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a.Abstra
t. We study straight-line drawings of planar graphs su
h thatea
h interior fa
e has a pres
ribed area. It was known that su
h drawingsexist for all planar graphs with maximum degree 3. We show here thatsu
h drawings exist for all planar partial 3-trees. Moreover, verti
es haverational 
oordinates if the fa
e-areas are rational, and we 
an bound theresolution. We also give some negative results for other graph 
lasses.1 Introdu
tionA planar graph is a graph that 
an be drawn without 
rossing. F�ary, Stein andWagner [4,9, 12℄ proved independently that every planar graph has a drawingsu
h that all edges are drawn as straight-line segments. Sometimes additional
onstraints are imposed on the drawings. The most famous one is to have integer
oordinates while keeping the area small; it was shown in 1990 that this is alwayspossible in O(n2) area [5,8℄. Another restri
tion might be to ask whether all edgelengths are integral; this exists if the graph is 3-regular [6℄, but is open in general.In this paper, we 
onsider drawings with pres
ribed fa
e areas. This hasappli
ations in 
artograms, where fa
es (i.e., 
ountries in a map) should be pro-portional to some property of the 
ountry, su
h as population. Ringel [7℄ showedthat su
h drawings do not exist for all planar graphs. Thomassen [10℄ showedthat they do exist for planar graphs with maximumdegree 3. Quite a few resultsare known for drawings with pres
ribed fa
e areas that are not straight-line, butinstead use orthogonal paths, preferably with few bends [11,1, 3℄.We show that every planar partial 3-tree, for any given set of fa
e areas,admits a planar straight-line drawing that respe
ts the fa
e areas. Our main
ontribution is that su
h drawings not only exist, but that the 
oordinates arerational (presuming the fa
e-areas are,) and that we 
an bound the least 
ommondenominator (albeit not polynomially.)It remains open whether Thomassen's proof 
ould be modi�ed to yield ra-tional 
oordinates for all planar graphs of maximum degree 3; we provide someeviden
e why this seems unlikely. We also show that planar partial 4-trees some-times 
annot be realized at all, and sometimes only with irrational 
oordinates.2 Ba
kgroundLet G = (V;E) be a graph with n verti
es and m edges that is simple (has noloops or multiple edges) and planar (
an be drawn without 
rossing.) A planar? Resear
h supported by NSERC.



drawing of G splits the plane into 
onne
ted pie
es; the unbounded pie
e is
alled the outer-fa
e, all other pie
es are 
alled interior fa
es. We assume thatone 
ombinatorial drawing (
hara
terized by the 
lo
kwise order of edges aroundea
h vertex and 
hoi
e of the outer-fa
e) has been �xed for G.A planar straight-line drawing of G is an assignment of verti
es to distin
tpoints in the plane su
h that no two (indu
ed) straight-line segments of edges
ross, and the �xed order of edges and outer-fa
e are respe
ted.Let A be a fun
tion that assigns non-negative rationals1 to interior fa
es ofG. We say that a planar straight-line drawing of G respe
ts the given fa
e areasif every interior fa
e f of G is drawn with area 
onst �A(f), where the 
onstant isthe same for all fa
es. If A � 1, then the drawing is 
alled an equifa
ial drawing.A graph G is a k-tree if it has a vertex order v1; : : : ; vn su
h that for i > kvertex vi has exa
tly k earlier neighbours, and they form a 
lique. A partial k-treeis a subgraph of a k-tree. Assume G is a planar 3-tree. Then vertex vi (for i > 3)has three prede
essors, i.e., earlier neighbours, and they form a triangle. Hen
ewe 
an think of G as being built up by starting with a triangle, and repeatedlypi
king a fa
e f (whi
h is ne
essarily a triangle) and subdividing f into threetriangles by inserting a new vertex in it. One 
an show that the �rst triangle inthis pro
ess 
an be presumed to be the outer-fa
e.A planar partial 3-tree is a graph G0 that is planar and is the subgraph ofa 3-tree G. It is not obvious that G 
an be assumed to be planar (for example,this is not true if we repla
e `3' by `4'), but one 
an show that this is indeed true(all 
ru
ial ingredients for this are in [2℄.) Sin
e \drawing with pres
ribed fa
eareas" is a property that is 
losed under taking subgraphs (see also Lemma 3),we hen
e mostly fo
us on drawing planar 3-trees.3 Drawing planar partial 3-treesWe now show that every planar partial 3-tree 
an be drawn with given fa
e areas.A vital ingredient is how to draw K4 by pla
ing one point inside a triangle.Lemma 1. Let T be a triangle with area aand verti
es v0; v1; v2 in 
ounter
lo
kwise or-der. For any non-negative value a0+a1+a2 =a, there exists a point v� inside T su
h thattriangle fvi+1; vi�1; v�g has area ai, for i =0; 1; 2 and addition modulo 3. v0 v1v2v�a0a1a2Proof. Let (x0; y0), (x1; y1); (x2; y2); (x�; y�) be the 
oordinates of v0, v1, v2,v�, respe
tively. The signed area formula expresses the area of a triangle viadeterminants; the result is positive if the verti
es are 
ounter
lo
kwise aroundthe triangle and negative otherwise. In parti
ular, for ai to be the area of atriangle fvi+1; vi�1; v�g (for i = 0; 1; 2 and addition modulo 3), we must have1 Irrational fa
e areas 
ould be allowed, but would for
e irrational 
oordinates.



2 � ai = ������xi+1 yi+1 1xi�1 yi�1 1x� y� 1������= (xi�1 � y� � x� � yi�1)� (xi�1 � yi+1 � xi+1 � yi�1) + (x� � yi+1 � xi+1 � y�)Sin
e the triangle de�ned by v0; v1; v2 has area a = a1 + a2 + a3, we also know2 � a = ������x0 y0 1x1 y1 1x2 y2 1������ = (x1 � y2 � x2 � y1) � (x1 � y0 � x0 � y1) + (x2 � y0 � x0 � y2)Combining these equations yields after suÆ
ient manipulation thatx� = a1 � x1 + a2 � x2 + a3 � x3a1 + a2 + a3 and y� = a1 � y1 + a2 � y2 + a3 � y3a1 + a2 + a3 (1)Sin
e 2ai is non-negative, the signed-area formula guarantees that v� lies to theleft of the dire
ted segments v0v1, v1v2, and v2v0, and hen
e inside T . 2Lemma 2. Every planar 3-tree 
an be drawn respe
ting pres
ribed fa
e areas.Proof. Assume v1; : : : ; vn is the vertex-order that de�ned the 3-tree G, withfv1; v2; v3g the outer-fa
e. We pro
eed by indu
tion on n. The base 
ase is n = 3,where this is obvious. If n � 4, then 
onsider the K4 formed by vn and itsneighbours. In G � vn, these neighbours form a triangle T that is an interiorfa
e. Draw G� vn re
ursively, requiring as area for T the sum of the area of thefa
es around vn. Then, by Lemma 1, vn 
an be added inside T suitably. 2Lemma 3. Every planar partial 3-tree 
an be drawn respe
ting pres
ribed fa
eareas.Proof. Add edges to 
onvert the graph into a planar 3-tree G. Ea
h time an edgeis added, it divides a fa
e fi into two fa
es f1i and f2i . Let ai be the pres
ribedarea for fi, then we 
hoose area aji for fa
e fji su
h that a1i + a2i = ai, e.g.a1i = a2i = ai2 . By Lemma 2, G 
an be drawn respe
ting the pres
ribed fa
eareas. Deleting all added edges then gives the desired drawing. 2In our 
onstru
tion, we are interested not only in whether su
h a drawingexists, but what bounds 
an be imposed on the resulting 
oordinates. (Thiswas not studied at all in the previous literature.) If all areas are rationals, thenEquation (1) shows immediately that the newly pla
ed vertex v� has rational 
o-ordinates if the 
oordinates of T are rational. Hen
e, using indu
tion and startingin the base 
ase with a triangle with rational 
oordinates, one 
an immediatelyshow that all 
oordinates of all verti
es are rational. We summarize:Theorem 1. Let G be a planar partial 3-tree and A be an assignment of non-negative rationals to interior fa
es of G. Then G has a straight-line drawing su
hthat ea
h interior fa
e f of G has area A(f) and all 
oordinates are rationals.



We 
an also give bounds on the required resolution.Theorem 2. Any planar 3-tree G has an equifa
ial straight-line drawing withinteger 
oordinates and width and height at most Qnk=1(2k + 1).Proof. We show that G has an equifa
ial straight-line drawing with rational
oordinates in [0; 1℄ with 
ommon denominator at mostQnk=1(2k+1); the resultthen follows after s
aling. Let v1; : : : ; vn be a vertex order of G with v1; v2; v3 theouter-fa
e. The drawing is the one from Theorem 1; we assume that v1; v2; v3 areat the triangle T = f(1; 0); (0; 1); (0; 0)g (this 
an be enfor
ed in the base 
ase ofLemma 2.) Sin
e G is triangulated, it has 2n � 5 fa
es; so ea
h interior fa
e isdrawn with area a = 1=(4n� 10) sin
e T has area 1=2. We show the bound onthe denominator only for x-
oordinates; y-
oordinates are proved similarly.We need some notations. Re
all that we 
an view graph G as being obtainedby inserting vertex vj into the triangle Tj spanned by the three prede
essors ofvj. Let Gj be the subgraph of G indu
ed by all verti
es on or inside Tj . Sin
e Tjwas a fa
e in the graph indu
ed by fv1; : : : ; vj�1g, all verti
es in Gj are eithervj, or one of its three prede
essor, or a vertex in fvj+1; : : : ; vng and so Gj hasat most n� j + 4 verti
es. Let fj be the number of interior fa
es in Gj; we havefj � 2(n� j + 4)� 5 = 2n� 2j + 3. Also note that Tj 
ontains exa
tly these fjfa
es and they all have area 1=(4n� 10), so Tj has area fj=(4n� 10).We will show by indu
tion on i that vertex vi has x-
oordinatexi = integerQ4�j�i fj (2)for some integer that we will not analyze further to keep notation simple. Nothingis to show for i = 1; 2; 3, sin
e xi is an integer by 
hoi
e of the points for theouter-fa
e triangle. For i � 4, let vi0 ; vi1 ; vi2 be the three prede
essors of vi.For k = 0; 1; 2, Equation (2) holds for xik by ik � i � 1 and indu
tion, andexpanding with integers fik+1; : : : ; fi�1 yieldsxik = integerQ4�j�ik fj = integerQ4�j�i�1 fjEquation (1) states that xi = (a0xi0 + a1xi1 + a2xi2)=(a0 + a1 + a2), wherea0; a1; a2 are the areas of fa
es in
ident to vi. For k = 0; 1; 2, ea
h ak is thesum of fa
es in some subgraph, and therefore an integer multiple of 1=(4n�10).Furthermore, a0+a1+a2 is exa
tly the area of triangle Ti spanned by vi1 ; vi2; vi3 ,whi
h we argued earlier is fi=(4n� 10). Hen
e, as desired,xi = a0xi0 + a1xi1 + a2xi2a0 + a1 + a2 = P2k=0 integer4n�10 integerQ4�j�i�1 fjfi4n�10 = integerQ4�j�i fj :Sin
e f4; : : : ; fn are integers, by Equation (2) all xi's have 
ommon denominatorY4�j�nfj � Y4�j�n(2n� 2j + 3) = n�3Yk=1(2k + 1) 2



Two remarks. First, we 
an obtain similar (but uglier-looking) bounds forarbitrary integer fa
e areas, by repla
ing `fj' by `the sum of the fj largest fa
eareas in G'. Se
ond, we did experiments to see whether our bounds are tight.We 
omputed (using Maple) the 
oordinates in Theorem 2 for the planar planar3-tree v1; : : : ; vn where vi has prede
essors vi�1; vi�2; vi�3 for i � 4; note thatthis graph has fi = 2n � 2i + 3 and hen
e is a good 
andidate to obtain thebound in Theorem 2. Figure 1 shows the least 
ommon denominator for variousvalues of n; they are smaller than the upper bound but are 
learly growing inexponential fashion as well.n LCD in drawing upper bound10 5:0 � 103 2:0 � 10650 3:1 � 1034 2:8 � 1075100 1:0 � 1082 1:7 � 10183500 1:0 � 10427 2:0 � 1012711000 2:8 � 10852 4:8 � 102853Fig. 1. Lower and upper bounds on the resolution in the drawing.4 Negative resultsIn this se
tion, we give some examples of graphs where no realization with ra-tional 
oordinates is possible, hen
e providing 
ounter-example to some possible
onje
tured generalizations of Theorem 1.The �rst example is the o
tahedron where all fa
e areas are 1 ex
ept fortwo non-adja
ent, non-opposite fa
es, whi
h have area 3. As shown by Ringel[7℄, any drawing that respe
ts these areas must have some 
omplex 
oordinates.(Ringel's result was a
tually for the graph G1 obtained from the o
tahedronby subdividing two triangles further; the resulting graph then has no equifa
ialdrawing.) Note that both the o
tahedron and G1 are planar partial 4-trees, sonot all partial 4-trees have equifa
ial drawings.Fig. 2. Graphs G1, G2 and G3.The se
ond example is the o
tahedron where all fa
e areas are 1 ex
ept thatthe three fa
es adja
ent to the outer-fa
e have area 3. (Alternatively, one 
ouldask for an equifa
ial drawing of graph G2 in Figure 2.) Assume, after possiblelinear transformation, that the verti
es in the outer-fa
e are at (0; 0); (0; 13) and



(2; 0). Computing the signed area of all the fa
es one 
an show that the verti
esnot on the outerfa
e are at (103 + 2p313 ; 5�p3); (103 � 2p313 ; 3) and ( 613 ; 5 +p3).Thus even if a partial 4-tree has an equifa
ial drawing, it may not have one withrational 
oordinates.The third example is again the o
tahedron, with three fa
e areas pres
ribedto be 0, whi
h for
es some edges to be aligned as shown in Figure 2. If allother interior fa
es have area 1/8, and the outer-fa
e is at (1; 0); (0; 1); (0; 0),then similar 
omputations show that some of the 
oordinates of the other threeverti
es are (3�p5)=8. Let G3 be the graph obtained from the o
tahedron bydeleting the edges that are dashed in Figure 2. Graph G3 is a 
ru
ial ingredientin Thomassen's proof [10℄ that every planar of maximum degree 3 graph has astraight-line drawing with given fa
e areas: in one 
ase he splits the input graphinto G3 and three subgraphs inside three interior fa
es of G3, draws G3 with theedges aligned as in Figure 2, and re
ursively draws and pastes the subgraphs.Sin
e we showed that G3 
annot always be drawn with rational 
oordinates,then Thomassen's proof, as is, does not give rational 
oordinates. It remains anopen problem whether Thomassen's proof 
ould be modi�ed to show that anyplanar graph with maximum degree 3 has a drawing respe
ting given rationalfa
e-areas that has rational 
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