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Abstract. We study straight-line drawings of planar graphs such that
each interior face has a prescribed area. It was known that such drawings
exist for all planar graphs with maximum degree 3. We show here that
such drawings exist for all planar partial 3-trees. Moreover, vertices have
rational coordinates if the face-areas are rational, and we can bound the
resolution. We also give some negative results for other graph classes.

1 Introduction

A planar graph is a graph that can be drawn without crossing. Fary, Stein and
Wagner [4,9, 12] proved independently that every planar graph has a drawing
such that all edges are drawn as straight-line segments. Sometimes additional
constraints are imposed on the drawings. The most famous one is to have integer
coordinates while keeping the area small; it was shown in 1990 that this is always
possible in O(n?) area [5,8]. Another restriction might be to ask whether all edge
lengths are integral; this exists if the graph is 3-regular [6], but is open in general.

In this paper, we consider drawings with prescribed face areas. This has
applications in cartograms, where faces (i.e., countries in a map) should be pro-
portional to some property of the country, such as population. Ringel [7] showed
that such drawings do not exist for all planar graphs. Thomassen [10] showed
that they do exist for planar graphs with maximum degree 3. Quite a few results
are known for drawings with prescribed face areas that are not straight-line, but
instead use orthogonal paths, preferably with few bends [11,1,3].

We show that every planar partial 3-tree, for any given set of face areas,
admits a planar straight-line drawing that respects the face areas. Our main
contribution is that such drawings not only exist, but that the coordinates are
rational (presuming the face-areas are,) and that we can bound the least common
denominator (albeit not polynomially.)

It remains open whether Thomassen’s proof could be modified to yield ra-
tional coordinates for all planar graphs of maximum degree 3; we provide some
evidence why this seems unlikely. We also show that planar partial 4-trees some-
times cannot be realized at all, and sometimes only with irrational coordinates.

2 Background

Let G = (V, E) be a graph with n vertices and m edges that is simple (has no
loops or multiple edges) and planar (can be drawn without crossing.) A planar
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drawing of G splits the plane into connected pieces; the unbounded piece is
called the outer-face, all other pieces are called interior faces. We assume that
one combinatorial drawing (characterized by the clockwise order of edges around
each vertex and choice of the outer-face) has been fixed for G.

A planar straight-line drawing of G is an assignment of vertices to distinct
points in the plane such that no two (induced) straight-line segments of edges
cross, and the fixed order of edges and outer-face are respected.

Let A be a function that assigns non-negative rationals' to interior faces of
(. We say that a planar straight-line drawing of GG respects the given face areas
if every interior face f of (G is drawn with area const- A(f), where the constant is
the same for all faces. If A = 1, then the drawing is called an equifacial drawing.

A graph G is a k-tree if it has a vertex order vy,...,v, such that for i > k
vertex v; has exactly k earlier neighbours, and they form a clique. A partial k-tree
is a subgraph of a k-tree. Assume G is a planar 3-tree. Then vertex v; (for i > 3)
has three predecessors, i.e., earlier neighbours, and they form a triangle. Hence
we can think of G as being built up by starting with a triangle, and repeatedly
picking a face f (which is necessarily a triangle) and subdividing f into three
triangles by inserting a new vertex in it. One can show that the first triangle in
this process can be presumed to be the outer-face.

A planar partial 3-tree is a graph G’ that is planar and is the subgraph of
a 3-tree G. Tt is not obvious that G can be assumed to be planar (for example,
this is not true if we replace ‘3" by ‘4’), but one can show that this is indeed true
(all crucial ingredients for this are in [2].) Since “drawing with prescribed face
areas” is a property that is closed under taking subgraphs (see also Lemma 3),
we hence mostly focus on drawing planar 3-trees.

3 Drawing planar partial 3-trees

We now show that every planar partial 3-tree can be drawn with given face areas.
A vital ingredient is how to draw K4 by placing one point inside a triangle.
U2
Lemma 1. Let T be a triangle with area a
and vertices v, vy, v9 in counterclockwise or-
der. For any non-negative value ag+ay +as =
a, there exists a point v* inside T such that
triangle {viy1,v,_1,v"} has area a;, for i = p b1

0,1,2 and addition modulo 3. Yo

Proof. Let (xo,v0), (x1,¥1), (22, y2), (£*,y*) be the coordinates of vg, vy, vg,
v*, respectively. The signed area formula expresses the area of a triangle via
determinants; the result is positive if the vertices are counterclockwise around
the triangle and negative otherwise. In particular, for a; to be the area of a

triangle {v;41,v;-1,v*} (for i = 0, 1,2 and addition modulo 3), we must have
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Since the triangle defined by vg, vy, v has area @ = ay + a2 + as, we also know

ro yo 1
2ea=|zmpn l|=(x1-y2— 22 1) — (21 Yo — To-21) + (22- Yo — To - ¥2)
r2y2 1

Combining these equations yields after sufficient manipulation that

«_ Q1-Ty+az-xry+az-r3 «__ G1°YrFaz-y2+az-ys
= and y* = (1)
ay +as + as ay + ag + as

Since 2a; is non-negative, the signed-area formula guarantees that v* lies to the
left of the directed segments vgvy, v1v9, and v2vg, and hence inside 7. O

Lemma 2. Fvery planar 3-tree can be drawn respecting prescribed face areas.

Proof. Assume vq,...,v, is the vertex-order that defined the 3-tree G, with
{v1, v2, v3} the outer-face. We proceed by induction on n. The base case is n = 3,
where this is obvious. If n > 4, then consider the K, formed by v, and its
neighbours. In G — v, these neighbours form a triangle 7" that is an interior
face. Draw GG — v, recursively, requiring as area for T' the sum of the area of the
faces around v,,. Then, by Lemma 1, v, can be added inside T suitably. a

Lemma 3. Fvery planar partial 3-tree can be drawn respecting prescribed face
areas.

Proof. Add edges to convert the graph into a planar 3-tree . Each time an edge
is added, it divides a face f; into two faces fi and J?. Let a; be the prescribed
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area for f;, then we choose area a! for face f! such that a! + a? = a;, e.g.
al = a? = %. By Lemma 2, GG can be drawn respecting the prescribed face
areas. Deleting all added edges then gives the desired drawing. ad

In our construction, we are interested not only in whether such a drawing
exists, but what bounds can be imposed on the resulting coordinates. (This
was not studied at all in the previous literature.) If all areas are rationals, then
Equation (1) shows immediately that the newly placed vertex v* has rational co-
ordinates if the coordinates of T" are rational. Hence, using induction and starting
in the base case with a triangle with rational coordinates, one can immediately
show that all coordinates of all vertices are rational. We summarize:

Theorem 1. Let GG be a planar partial 3-tree and A be an assignment of non-
negative rationals to interior faces of G. Then G has a straight-line drawing such
that each interior face f of G has area A(f) and all coordinates are rationals.



We can also give bounds on the required resolution.

Theorem 2. Any planar 3-tree G has an equifacial straight-line drawing with
integer coordinates and width and height at most [[,_, (2k + 1).

Proof. We show that G has an equifacial straight-line drawing with rational
coordinates in [0, 1] with common denominator at most [],_,(2k +1); the result
then follows after scaling. Let vq,..., v, be a vertex order of G with vy, vy, v3 the
outer-face. The drawing is the one from Theorem 1; we assume that vy, ve, v3 are
at the triangle T'= {(1,0), (0, 1), (0,0)} (this can be enforced in the base case of
Lemma 2.) Since G is triangulated, it has 2n — 5 faces; so each interior face is
drawn with area @ = 1/(4n — 10) since T has area 1/2. We show the bound on
the denominator only for x-coordinates; y-coordinates are proved similarly.

We need some notations. Recall that we can view graph G as being obtained
by inserting vertex v; into the triangle 7 spanned by the three predecessors of
vj. Let G; be the subgraph of ¢ induced by all vertices on or inside 7}. Since T}
was a face in the graph induced by {vi,...,v;_1}, all vertices in G; are either
vj, or one of its three predecessor, or a vertex in {v;t1,...,v,} and so G; has
at most n — j 4 4 vertices. Let f; be the number of interior faces in G/;; we have
i <2(n—j+4)—5=2n—2j+ 3. Also note that T; contains exactly these f;
faces and they all have area 1/(4n — 10), so T has area f;/(4n — 10).

We will show by induction on i that vertex v; has z-coordinate

_ integer
H4§j§ifj

for some integer that we will not analyze further to keep notation simple. Nothing
is to show for ¢ = 1,2, 3, since #; is an integer by choice of the points for the
outer-face triangle. For ¢ > 4, let v;,, v;,, v;, be the three predecessors of v;.

For k = 0,1, 2, Equation (2) holds for x;, by ¢ < i¢— 1 and induction, and
expanding with integers fi, 41,..., fi—1 yields

(2)

Li

_ integer  integer
H4§j§ik i H4§j§i—1 i

Equation (1) states that z; = (aowi, + a12i, + a224,)/(ao + a1 + az), where
ap, ay, a2 are the areas of faces incident to v;. For & = 0,1,2, each aj is the
sum of faces in some subgraph, and therefore an integer multiple of 1/(4n — 10).
Furthermore, ag+aj 4as is exactly the area of triangle T; spanned by v;,, vi,, vi,,
which we argued earlier is f;/(4n — 10). Hence, as desired,

l‘ik

22 integer  integer
k=0

_aoZiy, + a1, + agxi, 4n—10 Tl,c;<,—1 /i integer
T — f —_— A .
ag + ay + as 4n—110 H4§]§zf]
Since fi,..., fn are integers, by Equation (2) all ;’s have common denominator
n—3

II 7< II @en—2i+3)=]]@k+1) O

4<j<n 4<j<n k=1



Two remarks. First, we can obtain similar (but uglier-looking) bounds for
arbitrary integer face areas, by replacing ‘f;” by ‘the sum of the f; largest face
areas in G’. Second, we did experiments to see whether our bounds are tight.
We computed (using Maple) the coordinates in Theorem 2 for the planar planar
3-tree v1,...,v, where v; has predecessors v;_1,v;_9,v;_3 for ¢« > 4; note that
this graph has f; = 2n — 2¢ + 3 and hence is a good candidate to obtain the
bound in Theorem 2. Figure 1 shows the least common denominator for various
values of n; they are smaller than the upper bound but are clearly growing in
exponential fashion as well.

| n |LCD in drawing|upper bound|

10 5.0-10° 2.0 - 10°
50 3.1-10% 2.8.107
100 1.0 - 10¥? 1.7-10'%

500 1.0 - 10%*7 2.0 101271
1000] 2.8 10%2 4.8 .10%%3

Fig. 1. Lower and upper bounds on the resolution in the drawing.

4 Negative results

In this section, we give some examples of graphs where no realization with ra-
tional coordinates is possible, hence providing counter-example to some possible
conjectured generalizations of Theorem 1.

The first example is the octahedron where all face areas are 1 except for
two non-adjacent, non-opposite faces, which have area 3. As shown by Ringel
[7], any drawing that respects these areas must have some complex coordinates.
(Ringel’s result was actually for the graph (/; obtained from the octahedron
by subdividing two triangles further; the resulting graph then has no equifacial
drawing.) Note that both the octahedron and Gy are planar partial 4-trees, so
not all partial 4-trees have equifacial drawings.

[ AR

Fig. 2. Graphs G, G2 and Gs.

The second example is the octahedron where all face areas are 1 except that
the three faces adjacent to the outer-face have area 3. (Alternatively, one could
ask for an equifacial drawing of graph G2 in Figure 2.) Assume, after possible
linear transformation, that the vertices in the outer-face are at (0,0), (0, 13) and



(2,0). Computing the signed area of all the faces one can show that the vertices

not on the outerface are at (13—0 + %,5 —3), (% — %,3) and (16—3,5 +/3).
Thus even if a partial 4-tree has an equifacial drawing, it may not have one with
rational coordinates.

The third example is again the octahedron, with three face areas prescribed
to be 0, which forces some edges to be aligned as shown in Figure 2. If all
other interior faces have area 1/8, and the outer-face is at (1,0), (0, 1), (0,0),
then similar computations show that some of the coordinates of the other three
vertices are (3 £ +/5)/8. Let G'3 be the graph obtained from the octahedron by
deleting the edges that are dashed in Figure 2. Graph G is a crucial ingredient
in Thomassen’s proof [10] that every planar of maximum degree 3 graph has a
straight-line drawing with given face areas: in one case he splits the input graph
into i3 and three subgraphs inside three interior faces of GGz, draws G's with the
edges aligned as in Figure 2, and recursively draws and pastes the subgraphs.
Since we showed that (3 cannot always be drawn with rational coordinates,
then Thomassen’s proof, as is, does not give rational coordinates. It remains an
open problem whether Thomassen’s proof could be modified to show that any
planar graph with maximum degree 3 has a drawing respecting given rational
face-areas that has rational coordinates.
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