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Abstract. We introduce the “Automated Structure-based Assignment" problem: Given a reference 3D structure,
a protein sequence, and its NMR spectra, automatically interpret the NMR spectra and do backbone resonance
assignment. We then propose a solution to solve this problem. The core of the solution is a novel integer linear
programming model, which is a general framework for many versions of the structure-based assignment problem.
As a proof of concept, our system has generated an automatic assignment on a real protein TM1112 with 91% recall
and 99% precision, starting from scratch. When we restrict ourselves to the special case where perfect peak lists are
given, we are able to compare our results with existing results in the field. In particular, we reduced the assignment
error of Xiong-Pandurangan-Bailey-Kellogg’s method by 5 folds on average, with over a thousand fold speed up.
Our system also achieves 91% assignment accuracy on real experimental data for Ubiquitin. These results have direct
practical implications. For example, in the protein design process, a protein is modified slightly and its structure is
again measured by NMR experiments. Our method automates this process, saving time on tedious peak-picking and
resonance assignment. As another example, when there is a homologous protein with known structure, our method
increases the assignment accuracy and hence enables automated NMR structure determination.
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1 Introduction

The NMR resonance assignment problem has been extensively studied for twenty years [1–19]. Traditional
resonance assignment methods depend mainly on the primary amino acid sequence and carbon connectivity
information extracted from triple resonance experiments. These methods are referred to as sequence-based as-
signment methods [1–9]. Although the number of known protein structures is increasing rapidly, the number
of new protein folds being discovered is slowing down [20, 21]. Thus, it can be expected that most proteins
have homologs in the Protein Data Bank (PDB). Homologs typically have similar 3D structure, which can
provide information to guide assignment. The known structure is used as a template, where the contact pat-
terns from its atoms are compared to the experimental evidence to accelerate assignment on the target. There-
fore, several structure-based assignment methods have been propose in the past decade [10,11,17–19,22–29].

The Nuclear Vector Replacement (NVR) approach [13, 26] used 15N-HSQC spectra, residual dipolar
couplings (RDC), sparse dNN NOEs, amide exchange rates, and no triple resonance data for assignment. The
problem was cast as a maximum bipartite matching problem, which they solved in polynomial time. Using
close structural templates, they achieved an accuracy of over 99%. Their work was extended to handle more
distant templates using normal mode analysis to obtain an ensemble of template structures [18]. However, in
NMR labs, RDC experiments are not as commonly used as 3D NOESY experiments. For assignment using
3D NOESY data, Xiong et al. developed a branch-and-bound algorithm [28], which they later improved to
a randomized algorithm [17], which shall be referred to as the contact replacement (CR) method. The CR
method was demonstrated to tolerate 1-2Å structural variation, 250-600% noise, and 10-40% missing contact
edges. It achieved an assignment accuracy of above 80% in α-helices, 70% in β -sheets, and 60% in loops.
To our knowledge, it is the most error tolerant structure-based assignment method in terms of the noise level.
The data consisted of 2D 15N-HSQC, 3D 15N TOCSY-HSQC, 3D 15N NOESY-HSQC, and 3JHNHα coupling
constants derived from 3D HNHA. The problem was cast as a subgraph matching problem, where one graph
consisted of the contacts in the known protein structure, and the other consisted of the NOESY cross peaks
(NOEs) that connected spin system pairs. In general, the mapping of NOESY peaks to specific contacts is
ambiguous due to experimental errors, missing peaks, and false peaks. Although the graph problem that
was solved was NP-hard, Xiong et al. proved that under their noise model, the problem could be solved in
polynomial time with high probability. In [19], they cast the problem similarly to [17], however, their method
required unambigious NOEs from 4D NOESY experiments.

In NMR studies, NMR spectra are often examined by visual inspection, where the cross peaks get picked
by inspection, or by automatic methods but then checked by the scientist. The peaks get accumulated in a
list of peaks, and this list can change during the study as errors and inconsistencies are discovered. For the
purpose of exposition, we define manual peak lists as peaks obtained by such a process. Until now, all of
the previously proposed structure-based assignment methods require such peak lists. For example, the inputs
for the CR method require manually picked peaks from four NMR spectra (15N-HSQC, 15N-edited NOESY,
TOCSY, and HNHA) [17]; and the inputs for Langmead et al.’s method require manually picked peaks from
15N-HSQC , and distance and orientation restraints derived from manually picked peaks from RDC, 15N
NOESY-HSQC and H−D exchange HSQC [26]. Therefore, the structure-based assignment problem can be
formally defined as follows:

Structure-Based Assignment Problem (SBA): Given homologous structure(s) of a target protein, and
manually picked peak lists of the necessary spectra, assign the chemical shifts to the backbone atoms of the
target protein.

In NMR labs, the peak picking step and the resonance assignment step are usually combined into an
integrative process, so when given homologous structure(s), it does not take much extra work for NMR
spectroscopists to do the assignment than to solely pick the peaks. Thus, it is difficult for the NMR community
to benefit from the SBA methods that assume the availability of manual peak lists. In applications involving
multiple NMR assignments, such as protein-ligand binding, time is much more important than cost. A fast
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system that is able to take various types of input spectra is needed. Therefore, in this paper, we propose the
Automated Structure-Based Assignment Problem (ASBA), which is formally defined as follows:

Automated Structure-Based Assignment Problem (ASBA): Given homologous structure(s) of a target
protein, and the necessary NMR spectra only, assign the chemical shifts to the backbone atoms of the target
protein.

We propose a system to solve the ASBA problem, the core of which is a novel and general integer linear
programming (ILP) model, with combinations of an automatic peak picking method, PICKY [30], and an
automatic triple resonance experiments-based assignment method, IPASS [9]. Both PICKY and IPASS were
recently developed in our lab as automatic NMR tools. Our system first calls PICKY to conduct automatic
peak picking. However, PICKY peak lists are still far from perfect, which makes the assignment problem
difficult. When the necessary spectra are available, our system directly performs assignment with the ILP
model. Otherwise, it first calls IPASS to fix an initial assignment, and then the ILP model to improve it.
Nevertheless, the entire process is fully automatic.

We then show that the ILP model can take various NMR data as input, such as 15N-labelled and 13C-
labelled (if available) peaks generated by PICKY or other peak picking methods, and can optimize various
types of objectives that compare spin systems to residues and pairs of spin systems to pairs of residues.
We further develop an iterative process that fixes reliable assignment fragments and calls the ILP model. To
the best of our knowledge, this is the first attempt on fully automated structure-based assignment that starts
directly from the original NMR spectra. The proposed method is tested on the real protein TM1112. With
the noise level at 1200% at 4 Å distance cutoff for contacts, and without the necessary spectra for amino
acid typing and secondary structure typing, our system achieves 91% recall and 99% precision1. Finally, we
show that our ILP model can naturally be applied to solve the SBA problem. We first tested the ILP model
on 9 proteins from the data set used by the CR method [17]. Our method, on average, has 5 times fewer
incorrect assignments than the CR method, and is over a 1000 times faster. We then tested the ILP model on
real experimental data for Ubiquitin, where we achieved an assignment accuracy of 91%.

2 Method

The main difference between an SBA method and an ASBA method is that the ASBA method must be able
to do the assignment on imperfect peak lists generated by automatic peak picking methods. In our system,
we used PICKY to do the peak picking. PICKY was tested in [30] on 32 raw spectra and achieved an average
recall and precision of 88% and 74%, respectively. In this section, we propose a general integer linear pro-
gramming model for the ASBA problem. The general framework is described first and then implementation
and experimental details are described later.

2.1 General ILP Model for the ASBA Problem

We use the graph representation from the SBA CR method [17] to present the ASBA problem after the peaks
are picked by PICKY. However, our ILP is general in that it does not depend on the specific scoring function
or the type of NMR data that the CR method used. Integer programming has been applied to the maximum
clique problem [31], to which graph matching can be reduced [32]. Our formulation models finding the
common edge subgraph that maximizes the score. The common subgraph can be disconnected, and vertices
in either graph can be unassigned. Unlike subgraph isomorphism, we match the presence of edges, but not the
absence since the interaction graph tends to have many more edges than the contact graph. Figure 1 illustrates
the graph problem.

1 Let C be the number of correct assignments, R be the number of assignable residues, and S the number of residue assignments
made by the method. Then Recall is C\ R and Precision is C\ S. By accuracy, we mean precision.
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Fig. 1. The maximum common edge subgraph between graphs Gs and GR. The vertices that are mapped have the same number.
Edges that are matched are highlighted.

Definitions
Contact Graph: Each residue in the template protein is represented by a vertex labelled with residue-related
features, such as the amino acid type and the secondary structure type. An edge is created between a pair of
amino acids if there is a contact according to a given distance threshold.
Interaction Graph: Each spin system, which consists of the backbone N, HN , Hα , and side chain chemical
shifts of a pseudo-residue, is represented by a vertex that is labelled with the same class of features as the
residues in the contact graph. An edge is created between a pair of spin systems if there is NMR evidence
that support that they are close in Euclidean space, such as NOESY cross peaks or carbon connectivity from
13C-labelled triple resonance experiments. A match score can be computed for each edge based on the type
of data used.
Define Vcg, Vig to be the set of vertices in the contact graph and interaction graph, respectively. Define Ecg,
Eig to be the set of edges in the contact and interaction graph, respectively.

Input Data

m(vcg(i)vig(k)vcg( j)vig(l)) The edge match score between spin systems k and l and residues i and j. The score
is assumed to be non-negative.

m(vcg(i)vig(k)) The type match score between amino acid i and spin system k. The score is assumed to be
non-negative

Eig(vcg(i),vcg( j)) The set of edges in the interaction graph that are compatible with edge vcg(i)vcg( j) ∈ Ecg. An
edge vig(k)vig(l) ∈ Eig is compatible with vcg(i)vcg( j) if their features match, such as the vertices
match on amino acid type, and the pair of vertices from one graph and the pair from the other
graph match on contact type.

Ccg The set of all vertices vcg(i) in the contact graph such that there exist at least one edge vcg(i)vcg( j)
that is compatible with at least one edge in the interaction graph.

Cig The set of all vertices vig(k) in the interaction graph such that there exists at least one edge
vig(k)vig(l) that is compatible with at least one edge in the contact graph.

Decision Variables

X(vcg(i)vig(k)vcg( j)vig(l)) A binary variable. It equals to 1 if spin system vig(k) is assigned to amino acid vcg(i),
and spin system vig(l) is assigned to amino acid vcg( j); and 0 otherwise. This variable represents
an edge match between the graphs.

X(vcg(i)vig(k)) A binary variable. It equals to 1 if spin system vig(k) is assigned to the amino acid vcg(i); and 0
otherwise. This variable represents a vertex match.
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Formulation

max
X


∑ vcg(i) ∈Ccg,

vig(k) ∈Cig

m(vcg(i)vig(k))X(vcg(i)vig(k))+

∑vcg(i)vcg( j)∈Ecg ∑ vig(k)vig(l) ∈
Eig(vcg(i)vcg( j))

m(vcg(i)vig(k)vcg( j)vig(l))X(vcg(i)vig(k)vcg( j)vig(l))

 (1)

sub ject to

∑
vig(k)

X(vcg(i)vig(k))≤ 1 ∀vcg(i) ∈Vcg (2)

∑
vcg(i)

X(vcg(i)vig(k))≤ 1 ∀vig(k) ∈Vig (3)

∑ vig(l) s.t.
vig(k)vig(l) ∈ Eig(vcg(i),vcg( j))

X(vcg(i)vig(k)vcg( j)vig(l))≤ X(vcg(i)vig(k))

∀vcg(i)vcg( j) ∈ Ecg, ∀vig(k) ∈Cig

(4)

X(vcg(i)vig(k)vcg( j)vig(l)) ∈ {0,1} (5)

X(vcg(i)vig(k)) ∈ {0,1} (6)

Discussion Equation 1, the objective function, expresses the total edge and type match score of the as-
signment. The first summation is over all vertices that are involved in at least one edge match. The second
summation is over all edges that match. We generate only the variables involved in at least one edge match.
We do not assign vertices that are isolated, unless the vertices can be unambiguously assigned, such as being
the only ones with a particular type. Constraint 2 ensures that each amino acid is assigned to at most one spin
system. Constraint 3 ensures that each spin system is assigned to at most one amino acid. Constraint 4 en-
sures if X(vcg(i)vig(k)vcg( j)vig(l)) = 1 , then X(vcg(i)vig(k)) = 1 and X(vcg( j)vig(l)) = 1. Since we allow missing
edges, if X(vcg(i)vig(k)) = 1 and X(vcg( j)vig(l)) = 1, the left hand side of Constraint 4 can be zero. However,
since edge match scores are always non-negative and we are maximizing the score; if there is a match, we
will have some X(vcg(i)vig(k)vcg( j)vig(l)) = 1. The final two constraints ensure that the decision variables are
binary.

2.2 Generalizing the ILP Model

Our ILP model embodies a general framework for many versions of the ASBA, the SBA, and closely-related
problems.

Scoring Functions The ILP model can optimize various objectives that can be expressed as a sum of terms
comparing spin systems and residues, such as matching amino acid and secondary structure type, or com-
paring chemical shifts from their predicted values; and terms comparing pairs of spin systems to pairs of
residues, such as matching on the type of connectivity or contact. Weights can be added to edge match vari-
ables that correspond to long range beta sheet contacts and local Hα and HNcontacts in alpha helices, so that
greater weight, or different weights can be given to well-defined secondary structure regions in the template
protein
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Fixing Assignment Fragments By fixing specific vertex match variables to 1, we can fix assignments
between particular amino acids and spin systems. This allows resonance assignment to be performed given a
partial or an apriori assignment.

Hamiltonian Path Version The CR method focused on finding common Hamiltonian path fragments in the
graphs to be matched. We can incorporate this by adding the constraint

∑

vcg(i)vcg( j) ∈
Ecg s.t. |i− j|= 1

∑
vig(k)vig(l) ∈

Eig(vcg(i),vcg( j))

X(vcg(i)vig(k)vcg( j)vig(l))≥ n−m (7)

where the first sum is over all vertices of adjacent amino acids. n is the number of amino acids minus one,
and m is the maximum allowable number of missing edges along the path. Alternatively or additionally, a
weighted version of the left-hand side of the above constraint could be added to the objective, so that we
optimize a weighted version of the score and the Hamiltonian path length.

Assigning NOESY Cross Peaks The ILP model can be extended to NOE assignment to identify which
NOESY peak corresponds to exactly which contact. Therefore, it is possible to perform resonance and NOE
assignment simultaneously. To enforce that each NOESY peak corresponds to at most one interaction, for
each NOESY peak p, we have

∑
vcg(i)vig(k)vcg( j)vig(l)

X(vcg(i)vig(k)vcg( j)vig(l), p)≤ 1 (8)

where we have defined a new binary variable X
(
vcg(i)vig(k)vcg( j)vig(l), p

)
corresponding to an edge match

with an interaction that is explained by NOESY peak p. To tie this variable to the other variables, we have,
∀X
(
vcg(i)vig(k)vcg( j)vig(l)

)
,

X(vcg(i)vig(k)vcg( j)vig(l))≤∑
p

X(vcg(i)vig(k)vcg( j)vig(l), p) (9)

|p| ·X(vcg(i)vig(k)vcg( j)vig(l))≥∑
p

X(vcg(i)vig(k)vcg( j)vig(l), p) (10)

where |p| is the number of interaction graph edges containing an interaction that can possibly be attributed
to NOESY peak p. Constraint 9 ensures that if there is an edge match, the match is due to at least one NOESY
peak. Constraint 10 ensures that if there are NOESY peaks explaining the match, the corresponding edge
variable will get selected.

Generating Multiple Assignments The sequential algorithm, introduced by Greisdorfer et al. [33] and
generalized to more than two solutions in [34], can be used to generate solutions that are within a certain
percentage of the optimal solution and have maximum diversity as measured by a diversity measure, such as
average pairwise hamming distance. The one tree algorithm can also be used [34]. Multiple assignments can
be generated for use with consensus methods.

3 Results

3.1 Implemention Details

For comparison with the previously reported SBA methods, in the contact graph, each vertex contains the
amino acid type and the secondary structure type of an amino acid in the template protein. Each edge is
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labelled by all pairs of directed proton-proton interaction types. We consider only two types of interactions,
Hα and HN, and HN and HN. Since Hα and HN is not symmetric, the labels have the direction. In the inter-
action graph, each spin system is associated with possible amino acid types and secondary structure types.
Amino acid type predictions can be obtained from the RESCUE software [35], and secondary structure type
predictions can be obtained from 3JHNHα coupling constants [36]. An edge is created between a pair of spin
systems if there is a NOESY peak (15N, 1H, HN), where the 15N, HNmatches the backbone N, HNchemical
shift of one spin system and the 1H matches the backbone HNor Hα of the other spin system. Edges are
labelled similarly to the contact graph with the addition of an edge match score for each NOE. The match
score is defined as er f c( |∆e|

0.02×
√

2
) as used in [17], where er f c is the complementary error function and |∆e|

is the chemical shift difference between 1H and the matching HNor Hα .
The input to RESCUE consists of the proton chemical shifts of each spin system including those from

the side chain. This was the only time side chain proton chemical shift information was used; although in the
future, we may consider using side chain contact information. Of the 10 possible amino classes returned by
RESCUE, we found that using all classes with positive reliability score rather than the highest scoring class
improved assignment accuracy, so we used all such classes.

To solve the ILP model, we used the solver in the commercial optimization package ILOG CPLEX R©
version 9.130.

3.2 Iterative Approach for Handling Typing Errors

We develop an iterative approach of the ILP model to recover from typing errors. Figure 2 gives a flowchart
of the approach. We first solve the ILP model with the set of compatible edges constrained to vertices where
both the amino acid and secondary structure types match. From this assignment, we identify individual reli-
able amino acid to spin system assignments to fix. We use contact information to determine reliability. We
consider, for each amino acid, the percentage of its incident contact graph edges that are matched in the
assignment. For the first criteria, at least 50% of the incident edges of each amino acid must be matched
for its assignment to be fixed. The ILP model is then solved with these fixed assignments without the hard
constraint that the amino acid and secondary structure types must match. The assignments for the non-fixed
amino acids may have changed from the previous step, which may influence the fixed status of the currently
fixed assignments, so we keep iterating and identifying new fixed assignments until the set of fixed assign-
ments does not change or after a maximum number of iterations. Not shown in the diagram is a step where
we try to further allow fixed assignments to change in order to escape local maxima. This is done by solving
an integer program without fixed assignments, but restricting assignments to a i±4 window about the current
assignment for each amino acid i. After there is no change in the fixed assignments, we tighten the fixed
assignment criteria, so that there exist edge matches to at least one sequential amino acid neighbor. This is
later tightened to two sequential neighbors. For the final criteria, we use structural constraints, where for each
alpha helical amino acid, there must be two local contacts (i± 5) that are matched in addition to the ones
to the sequential neighbors, and for each beta sheet amino acid, there must be a matched contact to another
amino acid in a different beta sheet. Finally, the highest scoring assignment is returned.

With no type matching constraints, the problem size would be too large without using fixed assignments.
Moreover, using too strict a criteria early on for fixing assignments may result in a large problem size. Due
to erroneous assignments, individual correct assignments may fail strict criteria, so we start with relaxed
tolerances and then gradually tighten. This idea is analogous to the idea of decreasing the temperature grad-
ually in the simulated annealing optimization protocol. Since we are solving multiple ILP models, we cannot
guarantee the enumeration of the top N solutions. Nevertheless, we find that generating multiple solutions,
improving each one, and then taking the best scoring one at the end produces a better final assignment. The
generation of multiple solutions can be started at the initial ILP step or at subsequent ILP steps. In the latter
case, previous assignments could be supplied to CPLEX as an initial feasible solution to speed up the op-
timization. Multiple solutions could also be generated from the final assignment by fixing assignments and
then running the sequential or one tree algorithm. This allows the examination of the possible assignments
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for the non-fixed amino acids. We applied the sequential algorithm described in [33] to obtain multiple so-
lutions. The ILP model can also be used to generate the consensus assignment from a set of assignments by
using it to solve the bipartite matching problem.

Fig. 2. Iterative Integer Programming with Fixed Assignments.

3.3 Probabilistic Scoring Model for Identifying Fixed Assignments

The criteria described in Section 3.2 is rather ad-hoc and does not take into account the frequency of amino
acid, secondary structure, and interaction type. These effects mask the contact patterns, and therefore need
to removed. Although the criteria we used worked, quantifying the reliability of each spin system to residue
assignment is desirable. We propose a probabilistic scoring function that is analogous to the knowledge-
based scoring functions used in protein folding [37] in that the score of a reference state is subtracted from
the assignment score. Given an assignment

−→
A for a set of amino acids and spin systems, to score an individual

assignment between amino acid aaa and spin system ssb, we consider two models, where one model is the
reference state. In model 1, each assigned spin system is a true, but noisy representation of the atoms of
the corresponding amino acid. Model 1 incorporates edge match score probabilities, estimated amino acid
type prediction accuracies, estimated secondary structure type prediction accuracies, percentage of contacts
missing in the NMR data, and the notise ratio. We call this model the residue-spin system correspondance
(RSC) model. In model 2, the reference state model, the assignments happened by chance rather than having
any special association. Pairs of vertices are selected from each graph at random and then assigned. Their
corresponding edges are also assigned if there are interaction matches. If one graph has more vertices, then
some vertices in that graph will get unassigned. Vertices in the graph with fewer vertices can be unassigned
with a small user-defined probability εv. We call model 2, the background assignment (BA) model.

Notation

– Let A(aaa,ssb) represent amino acid aaa assigned to spin system ssb. The direction of assignment does
not matter. Denote A(aaa, nil) as aaa is unassigned. Denote A(nil, ssb) as ssb is unassigned.

– Let E(aaa) be the set of incident directed contact edges from aaa, corresponding to the directed proton-
proton interactions. Let E(ssb) be the set of incident directed NOE edges from ssb.
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– Let V−(aaa) be the set of incident vertices of aaa excluding aaa itself. Let V−(ssb) be the set of incident
vertices of ssb excluding ssb itself.

– Let A(V−(aaa)) be the set of assignments for the vertices adjacent to aaa.
– Let A(E(aaa)) be the set of assignments for the edges incident to aaa that are induced by the assignments

A(V−(aaa))∪A(aaa,ssb). An edge ea,i,s between aaa and aai ∈ V−(aaa) of type s is assigned to eb, j,t
between ssb and ss j ∈ V−(ssb) if aaa is assigned to ssb and aai is assigned to ss j and s equals t. If there
is more than one match of each interaction type, the edges are assigned in descending order of match
score. An edge cannot be assigned more than once. Edges can be unassigned if there are no matches.
Denote A(ea,i,t) as the assignment for the edge of type t from aaa to aai . Similarly for A(eb, j,t) for ssb
to ss j. Denote A(ea,i,t , eb, j,t) as the assignment between edge ea,i,t and eb, j,t . Denote A(ea,i,t , nil), where
ea,i,t ∈ E(aaa), as being unassigned. Denote A(nil, eb, j,t) , where eb, j,t ∈ E(ssb), as being unassigned.

– Let A(star(aaa)) be A(aaa,ssb) ∪ A(V−(aaa)) ∪A(E(aaa)). Similarly for A(star(ssb)).
– Let nrd be the noise ratio equal to the number of directed NOE edges in the interaction graph divided by

the number directed contact edges in the contact graph. Let nrud be the undirected noise ratio equal to
the number of undirected NOE edges in the interaction graph divided by the number undirected contact
edges in the contact graph, where each undirected edge consists of all the directed edges between a given
pair of vertices in the corresponding graph. In general, both noise ratios are greater than 1.

– Let #aa be the number amino acids in the contact graph, and #ss be the number of spin systems in the
interaction graph.

– Let aaType(aa) be the amino acid type of aa. Let ssType(aa) be the secondary structure type of aa.
– Let aaClass(ss) be the predicted amino acid class for spin system ss, such as one of the ten mutally

exclusive classes returned by the RESCUE software. Let ssClass(ss) be the predicted secondary structure
class for spin system ss. The classes are assumed to be mutually exclusive.

– Let #class(ss) be the number spin systems with the same amino acid and secondary structure class as
spin system ss; analogously for #type(aa) for amino acid aa.

– Let #eig
t be the number of directed interaction graph edges with type t. Let #eig

d be the total number of
directed interaction graph edges, and #eig

u be the total number of undirected edges. Similarly for #ecg
t ,

#ecg
d , and #ecg

u .
– Let #e>ig

a,i,t be the number of undirected interaction graph edges containing fewer interactions of type t
than the contact graph edge ea,i. Let #e>cg

b, j,t be the number of undirected contact graph edges containing
fewer interactions of type t than the interaction graph edge eb, j.

Scoring Function Given an assignment
−→
A , for an assignment between amino acid aaa and spin system ssb,

we compute P(model |A(star(aaa)), A(star(ssb))) for each model. Assuming P(model 1) = P(model 2),

P(model |A(star(aaa)), A(star(ssb)) =
P(A(star(aaa)), A(star(ssb)) |model)

∑m P(A(star(aaa)), A(star(ssb)) |model = m)
(11)

P(model 1 |A(star(aaa)), A(star(ssb)) =
R

1+R
(12)

where R = P(A(star(aaa)),A(star(ssb)) |model 1)
P(A(star(aaa)),A(star(ssb)) |model 2)

P(A(star(aaa)), A(star(ssb)) |model)= P(A(aaa, ssb), A(V−(aaa), A(V−(ssb), A(E(aaa), A(E(ssb) |model)
(13)
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P(A(aaa, ssb), A(V−(aaa), A(V−(ssb), A(E(aaa)A(E(ssb) |model) = (14)

P(A(E(aaa)), A(E(ssb) |A(aaa, ssb), A(V−(aaa), A(V−(ssb), model) ×
P(A(V−(aaa), A(V−(ssb) |A(aaa, ssb), model) ×

P(A(aaa, ssb) |model)

For fixing assignments, we can rank each individual assignment by their score, which is taken to be
log(P(model 1 |A(star(aaa)), A(star(ssb))), and then fix the assignments that score above a specific thresh-
old. This threshold can increase after each iteration. The parameters for each model is based on the following
cases. The probabilities for each of these cases are given in Table 1. For brevity, the conditioned space of the
probability is omitted if it is clear from the context that it is present.

For P(A(aaa, ssb)) = P(aaa)×P(ssb |aaa) , P(aaa) will be the same in both models, so we consider only
P(ssb |aaa) .

For aai ∈V−(aaa), ss j ∈V−(ssb), and A(aai, ss j)

P(A(E(aaa)), A(E(ssb) |A(aaa, ssb), A(V−(aaa), A(V−(ssb), model) = ∏
a

P(eaa,i,t) (15)

P(A(E(aaa)), A(E(ssb) |A(aaa, ssb), A(V−(aaa), A(V−(ssb), model) = (16)

×∏
t

P(A(ea,i,t ,eb, j,t) |A(aaa, ssb), A(aai, aa j), model)

×∏
s

P(A(ea,i,s, nil) |A(aaa, ssb), A(aai, aa j), model)

×∏
r

P(A(nil, eb, j,r) |A(aaa, ssb), A(aai, aa j), model)

P(A(V−(aaa)), A(V−(ssb)) |A(aaa, ssb), model) = ∏
i, j

P(A(aai, ss j) |A(aaa, ssb), model) (17)

×∏
k

P(A(aak, nil) |A(aaa, ssb), model)

×∏
l

P(A(nil, ssl) |A(aaa, ssb), model)

For P(A(aai, ss j) |A(aaa, ssb), model) = P(aai)×P(ss j |aai), P(aai) will be the same in both models, so
we consider only P(ss j |aai).

For P(A(ea,i,t , eb, j,t) |A(aaa, ssb), A(aai, aa j), model)= P(ea,i,t)×P(eb, j,t |ea,i,t), P(ea,i,t) will be the same
in both models, so we consider only P(eb, j,t |ea,i,t).

For P(A(ea,i,t , nil) |A(aaa, ssb), A(aai, aa j), model) = P(ea,i,t)× P(A(ea,i,t , nil) |ea,i,t), P(ea,i,t) will be
the same in both models, so we consider only P(A(ea,i,t , nil) |ea,i,t).

For P(A(nil, eb, j,t) |A(aaa, ssb), A(aai, aa j), model) = P(eb, j,t)×P(A(nil, eb, j,t) |eb, j,t), P(eb, j,t) will be
the same in both models, so we consider only P(A(nil, eb, j,t) |eb, j,t).

For aai ∈ V−(aaa), ss j /∈ V−(ssb), and A(aai, ss j); or aai ∈ V−(aaa), A(aai, nil), there are no edges
incident to ssb for matching the contact graph edge ea,i, so we have

P(A(V−(aaa)), A(V−(ssb)) |A(aaa, ssb), model) = ∏
i

P(A(aai, nil) |A(aaa, ssb), model) (18)
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P(A(E(aaa)), A(E(ssb) |A(aaa, ssb), A(V−(aaa), A(V−(ssb), model) = ∏
s

P(A(ea,i,s, nil)) = 1 (19)

For P(A(aai, nil) |A(aaa, ssb), model) = P(aai)×P(A(aai, nil) |aai), P(aai) will be the same in both
models, so we consider only P(A(aai, nil) |aai).

For aai /∈V−(aaa), ss j ∈V−(ssb),and A(aai, ss j); or ss j ∈V−(ssb), A(nil, ss j), there are no edges inci-
dent to aaa for matching the interaction graph edge eb, j, so we have

P(A(V−(aaa)), A(V−(ssb)) |A(aaa, ssb), model) = ∏
j

P(A(nil, ss j) |A(aaa, ssb), model) (20)

P(A(E(aaa)), A(E(ssb) |A(aaa, ssb), A(V−(aaa), A(V−(ssb), model) = ∏
s

P(A(nil, eb, j,s)) = 1 (21)

For P(A(nil, ss j) |A(aaa, ssb), model) = P(ss j)×P(A(nil, ss j) |ss j), P(ss j) will be the same in both mod-
els, so we consider only P(A(nil, ss j) |ss j).

Table 1 gives the probabilities for each case in each model.

Table 1. Probabilistic scoring model for identifying reliable assignments.

Cases Residue-Spin System Correspondance Model Background Assignment Model

P(ssb |aaa)
for

P(A(aa,ss))

P(matchat)×P(matchst) if both types match
P(matchat)×P(mismatchst) if only the amino acid types

match
P(mismatchat)×P(matchst) if only the secondary structure

types match
P(mismatchat)×P(mismatchst) if neither types match
The match and mismatch probabilities are user-defined

#class(ss)
#ss

aai ∈V−(aaa),
ss j ∈V−(ssb), A(aai, ss j),

A(ea,i,t , eb, j,t)

P(eb, j,t |ea,i,t) =er f c( |∆e|
0.02×

√
2
) as used in [17]

For P(ss j |aai) , see case above for P(ssb |aaa)

P(eb, j,t |ea,i,t) = #eig
t

#eig

For P(ss j |aai) , see case above for P(ssb |aaa)

aai ∈V−(aaa),
ss j ∈V−(ssb), A(aai, ss j),

A(ea,i,t ,nil)

P(A(ea,i,t , nil) |ea,i,t) =


0.21 if distance≤ 3 Å
0.41 if distance≤ 4 Å
0.38 otherwise

For P(ss j |aai) , see case above for P(ssb |aaa)

P(A(ea,i,t , nil) |ea,i,t) =
#e>ig

a,i,t

#eig
u

For P(ss j |aai) , see case above for P(ssb |aaa)

aai ∈V−(aaa),
ss j ∈V−(ssb), A(aai, ss j),

A(nil, eb, j,t)

P(A(nil, eb, j,t)) = (1− 1
nrd

)

For P(ss j |aai) , see case above for P(ssb |aaa)

P(A(nil, eb, j,t)) =
#e>cg

b, j,t
#ecg

u

For P(ss j |aai) , see case above for P(ssb |aaa)

aai ∈V−(aaa),
ss j /∈V−(ssb), A(aai, ss j)

P(ss j |aai) = 0.1×min(P(ssb |aaa)), which serves as a penalty For P(ss j |aai) , see case above for P(ssb |aaa)

aai ∈V−(aaa), A(aai, nil) P(A(aai, nil) |aai) = 0.1×min(P(ssb |aaa)), which serves as a
penalty. Otherwise, a missing spin system probability can be

used if it can be estimated.

P(A(aai, nil) |aai) =

{
#aa−#ss

#aa if #aa > #ss
εv else

aai /∈V−(aaa),
ss j ∈V−(ssb), A(aai, ss j)

P(A(aai, ss j) |ss j) = 1− 1
nru

P(aai |ss j) = type(ssi)
#aa

ss j ∈V−(ssb), A(nil, ss j) P(A(nil, ss j) |ss j) = 1− 1
nru

P(A(nil, ss j) |ss j) =

{
#ss−#aa

#ss if #ss > #aa
εv else

Note that the probabilities can be weighted to consider differently edge matches for adjacent amino acids,
matches for local alpha helix contacts, and matches for long range beta sheet contacts.
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3.4 One Experiment on the ASBA Problem

For proof of concept, with the data we have in hand, we tested our system on the target protein TM1112, a
protein from Thermotoga maritima [38]. TM1112 has 89 residues, with 17 residues in α-helix regions, 58 in
β -sheets, and 14 in loops. The NMR data for TM1112 was provided by the Arrowsmith Lab at the University
of Toronto. Since TM1112 contains 5 prolines, the manual resonance assignment done by Arrowsmith Lab
has 84 residues assigned.

We applied PICKY to automatically pick peaks from the 15N-HSQC, 15N-edited NOESY, HCCONH-
TOCSY spectra of TM1112. However, we were unable to do amino acid typing with HCCONH-TOCSY
because it gave the chemical shifts of the previous rather than the current residue’s side chain protons. We
were also unable to do secondary structure prediction because HNHA specta was not available. We modified
the contact graph to solve the TOCSY problem, so that contacts for Hi

α to H j
N were represented by edges

from Hi
α to H j+1

N . The noise ratio (number of NOE edges per contact graph edge) was 12.0. We used the
x-ray structure (PDB id 1O5U) to form the contact graph. With no typing and secondary structure informa-
tion, due to the large problem size, we could not directly use our ILP to do the assignment, so we gave it
the assignment from IPASS [9], which was used as a fixed assignment. IPASS is an automatic triple reso-
nance experiment-based resonance assignment method that was recently developed by our lab. The IPASS
assignment achieved a recall value of 84% and precision of 97% on TM1112.

After assignment by our ILP model, we were able to correctly assign 76 residues out 83 2, which gave
a recall of 91% and precision of 92%. Since NMR spectroscopists prefer reliability over the total number
of assigned residues, we tried to reduce the false positive rate by peforming consensus on the assignments
generated by our iterative process. We discarded amino acids with no clear assignment as the majority (less
than 50% of the assignments). The process was repeated without these amino acids until no amino acids
could be discarded. This yielded 76 out of 77 correct assignments, which gave a recall of 91% but precision
of 99%. This even corrected one wrong assignment made by IPASS involving an amino acid that had no
contact information missing in the NMR data. The majority of the amino acids discarded were missing a
large number of NOEs.

Although the power of our ILP model is not fully demonstrated in this test case due to the availability of
NMR spectra, this process highlights the ability of our ILP model to explore an assignment given some apri-
ori assignment. More importantly, it highlights the possibility of fully automatic structure-based assignment.
To our knowledge, this is the first attempt on ASBA which does assignment directly from the NMR spectra.

3.5 Experiments on SBA Problems

Although our goal is to solve the ASBA problem, our ILP model can naturally be applied to solve the SBA
problem. To demonstrate this, we tested the performance of the ILP model on the synthetic data set used by
the CR method. It consisted of 9 proteins. We were provided data for the proteins 1KA5, 1EGO, 1G6J, 1SGO,
and 1YYC from the authors. The data for the other 4 proteins were simulated according to the simulation
method described in [28]. Table 2 describes the test set and gives the noise level and the percentage of contact
graph edges missing in the interaction graph.

Results with Correct Typing The authors of the CR method also provided us with their program, so we
tested it on all 9 proteins. However, the program that was provided did not allow the input of amino acid and
secondary structure type predictions, so we could only perform the comparison assuming correct amino acid
and correct secondary structure typing.

We followed the experimental approach used by the CR method, and tested each protein using each model
in the protein’s PDB file as the template. To control noise, our method automatically increased the distance
cutoff (in the contact graph) at 0.25Å increments until the noise level was under 8. This gives an improvement

2 83 is the maximum number of assignable residues taking into account 5 prolines and the N-terminal residue.
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Table 2. Test set. From left to right: target protein/template protein, number of residues in the template (total/helix/sheet/loop); number of spin
systems (total/helix/sheet/loop); number of prolines; noise (number NOE edges per contact); distance threshold for defining a contact; (top) per-
centage of contacts missing in the NMR data (≤ 3Å, ≤ 4 Å, ≤dist. cutoff), (bottom) percentage of contacts missing by secondary structure type
(helix/sheet/loop); average pairwise RMSD of each model structure in the template (total/helix/sheet/loop), or the RMSD between the target and
template for 1KTE. Proteins are denoted by their PDB identifier

Target/
Template

No. Residues No. Spin Sys No.
PRO

Noise (x) Dist.
Cutoff (Å)

Missing (%)
by Dist.

(by Struct.)

RMSD (Å)

1KA5/1KA5 88/40/23/25 85/39/23/23 1 5.5/5.6/5.9/5.3 4.0 10/29
(20/21/22)

0.2/0.2/0.1/0.2

1EGO/1EGO 85/40/19/26 81/40/19/22 3 5.6/5.4/5.8/6.3 4.0 13/29
(22/26/19)

1.6/1.4/0.9/2.3

1EGO/1KTE 85/33/23/29 81/40/19/22 3 2.9/3.3/2.2/3.1 5.0 17/38/59
(42/54/36)

2.2

1G6J/1G6J 76/18/22/36 72/18/22/32 3 4.4/3.5/5.1/4.8 4.0 22/44
(31/32/35)

1.1/0.6/0.4/1.5

1SGO/1SGO 139/46/28/65 136/46/28/61 3 5.5/4.7/4.0/7.4 4.5 23/40/60
(38/49/40)

10.9/7.3/5.5/14.1

1YYC/1YYC 174/36/72/66 158/36/70/52 10 6.6/5.2/7.5/7.3 4.25 24/43/57
(35/38/40)

4.0/2.5/1.6/6.0

2NBT/2NBT 66/-/16/50 60/-/16/48 5 3.4/-/3.6/3.3 4.0 25/46
(-/22/40)

3.4/-/1.7/3.8

1RYJ/1RYJ 70/9/27/34 67/9/27/31 2 3.1/2.0/3.1/3.8 4.0 16/41
(33/29/25)

1.5/1.0/0.9/1.9

2FB7/2FB7 80/-/32/48 73/-/32/41 7 3.1/-/3.0/3.2 4.0 24/43
(-/30/36)

5.4/-/2.0/6.8

1P4W/1P4W 87/66/-/21 82/65/-/17 3 5.5/5.3/-/6.7 4.0 20/37
(28/-/40)

1.1/0.7/-/1.9

over using a hard 4.0 Å cutoff. We used the same distance thresholds on the CR program. Table 3 compares
our method with the CR method, where the first row of each entry gives our results, while the row below
gives the CR’s. On 8 of the 9 proteins, our average accuracy on the entire protein is better. In fact, the ILP
model achieves an average accuracy of 97.1%, whereas the CR method has 86.0% accuracy, which means
the ILP model assigns 4.8 times fewer wrong residues. We also noticed that the ILP model significantly
outperforms the CR method on both β -sheet and loop regions. This may be due to the fact that our method
can maximize the score better as shown in Table 3. In many instances, the score was higher than the score
of the correct assignment, which indicates that maximizing contact matches alone may not necessarily give
the correct assignment. For 2NBT, where 40% of loop contacts are missing, we did slightly worse, but the
score was greater than the score of the correct assignment; similarly for helix residues in 1RYJ. In general,
since amino acids in helices tend to have contacts with other amino acids nearby, in many of our tests, we
observed that missing edges and typing errors produced local errors in helices. For 1RYJ, the accuracy for
helices using a (i±2) window, i.e., allowing a spin system to be assigned within two residues away from the
correct residue, was 100%. The run time of our program was significantly faster. The average runtime of the
ILP model is only 1.9 seconds per model, which is 1,127 times faster than the CR program. One thing to
note is that the CR program was written in Python, and ours was written in Java, and we used CPLEX. All
tests were performed on our servers, consisting of Pentium 4 1.4Ghz, 4 GB RAM machines. Our program is
single threaded.

Results with Predicted Amino Acid Typing Perfect amino acid typing cannot easily be achieved in reality,
although some amino acids, such as Ser, Gly, Thr, Ala, can be identified based on N, Hα and Hβ shifts.
Thus, we further tested the ILP model with predicted typing information. We ran RESCUE Version 1 [35]
on the experimental proton chemical shifts from the protein’s entry in the Biological Magnetic Resonance
Bank (BMRB) [39] for the 5 proteins that we received from them. For these tests, the secondary structure
type was assumed to be correct. Since we could not provide type predictions to the CR program, we show
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Table 3. Comparison between the ILP model and the Contact Replacement Method with correct amino acid and secondary structure
typing. For each protein, the first row gives our results, while the second row gives the CR’s. From left to right: target protein; average
accuracy over all the models(total/helix/sheet/loop); accuracy ranges (total/helix/sheet/loop); number of times the assignment score
was greater than, less than, or equal to the score of the correct assignment; and the CPU time per model.

Target Avg Acc. (%) Acc. Range (%) Times Score
>, <, = Ref

CPU Time
(sec)

1KA5 100/100/100/100
94/100/76/100

100/100/100
98-93/91-74/100

0, 0, 16
0, 16, 0

2
804

1EGO 98/100/100/93
96/96/100/93

100-97/100/100/100-90
100-92/100-90/100/100-79

15, 0, 5
4, 12, 4

1
708

1G6J 97/100/100/94
91/100/ 87/88

100-95/100/100/100-90
97-89/100/100-86/100-85

25, 2, 5
0, 32, 0

1
756

1SGO 96/97/100/94
80/95/95/62

100-86/100-95/100/100-70
88-71/100-87/100-86/76-45

13, 3, 4
0, 20, 0

3
4,302

1YYC 97/99/96/98
72/92/62/72

100-93/100/100-91/100-92
76-67/100-89/69-53/79-64

17, 0, 3
0, 20, 0

4
5,292

2NBT 91/-/98/88
92/-/95/90

96-85/-/100-93/95-79
100-88/-/100-88/96-82

10, 0 , 0
1, 9, 0

1
2,328

1RYJ 97/98/96/96
82/100/70/86

97-94/100-88/96/96-93
82-75/100/70/88-72

20, 0, 0
0, 20, 0

1
918

2FB7 96/-/97/96
92/-/94/90

100-91/-/100-93/100-90
95-88/-/100-94/95-83

7, 0, 3
0, 10, 0

1
1,566

1P4W 99/100/-/97
77/77/-/77

100-97/100/-/100-88
91-63/91-63/-/90-58

4, 0, 16
0, 20, 0

3
3,612

Average 97/99/99/96
86/94/85/84

-
-

-
-

2
2254

only our results in Table 4. For comparison, we included the results of using amino acid type matching as
hard constraints in our program. In general, using soft constraints resulted in higher accuracy than using hard
ones. For 1G6J, the amino acid typing accuracy was high, so the improvement was minimal. For 1YYC,
the improvement was significant even though the typing accuracy was low. The accuracy, however, varied
substantially depending on the model used as the template. Nevertheless, the template with the best score
yielded at accuracy of 89.9%, which increases to 94.1% when considering an (i±2) window. This indicates
that using multiple templates, such as those generated by normal mode analysis [18], may improve accuracy.
For these tests, we did not use the structural constraints criteria for fixing assignments.

Table 4. Assignment accuracy with predicted amino acid typing and correct secondary structure typing. From left to right: target
protein; average accuracy with hard typing; average accuracy of soft typing over all the models (total/helix/sheet/loop); accuracy
ranges for soft typing (total/helix/sheet/loop); amino acid typing accuracy; number of times the assignment score was greater than,
less than, or equal to the score of the correct assignment; and the CPU time per model. Values in parenthesis give the accuracy within
an i±2 window.

Target Avg Acc
Hard (%)

Avg Acc (%) Range Acc (%) A.A. Typing
Acc (%)

Times Score
>, <, = Ref

CPU Time
(sec)

1KA5 86 100/100/100/100 100/100/100/100 89 0, 0, 16 30
1EGO 86 94/92 (99)/100/94 100-91/100-87/100/100-90 90 15, 3, 2 22
1G6J 92 94/100/93/91 97-87/100/100-90/100-78 96 7, 25, 0 3
1SGO 82 92/90 (100)/95/93 96-87/100-84/100-82/96-83 92 7, 13, 0 180
1YYC 59 77/86 (92)/81/66 94-68/100-58/100-52/90-50 79 0, 20 , 0 504

Results with Predicted Amino Acid and Predicted Secondary Structure Typing 3JHNHα coupling con-
stants are used to predict secondary structures as described in [36]. The standard method is similar to the
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following: if the coupling value fell between 2.5 and 5.5, the spin system was predicted as helix. If the value
was between 8 and 11.5, the spin system was predicted as beta sheet; otherwise, it was predicted as loop.
From a test set of the following BMRB entries with accession numbers 4267, 4071, 2151, 4458, 4376, 4136,
4784, 4347, 4163, 4297, plus ubiquitin experimental values from the literature [40], we obtained an average
typing accuracy of 60% with a range of 50-69%. This will likely be too low for resonance assignment, so
we classified coupling constants into classes consisting of two secondary structure types, which dramatically
increased the average accuracy at the cost of increased problem size. For values less than 6.5, we classified
it as helix and loop; otherwise we classified it as beta sheet and loop. With this, we obtained an average
accuracy of 92% with a range of 82-100%.

We introduced secondary structure class typing errors with probability 0.88 yielding the typing accuracies
in Table 5. For the convenience of time, we tested each target using only the first model in the template. The
noise ratio and percentage of missing NOEs is similar to the average values in Table 2. For 1KA5, the
accuracy did not change from the previous test. For 1EGO, the accuracy actually improved because we used
structural constraints for fixing assignments. For 1EGO, we also tested it with the template 1KTE obtained
from LOMETS [41], a consensus protein threading server for protein structure prediction. The sequence
identity was 26.5%. Since 1EGO and 1KTE had secondary structures of different length, when solving the
initial integer program, we found that allowing the secondary structure type to differ at the secondary structure
boundaries gave better results. The larger 1SGO struggled to maximize the score, but the accuracy was still
much higher than the hard typing case. For 1YYC, its large size combined with its low amino acid typing
accuracy, produced poor quality fixed assignments, but there was a large improvement over the hard typing
case.

Table 5. Assignment accuracy with predicted amino acid and secondary structure typing. From left to right: target protein; tem-
plate protein; accuracy with hard typing; accuracy of the best scoring model (total/helix/sheet/loop); amino acid typing accuracy;
secondary structure typing accuracy; percentage difference in score of the best scoring assignment compared to the correct one (+
means score of our assignment was higher); and the CPU time per model. Values in parenthesis gives the accuracy in a (i± 2)
window.

Target Template Acc Hard
(%)

Acc Best Score (%) A.A. Typing
Acc (%)

S.S. Typing
Acc (%)

Diff Ref
Score (%)

CPU Time

1KA5 1KA5 72 100/100/100/100 89 91 0 4 hr
1EGO 1EGO 65 97/95 (100)/100/100 90 85 -1.5% 1 h
1EGO 1KTE 67 92/90 (100)/89/100 90 85 +0.4% 1.7 hr
1SGO 1SGO 63 88/82 (91)/96/88 92 87 -3.0% 10.5 hr
1G6J 1G6J 75 91/100/86/90 96 90 +0.5% 32 min

1YYC 1YYC 40 70/91/71/53 79 91 -3.1% 46 hr

3.6 Results on Ubiquitin with Manual Peaks

For ubiquitin, we obtained real 15N HSQC, 15N TOCSY-HSQC, and 15N NOESY-HSQC data from Richard
Harris’s The Ubiquitin Resource Page [42]. We picked the peaks manually by inspecting the spectra with
SPARKY [43]. Ubiquitin has 76 residues and 3 prolines. The noise level is 4.6 while the missing edge
percentage is 28.3%. HSQC peaks without an Hα chemical shift were identified as noise. For amino acid
typing, RESCUE performed poorly, giving an accuracy of 68.6%. We performed the typing manually using
the expected number of proton shifts and their expected range of values. Manual typing gave an accuracy of
90%, where the average number of possible amino acid types per spin system was 3.3 with a range of 1 to
8. We used the results of manual typing for assignment. We used experimental 3JHNHα coupling constants
from the literature [40]. Eight spin systems did not have J-coupling values, so their predicted class included
all three secondary structure types. The best scoring assignment had accuracy 87.1%, with 64.3% on α-helix
(85.7% with i±2 window), 95.7% on β -sheet, and 90.0% on loops. Although the accuracy for helix residues
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was low, many of the errors were due to a +1 assignment shift error due to the HSQC peak of a nearby amino
acid not being present in the NMR data. We also obtained a consensus assignment by generating 10 solutions
from the best scoring assignment with fixed assignments meeting the structure constraint criteria, and then
taking the most frequently assigned spin system as the assignment. Consensus gave an accuracy of 91% with
78% for helices (92% i±2) and the other types unchanged.

4 Conclusion

We have proposed the Automated Structure-Based Assignment problem (ASBA) and developed the first
system to solve this problem. The core novel component of this system is a general ILP model, which was
demonstrated to be robust and flexible. The entire system was tested, fully automatically, on a real protein
TM1112. The ILP model was also extensively compared with a top SBA method and demonstrated significant
improvements in both accuracy and speed.
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