on the number of
olours C. Is it possible to separate the exponentiality in C from the size of the grid, inother words, is the problem �xed-parameter tra
table in the number of 
olours? (See forexample Niedermeier [8℄ for an introdu
tion to �xed-parameter tra
tability.) We suspe
tthat this is the 
ase, but have not been able to prove it; the main obsta
le is that footpositions of di�erent 
olours need not be in the same 
olumn, and we have not been able tobound the number of relevant foot positions in terms of C only.Finally, are there faster algorithms for single-
oloured hv-
onvex polyomino re
onstru
-tion? And 
an they be generalized to multiple 
olours?Referen
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