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Abstract

In this paper, we consider the problem of reconstructing polyominoes from infor-
mation about the thickness in vertical and horizontal directions. We focus on the case
where there are multiple disjoint polyominoes (of different colours) that are hv-convex,
i.e., any intersection with a horizontal or vertical line is contiguous. We show that
reconstruction of such polyominoes is polynomial if the number of colours is constant,
but NP-hard for an unbounded number of colours.

1 Introduction

The field of discrete tomography concerns reconstruction of objects given information about
the thickness of the object in various projections. See the books by Herrman and Kuba [5, 6]
for an extensive overview of this exciting field with many applications in medical imaging.

One special case is when the object to be reconstructed is a binary matrix with m rows
and n columns, and the given information are the row and column-sums of the matrix.
Testing whether such a matrix exists and finding it can be done easily with flow-methods.
However, of more interest is the case when the object is supposed to be a polyomino, i.e.,
from every black cell (an entry of the matrix that is 1) to every other black cell, there exists
a path along black cells that are adjacent horizontally or vertically.

Reconstructing polyominoes is NP-hard, even if all black cells within each row are con-
tiguous (the polyomino is h-convez) or all black cells within each column are contiguous
(the polyomino is v-convez.) Surprisingly, if the polyomino must hv-convez (i.e., both h-
convex and v-convex,) reconstructing it from row- and column-sums becomes polynomial.
See Chapter 7 of [5] for references and an overview of these results.

We study here reconstruction of objects that are the union of multiple disjoint objects,
each of which has a different colour. This has applications in the reconstruction of polyatomic
crystals: the number of atoms of each kind in a projection can be determined using a high-
resolution transmission electron microscope. See [7, 9] for details. This problem also appears
in a recreational puzzle called “Color Pic-a-pix”; see www.conceptispuzzles.com. The general
problem (with no restriction on the shape of the objects) was proved to be NP-hard even for 3
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colours [3], and very recently even for 2 colours [4]. Since the NP-hard cases for single-colour
transfer, the only case that could possibly be polynomial is the case of multiple hv-convex
polyominoes.

We resolve this case here, and hence study the following problem: Given C colours
{1,...,C}, and C sets of density-vectors (h) and (v§) for v = 1,...,m, 3 = 1,...,n and
c=1,...,C, do there exist C binary matrices (¥ ;) such that for each ¢ the matrix (5 ;) is
an hv-convex polyomino with row-sums and column-sums (h$) and (v§), and such that for
any ¢, j we have 37 xf < 17 We call this the C-colour hv-convexr polyomino reconstruction
problem.

We show that this problem is polynominal if the number of colours is a constant, but

becomes NP-hard if the number of colours is unbounded.

2 Few colours

The natural approach to reconstruct C' hv-convex polyominoes is to take one of the existing
algorithms to reconstruct a single hv-convex polyomino and modify it so that it handles
multiple polyominoes and ensures that they are disjoint. This can in fact be done easily with
the algorithm by Barcucci et al. [1], and yields an algorithm for the C-colour reconstruction
that takes time O(C?m?“+2n2¢*+%). We will not give the details of this, since with a different
approach the time complexity can be improved significantly.

There are faster algorithms for single-colour hwv-convex polyomino reconstruction, and
we tried to generalize the currently fastest known, which is by Chrobak and Diirr [2] and
takes O(min{m,n}?*mn) time. We did not succeed to generalize this algorithm to multiple
colours. The main difficulty is that this algorithm stores the computed polyomino implicitly
(by storing the “blank area” around it), and hence there is no easy way to add a constraint
to ensure that multiple polyominoes are disjoint.

In this paper, we first develop a different algorithm for single-coloured hwv-convex poly-
omino reconstruction, which matches the run-time of Chrobak and Diirr. We then show that
it can be generalized to multiple colours easily, yielding a run-time of O(C? min{m,n}*“mn).

2.1 Single-colour reconstruction

We first explore the single-colour hv-convex polyomino reconstruction. So assume we are
given vectors (h;) and (v;) and we want to find a binary matrix (x; ;) that is an hv-convex
polyomino and has row-sums (h;) and column-sums (v;). Note that necessarily 3=, hy = 3, v;,
since otherwise no solution can exist. We also assume h; > 0 and v; > 0. As before, we say
that cell (4, 7) is black if and only if x; ; = 1 and white otherwise.

A foot of a polyomino is the intersection of the polyomino with the leftmost/rightmost
column or top/bottom row, and each of the four feet is named after the meridial directions.
For our algorithm, assume that m < n after possible rotation. Try every possible west-foot
and east-foot, i.e., all possible indices w,e € {1,...,m}. ' We say that a polyomino respects
these feet if cells (w, 1) and (e,n) are black. We now show how to find a polyomino that

1Using feet and the “spine” Sy g is inspired by [1].



respects these feet, if one exists, in O(nm) time using 2-SAT. We give the algorithm only
for the case where w < ¢; the other case is similar.

Barcucci et al. [1] used as one of their main ingredients that in any row between w and
¢, they can find cells that are guaranteed to be in any polyomino respecting the feet. More
precisely, let Swg be the set of all cells (7,7) with w <7 <'e, Y5_;vp > ! Ry, and
22:1 hy > Zi;ll vi. Set Sy to be the first i, cells in row w and let Sg to be the last A, cells
in row e. Exactly as in [1], one can show that any cell in Sy U S U Sy must be black in
any polyomino that respects the west and east foot. Furthermore, the cells in Sy USpUSwE
form a polyomino that contains at least one cell in every column.

Now define a 2-SAT instance. We have two variables z; ; and R; ; for every cell, where
x;; = TRUFE means that cell (¢,7) is black, and R; ; = TRUE means that cell (z,7) is to
the right of the polyomino, i.e., it and all cells to its right are white.? For every column j,
let a; be such that (o, 7) is in Swgr U Sw U Sg; recall that at least one such cell must exist
for any j, and it must be black in any polyomino respecting the feet.

Add the following clauses for all j =1,...,n:?

z,; =TRUE for 1 =«
z;;=FALSE fori & [a; — v+ 1,05 +v; — 1]

Tij & Titoj ) for i € [a; —v; + 1,0, —1]
X5 = Tigl, for 1 € [a; — v;,aj — 2]
X5 = Ti for i € [a; +2,0a; + vj]

One can easily verify that these clauses ensure that z;; is true for exactly v; cells in
column 7, and these cells are contiguous. For each ¢ and j, also add the clauses

Rij = Rijy1 and R ; = Tij and wi; = Rijyn;,

which ensures that R;; describes indeed the white region to the right of the polyomino in
row ¢, and row ¢ contains at most h; cells for which z; ; is true.

If this 2-SAT instance has a solution, then define a cell to be black if and only if ; ; is
true. Then the total number of cells that are black is exactly 3°; v; and at most 3, h;, which
implies equality since }-, h; = 37, v;. Since Sy USpUSwE was connected and every column is
contiguous, the resulting polyomino is also connected, and hence the desired reconstruction.

Computing the set Swg, building the 2-SAT instance, and solving it can be done in
O(mn) time. Trying this for the O(min{m, n}?) possible foot configurations yields the answer
to the reconstruction problem in O(min{m,n}*mn) time, which matches the run-time by

Chrobak and Diirr [2].

2.2 Fast multi-coloured reconstruction

Our single-colour algorithm easily generalizes to multiple colours. For each colour ¢, find the
leftmost /rightmost column with v§ > 0. Choose an east and west foot for the polyomino

2This is loosely inspired by the variables for white corner regions used by Chrobak and Diirr [2].
3To ease notation we allow here indices of variables to be outside [1...m] x [1...n]; any clause containing
such variables can be omitted.



of colour ¢ in these columns and build the 2-SAT for colour ¢, using variables xf ; and R .
Combine all these 2-SAT instances for all C' colours into one 2-SAT instance with O(Cnm)
variables and O(Cnm) clauses.

To ensure that no two colours use a same cell, add the exclusion clause

Cc1 co
zit = % for all colours ¢; # cy.

This adds O(C*mn) clauses. Hence the time to build and solve the 2-SAT instance for one
fixed set of foot configurations is O(C?mn).

Each colour has at most m? possible foot configurations (assuming m < n after possible
configurations), so the total number of combinations of foot configurations is min{m,n}?“.
Running 2-SAT for each of them hence computes disjoint hv-convex polyominoes, if they
exist, in O(min{m, n}?“mnC?) time.

Theorem 1 The C-colour reconstruction problem for hv-convex polyominoes can be solved
in time O(min{m,n}?*“mnC?).

2.3 Variants

The variables R; ; for the “white region to the right” turn out to be useful for two variants
of the C-colour reconstruction problem. The first variant concerns ordered reconstruction.
As defined, a C-colour reconstruction problem gives the row/column-sums as an unordered
set (one for each colour.) A variant would be to give an ordered set, such that all cells of
colour ¢; must be to the left of all cells of colour ¢, etc.

We can solve this variant easily. Whenever colour ¢; must be left of colour ¢; in row ¢, add
the clause z;% = R;'; for all 5. So if the cell has colour ¢y, then it must be in the right region
with respect to colour ¢y, so all cells of colour ¢; must be to its left as desired. Similarly we
can add clauses for columns, after defining another variable (say By ;) that expresses that a
cell is below all cells of colour c.

If the order of colours is total, and we add this clause only for consecutive colours, then
we can even drop the exclusion clauses (which are then always satisfied), which reduces the
run time of our algorithm to O(min{m,n}?*“mnC).

A second variant concerns the shape of the union of all coloured polyominoes. The
current setup does not put any restriction on this shape. But if we wanted the union to be
h-convex, we could simply add the clause «7'; = R, , for any 1, j, ¢1, ¢z, where h; = 37 R5.
Row ¢ then can contain at most h; cells of any colour, which ensures that coloured cells are
contiguous. Similarly (again after adding variables By ;) we can ensure v-convexity of the
union.

3 NP-hardness results

The previous section gave a polynomial algorithm for multicolour reconstruction for a con-
stant number C of colours. The dependency on C' is exponential, and as such it is of no
surprise that if C' is not constant, the problem becomes NP-complete. We prove this now.



Surely C-colour reconstruction is in NP. To see that it is NP-hard, we use a reduction
from 3-SAT. We use three gadgets: a transmitter gadget, a splitter gadget, and a crosser
gadget (see Figure 1.) Each occurrence of a gadget has its own unique colour (and 3 colours
for a splitter gadget.)

columns of /;

Figure 1: The transmitter gadget, the splitter gadget, and the crosser gadget. We omit the
row-/column-sums for the splitter gadget to avoid confusion among the three colours.

Agsume we are given an instance of 3-SAT with variables y, ...,y and clauses ¢y, .. ., epr,
where each clause contains exactly three literals. We dedicate 6 rows to every variable and
7 columuns for each of literal of a clause. At the place where the rows for variable z; meets
the columns of literal ¢;, we place a splitter gadget if ¢; uses x; (i.e.,if {; = a; or (; = T),
a crosser gadget if /; uses some xp with h < 1, and a transmitter gadget otherwise. See

Figure 2.
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Figure 2: The overall layout.

Each gadget has some “legs” sticking out, i.e., places where it enters the region of adjacent
gadgets. A transmitter gadget and a splitter gadget have two possible realizations: either
the upper leg (in row 2) sticks out to the left and the lower leg (in row 4) sticks out to
the right, or vice versa. For the splitter gadget, this also determines whether the leg to the
bottom sticks out in column 3 or 5. A crosser gadget has four legs sticking out (in row 2
and 4 and columns 3 and 5), and four possible realizations. See Figure 3 for some alternate
layouts.

Note that all gadgets within one row must either all have their upper legs to the left or
all to the right; otherwise they would overlap. Given a realization of this coloured polyomino
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Figure 3: Alternative layouts of the transmitter gadget, splitter gadget, and crosser gadget.

instances, set variable x; to be true if all upper legs in gadgets in the rows assigned to x;
stick out to the left. If /; = x; or {; = 7, then this also means that in the columns of /;, the
leg of the splitter gadget (in the rows of ;) sticks out to the bottom in column 3, and this
transmits along all crosser gadgets below the rows of x;.

Finally we define 8 different clause gadgets (depending on the negation status of the
literals in the clause), and place for each clause the corresponding gadget in the columns of
the clause, below all other gadgets. Figure 4 shows the clause-gadget for T; VT, V z;, and
x; V x; VTj. Generally, the column-sum vector for this gadget is

(0...045...55...575...55...530...0),
o N e N e N e N

ag 6—ay az 6—as ag 6—ag

where a; = 4 if the ith literal of the clause is positive and a; = 2 otherwise. The row-sum

vector is (1, 1, W, W, W, W, W, 1,1), where W = 14 + a5 — a;.
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Figure 4: Two of the eight possible clause-gadgets.

The clause gadget has W 4 1 non-zero columns and 5 rows with density W this implies
that all non-zero columns except the first and last have black cells in these rows. Therefore,
the leg that sticks out at the top of the clause-gadget must occur in one of the special columns,
which are the columns with density 4, 7, or 3. On the other hand, for each of these three
special columns, there indeed exists a reconstruction of the clause-gadget where the leg is in
this column; Figure 4 shows two of them.

The clause gadget has been configured such that the special columns coincide exactly
with the column where the gadget in the rows above has a leg sticking out if this literal is
false. So if the coloured polyomino instance can be realized, then to avoid overlap for every
clause there must be at least one true literal, so 3-SAT has a solution. Similarly one shows
that any 3-SAT solution gives a realization, which finishes the reduction.



Clearly the reduction is polynomial: it uses O(N) rows, O(M) columns, and O(NM)
colours.

Theorem 2 C-colour hv-convez reconstruction is NP-complete if C is part of the input.

4 Conclusion and open problems

In this note, we showed that reconstruction of multiple disjoint hv-convex polyominoes from
their projections is polynomial if the number of colours is constant, but NP-hard if the
number of colours is unbounded.

The main remaining open problem is to determine the dependency on the number of
colours C'. Is it possible to separate the exponentiality in C from the size of the grid, in
other words, is the problem fixed-parameter tractable in the number of colours? (See for
example Niedermeier [§] for an introduction to fixed-parameter tractability.) We suspect
that this is the case, but have not been able to prove it; the main obstacle is that foot
positions of different colours need not be in the same column, and we have not been able to
bound the number of relevant foot positions in terms of C' only.

Finally, are there faster algorithms for single-coloured hv-convex polyomino reconstruc-
tion? And can they be generalized to multiple colours?
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