
Effects of Target Size and Distance
on Kinematic Endpoint Prediction

Jaime Ruiz and Edward Lank
David R. Cheriton School of Computer Science

University of Waterloo
{jgruiz,lank}@cs.uwaterloo.ca

Technical Report CS-2009-25, University of Waterloo

ABSTRACT
Because of the ubiquity of the WIMP paradigm, many re-
searchers seek to design new pointing facilitation tech-
niques for Fitts-style pointing tasks. However, many of
these pointing facilitation techniques make one of two sim-
plifying assumptions: either salient targets are sparsely
placed on the display, or there exists some ability to identi-
fy the endpoint, the target, of a user's movement in real
time. In this paper we extend previous work on kinematic
endpoint prediction (KEP), a technique that uses models of
user motion to predict endpoint in Fitts-style pointing tasks.
We introduce a simplified algorithm to predict user end-
point. We present a technique to measure the numerical
stability of endpoint predictions in real time. We show that
the distance of motion has a significant effect on predictor
accuracy. Finally, we develop an accurate understanding of
the relationship between movement distance and predictor
accuracy and show how we can use this understanding to
infer accurate, real-time probability distributions on target
sets within an interface. Together, these results allow KEP
to be applied in new and novel ways to pointing facilitation
techniques.

Author Keywords
Cursor prediction, motion, kinematics, pointing.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Pointing, with a mouse, electronic stylus, touchpad, track-
point, or trackball, is a frequent task in modern graphical
user interfaces. Due to the frequency of pointing, even a
marginal improvement in pointing performance can have a
large effect on a user's overall productivity. To facilitate
pointing, HCI researchers have proposed techniques that
alter the target [4,6,9,13,19], alter the distance between the

cursor and target [1,7,10,11,3], or change pointing interac-
tion [18]. In his survey of pointing facilitation techniques,
Balakrishnan [2] noted that a fundamental assumption made
by many of these techniques is that salient targets are rela-
tively sparse on the display and are separated by whites-
pace. However, researchers have also noted [4,13] that sa-
lient targets are frequently tiled into small regions on the
display, i.e. into ribbons or toolbars. As well, in many mod-
ern computer programs, such as spreadsheet programs,
word processors, and bitmap drawing programs, any cell,
character, or pixel might constitute a legitimate target for
pointing. McGuffin and Balakrishnan [13] conclude that, to
effectively support pointing facilitation for many common
target arrangements, there is a requisite ability to accurately
predict — during user motion — the likely target of a user's
pointing gesture.

Several researchers have examined the ability to predict
which targets a user will most likely access on a computer
display. Some techniques look at underlying priors of wid-
gets based on user models to predict interaction [17]. Oth-
ers look at kinematic characteristics of the user's movement,
i.e. the direction and spatiotemporal profiles of movement.
Our interest in target prediction is focused on the latter cat-
egory of predictors, those that use kinematic characteristics
of a user's current motion to identify the user’s intended
target.

Of the proposed kinematic techniques for endpoint predic-
tion [1,13], the most sophisticated technique reported in the
literature is a technique by Lank et al.[12]. Using estab-
lished kinematic models of motion, the researchers derived
a kinematic endpoint prediction (KEP) algorithm able to
predict a user’s target 42% of time and an adjacent target an
additional 39% of the time (assuming tiled arrangements of
targets).

While the KEP algorithm is a positive direction in being
able to identify a user’s endpoint or target during pointing,
several specific questions remain regarding the utility of the
KEP algorithm for desktop interfaces. First, the algorithm
was developed and evaluated using a Tablet PC. Do the
assumptions that underlie the model and the accuracy of the
predictor still hold for mouse movement? The algorithm is
based on the stochastic optimized-submovement model
[15], so it seems reasonable to assume that the assumptions
and accuracy would hold for mouse input, but validation of

this is necessary. Second, the evaluation of KEP accuracy
used a set of target distances (200 to 600 pixels) and target
sizes (15 to 75 pixels) that are common on Tablet PCs but
are considered limited given the large displays commonly
found on desktop computers. Finally, we have some con-
cern that the accuracies reported by Lank et al. may be an
over-estimate of real world accuracies of the predictor.
Lank et al.'s accuracies assume that a prediction can be con-
stantly revised during motion. However, in real world usag-
es, a predictor often has only one chance to correctly identi-
fy a target.

The goal of this work is to extend Lank et al.'s initial work
on endpoint prediction. Specifically, this paper makes the
following contributions to endpoint prediction using kine-
matic models:

• We create a simplified predictor that is both more nu-
merically stable and easier to implement than the origi-
nal KEP algorithm.

• We develop a technique to measure the numerical sta-
bility of our predictions in real time. This allows us to
avoid acting on assumptions when the predictor has not
collected sufficient data to make a stable prediction.

• We replicate Lank et al.'s original tablet study using
mouse motion and show that the predictive accuracy of
our new algorithm on mouse movement is slightly bet-
ter than Lank et al.'s accuracy on stylus movement with
their target size/target distance combinations. We also
show that the accuracy of single-shot prediction is only
slightly lower than the accuracy of continuous predic-
tion, and argue that single-shot prediction is a more sa-
lient measure of predictor accuracy.

• We extend Lank et al.'s work to a broader set of target
and distance combinations. We show that the distance
of motion has a significant effect on predictor accura-
cy. Predictions at longer distances are less accurate
than predictions at shorter distances. As well, as work
on endpoint deviation [16] would suggest, the accuracy
of our predictor has an inverse linear relationship with
distance traveled during pointing movement.

• We use our understanding of the relationship between
movement distance and predictor accuracy to infer
real-time probability distributions on target sets within
an interface, thus allowing our new KEP algorithm to
combine its predictions with other probabilistic predic-
tors, such as priors on interface widgets or analysis of a
user’s task.

In summary, this paper presents a significant enhancement
of our understanding of the use of kinematic models in tar-
get prediction for Fitts' Law [5] tasks in interfaces. We use
kinematic models to make predictions for mouse move-
ment. We develop real-time probability distributions over
targets using our kinematic predictor. We argue that our
real-time probability distributions can be combined with
other independent probability distributions (i.e., priors on
interface widgets) to improve the accuracy of prediction in

interfaces. Together, this knowledge significantly boosts the
potential utility of KEP algorithms in user interface tech-
niques.

This paper is organized as follows. First we describe related
work in endpoint prediction including kinematic models.
This is followed by a description of how we refine Lank et
al.’s KEP algorithm. Next we describe and present results
of user trials conducted to examine KEP performance using
mouse motion on desktop-sized displays. We conclude the
paper with a discussion of the implications of our work.

RELATED WORK
There has been relatively little Human-Computer Interac-
tion work on endpoint prediction using kinematic models.
Current techniques use extrapolation to identify a user’s
endpoint. Prior to Lank et al.; two other predictors ap-
peared in the literature: one by Assano et al., and one by
McGuffin and Balakrishnan.

Assano et al. [1] proposed a technique to predict endpoint
using peak movement velocity. Their technique consists of
identifying peak velocity, looking at the gesture length just
prior to reaching peak velocity, and multiplying the dis-
tance traveled before peak velocity by a scale factor. They
do not report predictor accuracies

While working on expanding targets, McGuffin and Bala-
krishnan [13] explore whether predictions closer to the end-
point of motion might yield higher accuracy. They present a
target predictor based on linear deceleration from the cur-
rent point. Their technique predicts a user’s target with ap-
proximately 21% accuracy.

Of the proposed techniques for endpoint prediction, the
most accurate technique reported in the literature is a tech-
nique proposed by Lank et al. [12]. One reason for the
higher accuracy is undoubtedly that the Lank et al. tech-
nique makes use of the entire profile of user motion, rather
than basing prediction on a discrete point, as in Asano et al.
[1], or a small segment of motion, as in McGuffin and Ba-
lakrishnan [11].

Lank et al. Kinematic Endpoint Prediction
The Lank et al. kinematic endpoint prediction (KEP) algo-
rithm was developed using principles from the stochastic
optimized-submovement model [15] and minimum jerk law
[8]. The stochastic optimized-submovement model of Mey-
er et al. predicts that targeted movement occurs in two stag-
es [15]. The first stage consists of primarily ballistic motion
aimed at the center of the motion’s target. The second stage
consists of secondary submovements that correct the initial
movement. Therefore, goal directed movement is a stochas-
tic optimization problem, where the higher probability of
needing secondary corrective submovements from higher
initial motion amplitudes trades off against the shorter time
to traverse the distance to the final target. Lank et al.’s KEP
algorithm models the initial ballistic movement to predict
user endpoint.

To model the ballistic movement, Lank et al. use principles
from the minimum jerk law [8]. The minimum jerk law
states that for unconstrained ballistic motion, jerk (the time
derivative of acceleration) is minimized over the move-
ment. Using the minimum jerk law, the researchers derive
an equation to model instantaneous speed over distance.
Using this equation, they demonstrate that the extrapolation
of a quadratic equation can be used to determine gesture
length along a partial gesture. However, the extrapolation is
inaccurate [12]. To overcome inaccuracies in the quadratic
approximation, Lank et al. use an “extrapolate-then-correct
process” which consists of multiplying the endpoint deter-
mined by the extrapolation by a pre-determined coefficient
(cr) based on the percentage of gesture distance traveled.
Therefore, the steps of the endpoint algorithm are as fol-
lows:

1. Given a partial gesture of length d, a quadratic equation
is used to fit the data points (d, s(d)) along the partial
gesture.

2. Using the equation determined by step 1, calculate the
roots of the equation. One root occurs at point (0,0) the
other at a more distant point(xcalc,0).

3. Given xcalc use the equation d=sicrxcalc and a table of (si,
cr) pairs, where si is the fractional distance from the es-
timated endpoint, to determine the value of the coeffi-
cient, cr.

4. Finally, multiply cr by xcalc to determine an estimate of
actual gesture length.

Validation of the Model
To validate the model, the researchers performed a user trial
where participants used a stylus on a tablet computer to
perform a Fitts-style pointing task. Target distances ranged
from 200 to 600 pixels by 100-pixel increments while target
widths ranged from 15 to 75 pixels by 15-pixel increments.
The twenty-five distance/width combinations resulted in an
Index of Difficulty1 (ID) range between 1.41 and 5.32.

The results from their study demonstrated that the algorithm
was twice as accurate as previous techniques, predicting a
user’s target 42.5% of the time and an adjacent target an
additional 39% at 80% of gesture length [12]. However, as
noted by the researchers, the predictive power of the algo-
rithm was significantly lower for the 15-pixel target at 600
pixels distance, indicating that a possible ID limit to predic-
tive power may exist.

REFINING KINEMATIC ENDPOINT PREDICTION (KEP)
While the primary goal of our work was a generalization of
KEP to desktop interfaces, three potential refinements to
the design and analysis of Lank et al.’s original KEP algo-
rithm became apparent during our research. First, the algo-
rithm could be simplified. Second, we found that numerical

1 Index of Difficulty (ID) is the logarithmic product of target dis-
tance (A) and target size (W) plus 1, i.e., logଶ ቀ஺ௐ ൅ 1ቁ. See [5].

stability problems existed, and developed a technique to
measure the numerical instability and to identify a stabiliza-
tion point for the KEP algorithm. Finally, we found that
Lank et al.’s accuracies, while valuable in understanding
KEP’s potential best-case performance, contributed little to
inform us of KEP’s expected case performance. We address
each of these issues here.

Simplifying Endpoint Prediction
Both KEP and McGuffin and Balakrishnan’s algorithm [13]
predict endpoint quite late during movement. In the case of
KEP, prediction is made at 80% of motion, while in
McGuffin and Balakrishnan [13], prediction is performed at
90% of motion. To understand why this late prediction is
possible, it is informative to look at graphs of distance ver-
sus time for experimental participants in our studies (shown
in Figure 1).

In these graphs, the vertical axis is the distance traveled,
normalized from 0-1 as a fraction of movement completed.
The horizontal axis is normalized time on a 0-1 scale as a
fraction of time. Finally, each graph represents different
IDs, from “easy” pointing tasks at the top (low-ID) to “dif-
ficult” pointing tasks at the bottom (high-ID). There are two
salient features to observe in these graphs. First, the last
10% of movement, highlighted by the black horizontal line,
consumes between 35% and 47% of movement time (i.e.

Figure 1: Examples of distance vs. time (both normalized) plots

from the study for three IDs. The dark horizontal line
represents 90% of gesture distance. The shaded region

represents the time taken to complete the last 10% of distance.

the shaded region of time). As a result, while 90% of mo-
tion might seem very late in the gesture to predict endpoint,
it is important to realize that a significant amount of time is
consumed during the last 10% of motion in Fitts-style
pointing tasks.

The other salient characteristic is the motion profile itself.
Particularly in the ID = 7.01 and ID = 5.04 motion profiles,
it is apparent that at 90% of motion, the profiles deviate
from smooth, ballistic trajectories. This is a known observa-
tion, but it merits highlighting. The initial 90% of motion is
dominated by ballistic movement, and the last 10% of
movement is dominated by corrective submovements.
Therefore, the goal of any predictive algorithm should be to
identify a target before 90% of motion. This gives sufficient
time, about 40% of movement time, for the user to adjust to
changes in the display. It also ensures that changes in the
target or display do not occur during a period of time when
aiming effects are dominant, i.e., when the user is trying to
acquire the target.

In their work on KEP, Lank et al. use an extrapolate-then-
correct procedure, where they fit a quadratic (degree-2)
polynomial to speed versus distance profiles. This underes-
timates endpoint, so they use a set of tabulated coefficients
to adjust the endpoint. The coefficients are calculated from
theoretical data and converge to 1.0 at 80% of movement.

To simplify the predictor we combine two observations:
prediction between 80% and 90% of movement is suffi-
ciently early to allow a user to react [13]; and coefficients
converge to 1.0 at 80% of movement and stabilize at that
value. Since the coefficient approaches 1.0 as the user ap-
proaches 80% of gesture length, and we are more interested
in realistic predictions than early predictions, we simplify
KEP by eliminating the use of coefficients. Calculating
speed and collecting speed-distance points is an easy task.
Fitting a simple quadratic equation to this profile and calcu-
lating 0-speed points (i.e. distance-intercepts) is also com-
putationally trivial. This simplifies, significantly, the im-
plementation of the KEP algorithm

Managing Numerical Instabilities
One problem with endpoint prediction is that it uses curve
fitting and extrapolation. Extrapolation, particularly of dis-
tant points, is known to be numerically unstable, and Lank
et al. spend significant time discussing this issue[12]. Fig-
ure 2 in our results section also demonstrates this numerical
instability. Particularly early in movement, when we try to
extrapolate distant points, the boxes and whiskers on our
diagram demonstrate significantly higher deviations than
they do later in movement.

One problem with this numerical instability is that the algo-
rithm frequently predicts that we have arrived at 80% of
movement even when the endpoint is distant due to signifi-
cant fluctuations in the predicted endpoint early in move-
ment. One way to address this is to develop a measure of
the predictor’s stability.

In our algorithm, we capitalize on numerical instability to
identify when an accurate prediction is unlikely. During
pilot studies, we observed that over the movement, our
modified KEP stabilizes such that: ݈݊െ݈݊െ1݈݊ ՜ 0 (1)

Where ln is current predicted length of the gesture and ln-1 is
the previous predicted length for the current gesture. We
call this value the stability of the prediction and find that
values less than .02 represent that the predictor has stabi-
lized, i.e. that the stabilization point has been reached.

A Refined KEP Algorithm
Using the above results, i.e. the elimination of the coeffi-
cients and the measure of numerical stability, we create a
new, simplified KEP algorithm. First, we select a point
along our gesture where we would like prediction to occur,
for example, at 85% of movement. Then, taking advantage
of Equation 1 and the algorithm’s predictive power later in
motion, we use the following modified algorithm to calcu-
late a single prediction for each movement collected:

1. Given a partial gesture of length d, a quadratic equation
is used to fit the data points (d, s(d)) along the partial
gesture.

2. Using the equation determined by step 1, calculate the
roots of the equation. One root occurs at point (0,0) the
other at a more distant point(xcalc,0).

3. Calculate the stability of the current prediction using
Equation 1. If the prediction is determined to be unsta-
ble, i.e. Equation 1 returns a value greater than .02, re-
turn a value indicating an accurate prediction is not
possible at this point in time.

4. Calculate the predicted percentage of gesture length
completed by dividing the current distance traveled by
xcalc. If the percentage is greater than the set target dis-
tance threshold, i.e. greater than 0.85 in our above ex-
ample, return xcalc as our prediction; otherwise return a
value indicating a prediction is not possible at this
time.

Analysis of Kinematic Endpoint Prediction
The final issue we deal with in this section is how to accu-
rately represent real world accuracies of KEP.

Predicting Endpoint
In this work, we use two different prediction strategies to
analyze the endpoint predicted by the KEP algorithm, con-
tinuous and single-shot. Continuous prediction is similar to
that performed by Lank et al.[12]. First, each task is norma-
lized using interpolation such that distance ranges from 0 to
1 at regular intervals. At each interval, the KEP algorithm is
then used to predict the user’s endpoint.

The second analysis we perform uses a single-shot predic-
tion strategy which more accurately represents how the
predictor would be used in practice. As mentioned above,
in real world situations, the KEP algorithm would be used

to predict a target widget and something would happen to
that target widget; for example, perhaps the widget would
expand on the display so it is easier to acquire [14]. Using
our algorithm, we obtain a single prediction for each col-
lected gesture by taking the first prediction returned by the
algorithm. While it is possible that later predictions are
more accurate, we assume that the first prediction is acted
upon (for example. by expanding the predicted widget) and
a revision to the prediction is not possible.

Measuring Overall Performance
There are two measurements which are necessary when
evaluating any endpoint predictor. The first is how accurate
the algorithm is at predicting the user’s distance, the predic-
tion accuracy. The second is where during movement – at
50%, 80%, 90%, etc. – an accurate prediction occurs, i.e.
the prediction location.
Whether we are using continuous or single-shot prediction,
we evaluate the prediction accuracy of the predictor in two
ways: pixel accuracy and target accuracy. Pixel accuracy
is the measurement from the predicted endpoint to the cen-
ter of the user’s target in pixels (0 pixels is best). Thus, it is
independent of target size. Target accuracy is how accurate-
ly the predictor is able to correctly identify the user’s target.
To compare the results from our study with that of Lank et
al., we classify target accuracy into one of five groups:
• Correct: The predicted target was the user’s intended

target.
• -1: The predicted target is the preceding target.
• +1: The predicted target is the following target.
• Negative/Positive Off: The category representing when

the predicted target is a distant (more than one) target.
The second necessary measurement is prediction location,
i.e. when (at what point during motion) predictions can reli-
ably be made. As illustrated in Figure 1, the last 10% of
gesture distance consumes over 40% of the total movement
time. Therefore, any manipulation to a target before the last
10% of motion will result in the user having time to react.
However, if prediction occurs too late – after 90% of the
gesture, for example – when the user is trying to acquire the
target rather than trying to cover the distance to the target,
then the usefulness of the technique is questionable.

MOUSE-BASED KINEMATIC ENDPOINT PREDICTION
In this section, we present descriptions and results from our
studies examining the accuracy of our kinematic endpoint
prediction (KEP) algorithm on mouse-based pointing tasks.
First, we describe a replication study of Lank et al.’s tablet
experiments using a mouse. In the second study, we extend
the target width and distance combinations to be more rep-
resentative of target sizes and distances found in desktop
computer interfaces.

Replication Study: Mouse versus Stylus
Before applying the KEP algorithm to a wide range of tar-
gets, we first wanted to replicate the Lank et al. study. As
mentioned above, since the KEP algorithm is based on

models of motion, we hypothesize that accuracies for a
mouse would match the published results for a stylus on a
tablet computer.

Method
The experiment was conducted on a generic desktop com-
puter (Core 2 Duo, 3.0GHz) with a 24-inch 1920x1200
LCD display running custom software written in C#. Input
was collected using a Wacom Intuos3 five-button mouse on
a 12x19 inch tablet set to a 1:1 control display ratio. The
1:1 control display ratio ensured that motor space and visu-
al space coincided throughout the pointing task. The Wa-
com tablet was used because of its high sampling rate. The
custom software captured mouse movements at 200Hz.
CPU clock time, X position, and Y position were captured
for each registered mouse movement.

The task was a discrete, one-dimensional pointing task. As
Lank et al. note [12], the goal with any endpoint prediction
algorithm is to predict distances. Goal directed movements
(i.e. Fitts’ style targeting tasks) typically follow straight line
or shallow elliptical trajectories, so calculating the primary
direction of motion is trivial. Our goal is to, therefore, eva-
luate how accurately our algorithm can predict distance of
movement, and a one-dimensional pointing task is most
effective for this task.
Initially a green starting rectangle was displayed on the
screen. The task began when the participant used the cursor
to click within the starting location. At that time, a red tar-
get would appear on the display. Participants were required
to move the cursor to the red target and use the mouse but-
ton to click on the target. A successful target acquisition
(i.e., clicking within the target region) was indicated by the
target changing color. Users were told to acquire the target
as quickly and accurately as possible, similar to other Fitts'
Law tasks.

The experiment consisted of a within-subjects design with
repeated measures. As in the Lank et al. study [12], target
distances (D) varied between 200-600 pixels in 100-pixel
increments while target size (W) was varied from 15-75
pixels in 15-pixel increments resulting in 25 D/W combina-
tions.

The experiment consisted of two blocks: a practice block
and an experimental block. Each block consisted of 25 D/W
combinations presented five times for each constraint, re-
sulting in 125 tasks per block. The order of presentation of
the D/W combinations was randomized. To minimize fati-
gue, participants were encouraged to take a five minute
break between blocks. The experiment took approximately
40 minutes to complete.

Eight male graduate students participated in the experiment.
All participants were right handed.

Of the 1,000 tasks recorded, 3.1% resulted in the user not
correctly hitting the target. These tasks were removed from
our analysis.

Figure 2. Pixel accuracy of the KEP algorithm along the gesture path for each target width.

Continuous Prediction
Figure 2 shows the pixel accuracy distributions for endpoint
predictions by percentage of gesture. Unlike the results
from stylus input presented by Lank et al., our KEP algo-
rithm tends to underestimate endpoint distance early in
mouse motion because we do not use coefficients. Howev-
er, as shown in Table 1, target prediction accuracy rates are
slightly higher than those of Lank et al. [12].

Single-shot Prediction
While our results support Lank et al.’s findings, we focus
our attention on our single-shot prediction analysis which
represents how KEP would be used in practice. As stated
above, to determine the point at which a prediction is made
for the current movement, we examine if the algorithm has
stabilized, and estimate the percentage of gesture distance
traveled. Only when the predicted percentage of the move-
ment distance reaches a set threshold do we log the end-
point. Since only one prediction is logged per movement, it
is essential that the chosen threshold results in the highest
possible accuracy.

While our first analysis showed that 90% of the distance of
the movement resulted in the highest predictor, these results

do not necessarily translate to our single-shot algorithm. To
determine the appropriate threshold, we ran our analysis
using thresholds of 80%, 85% and 90% of gesture distance.
Using KEP set to a 90% distance threshold, we were able to
correctly identify the user’s target with 41.9% accuracy and
±1 target with an additional 38.5% accuracy. This accuracy
is almost identical to Lank et al.’s stylus accuracy.

As mentioned above, we need to determine when (at what
point during motion) predictions can reliably be made. If
predictions are occurring after 90% of motion, any benefits
from manipulating the user’s target may be questionable
[13]. As shown in Table 2, although a 90% gesture length
threshold results in the highest overall accuracy, this is a
direct result of predictions occurring after 90% of actual
gesture length. Eliminating predictions occurring after 90%
of actual gesture length, a 90% threshold results in the low-
est target prediction accuracy only identifying the correct
target 24.9% of the time, whereas a threshold of 85% of
gesture length results in the highest accuracy identifying the
correct target 33.7% of the time and the adjacent target an
additional 30.7% of the time.

 Actual Gesture Length

 Before 90% After 90%

Threshold Correct ± 1 Correct ± 1

80% 32.8% 33.8% 0% 0.3%

85% 33.7% 30.7% 3.5% 7.9%

90% 24.9% 21.9% 17.0% 16.6%

Table 2: Target accuracies for varying thresholds
 categorized by percentage of actual gesture distance.

 Correct ± 1 Target

80% Gesture Length 49.3% 34.1%

85% Gesture Length 51.0% 35.8%

90% Gesture Length 51.4% 36.4%

Lank et al. (80%) 42.4% 39.0%

Table 1: Observed frequencies of predicting the user’s
target by percentage of gesture length compared to

probabilities reported by Lank et al.

 Correct ± 1 Target

80% Gesture Length 28.1% 23.4%

85% Gesture Length 31.1% 23.9%

90% Gesture Length 34.8% 24.7%

Table 3: Observed target accuracy frequencies
for continuous prediction.

Summary
Using the continuous prediction strategy for endpoint pre-
diction, we observe target accuracy rates significantly better
than those of Lank et al. While Lank et al. saw target accu-
racies of approximately 40% using stylus motion, for
mouse motion we are typically predicting the correct target
with almost 50% accuracy.

Unfortunately, when we move to single-shot prediction
analysis, our performance does degrade. At a threshold of
85% of motion, we are able to correctly predict the target
approximately 34% of the time. This represents a signifi-
cant improvement over McGuffin and Balakrishnan’s pre-
dictor [13], but is a poorer result than we obtain using con-
tinuous prediction.

Distance and Target Effects on KEP Accuracy
Given that our refinement of the KEP algorithm outper-
forms Lank et al.’s KEP algorithm for mouse movement on
their target/distance combinations, we now describe a
broader study of target/distance combinations. The purpose
of this study is to determine whether our KEP algorithm can
effectively predict user endpoint using target/distance com-
binations typical of modern desktop computer interfaces.

Given that Lank et al. hypothesize that a limit may exist to
predictor accuracy (i.e. noting that small, distant targets had
poorer accuracy), we also wish to determine whether dis-
tance or target width have an effect on endpoint accuracy.
Specifically, we are interested in answering the following
questions:

• What is predictor accuracy for a broader range of tar-
get/distance combinations, i.e. for a broader ID range?

• What effect does distance have on our KEP accuracy?
• What effect does target size have on KEP accuracy?
• Does interaction between target size and distance (i.e.

does ID) effect KEP accuracy?

Method
The experiment consisted of a within-subjects design with
repeated measures. The independent variables were dis-
tance and target width. Target sizes of 4,8,16, 32, 64, 128,
and 192 were each shown at distances of 512, 1024, and
1536 pixels. The resulting D/W combinations provided an
Index of Difficulty range between 1.87 and 8.59.

The apparatus and task were identical to that of our replica-
tion study. The experiment consisted of a practice and expe-
rimental block. Each block consisted of the 24 D/W combi-
nations presented to the user 10 times in random order. Be-
tween blocks the participant was encouraged to take a
break. The experiment took approximately 30 minutes to
complete.

Eight subjects participated in the experiment, 7 males and 1
female. All participants where affiliated with the local uni-
versity.

Of the 1920 tasks recorded, 4.1% resulted in the user not
correctly hitting the target. These tasks were removed from
our analysis.

Continuous Prediction
Overall accuracies for predicting the user’s target are shown
in Table 3. As in the previous two trials, the highest target
accuracy occurs at 90% of gesture length and not at 80% as
previously reported by Lank et al. [12]. Accuracies, again,
approach those of Lank et al. for continuous predictors. At
90% of motion, our KEP predicts target approximately 35%
of the time and is off-by-one 25% of the time.

Analysis of variance of pixel accuracy by target width, and
distance shows a significant effect for distance (F2, 1840 =
5.93, p < .001) and target width (F6, 1836 = 3.61, p < .001)
but not for distance*target width interaction. As a result, we
conclude that ID does not have a significant effect on pixel
accuracy. Instead target size and distance affect accuracy
independently. User (F7, 1835 = 28.40, p < .001) also has a
significant effect on pixel accuracy. Finally, ANOVA also
indicates significant effect on pixel accuracy for dis-
tance*user interaction (F14, 1828 = 2.55, p < .01) and target
width*user interaction (F28, 1814 = 1.66, p < .001).

Post-hoc analysis using Bonferroni correction shows a sig-
nificant difference between 1536-pixel distance and both
the 512 and 1024-pixel distances (p < .05 in both cases).
Post-hoc analysis for target width shows the 8-pixel target
to be significantly different than the 128 and 192-pixel tar-
gets. No other distance or target size combinations differ
significantly.

Single-Shot Prediction
Table 4 lists target accuracies for our single-shot predictor
with three distance thresholds. As we saw in the previous
study, the single-shot predictor target accuracy is less accu-
rate than our continuous prediction strategy, and higher
thresholds result in predictions occurring beyond 90% of
gesture length. Using our single-shot predictor with 85%
gesture length threshold, the user’s target was predicted
22.4% of the time and ± 1 target an additional 21.0% of the
time.

 Actual Gesture Length

 Before 90% After 90%

Threshold Correct ± 1 Correct ± 1

80% 21.3% 21.2% 0.2% 0.2%

85% 22.5% 21.0% 2.1% 2.2%

90% 16.9% 16.7% 12.4% 6.8%

Table 4: Target accuracy rates for single-shot prediction by
threshold and percentage of actual distance traveled when

prediction occurred.

 Target Distance

 512 1024 1536

Target Width Correct ±1 Correct ±1 Correct ±1

4 1.4% 8.2% 1.3% 1.3% 2.6% 2.6%

8 2.5% 6.3% 3.8% 13.9% 2.5% 1.3%

16 10.4% 14.3% 6.5% 14.3% 0.0% 9.0%

32 14.1% 41.0% 11.5% 30.8% 7.5% 23.8%

64 35.5% 53.9% 28.2% 38.5% 15.6% 33.8%

128 66.3% 32.5% 45.0% 50.0% 47.5% 37.5%

192 85.7% 11.7% 73.4% 24.1% 54.4% 38.0%

Table 5: Target accuracies for our single-shot predictor using an 85% gesture length threshold.

Examining effects of distance and target width on target
accuracy using the 85% threshold (shown in Table 5), indi-
cates an effect for both distance and target width. While we
expected target accuracy rates to be low for smaller targets
(it is very hard to accurately predict a 4-pixel target), we
also see a decrease in target accuracy as distance increases.
This is especially evident between large target widths at the
512 and 1536-pixel distances.

The decrease in target accuracy as distance increases is a
result of the distribution of pixel accuracy (pixel error) in-
creasing with motion distance (shown in Figure 3). Analy-
sis of variance for pixel accuracy at a 85% distance thre-
shold shows a significant effect for distance (F2, 1840 =
18.10, p < .001) and user (F7, 1835 = 26.87, p < .001), dis-
tance*user interaction (F14, 1828 = 2.49, p < .005), and target
width*user interaction (F42, 1880 = 2.24, p < .001). Post-hoc
analysis using Bonferroni correction shows a significant
difference between all distances (p < .001 in all cases).
Target width does not have a significant effect on pixel
accuracy.

Summary
In our second experiment, we examine an extensive range
of IDs (from 1.87 to 8.59) to determine whether distance,
target size, or ID has an effect on prediction accuracy. Tar-
get size definitely has an effect on target accuracy (i.e. our
target or ± 1 target accuracies), as 4-pixel targets are very
hard to discriminate on a large display with large move-
ments. This effect on target accuracy is shown in Table 5,

where we see low accuracies for 4, 8, and 16-pixel targets.
Only when targets reach sizes of 32 and 65 pixels do accu-
racies improve.

However, when we measure pixel accuracy (Figure 3) we
see that distance also has an effect on predictor behavior. In
particular, over long distances our pixel accuracy (the dis-
tance between predicted endpoint and the center of the us-
er’s target) also increases. This broadening of the distribu-
tion is easy to see as one moves from 512 to 1536 pixels.

While we would, of course, like higher accuracy, it is im-
portant to note that algorithm behavior is still quite good.
For 64-pixel targets (i.e. icon-sized) objects, we can identi-
fy target with between 16% (at 1536 pixels) and 36% (at
512 pixels) accuracy for single-shot prediction and conti-
nuous prediction has even higher accuracy. As well, at 90%
of motion these numbers also increase significantly. Given
these results, we now discuss our results and examine how
our KEP might be used in desktop interfaces.

Figure 3: Distribution of pixel accuracy by
distance and target width.

Figure 4: Mean and standard deviation (STDEV) for pixel
 accuracy by distance.

DISCUSSION
The major goals of this research was to identify how the
Kinematic Endpoint Prediction (KEP) algorithm performs
using mouse input with a wide range of target sizes and
distances, and to determine how to adapt the algorithm to
enable pointing techniques that require target identification.

To examine the performance of the KEP algorithm, we used
two prediction strategies, continuous (similar to Lank et al.)
and single-shot. The continuous predictor allowed us to
examine the accuracy of the algorithm throughout a gesture,
whereas the single-shot predictor allowed us to simulate
real-time prediction. For each experiment conducted, we
analyzed each predictor on how accurately it was able to
identify the user’s intended target (target accuracy) and its
distance from the center of the target (pixel accuracy). Us-
ing the continuous predictor, we demonstrated that, for
mouse input, the highest target accuracy occurred at 90% of
motion. We have also shown that there exists a relationship
between distance and prediction accuracy.

From Theory to Practice
In our results, we take a pessimistic approach to prediction
accuracy, arguing that continuous prediction may not be
possible, and that post-90% predictions may be unusable.
As a result, we may be giving a mistaken impression that
the KEP algorithm we develop has poor accuracy, but this
is definitely not the case. When we consider continuous
prediction for a broad range of target size/distance pairs at
90% of movement (Table 3), we see that we have 35% ac-
curacy for predicting target, and that we predict ± 1 target
an additional 25% of the time. In other words, 60% of the
time, we can predict a small subset of targets of interest on
the display, even if we assume that every single location on
the display is a salient target, i.e. that targets are not sepa-
rated by white space.

Interaction techniques could be designed that allow conti-
nuous prediction instead of requiring single-shot prediction,
and these would enjoy our best-case performance. As well,
setting our distance threshold to 0.90 resulted in many pre-
dictions occurring after 90% of motion, but these predic-
tions may be occurring just after 90% of motion: Distance

thresholds of 0.88 and 0.89 may preserve the high accuracy
of 90% single-shot prediction while increasing distance
from the user’s final target. In summary, our predictor
shows promise if new pointing facilitation techniques can
be designed that take its behavior into account.

However, as we note, many interaction techniques – ex-
panding widgets, being a prime example – may require sin-
gle-shot prediction, and our KEP may have too low an ac-
curacy to support these techniques. How, then, to boost the
accuracy of a prediction? It is with this in mind that we
focus our attention on the link between distance and pixel
accuracy (i.e. the pixel-spread of endpoints).

Figure 4 illustrates the mean and standard deviation for the
single-shot predictor collected in our second experiment.
As shown in the figure, a strong linear correlation exists
between distance and both mean and standard deviation. In
the case of mean, R2 = 0.99 (p < .05), indicating that we
underestimate the center of the target, and that this underes-
timate is linearly correlated with how far a user moved.
Furthermore, R2 = 0.99 (p < .01) for standard deviation, a
replication of Rosenbaum’s result [16], showing that stan-
dard deviation is directly proportional to distance of mo-
tion. These numbers also hold for our replication study,
where we see correlations of R2 = 0.95 (p < .05) for mean
and R2 = 0.99 (p < .001) for standard deviation on 5 data
points.

Given the strong linear relationship between distance and
mean and standard deviation of our predictions, we can
make use of this knowledge to define a centered normal
distribution on a target region. This normal distribution
would be expected to be centered on a slightly adjusted
predicted endpoint and would define a likelihood region
around the predicted endpoint. Figure 5 compares these
distributions. For example, at a distance of 1536 pixels, the
relationships between distance and mean and standard devi-
ation we identify allows us to claim that the user’s target
will be enclosed by a ± 153 pixel region from the predicted
endpoint 68.2% of the time. In summary, because of the
linear relationship between distance, pixel accuracy, and

Figure 5: Distributions of pixel accuracy before and
 after applying the offset calculated using the linear correlation

between distance and prediction accuracy mean.

standard deviation of pixel accuracies we can calculate a
probability distribution around our predicted endpoint.

The usefulness of this probability distribution is significant.
If we have prior probability distributions on the underlying
interface, perhaps by modeling command usage or user
task, then these two independent distributions can be com-
bined to identify maximally likely targets within a region,
i.e. to increase the accuracy of our KEP algorithm, perhaps
significantly. As a result, our KEP algorithm can be used
as one component of endpoint prediction that uses multiple
sources of information.

CONCLUSION
In this paper we presented a modified version of the KEP
algorithm to provide a single-shot prediction strategy. We
demonstrate that the accuracy for mouse input is similar to
that of a stylus and that the ability to predict endpoint using
motion kinematics is linked to the length of motion.
Through results from our studies we have shown that there
exists linear relationship between prediction accuracy and
distance, allowing the KEP algorithm to predict an endpoint
and calculate a probability distribution around that end-
point.

REFERENCES
1. Asano, T., Sharlin, E., Kitamura, Y., Takashima, K., and

Kishino, F. Predictive interaction using the delphian
desktop. UIST '05: Proceedings of the 18th annual
ACM symposium on User interface software and tech-
nology, ACM (2005), 133–141.

2. Balakrishnan, R. "Beating" Fitts' law: virtual en-
hancements for pointing facilitation. International
Journal of Human-Computer Studies 61, 6 (2004), 857
- 874.

3. Baudisch, P., Cutrell, E., Robbins, D., et al. Drag-and-
Pop and Drag-and-Pick: Techniques for Accessing
Remote Screen Content on Touch- and Pen-operated
Systems. Proceedings of Interact 2003, (2003), 57–64.

4. Blanch, R., Guiard, Y., and Beaudouin-Lafon, M. Se-
mantic pointing: improving target acquisition with
control-display ratio adaptation. CHI '04: Proceedings
of the SIGCHI conference on Human factors in compu-
ting systems, ACM (2004), 519–526.

5. Fitts, P.M. The information capacity of the human mo-
tor system in controlling the amplitude of movement.
Journal of Experimental Psychology 47, (1954), 381-
391.

6. Grossman, T. and Balakrishnan, R. The bubble cursor:
enhancing target acquisition by dynamic resizing of the
cursor's activation area. CHI '05: Proceedings of the
SIGCHI conference on Human factors in computing
systems, ACM (2005), 281–290.

7. Guiard, Y., Blanch, R., and Beaudouin-Lafon, M. Ob-
ject pointing: a complement to bitmap pointing in
GUIs. GI '04: Proceedings of Graphics Interface 2004,
Canadian Human-Computer Communications Society
(2004), 9–16.

8. Hogan, N. An organizing principle for a class of volun-
tary movements. J. Neurosci. 4, 11 (1984), 2745-2754.

9. Kabbash, P. and Buxton, W.A.S. The “prince” tech-
nique: Fitts' law and selection using area cursors. CHI
'95: Proceedings of the SIGCHI conference on Human
factors in computing systems, ACM Press/Addison-
Wesley Publishing Co. (1995), 273–279.

10. Keyson, D.V. Dynamic cursor gain and tactual feed-
back in the capture of cursor movements. Ergonomics
40, 12 (1997), 1287–1298.

11. Kobayashi, M. and Igarashi, T. Ninja cursors: using
multiple cursors to assist target acquisition on large
screens. CHI '08: Proceeding of the twenty-sixth an-
nual SIGCHI conference on Human factors in compu-
ting systems, ACM (2008), 949–958.

12. Lank, E., Cheng, Y.N., and Ruiz, J. Endpoint predic-
tion using motion kinematics. CHI '07: Proceedings of
the SIGCHI conference on Human factors in compu-
ting systems, ACM (2007), 637–646.

13. McGuffin, M.J. and Balakrishnan, R. Fitts' law and
expanding targets: Experimental studies and designs
for user interfaces. ACM Trans. Comput.-Hum. Inte-
ract. 12, 4 (2005), 388–422.

14. McGuffin, M.J. and Balakrishnan, R. Fitts' law and
expanding targets: Experimental studies and designs
for user interfaces. ACM Trans. Comput.-Hum. Inte-
ract. 12, 4 (2005), 388-422.

15. Meyer, D., Smith, J., Kornblum, S., Abrams, R., and
Wright, C. Speedaccuracy tradeoffs in aimed move-
ments: Toward a theory of rapid voluntary action. In
Attention and Performance XIII. 173 - 226.

16. Rosenbaum, D.A. Human motor control. Academic
Press, San Diego ; Toronto, 1991.

17. Sears, A. and Shneiderman, B. Split menus: effectively
using selection frequency to organize menus. ACM
Trans. Comput.-Hum. Interact. 1, 1 (1994), 27–51.

18. Wobbrock, J.O., Fogarty, J., Liu, S., Kimuro, S., and
Harada, S. The angle mouse: target-agnostic dynamic
gain adjustment based on angular deviation. CHI '09:
Proceedings of the 27th international conference on
Human factors in computing systems, ACM (2009),
1401–1410.

19. Worden, A., Walker, N., Bharat, K., and Hudson, S.
Making computers easier for older adults to use: area
cursors and sticky icons. CHI '97: Proceedings of the
SIGCHI conference on Human factors in computing
systems, ACM (1997), 266–271.

