
Characterizing Large-Scale Use of a Direct
Manipulation Application in the Wild

Ben Lafreniere, Andrea Bunt, John Whissell, Charlie Clarke, and Michael Terry
David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, ON, Canada

bjlafren@cs.uwaterloo.ca, bunt@cs.umanitoba.ca, john_whissell@hotmail.com,
claclarke@plg.uwateloo.ca, mterry@cs.uwaterloo.ca

ABSTRACT
Examining large-scale, long-term application use is critical
to understanding the degree to which an application meets
the needs of its user community. However, there has been
limited published analysis of this type of data, none of
which pertains to applications that support creating and
modifying content using direct manipulation. In this paper,
we present an analysis of 2 years of usage data from an in-
strumented version of the GNU Image Manipulation Pro-
gram, including data from over 200 users. In the course of
our analysis, we contribute to the body of knowledge on
large-scale application use in three ways. First, we show
that previous findings concerning the sparseness of com-
mand use and idiosyncrasy of users’ command vocabularies
extend to a new domain and interaction style. Second, we
demonstrate that direct manipulation applications require
new analysis methods to determine command popularity.
Finally, we describe the novel application of a clustering
technique to characterize users’ higher-level tasks.

Author Keywords
Logging, long-term usage, community command usage,
open source software, remote usability, adaptive interfaces,
longitudinal study

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Modern content-creation applications contain hundreds of
features and are used by millions of users for a multitude of
tasks. However, there is little published work characterizing
large-scale, long-term usage patterns of these types of ap-
plications. Without this information, it is difficult to know
how these feature-rich user interfaces should evolve to meet
the needs of users.

In this paper, we present an analysis of the ingimp dataset, a
dataset collected from a public deployment of an instru-
mented version of the GNU Image Manipulation Program
(GIMP) [16]. The dataset represents more than 200 users
and 4000 sessions collected over a 2-year period. This pa-
per’s contributions are the analysis of this dataset, novel
methods employed to perform this analysis, and a discus-
sion of implications for interface design, all of which we
summarize here.

Our analysis of this dataset represents the first large-scale
analysis of a content-creation application that deals primar-
ily with non-text content (i.e., graphics). It is also the first
such analysis of an application for which direct manipula-
tion is the primary mode of interaction. In contrast, past
analyses have focused exclusively on applications that
largely deal with text and keyboard input, such as word
processors (e.g., [3,9,10,19]) or software development envi-
ronments [12]. As such, this work complements and ex-
tends previous research by describing the common patterns
and trends of long-term use in this alternative application
space.

The results of our analysis support a number of previous
findings reported in the literature. For example, we find that
users’ command vocabularies tend to be small (averaging
only 34 commands of the nearly 500 available) and have
little overlap with one another (the vast majority of com-
mands are used by no more than 10% of users). We also
found that users employ only about 9 unique commands in
any particular session. That is, users tend to use only a
small portion of the functionality available in the applica-
tion (less than 2% on average) and the specific portion used
varies greatly from user to user. This echoes previous find-
ings, and has direct implications for interface design strate-
gies intended to mitigate application complexity (e.g., adap-
tive or mixed-initiative interfaces).

Our analysis also uncovered limitations in the metrics
commonly used to summarize large-scale application use
by a community of users. In particular, past analyses have
characterized application use by performing frequency
counts of commands across the entire user base (e.g.,
[6,10]). Direct manipulation tools, however, skew this met-
ric. For example, the paintbrush tool may be used dozens or
hundreds of times in a row, with each stroke logged as an

Please cite as Technical Report CS-2009-27, David R. Cheriton School of Computer Science, University of Waterloo, 2009

individual command invocation. While logging these re-
peated invocations has analytical value, additional summa-
rizations are useful. Accordingly, this work presents a set of
alternative perspectives to derive a richer picture of com-
mand use across the community of users. Specifically, in
addition to raw command counts, our analyses consider the
number of users who have ever used a command, the num-
ber of sessions (log files) in which a command has ap-
peared, and command use with repeated invocations col-
lapsed to a single invocation. These perspectives respec-
tively indicate the relative popularity of a command in the
community, the relative importance of a command across
all tasks, and the importance of a command in a particular
session. Collectively, these metrics allow one to form a
more holistic picture of application use than raw command
counts alone.

Finally, past analyses have tended to characterize applica-
tion use at a relatively fine level of granularity, often no
deeper than summarizing command counts across the entire
user community. While such analyses provide important
insights into large-scale application use, they do not easily
translate to an understanding of the higher-level tasks per-
formed by users. Toward this end, we demonstrate the
novel application of a clustering technique to automatically
derive approximations of common tasks performed by the
user community. This strategy yields sets of commands that
clearly relate to particular tasks (in the case of our dataset,
tasks such as photo retouching or graphic design work).
These sets of commands also show good correspondence to
user-supplied descriptions of their intended tasks.

The rest of this paper is structured as follows. We start by
reviewing related work on long-term usage of desktop ap-
plications. Next, we describe ingimp and our dataset, and
give a basic summary of ingimp users, including the charac-
teristics of their sessions (e.g., length, frequency of use) and
the characteristics of the documents that they worked on.
We then turn our attention to summarizing application use
by considering the popularity of different commands by a
number of metrics. Finally, we characterize user tasks
through the previously mentioned clustering technique and
show that user-supplied descriptions of tasks support these
results. We conclude with a discussion of the implications
of our findings.

RELATED WORK
In this paper, we are primarily concerned with characteriz-
ing long-term use of creative desktop applications that sup-
port creating and editing data. While we recognize the ex-
tensive literature studying large-scale use of games (e.g.,
[5]) and web applications (e.g., [14]), in this research we
are motivated to understand how feature-rich software is
applied to ill-defined tasks. Past work in this vein has ex-
amined long-term use of the UNIX command line, text edi-
tors, and software development environments.

Greenberg analyzed data on the commands issued by 168
users in a UNIX command-line environment over a four-

month period [6]. This research replicated a number of pre-
vious studies analyzing UNIX command use, including that
of Draper [4] and Hanson et al. [7]. In his work, Greenberg
found that individual users only used a very small number
of the available commands (an average of 50 of the 1307
unique commands observed during the monitoring period).
Furthermore, he found very little overlap between individ-
ual users’ command vocabularies—the set of unique com-
mands a user was observed using—with less than 3% of
commands shared by more than 50% of users. These find-
ings were consistent with those of previous studies. Finally,
Greenberg found that individual users were likely to reuse
commands that they had recently used, motivating the de-
sign of intelligent history mechanisms.

In the domain of text editing, Whiteside et al. [19] logged
keystroke-level data for two text-editor applications, one
used by six secretaries, the other by eight knowledge work-
ers, over periods of 11 days and 2 months, respectively. The
authors analyzed the frequency of individual keystrokes and
transition probabilities between them. They found that 50%
of users’ keystrokes were used for text entry and 25% were
used for cursor movement. The degree to which keystrokes
were used for cursor movement led Digital Equipment Cor-
poration (DEC) to adopt the now-familiar inverted-T layout
for cursor keys on their VT200 series terminals. Studies
such as these underscore the positive impact that can result
from understanding long-term, real-world use of applica-
tions.

Studies of long-term application use have also informed the
design of intelligent help systems. In a study that spanned
three years, researchers instrumented the sam text editor to
gather usage data from 2200 undergraduate Computer Sci-
ence students at the University of Sydney, Australia [3,9].
By examining the logs of 63 students who used the applica-
tion for the full three years, the researchers were able to
build models of individual users’ knowledge.

Also motivated by the goal of building models of user ex-
pertise to be used in an intelligent help system, Linton et al.
analyzed usage logs from 16 users of Microsoft Word 6.0
over periods ranging from 3 to 11 months per user (average
of 6 months) [10]. While they found that users’ command
vocabularies are relatively small (an average of 152 of the
available 642 commands), they also found that the size of a
users’ command vocabulary is a poor measure of expertise
since it is highly correlated with the length of time that the
user has been observed.

Finally, Murphy et al. analyzed usage logs for 41 develop-
ers using Eclipse 3.1 and 3.2, with a focus on use of Java
Development Tools (JDT) [12]. Usage logs were gathered
for periods ranging from six to 125 days. The authors char-
acterized the frequency of usage for various features and
commands, and found that the majority of users made use
of third-party plug-ins not included in the default Eclipse
download.

One of the most common trends found in past work is that
command frequencies, when considered across an entire
community of users, follow a long-tailed distribution in
which a very small number of commands account for the
vast majority of observed command use, with the remaining
commands used very little [3,6,7,9,10,19,4]. At the same
time, individual command vocabularies are found to be
relatively small and idiosyncratic, with little overlap be-
tween users. As we will show, the ingimp dataset follows
both trends closely.

Finally, we note that past work has primarily focused on
relatively low-level models of user interaction. When
higher-level tasks have been considered, researchers have
manually built their own models and examined how users
conformed to those models (see [8] for a discussion). We
note an opportunity to provide methods that automatically
extract likely tasks using command histories alone.

Given this background, we now turn to the ingimp dataset.

THE INGIMP DATASET
ingimp is an instrumented version of the open source GNU
Image Manipulation Program [16]. All collected data is
made publicly available on the project’s website. ingimp
was designed to collect the following information:

• Activity tags: optional user-supplied keywords describing
how the user intends to use the application (prompted for
at the start of each session)

• System characteristics, including operating system, CPU,
number of monitors, monitor resolution, and time zone

• Document summarizations, including the size of the im-
age and the number of layers in the image

• Commands that appear on the undo stack
Users’ locales were not explicitly recorded, but can often be
determined by examining the localized command names in
log files to determine the likely locale. While this method
does a reasonable job, it does not perfectly differentiate
between all locales (e.g., Canadian vs. British English).
Users’ logs are automatically sent to the server when the
application closes. We consider each such instance of the
application being opened and closed a session. To permit
tracking of users’ activities across sessions, each user is
assigned a randomly-generated ID number when ingimp is
first installed, which is subsequently included in the log of
each session.

ingimp Deployment and Distribution
ingimp was announced in 2007 at an open source graphics
conference, the Libre Graphics Meeting (LGM), and is
freely available for download from www.ingimp.org. Since
ingimp is released under the GNU Public License (GPL),
anyone is free to download, install, and use it. Following its
announcement, ingimp was featured on a number of web-
sites, including Slashdot, GIMP’s French language project
page, and a story published on an open source-themed news

site. Of the various announcements, the Slashdot coverage
had the greatest single impact in user uptake, rapidly in-
creasing the user base in a week’s time.

Given the factors discussed above, ingimp’s user base can
be roughly approximated as Slashdot readers, GIMP users
in general (with a slight emphasis on French users due to
the French announcement), and those sympathetic to open
source software. We provide more specific details of the
user base as we analyze the collected data.

In the sections that follow, we analyze the ingimp dataset as
follows:

• We characterize the user community, including users’
locales, time zones, computing environments, session
lengths, and documents,

• We analyze command use by the community using a
number of metrics, and

• We use an automatic cluster analysis technique to analyze
the high-level tasks that users perform, and validate this
analysis with user-supplied task descriptions

Our analysis considers all log files collected in the 2-year
period between May 15, 2007 and May 15, 2009.

THE INGIMP USER BASE
We begin our analysis by considering characteristics of the
user base. One complication in doing so, however, is the
presence of curious bystanders. By definition, open source
software can be downloaded, installed, and used by anyone.
As a result, it can be expected that a number of people will
try out the application out of curiosity alone. These users
may not use the application after an initial test, making it
worthwhile to filter them out before doing more in-depth
analysis. We start by describing our criteria for filtering out
these users, and then analyze the remaining users.

Defining Significant Users
For the ingimp dataset, we define a significant user as any-
one who has used the application and saved a document on
at least two separate days. Using these criteria, the ingimp
community consists of 211 significant users who have con-
tributed 4198 logs. This constitutes only 22% of all ingimp

Figure 1. Histogram showing active usage time for sessions
(session durations with idle time removed)

users, though these users produce 75% of the log files
(4198 of the 5612 total). While this may exclude some us-
ers, the fact that this minority accounts for 75% of all log
files indicates that the criteria are reasonable. All subse-
quent data analyses use this significant user criterion to pre-
filter the log files. Logs from the primary developers and
researchers are also excluded from data analyses.

Users’ Locales and Computing Environments
Time zone and locale information indicate that ingimp users
are both geographically distributed and culturally diverse:
A total of 15 different time zones and at least 9 different
locales were recorded (we say “at least” because of the pre-
viously mentioned difficulties in precisely determining a
user’s locale). The vast majority of users use an English
(59%) or French (31%) locale. The remaining users’ locales
include Italian, German, Spanish, Russian, Czech, Finnish,
and Japanese.

The majority of ingimp users run Windows (73%) with the
second-largest group running Linux (26%). Almost all par-
ticipants (99%) use only one monitor, with the remaining
1% using 2 monitors. Screen resolutions vary greatly, rang-
ing from 800x600 to 3840x1200, with a total of 37 different
resolutions. The resolutions used by more than 10% of us-
ers are 1280x1024 (26%), 1024x768 (18%), and 1280x800
(10%).

Characterizing Users’ Sessions
As previously mentioned, a session corresponds to a single
log representing all activity from when the application is
opened and until it is closed. The median number of ses-
sions for an individual user was 11 (mean 20, SD 26.0). As
the large standard deviation indicates, the number of ses-
sions for individual users varied widely, ranging from 1 to
168 (the significant user criteria were applied to the entire
dataset, not just the dataset analyzed, leading to some sin-
gle-session users in our analysis).

The duration of sessions varied widely as well, ranging
from a few seconds to several hours. The average session
length for the community was 59 minutes (median 9 min-
utes, SD 3 hours 49 minutes). However, this measure sim-
ply refers to the duration for which the application was
open. To get a sense of how much time was spent actively
using the application, we reconsider these figures with idle
periods removed. Given that the average length of time be-
tween commands was 19 seconds, we chose 120 seconds as
a conservative threshold for idle time. Once idle time is
removed, Figure 1 shows that most sessions are made up of
less than 10 minutes of active usage, with a median of 6
minutes and an average of 16 minutes (SD 26 minutes).

On the whole, while there were a small number of users
who used ingimp frequently and actively for long periods,
most used ingimp infrequently to perform short tasks.

Characterizing Users’ Documents
A total of 13,609 images were operated on during the data
collection period. Looking at characteristics of the images,
we see that average maximum image resolution in a session
is 1176x989 (SD 1408x1008), with a median of 800x691.
The low median resolution suggests that the primary use of
ingimp is not working with high-resolution bitmap images
from digital cameras. Also of interest is the number layers1
per image, which provides an indication of the complexity
of both the document and the user’s task. The images
worked on by users had an average maximum of 4 layers in
a session (SD 13.6) and a median of only 1 layer. This im-
plies that the majority of ingimp users are not professionals,
since professional graphic artists tend to work on complex
documents and utilize many layers as part of their workflow
[17].

COMMUNITY COMMAND USAGE
Our data analysis thus far suggests that the majority of
ingimp users performed relatively short, targeted tasks on
documents of modest complexity. To get a clearer picture
of how participants used the application, we now consider
command usage.

For each modification to the document that is placed on the
undo stack, ingimp logs a command. As well, it logs Undo
and Redo, the two meta-commands that change the stack.
Collectively, ingimp offers approximately 500 different
commands to users. These commands include those that
modify entire regions at once (such as filters), direct ma-
nipulation tools (such as the paintbrush), and those that op-
erate on properties of the document (such as layer compo-
siting operations).

In this section we characterize the number of commands
used in sessions, look at which commands were most com-
monly used by the community under a number of metrics,
and look at the size of users’ command vocabularies. In the
analyses that follow, we only consider sessions in which at
least 1 command was logged. We note that this excludes a
number of sessions (1288, or 31% of all sessions) for which
no commands were placed on the undo stack. Analysis of
user-supplied task descriptions reveals that many users re-
ported using the application to view images, convert images
between file formats, or to obtain RGB color values of pix-
els, activities that would not result in commands being
placed on the undo stack; this explains why a large percent-
age of sessions have no logged commands.

Command Statistics for Sessions
The number of command invocations per session ranged
from 1 to 9236 with a median of 24 and mean of 167.3 (SD
479.8) (see Figure 2). If we count repeated, successive in-

1 Modern bitmap editors allow one to define multiple layers,
where each layer contains a unique bitmap. These layers are com-
bined to create the visible image using compositing operations and
masks.

vocations of the same command as only one command, the
mean becomes 57, with a median of 14 (SD 123.1, min 1,
max 1489). As we discuss in the next section, the main rea-
son for this large disparity is the effect of direct manipula-
tion tools on total command counts.

If we consider the number of unique commands used in a
session, we see an average of only 9 different commands
used per session (median 6, SD 9.6).

In conjunction with our previous analysis of active usage
time, these numbers strongly indicate that users are engag-
ing in relatively simple, targeted tasks. For more extended
or involved creative work, we would expect to see more
active usage time, and for more complex tasks we would
expect to see a greater number of unique commands per
session.

Next, we look at the commands that were most commonly
used by the community. However, we first describe how
this analysis is more nuanced in applications that make
heavy use of direct manipulation as an interaction tech-
nique.

A Note on Counting Commands
Previous work reported command use mainly by counting
the total number of command invocations across all log
files [4,6,9,10]. However, the applications studied in this
prior work made little, if any, use of direct manipulation as
an interaction technique.

As we previously mentioned, ingimp logs a command for
each modification to the document that is placed on the
undo stack. This can potentially cause a large variation in
the frequency of log entries for different types of com-
mands. For example, direct manipulation tools such as the
paintbrush may be disproportionately represented in log
counts because each individual paint stroke is recorded as a
separate event on the undo stack. Conversely, applying a
filter will only result in one logged command, regardless of
how long the user spends adjusting settings before it is fi-
nally applied. As a result, we cannot simply assume that the
commands with the highest number of invocations are the
most commonly used commands. Instead, we must consider

command counts from a number of different perspectives to
gain a more holistic picture of application use.

Toward this end, we consider command usage in the fol-
lowing ways:

• Raw command counts across the entire community (i.e.,
the total number of invocations across all users and ses-
sions)

• The number of users who have used a command at least
once

• The number of sessions in which a command appears at
least once

• Repeated, successive invocations of the same command
collapsed to a single invocation of that command

Commonly Used Commands: Raw, User, and Session
Counts
Table 1 shows the commands ordered according to the total
number of invocations across all users and sessions (i.e.,
raw counts). It also provides the command’s ranking in this
ordering scheme, which is simply the numbers 1–20 in in-
creasing order. We introduce this ranking convention here
to assist in understanding other command rankings, dis-
cussed momentarily.

The commands with the greatest number of total invoca-
tions are Add Anchor, Undo, Eraser, Paintbrush, and
Bucket Fill. If we consider what percent of these invoca-
tions are due to repeated, successive invocations of the
same command (represented in the “% Due to Repeats”
column), we see a large effect due to repeated invocations.
In fact, more than half the commands in this list can attrib-
ute their high frequency counts to repeated invocations. For
example, 96% of all invocations of Add Anchor are re-
peated invocations.

The second most frequently invoked command is Undo.
Given the relatively high repeat counts of this command
(59%), it appears that Undo is partially used to return to a
previous state after going down a path that proves to be
suboptimal. This type of behavior is what one would expect
if users were working on ill-defined tasks [17].

Table 1 also provides data on the percent of users who have
used each command at least once, and the command’s cor-
responding rank when ordered by this measure (shown as
“user rank”). We have highlighted commands with a user
rank greater than 20. This highlighting clearly shows the
limitations of considering raw command counts alone when
forming a picture of how a community uses applications
with direct manipulation tools. For example, Add Anchor,
the top ranked command by raw counts, was only used by
21% of users. Similarly, the Smudge, Clone, Ink, and Air-
brush tools were used by less than a third of the community.
Their prominence in this ordering, then, should not be seen
as a sign of their relative importance to the larger commu-
nity.

Figure 2. Histogram showing the number of command
invocations per session (bins of size 10)

To balance the above perspective, we now consider com-
mands according to two other metrics: the user rank, intro-
duced above, and the session rank (the number of sessions
in which the command is used at least once). A command’s
user rank provides an indication of how widespread use of
the command is in the community, while the command’s
session rank indicates how vital it is across all tasks per-
formed by the community.

Table 2 shows the top 20 commands according to the user
rank metric. In this ordering of commands, the direct ma-
nipulation tools are noticeably less prominent. Instead of
Add Anchor, Undo appears as the most widely used com-
mand, with 90.9% of users having used Undo at least once.
There is a fairly significant drop to the next command, Se-
lect None (77.9%), followed by a more gradual drop off.
Paintbrush still appears prominently in this list, suggesting
that many ingimp users spend at least some time painting or
manually modifying pixels in images (e.g., touching up
images). In fact, the commands in this list strongly suggest
that many users at least sometimes use ingimp for content
creation tasks, such as painting or graphic design, evi-
denced by the presence of Paintbrush, Bucket Fill, Eraser,
and Text—the primary tools in ingimp for creating and
modifying content. The remaining commands deal with
selections and layers. Notably absent from this list are
commands for manipulating or touching-up photographic

images, such as those that alter the brightness, contrast, hue,
or saturation of an image. In our higher-level task analysis,
however, we do find that such image correction is an activ-
ity performed by a subset of users.

Table 2 also lists the percentage of sessions in which the
commands have been used, along with the command’s ses-
sion rank. In comparing these metrics, we see there is a
fairly good correspondence between the percentage of users
using a command at least once and the number of sessions
in which it has appeared. In fact, there is only one com-
mand that is present in the user rank top 20, but not the ses-
sion rank top 20 (Select All) and its session rank is 23.

Command Coverage and Command Vocabularies
Across all sessions, there were a total of 487,308 command
invocations of 352 different commands. Since there are
approximately 500 different commands available in ingimp,
the user community is not exercising all of the available
functionality. This is consistent with the findings of Hanson
et al. [7] for the UNIX command line which observed use
of about 400 of “well over 400” available commands, and
Linton et al. which observed only 152 of an available 642
commands for MS Word [10].

In terms of users’ command vocabularies (the set of
commands the user has been observed using [6]), we find
that the size of an individual user’s command vocabulary
ranged from 1 to 169, with an average of 34 and median of
27 (SD 27.9), or less than 7% of the total number of
avaliable commands. This finding, that users’ command
vocabularies tend to be small in comparison to the number
of available commands, is consistent with previous findings
[6,10].

Considering the above observation that users’ command
vocabularies tend to be small, along with the previous
observation that users tend to use only a small number of
unique commands in a given session, we see that ingimp
offers far more functionality than is effectively utilized by
most of its user population, particularly for any given
session or task.

Overlap in Command Vocabularies
The sparse use of the application’s functionality raises the
question of how much overlap there is between users’
command vocabularies. That is, do many users share a few
small sets of commands? To explore this concept, we con-
sider the number of commands shared by different propor-
tions of the user community.

Table 3 shows that there is very little overlap in command
vocabularies across the entire community. There was no
single command used by all users, though Undo was used
by 91% of users. In fact, only 15 commands were used by
greater than half of the population. Futhermore, 257
commands, representing 73% of the total number of distinct
commands observed, were used by no more than 10% of
the user community each. We can conclude that users’

Command
Name

Raw
Count

Raw
Rank

%due to
Repeats

Percent
Users

User
Rank

Add Anchor 75858 1 96% 21% 44

Undo 71301 2 59% 91% 1

Eraser 60157 3 85% 47% 16

Paintbrush 44300 4 82% 71% 4

Bucket Fill 24591 5 89% 59% 12

Smudge 21119 6 97% 25% 37

Clone 12594 7 95% 18% 51

Pencil 12499 8 81% 39% 23

Rect Select 10721 9 15% 69% 6

Fuzzy Select 9621 10 58% 44% 21

Move Floating
Selection

9588 11 28% 70% 5

Item visibility 9234 12 51% 62% 9

Select None 9083 13 9% 78% 2

Move Layer 7812 14 42% 62% 10

Ink 7753 15 83% 11% 87

Paste 7543 16 5% 74% 3

Text 4949 17 68% 46% 20

Add Layer 4873 18 19% 60% 11

Anchor Floating
Selection

4463 19 0.1% 63% 8

Airbrush 4192 20 92% 17% 57

Table 1: Command rankings by total number of invocations
across the entire community. Shading indicates major points of

difference between ranking methods.

command vocabularies are fairly distinct, indicating either
that ingimp is used for widely varying tasks by different
users and/or that users have differing methods for achieving
similar goals. This closely mirrors the findings of
Greenberg, and Sutcliffle and Old for the UNIX command
line [6,15].

IDENTIFYING HIGHER-LEVEL TASKS
The frequency counts of commands explored in the previ-
ous section provide a perspective on which commands are
commonly used across the entire community, but they do
not say much about the higher-level tasks performed by
users, or which commands are commonly used together.

One way to understand what tasks are likely performed by
the community is to indentify what sets of commands are
frequently used together. However, this is a not a trivial
task. While it is relatively easy to generate transitional
probabilities from one command to another, previous work
argues that this unit of analysis does not easily extend to
describing higher-level tasks. For example, Greenberg [6],
and Sutcliffe and Old [15] found that this approach leads to
fragile models because users’ command vocabularies tend
to be small and idiosyncratic—a result that we have found
for ingimp users as well.

In this section, we demonstrate how clustering techniques
can yield insight into the types of tasks being performed by
the community and identify commands that are frequently
used together. The result of applying this approach to our
dataset is compelling, with the resultant sets of commands
appealing to one’s intuition about what commands would
be used for what tasks. However, it is difficult to validate
these results since there is no way to know with certainty
the actual tasks users performed in each session. Accord-
ingly, we provide further evidence for the validity of this
approach by examining the activity tags (optional text-
based task descriptions users could enter at application
start-up) associated with sessions in the resultant clusters.
We begin by describing the method used to cluster sessions.

Clustering Sessions
To determine common tasks, we first identify sequences of
commands representing separate (though unknown) tasks,
cluster these command sequences based on some measure
of similarity, then extract the frequently occurring com-
mands from the resulting clusters. This approach necessar-
ily requires one to first partition each users’ command his-
tory into units representing tasks before clustering. This
would be difficult if users performed multiple tasks per
session, however, as our previous analyses have demon-
strated, most user sessions are relatively short in terms of
active usage time (~16 minutes), number of command invo-
cations (~167), and number of unique commands used (~9).
This suggests that individual sessions are a reasonable ap-
proximation of individual tasks. Accordingly, we apply our
clustering technique on the granularity of sessions, to all
sessions in which commands were logged (2906 in total).

To perform the clustering itself, we adapted a clustering
algorithm of Whissell et al., previously used to characterize
document similarity [18]. We first create a feature vector
containing the command counts for each session. These
vectors are then input into 11 well-known clustering algo-
rithms (e.g., k-means), each of which output 7 clusters of
sessions. From these 11 sets of 7 clusters, we would like to
identify the “best” set of clusters. However, there is no ob-
jective function for making this determination. To address
this issue, the Whissell algorithm takes the following ap-
proach. For each set of clusters produced, the clustered ses-
sions are used as labelled training data to train a classifier

Command
Name

Percent
Users

User
Rank

Percent
Sessions

Session
Rank

Raw
Rank

Undo 91% 1 62% 1 2
Select None 78% 2 34% 3 13
Paste 74% 3 34% 4 16
Paintbrush 71% 4 26% 7 4
Move Float-
ing Selection

70% 5 30% 5 11

Rect Select 69% 6 35% 2 9
Scale Image 63% 7 21% 12 29
Anchor Float-
ing Selection

63% 8 25% 8 19

Item visibility 62% 9 24% 10 12
Move Layer 62% 10 24% 9 14
Add Layer 60% 11 28% 6 18
Bucket Fill 59% 12 18% 13 5
Crop Image 57% 13 24% 11 27
Add Text
Layer

52% 14 16% 17 31

Select All 51% 15 11% 23 52
Eraser 47% 16 18% 14 3
Redo 47% 17 17% 15 21
Cut 46% 18 14% 18 24
Remove
Layer

46% 19 17% 16 28

Text 46% 20 12% 20 17

Table 2: Command rankings by percentage of users who have
used the command at least once. Shading indicates major points

of difference between ranking methods.

Proportion of users Commands % Commands
90–100% 1 0.3%

80–90% 0 0%
70–80% 4 1.1%
60–70% 5 1.4%
50–60% 5 1.4%
40–50% 7 2.0%
30–40% 6 1.7%
20–30% 17 4.8%
10–20% 50 14.2%

0–10% 257 73.0%
Table 3. The number of observed commands shared by

different proportions of users

for classifying sessions into clusters. The accuracy of each
classifier is determined using ten-fold cross-validation. To
address the problem of a trivial classifier that places every-
thing in the largest cluster, the accuracy score is normalized
by the number of sessions in the largest cluster. The set of
clusters with the highest final accuracy score is considered
the best set of clusters.

From each of the resulting clusters of sessions, we identify
the 12 commands most frequently appearing in each cluster
(by the session rank metric) to create seven different task
sets—sets of commands that typically appear with one an-
other. Because we are clustering sessions, commands may
appear in multiple task sets, but this is a desirable property
since different tasks naturally share commands.

Table 4 shows the seven task sets produced by applying this
technique to the ingimp dataset. The task sets immediately
suggest particular user activities. For example, the first
cluster suggests fairly basic photo manipulation tasks, such
as rotating, resizing and scaling. It also includes commands
typically used for photo retouching, such as Levels (used to
adjust an image’s brightness and color balance), and Un-
sharp Mask, a filter used to sharpen images. The second
cluster’s task set suggests a particular operation: pasting an
image into the current document from the clipboard (which

results in a floating selection), choosing a place for the
pasted image (Move Floating Selection), and then anchor-
ing it to the page (Anchor Floating Selection). In the next
section we find that user-supplied activity tags paint a more
detailed picture of what users are doing in this cluster.

The third cluster’s task set suggests working with text in an
image (evidenced by Text, Add Text Layer, and Move Text
Layer), and the fourth cluster’s task set suggests use of the
Paths tool (evidenced by Add Path, Add Anchor, and Drag
Anchor). The fifth through seventh clusters collectively
suggest painting and graphic design tasks, though specific
activities are less clear.

Activity Tag Keywords for Clustered Sessions
To understand the effectiveness of the clustering, we exam-
ined users’ activity tags. Example tags include “photo ma-
nipulation”, “screenshot editing”, “resizing”, and “Logo
creation”.

In total, 608 of the 2906 clustered sessions included activity
tags. To summarize these activity tags, we broke them into
individual keywords and counted keyword occurrences for
each cluster. Since many keywords occur in different tenses
(e.g., “resize” and “resizing”) or singular and plural
(“screenshot” and “screenshots”) we manually converted all

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
Scale Image Rect Select Add Text Layer Undo Undo Undo Undo
Crop Image Select None Undo Item Visibility Bucket Fill Eraser Paintbrush
Undo Undo Move Layer Add Layer Select None Move Floating

Selection
Paste

Levels Paste Text Paste Rect Select Fuzzy Select Add Layer
Resize Image Move Floating

Selection
Move Text Layer Add Path Move Floating

Selection
Select None Select None

Rect Select Anchor Floating
Selection

Add Layer Add Anchor Paste Add Layer Move Floating
Selection

Select None Crop Image Paste Move Layer Anchor Floating
Selection

Paste Anchor Floating
Selection

Convert Image
to Grayscale

Cut Remove Layer Select None Clone Anchor Floating
Selection

Redo

Rotate Image Move Layer Select None Remove Layer Item Visibility Paintbrush Rect Select
Paste Add Layer Rect Select Set Preserve Trans Add Layer Rect Select Item Visibility
Rotate Item Visibility Item Visibility Move Floating

Selection
Move Layer Move Layer Move Layer

Unsharp Mask Scale Image Anchor Floating
Selection

Drag Anchor Paintbrush Item Visibility Eraser

Table 4. Task sets for the seven clusters of sessions

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7
(28) resize (29) screenshot (6) logo (8) design (7) design (7) create (11) design
(15) photo (15) edit (5) photo (7) web (5) correction (5) correction (7) graphic
(13) crop (12) web (4) text (6) graphic (4) graphic (4) web (7) draw
(10) web (11) crop (4) make (6) edit (3) edit (4) graphic (6) test
(9) screenshot (10) resize (4) edit (5) texture (3) create (4) edit (5) texture
(9) edit (6) photo (3) design (4) make (2) web (4) design (5) resize
(7) scan (6) mockup (3) create (4) gif (2) test (4) creation (5) create
(6) screen (6) design (2) web (4) correction (2) retouch (4) background (4) edit
(6) correction (6) cut (2) up (3) png (2) out (3) photo (4) correction
(5) quick (5) up (2) test (3) photo (2) crop (3) icon (3) work

Table 5. Frequently occurring activity tag keywords for each cluster (occurrence counts in parentheses)

keywords to their simple, non-plural present tenses (e.g.,
“crops” and “cropping” both become “crop”). We also fil-
tered out common connector words such as “for”, “and”,
and “the”, as well as “image”, which occurred frequently
across all clusters and doesn’t indicate any particular activ-
ity. The ten most frequently occurring keywords for each
cluster are shown in Table 5.

Our first observation is that, while some keywords such as
“photo”, “web”, “crop”, and “correction” occur across clus-
ters, the top keywords for each cluster are relatively dis-
tinct. Moreover, keywords that do occur across clusters
often occur more prominently in one particular cluster (e.g.,
“resize” in the first cluster and “screenshot” in the second).

As well as being distinct, the keywords appear to fit with
our impressions of user activities from the clusters’ task
sets discussed in the previous section. For example, cluster
1 includes commands for photo retouching, and features
keywords such as “photo”, “resize”, “crop”, and “edit”.

The top keywords for cluster 2 also match our interpretation
from the task set (pasting an image from the clipboard and
then performing some operation on it) and tell a richer
story. While cutting and pasting is not mentioned directly,
the most common keyword is “screenshot”. This is signifi-
cant since a common method of taking a screenshot in
Windows is to use the “Print Screen” key on the keyboard,
which copies an image of the screen to the clipboard so it
may be pasted into an application. In fact, one activity tag
for a session in this cluster was “pasting a screenshot”.

Though there are fewer total keywords in cluster 3 than in
other clusters, “logo”, “text”, and “design” are featured
prominently, which match with the text operations sug-
gested by the cluster’s task set in the previous section.

Finally, clusters 5, 6, and 7, whose task sets included direct
manipulation tools and suggested painting and graphic de-
sign activities, include keywords such as “design”, “draw”,
“graphic” and “create”. The keyword “correction” is also
featured prominently, which also fits with direct manipula-
tion tools such as Paintbrush, Eraser, and Clone—a tool
often used to fix small blemishes in images.

In sum, the resultant clusters both appeal to intuition and
show good correspondence with users’ reported intentions.
More importantly, they allow us to better understand the
higher-level tasks of a large community of users.

DISCUSSION
In this work, we have introduced new perspectives for un-
derstanding long-term application use, and replicated a
number of findings from previous work for a new applica-
tion context. The replication of past findings is important
for two reasons. First, few such studies exist in the litera-
ture, and second, we examined use patterns of an applica-
tion with a qualitatively different style of interaction
(namely, heavy use of direct manipulation). As such, this
work helps to generalize the results of past work.

Arguably, the most important replication of past findings
concerns the relatively limited use of available application
functionality. Because applications are designed to accom-
modate diverse populations with varying tasks, they are
becoming extremely rich in functionality. Yet, our study,
like those of Hanson et al. [7], Greenberg [6], and Linton et
al. [10], show that each individual users require only a very
small subset of this available functionality. This observation
has implications for interface design, as we describe.

While there are certainly advantages to large monolithic
applications (e.g., they can be marketed to a wide user base
and can accommodate users’ changing needs), application
designers must consider how providing rich feature sets
impacts usability. More specifically, prior research tells us
that excess interface complexity has both quantitative and
qualitative impacts on user experience. Quantitatively, the
number of interface elements negatively impacts task time,
particularly for more novices users, whose visual search
time is a linear function of the number of “relevant” items
present (e.g., within a given menu or toolbar) [2]. As exper-
tise increases, the impact of excess complexity on perform-
ance is lessened; however, for all but perhaps the most ex-
pert users, target acquisition time is always some function
of the number of relevant commands available [2,13].
Qualitatively, many users, irrespective of their expertise,
find large applications to be overwhelming, frustrating and
difficult to navigate [11].

The difficulties users experience with large, complex appli-
cations, combined with the limited overlap in their com-
mand vocabularies (another important result replicated in
our study), strongly suggest that there should be more em-
phasis placed on providing personalization capabilities in
interface designs. Outside of research prototypes (e.g.,
[1,11]), personalization appears to be an afterthought rather
than a first class interface object, often tucked away in
menu structures or offered in ways that are cumbersome to
use. As an example, in the Microsoft Ribbon, only the very
top toolbar can be personalized, and adding anything to this
toolbar requires picking and choosing individual commands
from long lists (such as an alphabetized list of all com-
mands). This type of personalization is also likely to be
difficult for novices, who might not know which commands
are relevant to their tasks. The results of our research here
suggest that further research in this domain would be of
great value.

One of the new methodologies that we have presented is the
automatic clustering of sessions to determine which com-
mands frequently appear together in an individual session.
One obvious application of this technique could be to better
support personalization. By identifying groups of com-
mands commonly used together, interface designers could
enable coarser-grained personalization, in which users se-
lect groups of functionality rather than individual com-
mands. In addition, if these clusters have higher-level inter-
pretations, as was the case for our clusters, they could be
labelled with intuitive names (e.g., “painting tools” or “sim-

ple image manipulation tools”). Such labelling could facili-
tate personalization by novices, who are likely to have some
notion of their tasks, even if they don't know the specific
commands they will need.

Finally, in our work, the application of a clustering tech-
nique to tasks was facilitated by the fact that individual ses-
sions served as a reasonable approximation of individual
tasks. However, this may not be the case for other applica-
tion domains. Consider, for instance, an email application.
Many users will open such an application and keep it open
all day, performing various tasks with it throughout the day.
In cases such as these, the clustering technique that we have
presented is still applicable, but a different measure of what
constitutes a task must be identified. In the email example
above, clustering could be applied based on sequences of
commands applied with little idle time between them, or on
sequences of commands applied to individual email mes-
sages.

CONCLUSION AND FUTURE WORK
In this paper, we have added to the body of data describing
large-scale, long-term use of feature-rich desktop applica-
tions by considering patterns of use of an application that
makes heavy use of direct manipulation as an interaction
technique. We have also introduced additional analytical
perspectives for summarizing data from such applications.
Finally, we have introduced a novel method of gaining a
higher-level understanding of the types of tasks a commu-
nity performs.

Our data strongly suggests the need for continued work in
user interface personalization. In this respect, one promis-
ing area is the application of task-based clustering tech-
niques to help identify sets of commands commonly used
together by a user base. These sets of commands would
enable high-level, task-centric personalization interfaces.

REFERENCES
1. Bunt, A., Conati, C., and McGrenere, J. Supporting inter-

face customization using a mixed-initiative approach.
Proc. of IUI 2007, 92–101.

2. Cockburn, A., Gutwin, C., and Greenberg, S. A predictive
model of menu performance. Proc. of CHI '07, 627–636.

3. Cook, R., Kay, J., Ryan, G., and Thomas, R.C. A toolkit
for appraising the long term usability of a text editor.

Software Quality Journal 4, 2 (1995), 131–154.
4. Draper, S.W. The Nature of Expertise in UNIX. Proc. of

INTERACT '84, Elsevier North-Holland (1984), 465–471.
5. Ducheneaut, N. and Moore, R.J. The social side of gam-

ing: a study of interaction patterns in a massively multi-
player online game. Proc. of CSCW 2004, 360-369.

6. Greenberg, S. The computer user as toolsmith: the use,
reuse, and organization of computer-based tools. Cam-
bridge University Press, New York, NY, USA, 1993.

7. Hanson, S.J., Kraut, R.E., and Farber, J.M. Interface de-
sign and multivariate analysis of UNIX command use.
ACM Trans. on Information Systems 2, 1 (1984), 42–57.

8. Hilbert and Redmiles. Extracting usability information
from user interface events. ACM Computing Surveys 32, 4
(2000), 384–421.

9. Kay, J. and Thomas, R.C. Studying long-term system use.
Communications of the ACM 38, 7 (1995), 61–69.

10. Linton, Joy, and Schaefer. Building user and expert mod-
els by long-term observation of application usage. Proc.
of UM 1999, Springer-Verlag New York, Inc., 129–138.

11. McGrenere, J. and Moore, G. Are we all in the same
"bloat"? Proc. of GI 2000, 187-196.

12. Murphy, G.C., Kersten, M., and Findlater, L. How Are
Java Software Developers Using the Eclipse IDE? IEEE
Software 23, 4 (2006), 76–83.

13. Norman, K.L. The Psychology of Menu Selection: De-
signing Cognitive Control at the Human/Computer Inter-
face. Greenwood Publishing Group Inc., 1991.

14. Obendorf, H., Weinreich, H., Herder, E., Mayer, M. Web
page visitation revisited. Proc. of CHI 2007, 597-606.

15. Sutcliffe and Old. Do users know they have user models?
Some experiences in the practice of user modelling. Proc.
of INTERACT '87, Elsevier North-Holland (1987), 35–41.

16. Terry, M., Kay, M., Van Vugt, B., Slack, O., and Park, T.
ingimp: introducing instrumentation to an end-user open
source application. Proc. of CHI 2008, 607–616.

17. Terry, M. and Mynatt, E.D. Recognizing Creative Needs
in User Interface Design. Proc. of the Fourth Conference
on Creativity & Cognition, ACM Press (2002), 38–44.

18. Whissell, J.S., Clarke, C.L.A., and Ashkan, A. Clustering
web queries. Proc. of CIKM 2009, (to appear).

19. Whiteside, J., Archer, N., Wixon, D., and Good, M. How
do people really use text editors? ACM SIGOA Newsletter
3, 1–2 (1982), 29–40.

