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Abstract—This paper presents Interleaved Stratified Timer
Wheelsas a novel priority queue data structure for traffic shaping
and scheduling in packet-switched networks. The data structure
is used to construct an efficient packet approximation of General
Processor Sharing (GPS). This scheduler is the first of its kind
by combining all desirable properties without any residualcatch.
In contrast to previous work, the scheduler presented here has
constant and near-optimal delay and fairness properties,and can
be implemented withO(1) algorithmic complexity, and has a low
absolute execution overhead. The paper presents the priority
queue data structure and the basic scheduling algorithm, along
with several versions with different cost-performance trade-offs.
A generalized analytical model for rate-controlled rounded times-
tamp schedulers is developed and used to assess the scheduling
properties of the different scheduler versions. Some illustrative
simulation results are presented to reaffirm those properties.

Index Terms—Communication systems, Computer network
performance, Packet scheduling, Data structures, Algorithms

I. I NTRODUCTION

Packet scheduling algorithms are a cornerstone for the
future development of packet-switched networks as ubiquitous
communication infrastructure, integrating a wide range ofnet-
work technologies and offering a wide variety of application
services. Packet scheduling algorithms increase the levelof
control over packet transmissions and permit the support of
different service policies. There are many application areas
for packet scheduling, ranging from detailed quality of service
guarantees for individual application flows [1] to service
assurances for aggregates [2]. In each of these scenarios, a
more precise scheduler translates into more efficient resource
usage in relation to the “quality” of the service guarantees.
Because of the significant complexity and execution cost of
packet schedulers, the architectural sweet spot of networkand
capacity planning has been in configurations with very simple
schedulers, so far. A feasible packet scheduler with perfect
or near-perfect service properties has been elusive. Clearly,
the availability of such a packet scheduler will go a long way
towards establishing accurate traffic control as a basic building
block for packet-switched communication networks.

General Processor Sharing(GPS) has been introduced in
[3] as a conceptual scheduler with many desirable properties.
In very basic terms, GPS scheduling works by assigning
fractions of the overall forwarding capacity to flows. These

fractions are termedweightsand the GPS scheduler guarantees
fluid service in proportion to a flow’s weight compared to
the sum of all other active flows’ weights. In reality, packets
are atomic units and thus a packet scheduler always deviates
somewhat from perfect GPS service. A large variety of GPS
emulation algorithms have been proposed, but no algorithm
exists so far that combines very close GPS approximation with
constant algorithmic complexityand low execution overhead.

This paper presents a novel data structure calledInterleaved
Stratified Timer Wheels(ISTW) and appropriate access op-
erations. This design enables the construction of a set of
novel packet schedulers with effectively constant complexity,
and constant fairness and delay characteristics in all relevant
dimensions. The ISTW data structure is used as a compact
and efficient priority queue that enables the virtual traffic
shaping necessary for achieving these characteristics. Constant
complexity in this context is defined as amortized execution
cost over a certain amount of input traffic. Amortized cost can
be translated into extra buffering and as such, additional delay.
In contrast to previous work [4] however, the amortization
period for the schedulers presented here is tightly limited
and practical. In particular, the worst-case execution cost for
all per-packet operations is proportional to the size of the
corresponding packet. In an earlier version of this work [5], the
SI-WF2Q scheduler has been proposed and analyzed, which
requires an additional small but nontrivial amortization buffer
to achieve constant execution complexity. The schedulers pre-
sented here overcome this limitation. In short, the contributions
of this paper are:

• We describe the basic ISTW data structure, and summa-
rize and slightly improve the previous SI-WF2Q proposal.
Based on this work, we generalize and improve the
analytical model, and demonstrate its applicability.

• We present a new packet scheduler termedK Packet
Schedulerthat avoids the search problem of SI-WF2Q
in exchange for only a minor increase of the worst-case
fairness bound. This scheduler is thus the first of its kind
by combining a near-optimal packet approximation of
GPS with constant and low execution overhead.

• We also present a simpler variant of the K Packet
Scheduler that further reduces the memory footprint and



TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXTENDED VERSION OF ACM/IEEE TON PAPER 2

complexity in exchange for slightly higher error terms.

The rest of the paper is organized as follows. In Section II,
we review previous work and its relation to the approach pre-
sented here. In Section III, we introduce and analyze a general
model for rate-controlled timestamp schedulers that operate on
rounded deadlines. This is followed by the specification of a
new priority queue data structure in Section IV and resulting
packet scheduler designs and their assessment in Section V.
We present canonical simulation results to verify and illustrate
the new schedulers’ service properties in Section VI and dis-
cuss further interesting details in Section VII, before finishing
the paper with a conclusion in Section VIII. This paper is an
extended version of [6].

II. BACKGROUND AND RELATED WORK

A. Generalized Processor Sharing

Generalized Processor Sharing (GPS) [3] is a conceptual
scheduling discipline defined for a set of flowsi ∈ F , such that
each flowi is allocated a weightφi. At each time, assuming
a fixed server capacityC and a set of backlogged flowsB, the
service for each backlogged flowi ∈ B is guaranteed to be

φi
∑

j∈B φj

C.

In other words, GPS always shares the available link capac-
ity in perfect proportion to the flows’ weights. Because GPS
cannot be implemented in reality, there is a class of schedulers
that attempt to approximate GPS as good as possible. These
schedulers are primarily assessed through quality metricsthat
describe their deviation from perfect GPS service. On the other
hand, the respective algorithmic complexity determines the
practical feasibility of each scheduler.

The main quality metrics of a GPS approximation packet
scheduler are thedelay bound, especially in a form that
can be used to determine an end-to-end delay bound as
shown in several analytical frameworks [2], [7], [8], [9], as
well as two fairness measures.Relative fairness(introduced
in [10]) denotes the capability of a scheduler to distribute
excess capacity between different sessions in proportion to
their allocated service rates.Worst-case fairness(introduced
in [11] and refined in [12]) expresses the maximum deviation
from perfect GPS scheduling. While the delay bound only
characterizes how far the actual service for a session can be
behindthe ideal GPS scheduler during a busy period, worst-
case fairness essentially provides an integrated bound on how
far aheador behind the actual service can be. Fairness thus
also describes the burst characteristics of the service allocation
in relation to the ideal smooth service of GPS. The key metric
for describing the quality of these service characteristics as
well as the computational complexity of a packet scheduler is
the asymptotic relation between the respective characteristic
and the number of flows in the system, which is described as
constant, logarithmic, or linear. For example, constant delay
describes the property that the delay bound is independent of
the number of flows. Any real-world packet-oriented scheduler
needs to operate on packets as atomic service units and thus

cannot avoid a certain service deviation from the fluid GPS
model.

Existing GPS emulation algorithms can be classified as
timestamp schedulers, round-robin schedulers, and hybridver-
sions. Different schedulers provide different combinations of
the aforementioned scheduling quality characteristics, while
none of the existing proposals is optimal in all quality di-
mensions and also of low complexity and execution over-
head. There is a class of fundamentally different schedulers,
termedService Curve Schedulers[13], [14], which can provide
delay bounds independently of throughput guarantees. These
schedulers are inherently more complex than GPS emulation
schedulers, so it seems hopeless to think about efficient imple-
mentation before solving the GPS emulation problem. Hence,
although the techniques presented here may be applicable to
such schedulers, details are out of scope for this paper.

B. Timestamp Schedulers

Timestamp schedulers approximate GPS behaviour by sim-
ulating the virtual system time in the equivalent GPS system.
The respective start and/or finish times of packets in the
reference GPS system are used to decide the order in which
packets receive service. By the same token, the simulated
virtual time is used as a starting point for newly arriving
flows, which is necessary to achieve at least some bound on
unfairness and burstiness. This challenge is well-known since
the earliest proposals for rate-proportional packet scheduling
[15], [16]. Note that the order of packets within a flow is
not affected by the scheduler operation. Therefore, only the
first packet in each flow’s queue needs to be considered for
scheduling and the term “flow timestamp” is often used when
referring to the packet timestamp at the head of a flow’s queue.

C. Worst-case Fair Weighted Fair Queueing (WF2Q)

An optimal packet-based approximation of GPS is given by
Worst-case Fair Weighted Fair Queueing(WF2Q) [12]. The
deviations from GPS scheduling are bound by strictly rate-
dependent values for the respective flow (or two flows in the
case of relative fairness) with provably optimal coefficients. In
particular, all scheduling errors are independent of the number
of flows in the system. Earlier attempts at approximating GPS,
such as proposed in [3], [10], [15], [17], incur a potentially lin-
ear deviation from GPS scheduling, in terms of either fairness
or delay behaviour. In fact, it turns out that when considering
only packet start times for scheduling, the startup delay cannot
be limited effectively and the delay bound depends on the
number of flows in the system. When scheduling packets only
by increasing finish times, packet bursts and unfairness can
occur, also bound only by the number of flows.

Conceptually, the WF2Q algorithm works by combining
both criteria, start and finish time. In a first shaping step
all eligible packets are selected, that is all packets with a
start time not later than the current system virtual time. From
all these packets, the one with the smallest finish time is
sent next. This packet selection policy, termedStart-eligible
Earliest Finish-time First(SEFF) ensures tight bounds for
all quality indices. Stiliadis and Varma [18] independently
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arrive at the same conclusion that the combination of traffic
shaping and finish-time service results in optimal scheduling
characteristics. While [18] only describes a very simplified
implementation in the context of fixed-size packet networks
(ATM in this case), the original WF2Q proposal [12] is not
at all concerned with algorithmic complexity or execution
overhead.

D. WF2Q Approximation

There are two proposals for implementing an approximation
to WF2Q with lower complexity: WF2Q+ [19] and Leap
Forward Virtual Clock(LFVC) [4]. The work by Stiliadis and
Varma [18] contains a similar concept, but does not elaborate
on all details. In general, all SEFF-based algorithms contain
three parts that are relevant for their execution overhead and
complexity:

• Flows are sorted according to timestamps.
• The SEFF policy requires consideration of both the start

and the finish timestamp for the scheduling decision.
• The virtual time of the GPS reference system needs to

be simulated or approximated.

Sorting and priority queues are among the best-studied
problems in Computer Science. Without further restrictions,
maintaining a sorted container hasO(log N) complexity in
the number of elements. In the context of GPS emulation
schedulers, however, it can be a very acceptable trade-off to
use rounded time values (and incur some additional scheduling
error) in exchange for a finite universe of sorting values,
which enables more efficient solutions to the sorting problem.
For example, the van Emde Boas priority queue [20] has
O(log log N) access complexity for insertion, removal and
finding the lowest value. Similarly, a timer wheel [21] could
operate inO(1) for insertion or removal and, in combination
with hierarchical bitmaps and a priority encoder of widthK,
with O(logK N) complexity for searching the lowest value
(see Section 5 in [22] for a brief discussion). In both cases,a
finite time horizon must be assumed, which translates into a
maximum specifiable inter-arrival time of packets. Since the
maximum packet inter-arrival time is part of the lower bound
on the startup delay, one can assume that there is an upper
limit to this value and it will not change in future networks.
Then, if the desired delay precision is also fixed in terms of
wall-clock time, one could argue that these algorithms operate
with constant complexity in all relevant dimensions. The orig-
inal LFVC work [4] presents generalized proofs for rounded
timestamps, but it requires uniform routing of all timestamps,
which in turn prohibits a constant-time implementation.

Unfortunately, the SEFF policy makes the above considera-
tions somewhat irrelevant. It basically requires keeping flows
in a two-dimensional container where they are sorted by both
their startand finish times. This approach has been chosen
for WF2Q+, but inevitably requires a tree-based data structure
and consequentlyO(log N) access complexity. Alternatively,
flows can be kept in two one-dimensional containers, as
proposed for LFVC, and exploit the lower access complexity
discussed above. However, this two-container solution requires
the transfer of all newly eligible flows from one container to

the other in between the processing of two consecutive packets.
Since all flows may end up with the same or very close start
times, this number cannot be limited and effectively results in
O(N) worst-case complexity. While the transfer cost could be
amortized over the number of packets transferred, this amor-
tization would requireO(N) buffer space between scheduler
and output link and result in a corresponding scheduling error.

E. Virtual Time

Traditionally, the precise simulation of GPS virtual time has
been considered as being an operation with linear complexity,
since it needs to keep track of all changes in the set of flows
backlogged in the GPS reference system. A recent proposal
[23] allows for the exact simulation of GPS virtual time with
O(log N) algorithmic complexity in the number of flows.
Independent analysis showsO(log N) to be a lower bound
[24]. Both WF2Q+ and LFVC (along with other algorithms)
use a simpler approximation of GPS virtual time. Basically,
the approximated virtual time progresses with real time during
actual service, that is, it is incremented by the duration ofthe
current packet at each scheduling step. If however the smallest
start time of all backlogged flows (which is readily available
in WF2Q+ and LFVC) is larger than the current virtual time,
the virtual time jumps forward to this minimum start time.

This approximation of GPS virtual time has some negative
effects on the scheduling quality of WF2Q+ and LFVC [23].
Under certain circumstances, the approximation of virtualtime
could lead to unfairness and burstiness being linear in the
number of flows. This observation is not a contradiction of
the findings for WF2Q+ and LFVC, but results from different
assumptions. Normally, GPS emulation schedulers are con-
sidered in a context where some kind of delay guarantees
are sought. Such delay guarantees can only be given if the
sum of rates of all flows does not exceed the link capacity.
In terms of the GPS definition, this denotes a situation where
the sum of weights is less than or equal to 1. In this case, all
previous results about WF2Q+ and LFVC hold, and burstiness
is independent of the number of flows. If this restriction
is removed, then the observations reported in [23] become
an issue. However, it is somewhat questionable whether any
application scenario requires the support for sum of weights
exceeding 1. Certainly, all scenarios that aim at providing
some form of delay guarantee do not qualify. Furthermore,
the maximum spread between the highest and lowest service
rate is typically limited. For such a scenario, it is possible to
find a better scheduling solution with a small and constant
execution overhead, as demonstrated in this work.

There is another seeming contradiction between the results
reported by Xu and Lipton [25] and the results presented here.
This discrepancy is explained by the computational model by
Xu and Lipton, which does not allow for the floor or ceiling
function to be used. The lower bounds are critically linked
to this assumption. In contrast, our algorithm is based on
rounded timestamps using the floor function and provides a
superior combination of scheduling properties and algorithmic
complexity.
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F. Low Complexity Implementation

A number of techniques for the efficient implementation of
timestamp schedulers are presented and discussed by Stephens
et al. [26]. For the particular case of fixed packet sizes in
ATM networks, the article presents an implementation of
WF2Q+ with constant execution overhead. In the case of
variable packet sizes, a different solution is presented, which
technically can be regarded as havingO(1) complexity in the
number of flows, but there are shortcomings. The scheduler
implementation uses stratification in the virtual service time of
packets to reduce the complexity of the one-container solution
proposed for WF2Q+ [19]. This results in a number of strati-
fied groups which is logarithmic to the ratio of the maximum
over the minimum supported service rate. For example, if
the system were to support service rates between 16 Kbit/s
and 40 Gbit/s at packet sizes ranging from 64 to 1500 bytes,
this would result in 26 stratified groups. The algorithm then
specifies that between each scheduling step, it is necessaryto
inspect the start and finish times of the front flow in each group
to determine the next one to receive service under the SEFF
policy. This sequence of comparisons is a nontrivial and costly
operation and is hardly possible within the strict timing bounds
of high-speed links. Instead, the paper refers to hardware-
based timestamp sorting. In other words, this sequence of
comparisons introduces too high an absolute constant overhead
per scheduling step. Also, the proposal requires additional
sorting, since flows change their group association. Finally,
the theoretical treatment of rounded timestamps is not as
comprehensive as the model and analysis presented in this
paper. However, the work by Stephens et al. provides very
interesting insight into the implementation details of a packet
scheduler at high line rates [26].

The practical implementation of WF2Q+ by Rouskas and
Dwekat [27] relies on the fact that certain packet sizes domi-
nate the overall traffic. The existence of other packet sizesis
mentioned, but not addressed thoroughly and no quantitative
results are given for this case. Also, it seems that the scheduler
can only support a fixed set of flow rates, although the details
of this are not completely discussed. As such, the proposal
presented there is not as general as ours. Furthermore, the
algorithm depends on the ability to sort timestamps in constant
time in hardware, which is a much stronger requirement than
a priority encoder.

G. Round Robin and Hybrid Schedulers

Round robin schedulers take a fundamentally different aim
at emulating GPS scheduling. Instead of timestamp computa-
tions and sorting, service slots are assigned in some modified
round robin fashion. This dramatically reduces the algorithmic
complexity of such schedulers, but most early proposals suffer
from rather large error terms in their fairness and delay
properties. A more recent example,Smoothed Round Robin
(SRR) [28], uses a fixed weight matrix to achieve very low
computational complexity. Its relative fairness only depends
on the order of the weight matrix and is thus independent
of the number of flows. However, the weight matrix cannot
be changed easily and the delay and worst-case fairness of

SRR is linear in the number of flows. The G-3 scheduler
[29] is an extension of the SRR scheduler [28] to overcome
the restrictions of a fixed weight matrix. Recent proposals,
suchStratified Round Robin(STRR) [30],Fair Round Robin
(FRR) [31], andGroup Round Robin(GRR) [32], use flow
stratification along service rates and a two-level scheduling
hierarchy to solve the problem of dynamically adding and
removing flows. The VWQGRR scheduler [33] proposes a
new grouping strategy for the GRR scheduler [32] to improve
delay bounds, but does not change the fundamental properties.

The critical parameter determining the trade-off between
quality and complexity of a round robin scheduler is the sizeof
the quantum used for each scheduling round. Any round robin
scheduler has an error term ofa×MTU

flow rate due to the minimum
quantum. Such a scheduling error poses a problem for low-
rate flows with small packet sizes, such as voice. Further, if
the quantum is chosen too small, this can lead to multiple
processing steps without output (slip processing) and thus
breakO(1) complexity. On the other hand, a larger quantum
results in larger error terms.

STRR uses a large quantum and has perfectO(1) complex-
ity. However, the algorithm’s general delay bound and worst-
case fairness is linear in the number of flows. FRR does not
specify a particular quantum, but any quantum that can avoid
linear scheduling errors inevitably leads to slip processing in
the round robin loop. This effectively breaksO(1) complexity.
GRR is a general technique for hierarchical scheduling using
round robin as intra-group scheduler. The quantum problem is
approached differently than in other hierarchical round robin
schedulers. GRR allocates a large quantum to each group,
but interleaves group service according to the inter-group
scheduler. While this results in the best scheduling properties
of all round robin schedulers, it poses the risk of breaking
O(1) complexity through slip processing: A flow that becomes
non-backlogged cannot be removed from the round robin list
immediately. Instead, if it is still non-backlogged duringthe
next round, it is considered departed and effectively removed
from the list. However, the number of departed flows may
be arbitrarily large in any round and therefore, may result
in O(N) processing steps between the processing of two
consecutive packets. Derived proposals such as VWQGRR and
G-3 improve the respective basic versions, but still sufferfrom
the same general quantum-related problems.

H. Hierarchical Scheduling

Hierarchical scheduling allows for increased control over
link sharing and resource allocation. Some of the shortcomings
of the early fair-queueing schedulers become very apparentin
the context of hierarchical packet scheduling [19]. Hierarchical
rate-based scheduling invariably increases the delay bounds
for leaf classes and as such, service curve schedulers such
as SCED [13] and HFSC [14] are more suitable to achieve
both link sharing and tight delay goals at the same time,
albeit with increased complexity. For the purpose of this
work, we do not argue in favour or against the usefulness of
hierarchical scheduling. However, as noted in [19], hierarchical
configurations can be regarded as an excellent litmus test for
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the fairness characteristics of a packet scheduling algorithm.
It is strictly for this reason that the simulation experiments use
hierarchical scheduling.

III. M ODEL AND ANALYSIS

We present a model for aGeneral Rate-controlled Packet
Service(GRPS) scheduler that uses some form of timestamp
rounding to reduce algorithmic complexity and analyze the
scheduling properties of the general model. The basic model
and Lemmas 1-4 are defined entirely in terms of byte time,
independent of the link speed or real time. Therefore, the
model applies to fixed and variable bitrate links.

A. System Model

The system model is a generalization of the analytical model
used for SI-WF2Q [5], which in turn is based on Bennett and
Zhang’s work on WF2Q+ [19] as well as Suri et al.’s work on
LFVC [4].

A GRPS scheduler system is comprised of a set of flows
i ∈ F . Each flowi is allocated a positive rate fractionri with

∑

i∈F

ri ≤ 1. (1)

Flows are assigned start and finish time labels according
to the first packetp in their respective queue and the current
system virtual timeV :

Si = Sp
i =

{

max(V, F p−1

i ) arrival to empty queue
F p−1

i otherwise
(2)

Fi = F p
i = Sp

i +
l
p

i

ri
for next packet with lengthlpi (3)

We assume the existence of per-flow rounding functions
hS

i (x) for start times andhF
i (x) for finish times, such that the

rounding error is limited. In particular, start times are rounded
down and finish times are rounded up. It has been observed
before that rounded timestamps work well in this case [4],
[26]. The rounding functions are characterized by maximum
rounding errorsSi andF i as

Ŝi = hS
i (Si) with Si ≥ Ŝi ≥ Si − Si, and (4)

F̂i = hF
i (Fi) with Fi ≤ F̂i ≤ Fi + F i. (5)

We denote withB the set of backlogged flows. Abusy
period is defined as a period whereB is continuously not
empty. In contrast to WFQ or WF2Q, but similar to WF2Q+
or LFVC, virtual time progresses with the real link speed, but
it jumps forward when necessary, so that it never falls behind
the smallest rounded start time. After serving packetp with
size lp, virtual time increases as

V = max(V + lp, min
i∈B

(Ŝi)). (6)

Backlogged flows are separated intoblocked and active
flows, depending on their respective start times in relationto
the system virtual time. The following requirements must be
satisfied by the scheduling algorithm:

Requirement 1:Flow i blocked⇒ V ≤ Si.
Requirement 2:Flow i active⇒ V ≥ Ŝi.

The flow selection policy can be considered asrounded
SEFF, i.e., among the active flows, the one with the smallest
rounded finish timeF̂i is chosen for service. We show that
based on these definitions and assumptions, the termsSi and
F i are sufficient to characterize the scheduling properties of
any specific GRPS instance in relation to WF2Q.

B. Analysis

Our analysis closely follows the proof structure from pre-
vious work [5]. However, the analysis is more general and
applies to a whole class of schedulers. We have fixed a number
of minor inaccuracies and improve the relative fairness bound
given before [5].

Lemma 1:For a set of flowsG with ∀i ∈ G : Si ≥ V , the
following inequality holds for allV ′ ≥ V :

∑

i∈G

li +
∑

i∈G

(V ′ − Fi)ri ≤ V ′ − V (7)

with li being the size of the first packet in flowi’s queue.
Proof: By definition, li = (Fi − Si)ri for all flows and

thus,li ≤ (Fi − V )ri for flows with Si ≥ V . Therefore,
∑

i∈G

li ≤
∑

i∈G

(Fi − V )ri (8)

=
∑

i∈G

(V ′ − V )ri −
∑

i∈G

(V ′ − Fi)ri (9)

≤ (V ′ − V ) −
∑

i∈G

(V ′ − Fi)ri (10)

which directly leads to the lemma. The first step usesFi−V =
V ′ − V − (V ′ − Fi) and the second step uses

∑

i∈G ri ≤ 1,
based on (1).

Lemma 2:At any virtual time V , the Backlog Inequality
holds for all virtual time valuesV ′ with L + V ′ ≥ V :

∑

i:F̂i≤V ′

li +
∑

i:F̂i≤V ′

(V ′ − Fi)ri ≤ L + V ′ − V (11)

with li being the size of the first packet in flowi’s queue and
L being the maximum transmission unit (MTU). If a flowj
is not backlogged,lj = 0 andFj ≥ V .

Proof: The proof is by induction over those events that
change variables. The base case is trivial.

Packet enqueue: Denote the size of new packetp with lpi and
the finish time after enqueue withF p

i . If F̂ p
i > V ′, nothing

changes and the lemma holds. Otherwise, sinceF̂ p
i ≤ V ′ after

the arrival of the packet,̂Fi ≤ V ′ before the packet arrival and
the flow is already part of the set. In this case, the first term
on the left side of (11) is incremented bylpi , but since the
flow’s finish timeFi is incremented by the virtual packet time
l
p

i

ri
, the second term left is reduced bylpi .
Virtual time jump: After a virtual time jump as in (6), all

flows in the system haveSi ≥ Ŝi ≥ V and Lemma 1 applies
for all V ′ ≥ V . ForV ′ in [V −L, V [, the additionalL term in
(11) absorbs any decrement on the right hand side. Therefore,
the lemma holds.

Packet service: Assume flowj receives service. Denote the
size of the current packet for service withlj, flow rate with
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rj , and rounded finish time witĥFj . We have to distinguish
two cases, depending onV ′ and F̂j .

Case 1: IfV ′ ≥ F̂j , then the first term on the left side
of (11) is decremented bylj . SinceV is incremented bylj,
the right side of (11) is decremented by the same amount.
Therefore, the lemma holds. For the next packet in flowj’s
queue, the case ’Packet enqueue’ applies.

Case 2: IfV ′ < F̂j , then all flowsi with F̂i ≤ V ′ have
F̂i < F̂j . All of these flows must have been blocked, otherwise
the current packet would not have been chosen. Therefore,
Requirement 1 applies andSi ≥ V holds for all flowsi with
F̂i ≤ V ′ before the packet service. Assume the virtual time
before service isV1 and after serviceV2. Lemma 1 applies
then for allV ′ ≥ V1, i.e.

∑

i:F̂i≤V ′

li +
∑

i:F̂i≤V ′

(V ′ − Fi)ri ≤ V ′ − V1. (12)

BecauseV2 = V1 + lj and we assumeL + V ′ ≥ V2 after
service, we only need to considerV ′ with L + V ′ ≥ V1 + lj
before service. Therefore

V ′ − V1 ≤ (L − lj) + V ′ − (V2 − lj) = L + V ′ − V2 (13)

and the lemma holds after service.
The Service Timelemma establishes that a packet is served

when the virtual time reaches its rounded finish time with an
error term of at most one maximum packet sizeL in addition
to the rounding error.

Lemma 3:For any backlogged flowi

V ≤ Fi + F i + L. (14)

Proof: We proveV ≤ F̂i + L, which directly implies
the lemma. The proof is by contradiction. The only event
that could lead to a violation of the assumption is serving
a packet during a busy period. Assume that atV1 the lemma
holds. A packetp with rounded finish timeF̂1 and lengthlp
is served and afterwards atV2, there is a packetq with finish
time F2, such thatF̂2 + L < V2. Denote withS1 andS2 the
corresponding start times. We need to distinguish three cases.

Case 1: Packetq is active atV1. Then, F̂2 ≥ F̂1 (both
packets were eligible atV1 and p was chosen). Applying
Lemma 2 withV = V1 andV ′ = F̂2 results in

∑

i:F̂i≤F̂2

li +
∑

i:F̂i≤F̂2

(F̂2 − Fi)ri ≤ L + F̂2 − V1 (15)

BecauseFi ≤ F̂i, the second term on the left side of the
inequality is non-negative and therefore

lp ≤
∑

i:F̂i≤F̂2

li ≤ L + F̂2 − V1 (16)

V2 − V1 ≤ L + F̂2 − V1 (17)

V2 ≤ F̂2 + L (18)

The step from (16) to (17) usesV1 + lp = V2.
Case 2: Packetq is not active atV1, but becomes active

betweenV1 andV2. Then,Ŝ2 ≥ V1. Virtual time advances by
at mostL and therefore:

F̂2 ≥ Ŝ2 ≥ V1 ≥ V2 − L (19)

Case 3: Packetq is not active after service top, therefore
V2 is reached by a virtual time jump beforeq can be served.
In this case:

F̂2 ≥ Ŝ2 ≥ V2 ≥ V2 − L (20)

This concludes the proof.
Finally, we need to establish a bound between virtual time

V and real timeR, assuming a fixed link capacity.
Lemma 4:Let I be the last time when the system was idle

and letJ be the amount of virtual time “jumping” that has
been done during the current busy period. Then, whenever a
packet has completed service:

V + I − J = R. (21)

Proof: At the beginning of a busy period,I = R and
V = J = 0. Whenever a packet is chosen for service and
transmitted,V and R increase by the same amount. When
virtual time jumps forward,V and J increase by the same
amount.

Using the above lemmas, we can now prove the main theo-
rems describing the service characteristics of GRPS schedulers
in general.

Theorem 1:(End-to-End Delay) GRPS is aGuaranteed
Rate(GR) scheduler [7] with an error termβi for flow i as

βi ≤ L + F i (22)

Proof: Let pj
i and lji denote thejth packet of flowi and

its size. LetAR(pj
i ) denote the real-time arrival time of packet

pj
i . The guaranteed rate clock values are defined as is [7]:

GRC(pj
i ) = max(AR(pj

i ), GRC(pj−1

i )) +
lji
ri

(23)

with GRC(p0
i ) = 0.

Denote with F j
i the finish time of thejth packet. Let

I(pj
i ) andJ(pj

i ), respectively, be the values ofI andJ from
Lemma 4 when service ofpj

i is completed. LetI ′(pj
i ) and

J ′(pj
i ), respectively, be the values ofI andJ whenpj

i arrives
at the head of its queue. We first prove that during a busy
period

F j
i + I(pj

i ) − J(pj
i ) ≤ GRC(pj

i ) (24)

We prove (24) by induction onj. The base case is trivial. The
virtual time of a packet arrival is denoted byA(pj

i ).
Inductive Step: Assume (24) holds forj − 1. We need to

distinguish two cases.
Case 1:A(pj

i ) > F j−1

i . Then

F j
i = A(pj

i ) +
lji
ri

. (25)

Using Lemma 4 we can characterize the packet arrival time
as

A(pj
i ) + I ′(pj

i ) − J ′(pj
i ) ≤ AR(pj

i ) (26)

Adding l
j

i

ri
results in

A(pj
i ) +

lji
ri

+ I ′(pj
i ) − J ′(pj

i ) ≤ AR(pj
i ) +

lji
ri

. (27)
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Rearranging the terms using (25), and replacingAR by a trivial
maximum expansion, results in

F j
i +I ′(pj

i )−J ′(pj
i ) ≤ max(AR(pj

i ), GRC(pj−1

i ))+
lji
ri

. (28)

The right hand side shows the definition ofGRC. Since we
are considering a busy period,I ′(pj

i ) = I(pj
i ) and J ′(pj

i ) ≤
J(pj

i ). Therefore

F j
i + I(pj

i ) − J(pj
i ) ≤ GRC(pj

i ), (29)

which establishes (24) for Case 1.

Case 2:A(pj
i ) ≤ F j−1

i . In this case,F j
i = F j−1

i +
l
j

i

ri
.

Through the induction hypothesis, we obtain

F j−1

i + I(pj−1

i ) − J(pj−1

i ) ≤ GRC(pj−1

i ) (30)

Adding l
j

i

ri
and replacingGRC by a trivial maximum expan-

sion results in

F j
i + I(pj−1

i ) − J(pj−1

i ) ≤ max(AR(pj
i ), GRC(pj−1

i )) +
lji
ri

.

(31)
The right hand side shows the definition ofGRC. Since we are
considering a busy period,I(pj−1

i ) = I(pj
i ) and J(pj−1

i ) ≤
J(pj

i ). Therefore

F j
i + I(pj

i ) − J(pj
i ) ≤ GRC(pj

i ) (32)

which establishes (24) for Case 2.
We can now prove the theorem. A packetpj

i is served no
later thanF j

i +F i+L (Lemma 3). At the end of transmission,
the real time equalsF j

i +F i+L+I(pj
i )−J(pj

i ) by Lemma 4.
By (24), this is bound byGRC(pj

i ) + F i + L.
Theorem 2:(Relative Fairness) The relative fairness [10] of

GRPS between any two flowsi andj is bound byθi,j with

θi,j ≤ 2L +
∑

x=i,j

(
Lx

rx

+ Sx + Fx). (33)

with Lx being the maximum packet size for flowx.
Proof: We can determine the earliest and latest possible

finish times for a packet from flowi that receives service at a
virtual time V as follows:

F ≥ F min = V − F i − L (34)

F ≤ F max = V + Si +
Li

ri

(35)

F min follows from Lemma 3 andF max follows from Re-
quirement 2. Consequently, for any interval[V1, V2] during
which a flow is backlogged its maximum service is bound by
V2 − V1 + F max− F min, while the minimum service is bound
by V2 − V1 + F min − F max. The maximum deviation between
two backlogged flowsi andj can be computed by subtracting
both terms from each other:

(F max
i − F min

i ) − (F min
j − F max

j ) (36)

Inserting (34) and (35) into (36) gives the lemma.

Theorem 3:(Worst-case Fairness) LetQi(p) be the backlog
of an arbitrary flowi immediately after packetp arrives. The
time δ to clear this backlog is bound as

δi ≤
Qi

ri

+ L +
Li

ri

+ Si + F i. (37)

Proof: Consider a packetp for flow i. Suppose that
immediately afterp arrives, the packet at the head of flowi’s
queue ispj

i . Further assume that there arem ≥ 0 packets in the
queue in front ofp, meaningp = pj+m

i . Let R1 denote the real
arrival time andR2 the real time whenp’s service is complete.
Let V1, V2 denote the virtual times corresponding to the real
timesR1 andR2, andF1, F2 the flow’s finish times atR1 and
R2, respectively. (35) guarantees the following inequality:

F1 ≤ V1 +
Li

ri

+ Si (38)

or

−V1 ≤ −F1 +
Li

ri

+ Si. (39)

Lemma 3 gives the boundV2 ≤ F2 + F i + L. SubtractingV1

from V2, i.e. adding (39) to the bound forV2, results in

V2 − V1 ≤ F2 − F1 + L +
Li

ri

+ Si + F i. (40)

Since flowi is backlogged during the interval[F1, F2], we get

F2 = F1 +
∑m

n=1

l
j+n

i

ri
, which can be inserted into (40):

V2 − V1 ≤

m
∑

n=1

lj+n
i

ri

+ L +
Li

ri

+ Si + F i. (41)

The queue sizeQi(p) satisfies
m

∑

n=1

lj+n
i

ri

≤ Qi(p). (42)

Plugging this into (41) yields

V2 − V1 ≤
Qi(p)

ri

+ L +
Li

ri

+ Si + F i. (43)

Using the bounds between virtual time and real time from
Lemma 4, we can obtain a lower bound forR1 and an upper
bound forR2:

V1 + I − J1 ≤ R1 andV2 + I − J2 ≥ R2 (44)

with J2 ≥ J1. Therefore

R2 − R1 ≤ V2 + I − J2 − (V1 + I − J1) (45)

= V2 − V1 − (J2 − J1) (46)

≤
Qi(p)

ri

+ L +
Li

ri

+ Si + F i − (J2 − J1). (47)

SinceJ2 − J1 ≥ 0, this concludes the proof.
Note that the relative fairness bound between two flows is

tighter than reported earlier [5]. It is the sum of error terms of
the absolute fairness bounds of both flows. This is consistent
with intuition and previous findings [34]. In comparison to
the properties of WF2Q [19], the additional error terms can
be directly related to the timestamp rounding errorsSi and
F i.
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Fig. 1. Interleaved Stratified Timer Wheels (ISTW)

IV. I NTERLEAVED STRATIFIED TIMER WHEELS

The key challenge resulting from the SEFF policy (cf.
Section II-A) is that the next flow for service is chosen
from the set of backlogged flows based on two criteria at
the same time: the smallest finish time among those flows
with a start time less or equal the scheduler’s current virtual
time. For WF2Q+ [19], it is proposed to use a tree-based data
structure to accommodate both criteria, while LFVC [4] has
introduced the idea of two containers to hold blocked vs. active
flows. Any tree-based data structure can only be maintained
with logarithmic complexity, while the two-container solution
suffers from a transfer problem, if the system virtual time (6)
crosses the start time threshold of many flows in one step.

We proposeInterleaved Stratified Timer Wheels(ISTW) as
a priority queue that supports efficient searching for the nearest
future event and controlled scanning for past events, if neces-
sary. For rate-proportional scheduling, one ISTW container is
used to sort finish times and search for the next flow to service.
To facilitate the SEFF policy, a second ISTW instance keeps
flows sorted by start times. Besides searching for the next start
time, if necessary for (6), ISTW supports scanning for past
start times with a meaningful bound for lateness, but without
the need to transfer many flows at the same time.

An ISTW container is a collection of timer wheels where
time is measured in fixed base time slots and the bucket width
is doubled for each level. The top-most wheel in Level 1 has
a bucket width of two base time slots. Furthermore, the timer
wheels are interleaved, such that buckets are never aligned
with each other across levels. This is shown in Figure 1. Each
bucket can be identified by the number of the first time slot
that it covers, so that the corresponding rounded slot or bucket
number for a slotj in level k, k ≥ 1, can be computed as

hk(j) = 2k

⌊

j − 2k−1

2k

⌋

+ 2k−1. (48)

We observe that the rounding error is limited by

j < hk(j) + 2k. (49)

The find-first-set(ffs) operation can be used to determine
the level of a given bucket number. The ffs operation finds
the position of the least significant bit in a word. It can
be implemented in software at logarithmic cost of the word
length [35]. Further, a priority encoder can be implemented
in hardware at a very low cycle cost. For example, recent
Intel processors implement the ffs operation (termed BFS) at
1-3 clock cycles at Gigahertz clock rates, depending on the
architecture [36], while the IXP network processor provides a
one-cycle ffs instruction [37].

f u n c t i o n ISTW : : i n s e r t ( s l o t , elem ){
k = f f s ( s l o t ) ;
l e v e l C o u n t [ k−1] += 1 ;
s e t b i t ( l e v e l b i t s , k ) ;
ge tBucke t ( s l o t ) . pushback ( elem ) ;

}

Fig. 2. ISTW Insert Operation
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Fig. 3. Zigzag Search in ISTW

An ISTW container maintains a bitmasklevelbits to
indicate whether any bucket in a particular level is occupied.
The insert operation is shown in Figure 2. It assumes a
functiongetBucket that retrieves the bucket corresponding
to a given rounded time slot number.

Searching for the next occupied slot in an ISTW container
works by first locating the smallest occupied level number in
the ISTW container by using the ffs operation onlevelbits
and then performing a linear search of buckets. Because the
timer wheels are interleaved, iterating through bucket numbers
with a step width of half the bucket size of the smallest
occupied level results in a search pattern where the smallest
occupied level is searched linearly, but every second search
step considers a bucket from a bigger numbered level. This
search pattern ensures that any bigger-level bucket along the
way is visited as well. In Figure 3, the complete search
path is illustrated, although in this example the search would
terminate at Bucket 12. Assuming a functionroundSlot that
implementshk from (48), thesearch function is described
by the pseudo-code in Figure 4. It is easy to see that the worst-
case execution complexity of this linear search is proportional
to the number of buckets between the current time and the
first element in the smallest occupied level.

We define thecurrent bucketfor each level as the bucket
that overlaps with the current time slot. Thescan operation
for an ISTW container retrieves an element from the smallest
occupied level that has an element in its current bucket. This is
done by maintaining a bitmaskfrontbits that indicates the
occupancy of the current buckets for all levels. The pseudo-
code is shown in Figure 5.

Similar data structures for sorting and searching have been
used for other schedulers, such as SRR [28], STRR [30], or
GRR [32], all of which are discussed in Section II. However,
since all these proposals follow the round robin approach, they
do not consider a comprehensive combination of searching
and scanning on both start and finish times. In particular,
interleaving the timer wheels is an essential feature in ISTW
for maintainingfrontbits, as discussed in SectionV-B.
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f u n c t i o n ISTW : : s e a r c h ( s l o t ){
i f ( ! l e v e l b i t s ) re turn NULL;
k = f f s ( l e v e l b i t s ) ;
s l o t = r o u n d S l o t ( s l o t , k ) ;
s t e p = (1 << ( k −1 ) ) ;
whi le ( ge tBucke t ( s l o t ) . empty ( ) ){

s l o t += s t e p ;
k = f f s ( s l o t ) ;

}
l e v e l C o u n t [ k−1] −= 1 ;
i f ( l e v e l C o u n t [ k−1] == 0 )

c l e a r b i t ( l e v e l b i t s , k ) ;
re turn ge tBucke t ( s l o t ) . p o pf r o n t ( ) ;

}

Fig. 4. ISTW Search Operation

f u n c t i o n ISTW : : scan ( s l o t ){
k = f f s ( s l o t ) ;
i f ( ! ge tBucke t ( s l o t ) . empty ( ) )

s e t b i t ( f r o n t b i t s , k ) ;
i f ( ! f r o n t b i t s )

re turn s e a r c h ( s l o t ) ;
k = f f s ( f r o n t b i t s ) ;
i f ( ge tBucke t ( s l o t ) . s i z e ( ) == 1 )

c l e a r b i t ( f r o n t b i t s , k ) ;
l e v e l C o u n t [ k−1] −= 1 ;
i f ( l e v e l C o u n t [ k−1] == 0 )

c l e a r b i t ( l e v e l b i t s , k ) ;
re turn ge tBucke t ( s l o t ) . p o pf r o n t ( ) ;

}

Fig. 5. ISTW Scan Operation

V. SCHEDULER DESIGN

A. Basic Operations

SI-WF2Q, first described in [5], uses the ISTW data struc-
ture to implement a two-container solution for rate-based
scheduling. We first show the pseudo-code for theenqueue
and dequeue operations in here, before discussing its ex-
ecution complexity and analyzing its scheduling properties
using the general model from Section III. The two containers
are termedActive andBlocked with obvious semantics.
We assume a functioninsertFlow that computes the finish
time F according to (3), rounded timestampsSx andFx, and
decides whether to insert a new or returning flow into the
Blocked or the Active container.V denotes the system
virtual time.

Theenqueue operation, shown in Figure 6 reconciles the
flow’s start time with the system virtual time, before inserting
a new flow. If a flow’s start time is “old”, Line 6 implements
themax function from (2). Otherwise, if the system is empty
(Line 5), the virtual time is immediately set to the flow’s start
time according to (6), which effectively resets the system.

The dequeue operation, shown in Figure 7 chooses the
next flow for service and updates state variables as needed.

f u n c t i o n enqueue ( pk t ){
f low = c l a s s i f y ( pk t ) ;
f low .Q. push back ( pk t ) ;
i f ( f low .Q. s i z e ( ) == 1 ) {

i f ( f low . S < V ) f low . S = V;
e l s e i f ( ! Ac t i ve . l e v e l b i t s )

V = f low . S ;
i n s e r t F l o w ( f low ) ;

}
}

Fig. 6. Scheduler Enqueue Operation

f u n c t i o n dequeue ( ){
Vf = Vs = V/ g ;
i f ( mainQ . empty ( ) ) }

i f ( ! Ac t i ve . l e v e l b i t s ) re turn ;
f low = Ac t i ve . s e a r c h ( Vs ) ;

} e l s e {
f low = mainQ . p o p f r o n t ( ) ;

}
pk t = f low .Q. p o p f r o n t ( ) ;
t r a n s m i t ( pk t ) ; / / i n t h e background
V += pk t . s i z e ;
f low . S = f low . F ;
i f ( ! f low .Q. empty ( ) ) i n s e r t F l o w ( f low ) ;
t r a n s f e r ( ) ;
f o r ( ; Vf < V/ g ; Vf += 1 ) {

mainQ . append ( Ac t i ve . ge tBucke t ( Vf ) ) ;
}

}

Fig. 7. Scheduler Dequeue Operation

Flows are not necessarily taken from theActive container
directly, but instead for each increase in virtual time, the
Active container is scanned for flows that have an “expired”
finish time and these flows are moved to a central service
queuemainQ. This is a safe operation, since any packets that
arrive later will have their finish times set to a value greater
than the system virtual time. Only if scanning comes up empty,
i.e., the next available finish time is greater or equal than the
current virtual time, theActive container is searched. This
procedure is further discussed in the next section.

The transfer operation, shown in Figure 8 implements
the transfer of flows that become eligible during the next
packet’s transmission, as well as a potential jump in virtual
time corresponding to (6). Note that virtual time only jumps, if
theActive container is empty, therefore it does not interfere
with the scanning loop at the end ofdequeue.

These operations using two ISTW containers collectively
implement the system model from Section III. The time
period represented by one slot is denoted by the constant
g. To analyze the scheduling properties, compliance with
Requirements 1 and 2 needs to be shown. However, we first
discuss the execution complexity of the operations.



TECHNICAL REPORT CS-2009-24, UNIVERSITY OF WATERLOO - EXTENDED VERSION OF ACM/IEEE TON PAPER 10

f u n c t i o n t r a n s f e r ( ) {
whi le ( Vs < V/ g && ! Blocked . empty ( ) ) {

i f ( ! Ac t i ve . l e v e l b i t s &&
! Blocked . f r o n t b i t s ) {

tmp = Blocked . s e a r c h ( Vs ) ;
Vs = tmp . Sx ;

} e l s e {
tmp = Blocked . scan ( Vs ) ;
Vs += 1 ;

}
i f ( tmp ) Ac t i ve . i n s e r t ( tmp . Fx , tmp ) ;

}
i f ( Vs > V/ g ) V = Vs ∗ g ;

}

Fig. 8. Scheduler Transfer Operation

B. Execution Complexity

The scheduler uses stratified rounded timestamps in combi-
nation with the ISTW data structure to keep the execution
complexity low. Stratification groups “similar” flows based
on their service rates and potentially other characteristics.
The execution complexity of rate-based packet schedulers is
typically characterized in relation to the number of flows inthe
system, which implicitly assumes that per-packet operations
have a small constant execution overhead.

However, in certain existing schedulers, the per-packet op-
erations do not have truly constant per-packet overhead, but
occasionally need to execute loops with the worst-case number
of iterations being on the order of the number of flows in
the system. Since these occurrences are rare enough, their
cost is amortized over time and termedamortized constant
overhead. However, given the tight timing requirements with
which packets have to be released to a high-speed output link,
it is not possible to ensure that the output link is always
fully utilized when the runtime of the per-packet operations
cannot be tightly controlled. Examples of schedulers with this
property are LFVC and those round robin schedulers that are
subject to slip processing, as discussed in Section II.

In this work, we use a slightly different notion of “constant
complexity”, which works well for packet schedulers. A packet
scheduler typically needs to be designed for a worst-case traffic
mix of only minimum-sized packets. If the cost of processing
a packet is proportional to the size of the packet, then the
increased cost for a larger packet is directly offset by the fact
that a larger packet keeps the link busy for a longer time.
Thereby, only the amortized cost for processing a packet is
constant, but in contrast to long-term amortization as discussed
above, the amortization period is only one packet. We denote
this aspacket-amortized constant complexity. In particular, for
the schedulers presented below we propose to set the length
of a base time slot in the ISTW container to the minimum
supported packet size. We then only need to consider the loops
for assessing the execution complexity.

The flow transfer loop intransfer executes in proportion
to the increase in virtual time caused by the packet that has

just been chosen for service and thus, clearly satisfies the
requirements of packet-amortized constant complexity. This
operation is the essential motivation for interleaving thetimer
wheels in ISTW. Only because of interleaving it is possible
to maintainfrontbits smoothly, i.e., for each slot exactly
one bucket in one level needs to be checked.

The overhead of the linear search in an ISTW container de-
pends on the distance in buckets between the starting point and
the timestamp found (cf. Section IV). In case of theActive
container, Equations (34) and (35) limit the range of rounded
finish times at any virtual timeV to [V −L, V +Si +F i +

Li

ri
]

for any flow i. Assuming thatSi and F i are constant and
not significantly larger thanLi

ri
, this directly translates into

packet-amortized constant overhead, because the search cost
is immediately amortized by transmitting the packet. The
only caveat is that the search has to start atV − L, and L
may be relatively large compared to the other parameters,
especially when comparing to small packets from high rate
flows. Therefore, thedequeue operation is enhanced by
scanning theActive container for “expired” finish times that
are smaller than the current virtual time. The overhead of the
scanning loop at the end ofdequeue is proportional to the
size of the packet being transmitted. This guarantees that a
search inActive, if necessary, can start at the virtual time.

Similar reasoning can be used for theBlocked container.
The minimum start time is given by Requirement 1 and the
maximum start time follows from (35) by assuming that a
flow is reinserted into the blocked container immediately after
packet service. Thereby, the range of rounded start times in
Blocked is limited to[V −Si, V +Li

ri
]. The part[V −Si, V ] is

covered by scanning and transfer, so thatBlocked only needs
to be searched, if the next start time is greater or equal thanthe
current virtual time. However, there is a key difference to the
finish time search discussed above. The linear overhead of the
search (from theLi

ri
component) corresponds to theprevious

packet of flowi, rather than the next one. The previous packet
that causes a search might already be transmitted and thus,
search overhead and packet transmission cannot be directly
related as before. However, the search overhead per flow is
limited to the equivalent ofLi

ri
in buckets and clearly, multiple

flows in the same level only increase the density of timestamps
and do not add up to a higher search overhead. Since the
bucket size is proportional to1

ri
, an overall amortization buffer

of nLmax, for n levels and an MTU size ofLmax, is sufficient
to absorb this worst-case effect of the start search overhead.

C. Scheduling Properties

Requirement 2 is satisfied, because thedequeue operation
only transfers flows with a rounded start time greater or equal
the virtual time throughscan, or sets the virtual time to a
flow’s start time when usingsearch. We denote the time slot
period withλ and show that Requirement 1 is satisfied, if the
following two conditions are met: For any flowi in level k

ri >
1

2k
, and (50)

Si ≥ 2kλ (51)
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We show that during any time period without virtual time
jumps, each bucket inBlocked is cleared out, before the
virtual time reaches the next bucket in the same level. This
establishes Requirement 1. A bucket inBlocked in level
k covers2k time slots. Each flow only occurs once in each
bucket of its level inBlocked, because if the flow’s start
time after service falls in the same bucket as before, the flow
stays inActive. Also, each bucket stays as the front bucket
(indexed byfrontbits) for a duration of2k time slots.
Every slot in theBlocked container marks the beginning of
new bucket, which may hold several flows. For a bucket in
level k, the system has2k time slots to clear the bucket. If
we denote the set of flows that are stored in bucketx with
Ex, the number of elements in the set with‖ Ex ‖, the set of
flows in level k with uk, and the set of flows in levels1..k
with Uk, we can show by induction overk that for any period
of 2k slots, the following equation holds.

v+2
k−1

∑

x=v

‖ Ex ‖≤ 2k
∑

i∈Uk

ri+ ‖ Ez ‖ with z > k. (52)

The base case (k = 1) is trivial. One of two slots belongs
to level 1 and might contain one flowi with 0.5 < ri ≤ 1.

(Inductive Step) Assume (52) holds for k. Then:

v+2
k+1

−1
∑

x=v

‖ Ex ‖ (53)

=

v+2
k−1

∑

x=v

‖ Ex ‖ +

v+2
k+1−1
∑

x=v+2k

‖ Ex ‖ (54)

≤ 2k
∑

i∈Uk

ri+ ‖ Ez1
‖ +2k

∑

i∈Uk

ri+ ‖ Ez2
‖ (55)

= 2k+1
∑

i∈Uk

ri+ ‖ Ez1
‖ + ‖ Ez2

‖ with z1, z2 > k (56)

≤ 2k+1
∑

i∈Uk+1

ri+ ‖ Ez2
‖ with z2 > k (57)

The first step splits up the time period of length2k+1

into two periods of length2k to prepare the inductive step.
The second step applies the induction hypothesis. The next
step rearranges the terms and the last step uses the following
consideration: One of the bucketsEz1

and Ez2
belongs to

level k + 1. We assume without loss of generalityEz1
. Con-

dition (50) implies that‖ Ez1
‖< 2k+1

∑

i∈uk+1
ri. Further,

Uk+1 = Uk ∪ uk+1, and therefore, (56) can be transformed
into (57), which confirms the hypothesis. In combination with
(51), this establishes Requirement 1.

D. SI-WF2Q

SI-WF2Q [5] implements the basic scheduler design with
the following rounding functions. Its scheduling error terms
are very small, but constant complexity requires an amorti-
zation buffer as discussed in Section V-B. Since it has been

analyzed in [5], we omit the details here.

hS
i (S) = hk(

S

λ
− 2k)λ with k = ⌊log2(

1

ri

)⌋ + 1 (58)

hF
i (F ) = hk(

S

λ
+ 2k)λ with k = ⌊log2(

1

ri

)⌋ + 1 (59)

E. The K Packet Scheduler (KPS)

As discussed in Section V-B, the start time search in the
basic scheduler design incurs an execution overhead propor-
tional to Li

ri
. The key idea to reduce the impact of theLi

ri
term

is to stratify not only based on a flow’s service rate as in SI-
WF2Q, but to also include the packet length to even out the
virtual duration of each packet in a stratified level. In thisnew
proposal theBlocked container determines a flow’s stratified
service level based on the maximum virtual packet size, rather
than just the service rate. The rounding function for start times
in the Blocked container is defined as

hS
i (S) = hk′(

S

λ
− 2k′

)λ with k′ = ⌊log2(
Li

λri

)⌋ + 1 (60)

whereLi is the maximum packet size of flowi. The rounding
function for finish times is identical to (59). We observe for
start times that

Li

ri

≤ 2k′

λ <
2Li

ri

. (61)

Intuitively, the new rounding function in (60) addresses the
start search problem by demoting flows with larger packets to
lower levels. This effectively reduces the number of buckets
to search per level to one, regardless of the actual packet
size, and thus avoids any linear search. On the downside, it
also slightly increases the fairness bounds. We summarize the
characteristics of KPS in the following theorem.

Theorem 4:KPS is a GRPS scheduler with

2k′

λ ≤ Si < 2k′
+1λ <

4Li

ri

(62)

F i < 2kλ <
2λ

ri

(63)

Ŝi ≤ V + 2k′

λ (64)

Proof: Equation (49) in combination with (60) and (59)
direct leads to (62) and (63), respectively. Since (50) is
satisfied by (60) and (59), and because the left part of (62)
is identical to (51), KPS is a GRPS scheduler.

For (64), we observe that the highest possible start time
of a flow in theBlocked container is immediately after its
service. Requirement 2 states that for an active flowi, Ŝi < V .
Since (61) shows that service increasesŜi by at most2k′

λ,
(64) follows directly.

Therefore, (62) and (63) characterize the scheduling prop-
erties. Finally, (64) shows that rounded start times are stored
at most one bucket behind the current bucket. Therefore, the
start time search only incurs a small constant overhead.

Compared to SI-WF2Q, KPS has slightly increased error
terms for relative and absolute fairness. However, most im-
portantly, all flow-rate dependent error terms only depend on
each flow’s respective packet sizes and all error terms have
only small coefficients. This is the typical litmus test for a
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high-quality GPS approximation. However, strictly speaking,
KPS still has packet-amortized constant overhead, since the
transfer function must be executed while a packet is being
transmitted and its overhead is proportional to the packet size.

F. Simple KPS

In this simpler variant of the scheduler, we apply the new
stratification method to theActive container, as well. This
also reduces theActive container to significantly fewer
buckets, which reduces the overall memory footprint and
execution overhead. The start container remains the same as
in KPS. The rounding function for start times is identical to
(60) and for finish times it is

hF
i (F ) = hk(

F

λ
+ 2k)λ with k = ⌊log2(

Li

λri

)⌋ + 1 (65)

Theorem 5:Simple KPS is a GRPS scheduler with (62) and
(64), as well as

F i < 2kλ <
2Li

ri

(66)

F̂i < V + 4 · 2kλ (67)

Proof: The considerations are the same as for KPS, except
for (67): Equation (35) states thatFi ≤ V + Si + Li

ri
. Since

Si < 2k+1λ from (62), Li

ri
≤ 2kλ from (61), andF̂i ≤ Fi +

2kλ from (5) and (66), (67) follows directly.
While the delay error term for Simple KPS is worse than

for KPS, all flow-rate dependent error terms still only depend
on each flow’s packet size and all error terms have only small
coefficients. The asymptotic execution overhead is the sameas
for KPS, but (67) shows that the absolute memory footprint
and search overhead forActive is significantly reduced,
sinceActive can now be implemented with only five buckets
in each level, regardless of packet sizes.

VI. SIMULATIONS

We use a modified simulation setup from [12] to illustrate
the worst-case fairness of the schedulers proposed in this paper
in comparison to WF2Q+ and a pure finish-time scheduler. A
hierarchical scheduling setup is an ideal test to expose worst-
cast fairness characteristics of a scheduler. We use WF2Q+ as
a benchmark with known excellent scheduling properties, as
well as SPFQ [22] as a scheduler that lacks proper mechanisms
to guarantee low worst-case fairness.

The simulation setup uses a dumbbell topology with a
single bottleneck and multiple sender and receiver nodes.
The bottleneck link is configured with a hierarchy of service
classes as shown in Figure 9. The figure also shows the actual
sending rate per service class. For each leaf class, there is
one sender sending at the specified rate. The CS senders
send at a constant bitrate, while the PS sources send Poisson
traffic with an on-period of 75ms and an off-period of 25ms.
The BE-1 service class is always backlogged and the RT-1
sender sends CBR traffic with a pattern of 75ms on-period and
25ms off period. All packet sizes are set to 8000 bytes. This
represents the scenario “with correlated background traffic”
from [12], since it provides the most challenging environment.

31 Mbit/s
Link

500 Kbit/s 500 Kbit/s

PS−1 PS−20

CS−10CS−1PS−21

9 Mbit/s
RT−1 BE−1

N1

N2PS−40
333 Kbit/s 333 Kbit/s 11 Mbit/s 333 Kbit/s 333 Kbit/s

500 Kbit/s21 Mbit/s

1 Mbit/s

500 Kbit/s 500 Kbit/s

10 Mbit/s 40 Mbit/s

average sending rate

rate allocation

500 Kbit/s

750 Kbit/s 750 Kbit/s

Fig. 9. Scheduling Hierarchy

As mentioned before, hierarchical scheduling is an excellent
litmus test to verify and illustrate the worst-case fairness
properties of a packet scheduler. In contrast to the experiments
in [19], we only compare to the non-shapedStarting Potential
Fair Queueing(SPFQ) scheduler from [22]. Its worst-case
fairness properties are comparable to the WFQ, SCFQ, and
SFQ schedulers chosen in [19].

The relevant observation parameters for these experiments
are the queueing delay variations experienced by the RT-
1 traffic during the experiment. The results are shown in
Figure 10 as the worst-case delay measurement over intervals
of 50ms. For illustrative purposes, the SI-WF2Q delay is
shown excluding the additional amortization buffer. Similar
to the original results in [19], a non-SEFF scheduler causes
significant delay variations for the real-time traffic class. The
superior worst-case fairness of WF2Q+ results in significantly
reduced delay fluctuations, independent of the type of cross
traffic. Omitted here, but shown in [5], SI-WF2Q provides
basically the same service as WF2Q+. As predicted by the
analysis, KPS and Simple KPS deliver a worst-case fairness
that is almost as good as that of WF2Q+ and SI-WF2Q, despite
their drastically reduced execution overhead.

VII. D ISCUSSION

This work introduces the concept of packet-amortized con-
stant complexity. Execution complexity is not defined in
relation to an arbitrarily sized unit of work. Instead, as long as
the overhead is strictly proportional to the size of the unitof
work (a packet in this case), it is considered constant. Notethat
the basic complexity consideration is independent of whether
the actual execution speed on any particular platform is fast
enough to achieve line speed.

SI-WF2Q and the other schedulers proposed in this paper
offer superior properties compared to all other known packet
schedulers. Their main benefits are:

• The KPS scheduling algorithm can be executed with true
packet-amortized constant complexity. This is the key
improvement over SI-WF2Q and WF2Q+. For Simple
KPS, the execution overhead is even smaller.

• The absolute execution overhead and memory footprint
is small. At the core of the algorithm, thesearch and
scan operations only access ISTW bitmaps frequently.
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Fig. 10. RT-1 Delay with Different Schedulers

• Interleaving and stratification of timer wheels allows for
controlled but timely processing of timers. This is the key
improvement over LFVC.

• The schedulers have constant small scheduling errors,
only depending on per-flow characteristics and constants
depending on the link speed. In particular, there is no
MTU error term ofLmax/ri, as in round robin schedulers.

In contrast to optimal GPS approximations, such as WF2Q
[12] or the improved version in [23], the main limitations
of the schedulers considered here are given below. However,
these are practical conditions for most realistic configurations.

• A minimum packet size and service rate are required.
• A maximum packet size must be specified for each flow

in KPS and Simple KPS.
• A priority encoder of width log2(

link speed
minimum rate) bits is

needed. For example, 32 bits can support service rates
from 1 Kbit/s to 4 Tbit/s. If not supported by hardware,
it can be implemented in software at costO(log2(width)).

• The sum of relative rates must be less than 1.
• Timestamp rounding introduces small extra error terms.
• Packet-amortized constant complexity results in line-

speed processing, only if the underlying hardware can
support line-speed forwarding at minimum packet sizes.

Table I presents a summary of the schedulers discussed
throughout this paper. For each type of scheduler, the table
lists the dominant error term component (without coefficients)

across its delay and fairness properties, the average execution
overhead, as well as the necessary time period for amortizing
the worst-case execution overhead, if applicable. The execu-
tion overhead does not necessarily follow from the respective
original proposal, but is determined using the best available
techniques for virtual time maintenance [23], as well as van
Emde Boas priority queues [20] with a finite number of
rounded time slots, if applicable. In the table,N refers to the
number of flows,n to the number of stratification levels,K to
the number of time slots in the time horizon, andC to the link
speed. All other variables are the same as in the mathematical
model. In the following sections, we briefly discuss additional
interesting aspects about the analytical model and schedulers.

A. Analytical Model

The analytical model can be used to quickly assess a
large variety of different schedulers. For example, LFVC [4]
is a rate-controlled rounded timestamp proposal. Using its
rounding scheme to determine the model parametersSi and
F i, the scheduler properties follow directly. For finish-time
only schedulers such as WFQ [15] or SPFQ [22], Case 2 in
Lemma 2 does not apply and the fairness properties cannot
be assessed, but the delay properties follow directly by setting
F i = 0 or the appropriate rounded finish time.
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TABLE I
SUMMARY OF RATE PROPORTIONALSCHEDULERS

Type Worst-Case Scheduling Error Execution Overhead Amortization Period

GPS [11] 0 ∞ n/a
VC [16] ∞ O(logN) or O(loglogK) n/a
WFQ [15] N · Lmax O(logN) n/a
SCFQ [10] N · Lmax O(logN) or O(loglogK) n/a
SFQ [17] N · Lmax O(logN) or O(loglogK) n/a
SPFQ [22] N · Lmax O(logN) or O(loglogK) n/a
RR Variants (cf. Section II-G) N · Lmax O(1) n/a
WF2Q [12] Lmax + Li/ri O(logN) n/a
WF2Q+ [19] Lmax + Li/ri O(logN) n/a
LFVC [4] Lmax + Li/ri O(logN) or O(loglogK) N · Lmax/C
SI-WF2Q Lmax + Li/ri O(1) n · Lmax/C
KPS Lmax + Li/ri O(1) Li/C
S-KPS Lmax + Li/ri O(1) Li/C

N: number of flows, n: number of levels, K: number of time slots, C: link speed

B. Implementation Details

The schedulers proposed in this paper use a flow’s max-
imum packet size to determine the appropriate stratification
level. We do not consider this a major restriction, since QoS
service models such as Integrated Services [1] require the
specification of this parameter anyway. At runtime, flows
simply stay in theActive container after service of a smaller
packet. Smaller packets are still subject to the delay and
fairness error terms based on the maximum packet size, but
most timing-critical applications will operate with mostly fixed
packet sizes anyway.

Assuming that the minimum packet size (λ resp.g) is a
power of 2, the data path implementation of all proposed
schedulers is extremely simple and only requires the man-
agement of linked lists, addition and shift operations, as well
as a single multiplication to determine the virtual packet size.
In addition, only the ffs operation is required to implement
efficient search between stratified levels. The computationof
the logarithm to determine the stratified level only happens
at flow setup time and can be done on the control processor.
Therefore, afind last bit set(fls) operation is not needed.

The KPS scheduler and its simpler variant have a sig-
nificantly smaller memory footprint than SI-WF2Q, because
one or both containers are reduced in size. This should
help with efficient implementation, since most of the relevant
information can be stored in fast on-chip memory.

We have implemented a preliminary version of the KPS
scheduler on an Intel IXP network processor to verify its
feasibility and found that the absolute execution overhead
seems small enough to support very high line rates [38].
However, a more thorough study of implementation aspects,
along with a prototype implementation and lab experiments is
needed to completely assess the implementation characteristics
of any of the schedulers discussed in this paper.

C. CPU Scheduling?

The execution overhead of SI-WF2Q and KPS is pro-
portional to the size of the packet being transmitted and
philosophically relies on the assumption that network line
cards are designed to sustain a traffic mix consisting of only
minimum size packets. Therefore, it is not clear whether it

would be a suitable choice for CPU scheduling where the
scheduler itself competes with the scheduled workload. The
Simple KPS variant eliminates most of this bottleneck and
might be a candidate for CPU scheduling. However, there are
still operations that are proportional to the current unit of work.

VIII. C ONCLUSIONS

We present a general analytical model to assess the schedul-
ing properties of GPS approximation schedulers that operate
on rounded timestamps. It can be used to quickly assess the
scheduling properties of candidate schedulers. We also present
proposals for different variations of the same basic scheduler
design that illustrate the design choices for trading off im-
plementation complexity and overhead with scheduling qual-
ity. The proposed schedulers are analyzed using the general
model. We illustrate the results by simulations. The KPS and
Simple KPS schedulers introduced here approximate GPS with
near-optimal service properties and can be implemented with
constant execution overhead. In future work, we will attempt
to produce realistic implementations of these algorithms.

However, a packet scheduler is only one component in
a very complex network architecture. The overall trade-offs
of different architecture proposals and service models with
respect to the viability of business models, which are mainly
shaped by application demand, remain fundamentally unclear.
Nevertheless, the availability of an efficient and sophisticated
packet scheduler hopefully opens new avenues for the design
and operation of packet-switched communication networks.
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