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Abstract

We present QUICK, an entity-based text search engine that blends
keyword search with structured query processing over rich knowledge
bases (KB) with massive schemas. We introduce a new formalism for
structured queries based on keywords that combines the flexibility of key-
word search and the expressiveness of structures queries.

We propose a solution to the resulting disambiguation problem caused
by introducing keywords as primitives in a structured query language. We
show how expressions in our proposed language can be rewritten using the
vocabulary of a given KB. The rewritten query describes an arbitrary topic
of interest for which corresponding documents are retrieved.

We also introduce a method for indexing that allows efficient search
over large KB schemas in order to find sets of relevant entities. We then
cross-reference the entities with their occurrences in a corpus and rank
the resulting document set to produce the top-k relevant documents. An
extensive experimental study demonstrates the viability of our approach.

1 Introduction

The World Wide Web hoards massive amounts of unstructured text data. Re-
cent efforts to extract structured data sets from unstructured and semi-structured
Web documents have resulted in the creation of massive knowledge bases: struc-
tured data sets encoding rich schematic information including millions of enti-
ties. As an example, both ExDB [2] and YAGO [21], a large knowledge base
derived from Wikipedia and WordNet, have schema items numbering in the
millions, and fact collections numbering in the hundreds and tens of millions
respectfully. At this scale, writing structured queries can be a daunting task
as the sheer magnitude of the information available to express the query is
overwhelming. We call this the information overload problem.
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Figure 1: An ambiguous conjunctive query and the possible interpretations. The
first and third predicates are an example of matching on keyword occurrence,
while the second predicate is an example of matching on edit distance.

To deal with this problem, and also open a new form of exploratory search,
recent work has brought keyword query processing to structured data models,
such as keyword search over relational databases. While keyword search over
structured data models alleviates the information overload problem caused by
massive schemas, it comes at a loss of expressivity. Users can no longer express
desired structure in the query, and can no longer take advantage of schema
information.

As an example, consider a user who wants to find all people of German
nationality who have won a Nobel award. The user may pose the following
conjunctive query to an information system.

q(z) :- GERMAN_PEOPLE(x), hasWonPrize(x,y), NOBEL_PRIZE(y). (1)

If the user is not familiar with the schema of the underlying information system
(i.e., they do not know the labels of the relations in order to formulate a well
formed query), then they may alternatively issue the following keyword query.

“german has won nobel award” (2)

This query searches for all data items with a syntactic occurrence of the given
keywords. There are two important differences between the structured query
and the keyword variant. First, the structured query will be processed by mak-
ing use of explicit semantics encoded as an internal schema. In particular, the
query will find data items that are German, rather than those which contain the
keyword “german”. Second, the keyword query will look for data items with any
syntactic occurrence of “nobel award”, while the structured query uses this an
explicit selection predicate over the qualifying entities, exploiting the structure
of the query to find qualifying results.

This example illustrates how query languages can vary in their expressive-
ness and ease-of-use. On one end of the spectrum, structured query languages,
such as SQL, provide a mechanism to express complex information needs over a
schema. A user of such a language must have intimate knowledge of the under-
lying schema in order to formulate well formed queries for arbitrary information
needs. On the other end of the spectrum are free form query languages such as
keyword queries. These languages allow users to express information needs with
little to no knowledge of any schematic constructs in the underlying information
system, giving ease-of-use as well as useful exploratory functionality to the user.



Consider the design of a query language that falls somewhere in the middle
of this spectrum. We would ideally like to retain the expressive structure of
structured queries, while incorporating the flexibility of keyword queries. One
way to achieve this is to embed ambiguity into the structured query language by
allowing keywords or regular expressions to take the place of entities or relations.
In this setting the query from the previous example may be written using the
structure in (1), but with keywords as in (2).

q(z) - “german”(x), “has won”(z,y), “nobel award”(y).

In this model each keyword phrase will be replaced, by the query processor,
with a set of candidate schema items based on some metric of syntactic match-
ing, such as keyword occurrence or edit distance as depicted in Figure 1. The
advantage of this approach is in the flexibility of how queries can be expressed.
Users need not have intimate knowledge of the underlying schema to formu-
late queries as is necessary with traditional structured query languages. At
the same time, the query retains explicit structure that gives greatly increased
expressiveness over flat keyword queries.

The problem with this approach is that the number of possible (disam-
biguated) queries is exponential in the size of the query. This is problematic
as many of the possible matchings may be meaningless with respect to the un-
derlying schema, or may not represent the users actual intention. Processing
every possible match is not only inefficient, as many of the possible query in-
terpretations may have empty result sets, it can overload the user with many
unwanted results from unintended interpretations. For example, the query for
all GERMAN_PEOPLE who have won an AWARD (the super class of all awards) will
produce many results that obstruct the user from finding those of interest (those
who have won a NOBEL _PRIZE). Note that syntactic matching alone could not
possibly be sufficient as a disambiguation solution in all cases, as the keyword
“german” is a natural choice to express both a nationality and a language. This
phenomena, known as polysemy, is just one of the challenges of disambiguation.
Similar problems arise with synonymy.

In this paper, we investigate a solution to the problem of querying over rich
massive schemas by introducing a structured query language that builds upon
keywords as its most basic operator, while taking disambiguation steps before
query evaluation in order to avoid the exponential blow-up caused by keyword
ambiguity. Our query language allows a natural keyword-based description of
entity-relationship queries over large knowledge bases without intimate back-
ground knowledge of the underlying schema. We also show how inference over
a rich schema defined by a reference knowledge base, such as those extracted by
YAGO or ExDB, can be efficiently incorporated into the entity search system
by introducing a method for indexing that allows query time inference. Our
index incorporates the traditional notions of inverted indexing over documents,
allowing us to extend our entity search functionality to document retrieval, and
incorporate full text search.



1.1 Contributions

In this work, we make the following contributions.

e We propose a keyword-based structured query language that allows users
to create expressive descriptions of their information need without having
detailed knowledge of the underlying schema.

e We analyze the consequences of introducing ambiguity into a structured
query language (by means of keywords as base level constructs), and pro-
pose a model for disambiguation. We also show how query terms can
be used as keywords to integrate full text search in the cases where full
disambiguation can not be achieved.

e We introduce a compact scalable index for inference enabled entity search
that is more space efficient than the current state-of-the-art approaches,
with competitive performance in query processing.

We also demonstrate the viability of our proposed approach with an experimen-
tal evaluation of a prototype implementation of the complete system.

1.2 Outline

The remainder of the paper is organized as follows. Section 2 reviews relevant
background information. Section 3 gives an overview of our problem and pro-
posed architecture. Section 4 presents our structure keyword query language,
with the disambiguation problem explored in Section 5. Section 6 then presents
our index structure and details query processing of disambiguated queries. In
Section 7 we show experimental results of a prototype implementation. Section
8 surveys and compares related work with our approach and Section 9 concludes.

2 Background

Entity Search

Entity search is a variant of traditional information retrieval (IR) in which
entities (e.g., Albert Einstein, University of Waterloo, etc..) extracted from text
documents form the most basic data-level construct, as opposed to documents in
traditional IR. This view of the search problem opens up a variety of new query
processing opportunities, in particular, the ability to process more structured
types of queries over the entities and their relations to one another becomes
feasible (e.g., [2, 4, 10, 11]). In contrast to traditional IR, query processing in
this model may aggregate data from multiple documents to determine which
entities are part of a query result. In these models, structured or unstructured
query languages can be used to describe entities of interest, and data can reside
in a structured model or in text documents. The common facet is that entities
form the primitives for search.

As an example, consider an entity-based search system over text documents.
Given a query for documents containing the entity Max Planck, the system



would retrieve all documents mentioning Max_Planck, and not the documents
which mention the Max_Planck_Institute or the Max Planck Medal (an award
in physics). Having entities as primitives reduces ambiguity in the semantics
of the search, which avoids problems common to traditional keyword search
systems. Also, information can be aggregated from different sources to answer
a query, such as a search for all documents containing entities born/n(Canada).
Documents about qualifying entities will be returned independent of the location
of the information that encodes where they were born.

Semantic Search

Ontology-based semantic search is a similar problem to entity search in which
entities and relations form the base level data constructs. In these systems,
rich semantics defined by ontologies are taken into consideration during query
processing (or as a preprocessing phase). However, semantic search systems
generally operate over structured semantic data, such as RDF or OWL [7, 17],
fact triples [13], or XML [6] (with explicit references to the ontology concepts). A
variant of the semantic search problem is to support searching over the semantics
of entities found in text documents. Again these models may make use of
structured or unstructured query languages. The common thread in semantic
search systems is the support for inference over a reference ontology.

As an example, consider a semantic search system over text documents.
A search for documents containing entities of type GUITARIST would return
documents about B._B. King, Jimi_Hendrix, and other entities known to be
guitarists. These documents are query results independent of whether or not
they contain a syntactic occurrence of the word “guitarist.” Thus, the search is
over the semantics of the entities, rather than the syntax.

Knowledge Representation

The field of knowledge representation is concerned with formalisms for encoding
knowledge with clear semantics to support inference over the encoded informa-
tion. A collection of schematic information, which forms general rules about
a domain of interest, is called an ontology. Concrete instance information, or
entities, describe explicit information about particular entities in the domain,
such as Albert Einstein. A knowledge base is a general term for a domain
ontology and instance data.

As an example, an ontology might define relationships among abstract prim-
itive concepts, such as the relationship PHYSICIST is-a SCIENTIST. Ontologies
may also include arbitrary relations, such as hasWonPrize, to encode infor-
mation like NOBEL_LAUREATE ¢s-a PERSON that has a hasWonPrize relation to
some NOBEL_PRIZE. The encoding of the knowledge base information and the
associated semantics rest on an underlying knowledge representation formalism.



3 Problem Definition and Solution Overview

3.1 Preliminaries

We assume access to a domain related knowledge base and document corpus.
These data sources are preprocessed to: (1) extract entities from the text (used
for entity search over documents), (2) compute statistics over the knowledge
base (used in disambiguation), and (3) index the knowledge base’s content and
structure (used in query processing), as well as the document text (used to
integrate full text search).

The schema language for the underlying knowledge bases assumed in our
work includes entities, primitive concepts, conjunctions, existential relations,
and acyclic concept hierarchies. This is roughly equivalent to the £L£ dialect of
description logics, and is sufficient to capture many real world knowledge bases
and ontologies such as YAGO [21] and SNOMED CT!, an ontology of medical
terms.

The basic knowledge base terminology used in our discussion, as well as our
notational conventions, are as follows.

e FEntities are written in a typed font with leading capitals. Entities denote
constant terms such as people, places, and organizations
(e.g., Albert Einstein, Canada).

o Primitive Concepts are written in a typed font in all capitals. Prim-
itive concepts are types or classes to which entities may belong (e.g.,
SCIENTIST, COUNTRY).

e Relations are written in italic camel caps. Relations are binary relation-
ships that can exist between entities and/or primitive concepts (e.g., has-
WonPrize or bornIn). There is also a transitive is-a relation used to
encode hierarchies among concepts.

e A general concept is any number of entities or primitive concepts joined by
logical connectives such as conjunctions and relations (note that relations
are implicitly existentially qualified). We use “,” to denote a conjunction.
(e.g. SCIENTIST, hasWonPrize(Nobel Prize_in Physics)).

We also adopt the convention of writing keywords in quoted italic lower case
(e.g., “scientist”).

3.2 Problem Definition

The problem we address is to provide expressive yet flexible access to document
collections. We aim to make use of entity-based retrieval and incorporate infer-
ence over a rich schema defined by a reference KB. We address this problem in
the following way.

ISNOMED CT actually uses an extended version of ££ called ££++ which includes
hierarchies among relations and transitive relations. Our proposed system would need to be
extended to handle inference over these constructs.
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Figure 2: System architecture.

e We develop a keyword-based structured query language that blends the
expressiveness of structured queries with the flexibility of keyword queries
(Section 4).

e Next, we address the problem of ambiguity in our query language caused
by introducing keywords as primitives. We propose an efficient approach
for disambiguating queries in our language to produce a ranked set of pos-
sible query interpretations using the vocabulary of an underlying schema
(Section 5).

e We then focus our attention to the problem of efficiently evaluating the
disambiguated queries over large rich schemas. To achieve this, we encode
KB structure and content in a compact index structure that allows us
to efficiently find all entities that satisfy a disambiguated query in our
language. Our index builds on traditional notions of inverted indexing,
allowing us to easily incorporate entity-based document retrieval and full
text search (Section 6).

e Lastly, we address the issue of ranking relevant documents by incorporat-
ing established mechanisms from the IR community for document ranking
based on relevance of keywords to documents.

3.3 System Overview

Our system architecture is illustrated in Figure 2. The solid lined box on top
shows the run-time components, with data flow represented as solid lined ar-
rows. The grey dotted lined box shows the preprocessing phase, with preproces-
sor data flow represented as dotted lined arrows. The bold typed components
in the diagram show the parts of the system which we focus on in this paper,
namely, the query language, query disambiguation, indexing, and query pro-
cessing. We use generic solutions to support the remaining components of the



system (document ranking and information extraction).

The preprocessor consists of two components, the information extraction sys-
tem and the indexing module. These two components make use of two domain
related data sources, a knowledge base and a document corpus. The prepro-
cessing phase proceeds as follows. First the information extraction tool is run
over the document corpus to mine structured information from the text. This
information includes extracted named entities as well as relationships among
the entities. Facts that were previously unknown to the knowledge base can be
contributed (note that we omit this learning phase in our implementation and
discussion as the focus of this paper is not on the extraction component). The
named entities are then sent to the indexing mechanism to build an inverted
index over entities and documents. The documents’ text is also indexed directly
to support full text search.

In the second preprocessing phase, the structure of the knowledge base is
indexed to support efficient entity search within the knowledge base. It is im-
portant to note that the entity search module must be capable of handling the
expressivity of the constructs used in the underlying knowledge base. The final
preprocessing step is to compute statistics over the knowledge base which will
be used during query disambiguation.

At run time, an arbitrary keyword-based structured query is taken as input
to the system. Because the query is based on keywords, there is an inherent
ambiguity as to the semantics of the query (i.e., the user’s intention). We
compute a ranked set of possible query disambiguations based on the vocabulary
of the knowledge base. Each disambiguated query is thus a general concept over
the underlying knowledge base. One or more of these disambiguated queries can
then be evaluated to find relevant entities and their corresponding documents.
The documents are then returned to the user ranked by some relevance metric.

4 Keyword-based Queries

We now introduce our keyword-based structured query language.

Definition 1 (Document Query) A document query DQ is given by the
following.

| (Ql)a(Q2),,(Qn)

where Q; is a structured keyword query.

A document query specifies documents of interest based on entities that
qualify for the structured keyword queries using “AND” semantics. A structured
keyword query describes a set of entities as defined below.

Definition 2 (Structured Keyword Query) Let k be a keyword phrase (one
or more keywords), then a structured keyword query @ is defined by the follow-
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The first construct allows a primitive concept in a query to be described
by a set of one or more keywords (e.g., “nobel prize”). The second construct
allows one to describe an entity in terms of the relationships it has to other
entities  (e.g., “born in(Germany)”). The third constructor allows a set of
queries to describe a single class of entities in conjunction (e.g., “harmonica
player, songwriter”). The comma operator is used to explicitly label the con-
junctions, reducing the ambiguity among multi-keyword phrases that occur in
conjunction.

Note that the relation query constructor allows an arbitrary query to describe
the entity to which the relation extends, for example, “born in(Country, has
official language(Spanish))” could be used to query all entities born in spanish
speaking countries.

More formally, the resulting entity set {e} for a structured keyword query
Q@ denoting general concept C' is given by the following: {e | e € C'}. We use
the notation e € @ to say that entity e is in the result set of query . Section
5 discusses how to find the concept C' which is denoted by Q.

To illustrate how structured keyword queries are used in document queries,
consider the following example document query.

(person, born in(Germany)), (participated(World War II))

The query indicates that qualifying documents should mention both a per-
son born in Germany and some entity that participated in World War II.
More formally, the resulting document set {D} for a document query DQ =

(@1),(Q2), ..., (@) is given by the following:
{D | Voepgdeeq such that e € D}

where e € D denotes entity e occurring in the text of document D. Intuitively,
the document retrieval uses “OR” semantics per entity set denoted by a sub-
query, and “AND” semantics across subqueries in the DQ.

5 Disambiguating Query Intent

Because our query language is built on keywords as primitives, there is an
inherent ambiguity in the semantics of the query. The user’s intentions are
unknown since each keyword in the query could map to one of many items from
the knowledge base, and there is an exponential number of ways in which we
could select an item for each keyword to create a general concept.
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Figure 3: An example query disambiguation graph.

5.1 The Disambiguation Model

Consider a structured keyword query ). Each keyword in @) could have many
possible schema item matches based on some measure of syntactic similarity. Let
M (k) denote the set of possible schema item (entity/concept/relation) mappings
of keyword k.

The goal is to choose one schema item for each keyword in the query, such
that the resulting disambiguation is a meaningful representation of the query
with respect to the knowledge base, and is also representative of the user’s
intention. There is a tradeoff that must be considered when choosing concept
interpretations for each keyword: we want mappings that represent the users
intentions as best as possible in terms of syntactic similarity, but which also
have a meaningful interpretation in terms of the underlying knowledge base by
means of semantic relatedness.

We encode our disambiguation problem as a graph which represents the
space of all possible interpretations that bind one entity, concept, or relation
to each keyword. In the discussion that follows, we refer to a concept or the
subgraph that denotes a concept interchangeably.

Definition 3 (Disambiguation Graph) Let Q) be a structured keyword query.
Then a disambiguation graph G = (V, E) with vertex set V', edge set E, and P
a set of disjoint partitions of the nodes in V, are defined by the following.

v o= | M)

keQ

P o= | J{Mk)}
keQ
E = edges(Q)

10



where the edge generating function edges(Q) is defined as follows.

edges(k) = {}
edges(k(Q)) = U () | U edges(Q)
n1€M(k),
na€root(Q)
edges(Q1,Q2) = U (n1,n2) | U edges(Q1)
n1€root(Q1),
no€root(Q2)

U edges(Q2)

where root(Q) denotes the vertices in the root level query of @ as follows.

root(k) = M(k)
root(k(Q)) = M(k)
root(Q1,Q2) = root(Q1) U root(Q2)

(Note that we have abstracted n-ary conjunctions as binary conjunctions for ease of presen-
tation, arbitrary conjunctions can be formed by considering all pairwise conjunctions in the
n-ary expression.)

Figure 3 depicts an example of a disambiguation graph for the query “ger-
man, scientists, have won(nobel award)”. The boxes denote vertices (corre-
sponding to concepts or entities in the underlying knowledge base), the dotted
circles denote partitions (the sets M(k;)), the italic font labels denote the key-
words for which the partition was generated (k;), and the interconnecting lines
denote edges which represent semantic similarity. Observe that each level of
any subquery is fully connected t-partite, while edges do not span query nesting
boundaries. This is because nested concepts do not occur in conjunction with
concepts at other nested levels. They are related only through the vertices that
denote the explicit knowledge base relations.

For a disambiguation graph G generated from a structured keyword query
Q, any induced subgraph of G that spans all partitions in P corresponds to a
concept interpretation of (). For example, the induced subgraph spanning the
nodes

{GERMAN_PEQPLE, SCIENTIST, has WonPrize, NOBEL_PRIZE}

corresponds to the concept
GERMAN_PEOPLE, SCIENTIST, hasWonPrize(NOBELPRIZE).

Figure 4 illustrates a disambiguation graph for a more complex query with
multiple nesting branches and multiple levels of nesting. In this example, a
meaningful interpretation could be the following concept.

GERMAN_PEOPLE, SCIENTIST, hasWonPrize(NOBEL_PRIZE),

11



Query = "german, scientists, have won(nobel award), live in(country, has language(english))"
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Figure 4: An example of a query disambiguation graph. Each edge represents
complete bipartite connectivity between all vertices in the partitions.

livesIn(COUNTRY, hasOfficialLanguage(English Language))

Note the difficulty in disambiguating this query. In one part of the query the
keyword “german” is used to denote a nationality, while in another part of
the query the keyword “english” is used to denote a language. Both of these
keywords are legitimate choices to denote both nationalities and languages, and
consequently purely syntactic matching alone could not possibly handle both
situations correctly. This phenomena is known to linguists as polysemy. Similar
issues arise with synonymy (for example, the phrases “guitarist” and “guitar
player” both denote the same concept).

It is evident that the space of possible query interpretations is exponential
in the size of the query. Finding the “best” or top-k interpretations will depend
on how we compute a score for a candidate subgraph corresponding to a query
interpretation.

5.2 The Scoring Model

Now that we have established a model for generating a space of candidate query
interpretations, we need to define the notion of a score in order to compute the
top-k interpretations. We start by reviewing notions of semantic and syntactic
similarity which will form the basis of our scoring function.

Semantic Similarity

The first factor of our scoring model is semantic similarity, which we denote
generically using semanticSim(A, B). The problem of computing the similar-
ity between two concepts has a long history in the computational linguistics and
artificial intelligence fields. Early works focused on similarities over taxonomies,

12



often including the graph distance of concepts [12, 14, 23], and probabilistic no-
tions of information content of classes in the taxonomy [12, 15, 19]. More recent
works have looked at generalizing semantic similarity metrics from taxonomies
to general ontologies (i.e., from trees to graphs) [5, 16, 20]. As an example, Lin
defines semantic similarity between two concepts as the following [15].

| _ 2.1og(P(LCS(A, B))
Sszm(A7B) = log(P(A)) + log(P(B)))

where LCS(A, B) denotes the least common subsumer of A and B, i.e., the
first common ancestor in an “is-a” graph, and P(A) denotes the probability of
a randomly drawn entity belonging to concept A.

Lastly, there are the traditional notions of set similarity which can be applied,
since concepts in a taxonomy or ontology denote sets of entities. Two commonly
used metrics are the Dice coefficient and the Jaccard index, the latter illustrated
below.

. ANB
Slm.]accard(A’ B) - :AUB:

One common trait to all of these similarity measures is that they are binary;
they express similarity over pairs of concepts. We will see that efficiently ac-
commodating n-ary similarities using preprocessed statistics poses challenges,
though our model allows a natural approximation based on aggregates of binary
metrics.

We now introduce the notion of knowledge base support, which character-
izes the semantic similarity of all primitive concepts and relations occurring in
a complex general concept. In the definition of knowledge base support, we
appeal to n-ary similarity, with our approximation technique to be introduced
in Section 5.3.

Definition 4 (Knowledge Base Support) Let C be a general concept ex-
pressed using the primitive concepts, relations, and entities in the knowledge
base KB. Then the support of C by KB is given by the following.

support(C, K B) = semanticSim(CY,- - - ,C’go,R?7 , ...7R210)
+ semanticSim(RY, ..., Romo, Cct,---,Ch R, ..., Rp,.)
. . 1 _
+ semanticStm(RY™", ..., an;l, Cci,---, Cr,, R, s R:np)

where each C} (R}) is the j™ primitive concept (relation) in a conjunction
occurring in C' at nesting branch i.

Intuitively, this is the similarity according to the structure of the disambigua-
tion graph (which corresponds to the structure of the query). We compute the
similarity of primitive concepts occurring in conjunction, along with the incom-
ing relations from the previous nesting level, and the outgoing relations to the
next nesting level.

13



For our example in Figure 4, with the previously suggested disambiguation,
the support would correspond to the following.

semanticSim(GERMAN_PEOPLE, SCIENTIST, has WonPrize, livesIn)
+ semanticSim(hasWonPrize, NOBEL_PRIZE)

+ semanticSim(livesIn, COUNTRY, hasOfficial Language)

+ semanticSim(hasOfficialLanguage, English _Language)

Syntactic Similarity

The second component to our scoring model is the syntactic matching of the
concept label (or one of its synonyms) to the keyword. Indeed, the user entering
queries has an idea of the entities they are trying to describe. It is simply the
terminology of the user and the knowledge base that may differ, and the massive
scale of the knowledge base impedes learning on the user’s part. The closer
we can match a query syntactically while maximizing semantic similarity, the
better our query interpretation will be with respect to both the user’s intentions
and the knowledge encoded in our knowledge base. We use the function label
syntaxSim(a,b) to denote a measure of syntactic similarity. This could be
simple keyword occurrence in the knowledge base item’s label, or a more relaxed
measure such as edit distance.

Score Aggregation

Our final scoring model is thus some combination of knowledge base support,
which quantifies semantic support for the candidate disambiguation, and syn-
tactic similarity, which reflects how closely the candidate concept interpretation
matches the user’s initial description of their query intention. We can tune
how important each factor is by how we combine and weight the two similarity
metrics. In general, we allow any aggregation function to be plugged into our
system. However, as we will see in later sections, we can improve efficiency if
the aggregation function is monotonic by making use of threshold algorithms
for top-k search. We denote such an aggregation function using ®.

Definition 5 (Concept Score) Let Q be a structured keyword query, C a
concept, ® a binary aggregation function, and KB a knowledge base. Then the
score of concept C, with respect to Q, KB, and & is given by the following.

score(C, Q, K B) = support(C, KB) @ syntazSim(C, Q)

Given a disambiguation graph G with partition set P and a parameter integer
k, the goal of disambiguation is to find the top-k maximum scoring subgraphs
of G that span all partitions in P. Intuitively, we want to find the best k
interpretations of the query in terms of some balance between knowledge base
support and syntactic similarity.

The difficulty in solving the disambiguation problem lies in the nature of
the scoring function. Looking back to our disambiguation graph model, the
score of a general concept representing a candidate query interpretation depends

14



on all components of the concept (all conjunctions of primitive concepts and
relations). From the disambiguation graph point of view, this means that the
score (or weight) of each edge changes depending on which other edges are part
of the subgraph forming the candidate concept interpretation. The amount
of statistics that would have to be (pre)computed in order to support queries
with n terms would be very large, one would need to have access to the semantic
similarity of all n-way compositions of entities, primitive concepts, and relations
occurring in the knowledge base.

5.3 Approximating the Scoring Model

In most cases, having access to n-way semantic similarity would require pre-
computing an infeasible number of statistics, or incurring the expensive cost of
computing similarity at query time. Because there are an exponential number
of candidate query interpretations, computing similarity at query time could
add unacceptable costs to query performance. For example, the previously
described Simy;, metric requires a least common subsumer computation over a
large graph, while the Jaccard and Dice metrics require intersections of (possibly
large) sets. Thus, we move to an approximation model for any binary metric of
semantic similarity.

We approximate the score of a candidate query interpretation by aggregating
the pairwise support of all components of the candidate concept. (Note that
pairwise support reduces Definition 4 to a single binary similarity computation.)
In terms of the disambiguation graph, this means that each edge weight in the
graph can represent the support of having the two primitive concepts or relations
denoted by the edge’s vertices in conjunction.

We extend a disambiguation graph G to include a weight function w that
assigns weights to the vertices (v) and edges ((vi,v2)) of G as follows. The
weights are computed with respect to some knowledge base KB and the key-
words k from a structured keyword query Q.

w() = syntaxSim(label(v),k), where v e M()
w((vy,v2)) = support((item(vy), item(vs)), KB)

where item(v) denotes the knowledge base schema item (primitive concept,
relation, or entity) represented by vertex v and label(v) denotes the string rep-
resentation of the schema item represented by v.2

The approximate score of an induced subgraph denoting a candidate concept
interpretation is given by the following.

Definition 6 (Approximate Score) Let QQ be a structured keyword query,
KB a knowledge base, and G a subgraph of the disambiguation graph of Q
representing a concept C. Then the approximate score of C' represented by G

2In practice, it would be beneficial to consider the syntactic similarity of the keyword
to the closest synonym of the concept label.
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with respect to Q and KB is given by the following.

score(G,Q,KB) = Z w({vy,v2)) & Zw(v)

(v1,v2)€EE veV

5.4 Solving the Disambiguation Problem

The goal of the disambiguation problem is to find the top-k maximally scor-
ing subgraphs (corresponding to concept interpretations of the original query)
which are single connected components. Note that simply taking the maximum
scoring subgraph for each subquery will not necessarily result in a connected
graph, and thus does not map to a concept interpretation of the query. If our
scoring function is monotonic, we can implement a threshold algorithm (TA) to
efficiently find the top scoring subgraphs, so long as we have access to vertices
and edges in sorted order. A global ordering over all edges can be precomputed
and indexed, and vertices denoting concepts can be sorted on the fly since these
sets fit in memory and can be kept relatively small in practice. Alternatively,
we can implement a TA if we have access to only the vertices in sorted order
and allow random access to edges.

The disambiguation problem can be viewed as a relational rank-join, a TA
which implements a special case of A* search over join graphs. In this view of
the problem, our disambiguation graph is a join graph, with each keyword in
the query providing an input to a rank-join operation based on the partition
corresponding to the keyword. Each partition is ordered by syntactic similarity.

Consider each possible concept or relation match (partition M (k)), ordered
by syntactic similarity, as an input. We “join” two concepts if they have knowl-
edge base support, and rank the join based on the value of the approximate
score. Simultaneously, we join across nested subqueries based on equivalence of
the vertex representing relation keyword. This ensures the resulting joins form
connected graphs in terms of the underlying disambiguation graph.

As an example, consider the disambiguation graph from Figure 3, we illus-
trate a rank-join approach to disambiguation of the query in Figure 5. The
illustration shows each partition as an input to the rank join. Conjunctive com-
ponents are joined based on the existence of edges in the disambiguation graph,
while the entire nested queries are joined based on equality of the binding of
the relation keyword to a schema relation.

For brevity, we omit a review of the threshold algorithm for rank-join. The
challenge here is in the modeling of the problem as a rank-join as we have
presented. With this model in mind, the actual execution does not differ from
that of a traditional rank-join. We refer the reader to [9] for an overview of the
algorithm.

While solving the disambiguation problem involves possibly exploring an
exponential search space in the worst case, our experiments show that we can
still find meaningful solutions quickly in practice (see Section 7).
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German People M Scientist M hasWonPrize(Nobel Prize)

German People [ Scientist [ hasWonPrize(Nobel Prize in Physics)
German People M Computer Scientist MhasWonPrize(Turing Award)
German People M Scientologist M hasWonPrize (Award)

u

"german” scientists ‘nobel-dwar

il

"have won"

Query = "german, scientists, have won(nobel award)"

Figure 5: Encoding disambiguation as a rank-join with random access to edges.
The join conditions are on the existence of edges in the disambiguation graph
for each subquery, and on the equality of relation bindings to join across all
subqueries.

5.5 Integrating Full Text Search

As a final consideration, it may be the case that no subgraph can be found that
spans all partitions in a disambiguation graph for some query. This happens
when we can not find a meaningful interpretation for one or more keywords. In
this case we proceed as follows:

e We relax the problem definition to not require spanning all partitions when
finding a subgraph of the disambiguation graph. This allows us to build
partial interpretations.

e We augment our scoring model to add a constant penalty factor for each
unmapped keyword. This allows us to tune preference for complete dis-
ambiguations.

e Lastly, we include all keywords that are unmapped as part of the docu-
ment retrieval process. In this setting, we will retrieve documents that
contain one or more entities from the concept interpretation of the query
(as before), and favor those which contain the additional keywords in the
ranking.

For example, a partial interpretation for the query “german, scientists, have
won (nobel award)” could be the concept SCIENTIST, hasWonPrize(NOBEL_PRIZE)
which would then be parameterized with the keyword “german” during docu-
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ment retrieval. Note that in the worst case (in terms of disambiguation), our
system degrades to a regular keyword search.

6 Indexing and Query Evaluation

One way to support inference over an ontology or type hierarchy in a semantic
search system is by expanding the knowledge into the underlying data [1, 2, 3].
In the document retrieval model, this amounts to computing the deductive
closure over each entity discovered in the text, and expanding the full clo-
sure into the document for indexing. For example, if one finds the entity
Albert_Einstein in a document, they would add identifiers for PHYSICIST,
SCIENTIST, PERSON, MAMAL, LIVING_ORGANISM, etc..., to the document. This
way a query for PHYSICIST will retrieve documents that contain the entity
Albert Einstein. The benefit of this approach is in its simplicity, one need
not make any special modifications to the indexing procedure or the search
algorithm in order to support inference over the hierarchy. A drawback of
this method is that it greatly reduces the capabilities for inference during
query processing. For example, even if we expand the full closure of each en-
tities relations into the document, we still couldn’t answer a complex query
such as  “born in(located in(has language(German)))” to find documents about
Albert_Einstein (an entity who was born in a city that is located in a country
with German as the spoken language).

The other major drawback to this approach is the redundancy in the re-
sulting inverted index. Sets of entities will be repeated over and over again for
each concept of related type. For example, the index entry for SCIENTIST will
repeat the entire index entry for PHYSICIST, since every document mentioning a
physicist will also be mentioning a scientist by transitivity. This can potentially
cause an infeasible amount of redundancy, even for relatively simple ontologies.
Current approaches to this problem restrict the amount of the closure that is
expanded into the document, and require that any query can then be mapped
to one of a small number of pre-defined top level classes.

6.1 Hierarchical Inverted Index

We propose a family of combined document and ontology index structures re-
ferred to as a Hierarchical Inverted Index, or HII, that build on traditional
notions of graph representations and inverted indexing. The motivation behind
our index structure is to avoid redundancy in the index to be space efficient,
and support inference over the ontology at run time through query expansion.
We detail the design of the index below, and explore the impact on performance
in Section 7.

To support querying over simple hierarchies (taxonomies) we describe the
simplest instantiation of our index, HII,, depicted in Figure 6. For each primi-
tive concept and entity, the general idea is to index the inverse direction of the
“is-a” relations in order to support finding more specific concepts and entities
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Cy : ({Da, Dy, ..}, {is-a {C},Ch,..})
CQ : ({Di,Dj,...},{is—a_{C’{/,Cg,...})

Cn : {({Di,Dyp,..},{is-a” {CT,C%,...})

Figure 6: HII,: an inverted index mapping entities and concepts to documents
with links in the inverse direction of the hierarchical “is-a” relationship

Ci : {{Da,Dy,..},{R7{C1,C5,..}, ..., Rn{C1,C5, ..} })
Cy : {({Di,Dj,..},{R{{CY,CY, ..}, ... R {C{,CY, ..} })

Cn :+ {{Di,Dp,..},{R {CT,C3, ..}, ... R {CT,C3, .. }})

Figure 7: Hllg: an inverted index mapping entities and concepts to documents
with links in the inverse direction of all relations R (including the hierarchical
“is-a” relationship).

of a specified entity type. This is a subset of the adjacency list based graph en-
coding. For each index entry, the document collection directly associated with
that concept or entity (but not its entire closure) is listed. Note that we may
also populate strictly keyword based entries to support full text search over the
same inverted index.

The problem with the simple HII, is that querying by relations can not
efficiently be supported (for example, “born in(Canada)”). We extend HII,, to
Hllg in Figure 7 to support these types of queries by also indexing the inverse
direction of all relations R. This also gives us the ability to index ontologies with
more complex concept definitions which include both conjunctions and relations.
For example, NOBEL_LAUREATE is-a (PERSON, hasWonPrize(NOBEL_PRIZE)). This
index does not introduce any extra redundancy, but rather each entry references
the related entries via the appropriate relations. Hllg is also encodes sufficient
information to efficiently support the disambiguated structured keyword queries
described in Section 4. Figure 8 shows an example index for a portion of the
KB in our running example.

Lastly, for completeness, we note that our index family can be extended
to include a full ontology index by also indexing inverse relations. In our
index structure, this amounts to indexing the forward direction of relations
(the inverse of the inverse) to support querying over inverse relations (e.g.,
bornIn~ (Albert Einstein)).
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NOBEL_PRIZE : ({},{is-a” {Nobel Prize_In Physics,
Nobel Prize_In Chemistry, Nobel Peace Prize,...}})

SCIENTIST : ({},{is-a~ {PHYSICIST, CHEMIST, COMPUTER_SCIENTIST,
...,Isaac Newton,...},...})
PHYSICIST : ({},{is-a~ {Albert Einstein, Max_Planck, Galileo_ Galilei,
e
CHEMIST : ({},{is-a” {Marie_Curie,...},...})
Nobel Prize_In Physics : ({Da},{hasWonPrize” {Albert_Einstein, Max_Planck,
Marie Curie,...},...})
Nobel Prize_In Chemistry : ({Dg},{hasWonPrize” {Marie_Curie, Otto_Wallach,...
b
Albert Einstein : ({Di1, D4, D12}, {isMarriedTo~ {Mileva Maric},...})
Max Planck : ({Dg4, D7}, {hasAcademicAdvisor™ {Gustav_Ludwig Hertz,

Walther Bothe, Max_von Laue},...}})

Figure 8: Part of an example HIIg index.

6.2 Query Evaluation

The procedure illustrated in Figure 9 details the general search procedure for
query processing over the hierarchical inverted index. We use “index-lookup(C')”
to denote retrieving an index entry for entity or primitive concept C, and use
“get(relation)” to denote retrieving the entity and concepts associated with
relation from the index entry. For notational convenience, we also use the func-
tion getEnts() to denote retrieving the entities associated hierarchical “is-a”
relation, and use getSubClasses() to denote retrieving the primitive concepts
associated with the hierarchical “is-a” relation.

Consider a search for the entities described by the following concept over the
index shown in Figure 8.

PHYSICIST, hasWonPrize(NOBEL_PRIZE)

The first call to our eval procedure would compute the intersection of the re-
cursive calls to eval over PHYSICIST and hasWonPrize (NOBEL_PRIZE). The
call to eval(PHYSICIST) would run by collecting the entities in the index entry,
and would then recursively walk down the hierarchy by following any refer-
ences (in the example index there are none). The call to eval(hasWonPrize
(NOBEL_PRIZE)) would look up the index entry for NOBEL_PRIZE and collect any
entities in the corresponding has WonPrize set (in the example, this set is again
empty). For primitive concepts occurring in this set, we would evaluate them
and collect all entities by descending the hierarchy in the same way as was done
for PHYSICIST. We then descend the hierarchy for NOBEL_PRIZE by following the
is-a~ references, collecting all entities in the has WonPrize sets in each recursive
call. In the example index, we will find all entities corresponding to the has Won-
Prize relation for the Nobel Prize_In Physics and Nobel Prize_In Chemistry
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eval(Q1, Q2):

return eval(Q1) N eval(Q2)

eval(C):

entry = index-lookup(C)
res = entry.getEnts()

sc = entry.getSubClasses()
for each (C' in sc)

eval(R(C)):

entry = index-lookup(C)
related = entry.get(R)
for each(C’ in related)
res = res U eval(C")
sc = entry.get(is-a)
for each(C’ in sc)
res = res U eval(R(C"))

res = res U eval(C”) end for
end for return res
return res

Figure 9: Hierarchical Index traversal procedure.

entries. This set includes
{Albert_Einstein, Max_Planck, Marie_Curie, Otto_Wallach}
which we then intersect with our set of PHYSICISTS,
{Albert Einstein, Max Planck, Galileo_Galilei}

yielding the query result, {Albert Einstein,Max_Planck} and their corresponding
documents {D1, D4, D7, D12}.

6.3 Query Results and Ranking

There are a number of ways one could envision presenting and ranking results
from our system. One approach could have entities as results, each with a list
of associated documents. The entities could be ranked by their relationships to
the query in the ontology, or based on statistics over the document corpus. Al-
ternatively, one may want a document list as the result, ranked by the relevance
of the corresponding entity to the document using a form of tf-idf measure. A
third option could combine these two approaches, ranking groups of documents
per entity, and ranking the groups based on an overall ranking of entities. This
would be analogous to a “GROUP BY” statement in relational query process-
ing, in this case grouping by entity. Various works have looked at entity specific
ranking techniques [4, 8, 18].

While ranking is not the focus of this paper, it is a necessary component
to a deployable system. We take the simple approach of ranking the resulting
document set as a whole, ranking based on the tf-idf score of the corresponding
entities that qualified the document as a result.

7 Experimental Evaluation

We have implemented the entire QUICK system as depicted in Figure 2, with
the exception of the feedback mechanism for learning new facts from text.
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’ \ QUICK \ PostgreSQL ‘
KB Representation Size 1.2 GB 41 GB
Average CPU Usage 100% 29.2%

Figure 10: Statistics for experimental runs.

The focus of our experimental evaluation is on performance. The quality of
query disambiguations and quality of document results is an important issue,
but its relevance is diminished if the system does not perform at a reasonable
standard. While additional user studies are required to evaluate the the quality
of our system, we are only concerned with the performance aspects in this
paper and leave quality evaluation as future work. Informally however, we find
in practice that our system does return relevant documents and generally finds
intended query interpretations.

7.1 System Descriptions

QUICK is built on a variety of open-source software. For the information extrac-
tion component, we built a simple text processor using the OpenNLP library.3
This tool will parse and annotate person, location, and organization named en-
tities. For simplicity in document retrieval, we build the document side of our
hierarchical index separate from the KB information. We built a simple text
and named entity indexer using the Lucene library.* The hierarchical inverted
index was written in Java and uses Berkeley DB® as a back-end data store.
Our query disambiguation system was also written in Java and uses a separate
Berkeley DB store to maintain the knowledge base semantic similarity measures.
All semantic similarity values used for disambiguation are pre-computed. We
use the Jaccard index discussed in Section 5 as our semantic similarity measure,
and the Levenshtein edit distance for syntactic similarity with addition as our
aggregation function.

We compare our system to a more traditional approach for semantic search,
a relational back-end with a pre-computed closure of the knowledge base. In
this system, all inference that could possibly be done over the knowledge base
is pre-computed and stored. We use the tools distributed with YAGO to create
the database image (both the closure and indexing). We also use the query
processor distributed with YAGO to generate SQL equivalents of our workload.
We use PostgreSQLS as our relational database.

7.2 Data and Workload

We use the 2008 version of YAGO [21] as our knowledge base (note that this
is approximately three times larger than the initial instance reported in [21]).

3http://opennlp.sourceforge.net/

4http://lucene.apache.org/

Shttp://www.oracle.com/technology /products/berkeley-db/je/index.html
Shttp://www.postgresql.org/
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Figure 11: Performance results for (a) mix workload, (b) flat queries, (c) chain
queries, and (d) star queries. Graph (e) shows query times as a function of query
length for fixed values of entity processing size. Graph (f) shows disambiguation
times for all queries in the workload.

YAGO consists of about 6 GB of raw ontology and entity data. It contains over
2 million entities, about 250,000 primitive concepts, 100 relations, and over 20
million facts about these entities, concepts, and relations. We use a snapshot
of Wikipedia consisting of 27 GB of individual articles as our corpus. Our KB
index is 1.2 GB in total, and when combined with the document index is still
under 6 GB.

To evaluate our system, we created a number of queries of varying length
and generality. These queries vary in length from one to eight terms, and vary
in generality of the terms. We characterize the overall generality of a query by
the total number of entities that are processed at intermediate stages in order
to evaluate the query. Our workload varies in generality from 1 to 100,000
intermediate entity results. Queries also vary in their shape. Our workload
includes flat queries (conjunctions with no relations), chain queries (a nesting
of relations), and star queries (a conjunction of relations) of each length and
generality.

7.3 Experimental Results

Figure 10 summarizes two important characteristics of our approach vs. Post-
greSQL. QUICK makes use of a compact 1.2 GB representation of the knowledge
base, while the relational encoding of the closure consumes 41 GB. Conversely,
our approach utilizes 100% of the CPU during query processing, while Post-
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Figure 12: Total run times for all queries.

greSQL stays under 30%. This tradeoff of CPU cycles for space allows us to
keep a sufficiently compact KB index facilitating in memory KB query process-
ing. Conversely, the full closure approach with PostgreSQL must necessarily
be disk resident. The tradeoff is now that QUICK must support inference at
query time, a CPU intensive task, while the relational approach will retrieve
the pre-computed inferred data from disk, an I/O intensive task.

Figure 11 (a) shows KB query run-times for QUICK and PostgreSQL for our
entire workload with each separate query type shown in Figures 11 (b) to (d).
In this graph, queries are grouped based on the number of entities touched by
our system during query processing, and the average run-time is graphed. (Note
that PostgreSQL may choose query plans that are substantially different from
how our system evaluates queries. This is why PostgreSQL does not necessarily
follow the same trends as QUICK in the graphs.) It is evident from these graphs
that our approach of materializing inferred data on-demand performs better on
average than the stored approach. This is because our KB representation is
compact enough to maintain in memory. Also, our query processing algorithm
is specially designed for our class of nested concept queries. PostgreSQL on
the other hand uses repeated joins of a large facts table, a general relational
solution that is not tailored to this application. Figure 11 (e) shows run-time
as a function of query length for two fixed sizes of query generality (10,000 and
100,000). It is evident that query length has little effect on performance, query
performance is largely driven by query generality.
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Figure 11 (f) shows the performance of our query disambiguation system for
all queries. In each case we find the top 10 disambiguations for a simple text
representation of the query. In most cases disambiguation can be achieved very
efficiently, however some cases can be more challenging. These cases correspond
to situations in which many of the candidate concepts have semantic relations
to one another, and thus non-zero edges in our disambiguation graph.

Figure 12 shows the breakdown of performance over the entire workload for
the three phases of query processing (query disambiguation, KB search, and
document retrieval). KB search is generally the most expensive task, while
document retrieval occasionally dominates. This corresponds to situations in
which there are a large number of qualifying entities for the query, and thus the
document retrieval must make a large number index look-ups.

8 Related Work

The problem of entity/relation search over extracted data sets has recently
received increasing attention, with various efforts for structured query processing
in this setting [2, 4, 10, 11, 13]. Our system differs from these approaches in
that they generally do not consider rich semantics of the entities and relations,
or do so using a pre-computed closure.

The other differing factor is our integration of ambiguous terms into queries.
NAGA [13] also supports ambiguity in queries via regular expression matching
and keyword matching against strings in a special “means” relation that is part
of YAGO. Query processing is done by finding all matches and evaluating the
constraints in the query against candidates. This is in contrast to our heuristic
based disambiguation as a preprocessing step to query evaluation.

With respect to the semantic search side of our system, our approach dif-
fers from current works in a number of ways. First, semantic search systems
generally assume documents are annotated with structured semantic data, such
as RDF or OWL [7, 17], or XML [6] (with explicit references to the ontology
concepts) and often assume a structured query language. Our system uses a
mix of extracted structure from text, like the fact triples in NAGA, and the free
text itself, like the text-based semantic search engine ESTER [1].

A few works have considered semantic search over text databases [1, 3] mak-
ing use of keyword search interfaces, the most successful of which is ESTER [1],
an ontology-assisted wikipedia search engine. In ESTER, the keyword query
is matched against known entities and a dynamic user interface allows users to
disambiguate among possible matches to primitive concepts. However, keyword
mappings are based solely on primitive concepts and no attempts to compose
general concepts from sets of keywords are made.

In these works inference is supported by expanding the deductive closure into
the text, potentially causing large amounts of redundancy. The expressivity of
queries making use of inference is also limited in these systems and restrictions
on the ontologies are imposed, generally requiring a small number of pre-defined
top-level concepts as starting points for queries [1, 3]. Our proposed system
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does not rely on these types of assumptions and can process a broad class of
nested concept queries. The EntityRank system [4] also incorporates keywords
into structured queries as so called context keywords. Our approach of including
parts of queries which can not be disambiguated as residual keywords for ranking
is similar. The TopX system [22] has also been designed to support inference
over ontologies, however the current version of this system only includes support
for WordNet synonyms, and ontology integration is listed as an avenue for future
work.

9 Conclusions and Future Work

We have proposed a keyword-based structured query language for entity-based
document retrieval, and shown how rich semantics from a reference knowledge
base can be integrated. We have explored ambiguity issues with basing a struc-
tured query language on keywords and proposed a solution for disambiguation.
We have also proposed a compact representation for knowledge base information
that facilitates efficient semantic search for nested concept queries.

While we have demonstrated the competitive performance of our system, we
have not yet experimentally validated the quality of results. Our future work
will include a user study to identify the quality of our query disambiguation
scheme as well as the accuracy of our entity-based retrieval.

There are also a number of other avenues for future work which focus on the
issue of scalability in different contexts. While this work explored scaling the
size of the metadata and expressiveness of the query language, one could look
at other variants of the scalability problem. These problems include further in-
creasing the expressiveness of the query language, increasing the expressiveness
of the logic dialect that underlies the knowledge base, and scaling the corpus
size. The first two problems further the challenges of efficient query processing
and compact indexing, while the third problem poses issues in information ex-
traction likely to require an on-the-fly approach rather than full preprocessing.

Another problem for future work is ranking. There is an abundance of
information available at ranking time: the qualifying entities, the qualifying
documents, statistical metrics of entities to documents (e.g., tf-idf scores), the
terms mentioned in the query, and so on. More sophisticated approaches may
exploit this information to improve ranking.
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