waterloo

Technical Report
CS-2009-17

Taking Advantage of the Interplay among
Software Product Lines, Service-oriented
Architectures and Multi-agent Systems

Ingrid Oliveira de Nunes
Carlos José Pereira de Lucena
Paulo Alencar
Donald D. Cowan

Faculty of Mathematics

DAVID R. CHERITON SCHOOL OF COMPUTER SCIENCE

UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO, CANADA N2L 3G1

Technical Report CS-2009-17 May, 2009
David R. Cheriton School of Computer Science - University of Waterloo

Taking Advantage of the Interplay among
Software Product Lines, Service-oriented Architectures
and Multi-agent Systems

Ingrid Oliveira de Nunes', Carlos José Pereira de Lucena’,
Paulo Alencar?, Donald D. Cowan?

1 Pontifical Catholic University of Rio de Janeiro (PUC-Rio) - Rio de Janeiro, Brazil
2 University of Waterloo - Waterloo, Canada

{ionunes, lucena}@inf.puc-rio.br, {palencar,dcowan}@cs.uwaterloo.ca

Abstract. Multi-agent Systems (MASs) are often being applied in a wide range of industrial
applications, showing the effectiveness of the agent abstraction to develop open, highly interac-
tive, autonomous and context-aware systems. MASs have been combined with Service-oriented
Architectures (SOAs) in order to provide customization and flexibility in these systems. This com-
bination calls for new approaches that support personalized user services through autonomous and
pro-active components in dynamic environments. Existing approaches fail to provide reusable
multi-agent service components as well as suitable representations and processes that support au-
tomated software generation based on common and variable features within a domain. In this
paper we present a domain engineering process-oriented approach to build service-oriented user
agents using the Software Product Line (SPL) engineering paradigm. The approach comprises
activities and models to support the development of service-oriented customized agents that au-
tomate user tasks based on service orchestration involving multiple agents in open environments,
and takes advantage of the synergy of SOA, MAS and SPL. The domain-based process involves
extended domain analysis with goals and variability, domain design with the specification of agent
services and plans, and domain implementation.

Keywords: Software Product Lines, Multi-agent Systems, Service-oriented Architectures.

In charge of publications:

Helen Jardine

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada N2L 3Gl

Tel: +1 519 888-4567 x33293 Fax: +1 519 885-1208
E-mail: hjardine @uwaterloo.ca

Web site: http://www.cs.uwaterloo.ca/research/tr/

ii

1 Introduction

An agent-based method is often the approach of choice in many of the existing software tools that
support applications such as web-based supply-network management, auction staging, medical-
record processing, mission scheduling, and e-commerce [8]. These systems are typically open,
highly interactive, autonomous and context-aware, and need to support customized and flexible
user services. Approaches to Multi-agent Systems (MASs) involve metaphors such as autonomous
agents, agent goals and agent societies [27]]. In contrast, Service-oriented Architectures (SOAs)
[5] and related approaches are often used to deliver application functionality as reusable services
to end-user applications or to build other supporting services. However, the development of large-
scale service-oriented MASs calls for new software engineering processes, models and methods
that support personalized user services through pro-active, autonomous, reactive, and heteroge-
neous components in dynamic and uncertain environments. Existing approaches do not address the
problem of generating these user component services in a Software Product Line (SPL) fashion,
and fail to provide reusable software multi-agent service components as well as suitable represen-
tations and processes that support automated software generation based on common and variable
features within a domain. In this paper we present a domain engineering process-oriented ap-
proach to build service-oriented user agents using the Software Product Line Engineering (SPLE)
paradigm. The approach comprises activities and models to support the development of service-
oriented customized agents that automate user tasks based on service orchestration involving mul-
tiple agents in open environments such as the Web. The domain-based process involves extended
domain analysis with goals and variability, domain design with the specification of agent services
and plans, and domain implementation.

Our approach takes advantage of the synergy of SOA, MAS and SPL. Service-oriented sys-
tems follow many of the ideas from research conducted in MASs but there are several challenges
that still need to be faced in terms of their combination [7]]. The integration of these two approaches
is usually referred to as Service-oriented Multi-agent Systems or Agent-based Service-oriented
Architectures. This integration has been used in domains such as electronic commerce, in which
users have agents act on their behalf to automate their tasks. However, given that agents represent
individuals in these scenarios, there remains a need to personalize an agent to meet specific needs
of the users and to support their implementation in an automated way. This can be achieved by
developing families of agents, which have variable parts but at the same time present common
features. In this context, SPLs [4] is a software engineering trend that promotes reduced develop-
ment costs, shorter time-to-market and higher quality, when developing families of systems by the
exploitation of the common features among family members.

Besides the research work that addressed the integration of SOA and MAS, these two ap-
proaches have been individually studied in combination with SPLs [[11} [15} 16} 21]. The inte-
gration between SPL and SOA is currently receiving significant attention both in research and in
practice. While SOA provides flexible architectures promoting large-scale reuse of software de-
veloped in different organizations, SPL helps in identifying, analyzing and modeling services and
their configurations to meet different users’ needs. The main rationale for integrating MAS and
SPL is that MAS methodologies have not addressed the need to develop large scale customized
systems and little effort has been expended on software reuse techniques. As a result, although
these approaches have been studied independently and in pairs, to the best of our knowledge, there
is no research aimed at taking advantage of the the integration of the three approaches (i.e., MAS,
SOA, and SPL).

In this paper, we first present the general results of an exploratory study into the integration

of SOA, MAS and SPL, by providing an overview and comparison of these three approaches,
emphasizing the benefits they bring to each other. Second, we propose an approach for building
customized user agents using a SPL approach. These agents are characterized as service-oriented
MASs and they provide personal services to users. Although, the idea of providing agents to act
on behalf of users has been introduced in previous work [10], there is a clear need to provide
personalized agents in large numbers given that they represent individuals. This need to produce
large numbers of agents leads us to consider automated generation using a SPL approach.

The remainder of this paper is organized as follows. In Section [2] we briefly describe SOA,
MAS and SPL, and compare these approaches to provide some rationale for and benefits of their
integration. Section [3] gives an overview of our domain engineering process-oriented approach
and presents an illustrative example. In Sections | to[6] we describe in detail the domain analysis,
design and implementation phases of the approach. Section [/| details the derivation process of
customized user agents. Section [§ contains a discussion about some relevant issues that emerged
from our study, and in Section [0] we describe related work. Finally, in Section [I0] we present our
conclusions.

2 Integration of SOA, MAS and SPL

In this section, we focus on the rationale and benefits for integrating SOA, MAS and SPL. We
briefly present each approach and then compare them in order to capture their similarities and dif-
ferences. Next, we give an overview of each approach. We do not provide an extensive description
but point the interested reader to [4} 15, [27]].

Service-oriented Architecture. SOA [5] is a paradigm for developing distributed applications
based on the their decomposition into a set of services, which can be used either by users and client
applications or by other services. These services may be under the control of different ownership
domains. Moreover, SOA provides a uniform means to offer, discover, interact with and use
services to produce desired effects consistent with measurable preconditions and expectations.
Service-oriented systems follow some key principles, which are: (i) loose coupling; (ii) service
contract; (iii) autonomy; (iv) underlying logic abstraction; (v) reusability; (vi) composability; (vii)
statelessness; and (viii) discoverability.

Multi-agent Systems. MASs [27] synthesize contributions from different areas, including
artificial intelligence, software engineering and distributed computing. In the context of software
engineering, it is viewed as a paradigm, which addresses developing systems that contain many
dynamically interacting components, each with their own thread of control while engaging in
complex, coordinated protocols. The main idea of Agent-oriented Software Engineering (AOSE)
[25] is to decompose complex and distributed systems into autonomous, pro-active and reactive
entities with social ability, namely agents. A main difference between an agent and an object is
that the former encapsulates not only data (its state), but also the behavior selection process and
when such behaviors are necessary. Hence, agents are developed with cognitive abilities usually
modeled as goals to be achieved, plans to achieve these goals and beliefs (mental state) necessary
to execute plans.

Besides agents, MASs provide other abstractions that are inspired by their analogy with human
societies. It has concepts such as roles and organizations, identifying not only the responsibilities
of agents as individuals, but also their global responsibilities to the MAS as a whole, i.e. social
tasks. This leads to agents committed to playing roles in organizations and the need to identify
social laws, which must be respected and enforced. This is particularly interesting when avoiding

possible chaos in large-scale open environments, such as the Internet.

Software Product Line. SPLE [4, 18] aims at improving the development of system families
by exploiting common features of applications. SPLE allows a systematic derivation of products of
the same family from a flexible architecture that supports variability. SPLE is typically composed
of two key processes [18]]: domain engineering, in which SPL common features and variability
features are identified, defined and realized, and application engineering, in which applications of
the SPL are built by reusing domain artifacts and exploiting the SPL variability.

Table 1: Similarities and Differences among SOA, MAS and SPL

Approaches| Similarities Differences
SOA and Development of flexible, SOA SPL
SPL cost-effective systems Composition of dynamic com- | Reusing and resolving variabil-
[0 21]) Efficient Reuse putational elements ity in static elements (typically)
Applications development Opportunistic reuse Systematic reuse
from existing pieces of Combines artifacts into larger | Decomposes artifacts into fine
software entities grained artifacts
Concerns modeling at Development of systems con- | One producer alone developing
architectural level sisting of loosely coupled ser- | a set of systems
Compositional structure of vices or company-wide infras-
entities and connection tructures
among their interfaces Compliance to standards Different modeling initiatives
SOA and Systems consist of loosely SOA MAS
MAS [7] coupled and autonomous Services passively waiting for | Agents pro-actively contribute
entities discovery to an application
Focus on distributed Strives for reuse for an effective | Most approaches have not ad-
systems cost and time systems develop- | dressed reuse
Dynamic composition ment
Well-defined interfaces Dynamic selection of protocols
Services modeled and under- | Different granularity levels
stood at a coarse granularity (intra-agent and inter-agent
view point)
MAS and Development of flexible MAS SPL
SPL architectures Flexibility obtained by loosely | Architecture decomposed into
[15L116] coupled and autonomous agents | flexible components to address
variability
Development of single systems | Focus on system families
Most approaches have not ad- | Systematic reuse
dressed reuse

As stated previously, the pairwise combination of these approaches has been target of research.
The approaches have some similarities and differences, which are summarized in Table[I] In two
of these combinations (SOA and MAS; SOA and SPL), the integrated approaches have several
similarities and common goals, so the main purpose of studying these approaches together is
to capture how they can contribute to each other based on their differences. For instance, the
comparison between SOA and SPL reported in [21]] concludes that variability modeling in SPLs
should take a lesson from behavior modeling and analysis of services and business process in SOA.
On the other hand, [7] states that SOA represents an emerging class of approaches with MAS-
like characteristics for developing systems in large-scale open environments; and that key MAS
concepts such as ontologies, choreography and directories are reflected directly in those of SOA.
MAS and SPL, the third combination, have been integrated not because they present similarities,
but to address the growing need for development of families of complex distributed systems, while
taking advantage of MAS abstractions. AOSE methodologies have failed to capture the reuse

potential adequately since many of the developed methodologies focus on the development of
specific software applications.

Based on this comparison, it can be seen that it is feasible to integrate MAS, SOA and SPL.
However, this integration results in some challenges, such as how to develop service-oriented
MASs and, at the same time, support variability. In the next section, we present our three-way
complementary approach, which extracts the major benefits of the three approaches and integrates
them.

3 Approach Overview

Our approach aims at defining activities and models to address the development of customized
agents, which are deployed in a MAS. These agents achieve their goals by the execution of plans
that may use other agents’ services and they can provide services to other agents or users. This sce-
nario is currently illustrated by Internet-based applications, on which there are several autonomous
organizations providing services with interacting users. The main goal of our approach is to auto-
mate these users’ interactions, but given that agents represent users (individuals), we must provide
a way to deploy personalized agents. The proposed approach incorporates principles and concepts
of SOA, MAS and SPL, which are described in the next three paragraphs.

Problem Decomposition into MAS Concepts. Based on the introduction to MAS in the previ-
ous section, it can be seen that MAS provides several concepts for understanding and modeling a
complex and distributed system. Each agent of a MAS may be classified from two different per-
spectives [26]]: (i) internally as a software system with its own purpose (infra-agent); (ii) externally
as part of a society interacting with other individuals (inter-agent). This classification is illustrated
in Figure [2] Our approach focuses on developing a single agent to be part of an existing MAS,
detailing its internal structure and interaction with other agents. This agent is structured according
to the belief-desire-intention (BDI) model [22]], which supportts modeling cognitive agents and
whose advantages include: relative maturity having been used successfully in large scale systems;
supported by several agent platforms, including Jason and Jadex; based on solid philosophical
foundations. In addition, MAS helps with the development of open systems by assigning duties
and rights to agents that play roles and providing enforcement of society norms. This last issue is
not addressed in this paper.

Service Analysis and Orchestration. Even though AOSE is based on a powerful abstraction for
modeling complex systems, most of AOSE methodologies, such as GAIA [28]], focus on the de-
velopment of closed systems, in which agents are known at design time. A key advantage of SOA
is that they enable services to be selected and integrated dynamically at runtime, thus enabling
system flexibility and adaptation. In our approach, we define specific activities for identifying and
specifying services provided by agents.

Analysis and Implementation Support to Variability. Given that there are agents representing
users in the MAS, there is the requirement of representing their specific needs. Our approach aims
at addressing a SPL of agents through which we can systematically derive customized agents. Our
approach contemplates variability analysis in order to capture variations and different possible
configurations of the user agents and provide implementation support to build reusable assets with
the aim of allowing automatic derivation of agents.

Figure 1| depicts the activities performed in our approach, the sequence in which they must be
performed and their output artifacts. The development of the agent product line starts with an anal-
ysis of the domain using a goal-oriented approach. The domain variability analysis is performed

Legend:

- Domain Analysis [phase
Monoi 1| | Goal-oriented || Domain Gl Bl:l aftt.'f‘"“t’
A . artifac
fy Domain Variability " yodel —» activity flow
Tfan:ezb'l"ty Analysis Analysis —- output
ode

gg MAS
Domain Design
9 Agent ﬁenter
Agent Agent 1 Model
Workflow Servi PI A -
Specification | | ervice an 1| Refined Agent

Specification | | Specification | | “Traceability !
Model

Agent Derivation
and Deployment

Domain Implementation e
Agent | Reusable Repository
Implementation (ADFs, plans, ...)

Figure 1: Approach Overview.

with this activity in order to capture variability within the domain that will be addressed by the
product line. These two activities define the scope of the SPL. Later, two activities (Agent Service
Specification and Agent Plan Specification) are performed in order to model the SPL in terms of
services and plans provided by the agent goals, considering the previously identified variability.
Based on the models generated in these activities, a set of code artifacts are implemented compris-
ing a reusable infrastructure, which is in turn used to derive different agent instances based on the
configuration provided by users.

Five activities presented in Figure [T are categorized into three different phases: domain anal-
ysis, domain design and domain implementation. These phases are the typical ones of domain
engineering processes, and they result in reusable artifacts that support the identified variabil-
ity. The Agent Derivation and Deployment activity is part of the application engineering process,
which enables a systematic assembly of a selected collection of artifacts for building a customized
application, which in this case is an agent.

3.1 e-Marketplace Case Study

This section presents an e-Marketplace case study, which is used to illustrate our approach. Provid-
ing applications to automate commerce is one of the application domains of MAS [8]]. Currently,
commerce is almost entirely driven by human interactions; humans decide when to buy goods,
how much they are willing to pay, and so on. However, some commercial decision-making can be
placed in the hands of agents.

Figure [2] depicts the overall structure of the e-Marketplace case study. It is a MAS, on which
there are: (i) agents/organizations representing stores that sell products and provide support ser-
vices; (ii) agents/organizations that support the buying process, such as credit card companies and
PayPal; and (iii) user agents that automate the activities performed by users to buy products.

Our focus is not to address the development of the whole MAS. Organizations representing
stores and other companies are already deployed in the system and ready to interact and provide
services to other agents. Furthermore, this existing MAS already provides an ontology giving a

L]

_,semmmm - - Generation
ra Beliefs vty

Intra-agent Viewpoint

T T——— Inter-agent Viewpoint

Organizational
relationships
\

I

\I /Agent
P,
Store B ’
@ Credit Card PayPal
Store A Users '
SPhEFe of e-Marketplace (environment)
influence

Figure 2: Canonical view of a complex distributed system: e-Marketplace.

formal representation for a set of concepts, which includes the messages exchanged by agents
within the domain and protocols defining how messages are exchanged. Our goal is to develop a
customizable user agent, focusing on its internal structure, which enters in the MAS and interacts
with other agents to achieve its goals.

4 Domain Analysis

Given that agents are proactive and have goals (according to the BDI architecture), it is natural
to consider using goals to describe requirements. Goals capture, at different levels of abstraction,
the various objectives the system should achieve. Other advantages of using goal-oriented re-
quirements engineering can be found at [23]]. However, SPLE is distinguished from single-system
engineering by its focus on the systematic analysis and management of the common and variable
characteristics of a set of software systems [13]]. Thus, we focus on both the activity to analyze
the domain in terms of goals, and the activity whose aim is to identify the variation points in the
domain.

In SPL approaches, there are typically two ways of modeling variability. One of them is based
on feature modeling, which was first proposed in FODA [9]]. It identifies common and variable
features inside the domain and organizes them into a tree notation. A feature is a system property
that is relevant to some stakeholder and is used to capture common traits or discriminate among
products in an SPL. The other approach, used in [[13| 18] proposes the use of a separate model to
express variability. We have adopted this second method primarily for two reasons: (i) modeling

common and variable features in the same model can lead to huge and complex models; (ii) given
that our target is to develop agents that follows the BDI model, it is more natural to make a goal-
oriented domain analysis.

Thus, in our domain analysis, the two activities are performed in parallel and are complemen-
tary to each other. One of them is the Goal-oriented Domain Analysis, which is responsible for
capturing the SPL goals. This is performed at different levels of abstraction. Therefore, goals can
be decomposed into sub-goals. Figure [3|illustrates the goal model of the user agent SPL to buy
products in the e-Marketplace case study. At certain points of the goal analysis, some variable
traits can be identified in the domain. For instance, the Verify if Product in Stock goal has two dif-
ferent meanings: (i) verify if the desired product is available online; and (ii) verify if the desired
product is available in a certain store, in case the user wants to pick up the product in a store.

1 Buy Product
1.1 Search 1.2 Negotiate| (1.3 Choose (1.4 Buy|
Stores Store |

T1AFind) (1.1.2 Verify) (1.1.3 Verify] "™ ™ [1-4-1 Ch°°99}[1-4-2 Chme} 1.4.3 Pay
Stores || Payment || If Product Product Shipping
Acceptance/|_ in Stock
1.1.3.1 Find |(1.1.3.2 Check
Near Stores || Store Stock

Figure 3: Goal Model.

The activity responsible for analyzing and documenting variability within the domain is the
Domain Variability Analysis. In order to document variability, we adopted the notation proposed
in [18]]. It describes variation points (what varies) and variants (how it varies). In addition, it also
contains constraints. These constraints ensure that only valid combinations of the variations are
selected. Examples of constraints are when one variant depends on another or two variants are
mutually exclusive.

The variability model for the user agent in the e-Marketplace case study is presented in Fig-
ure @] In the model, there are two kinds of variation points — optional and alternative: (i) the
optional variation point is one that may or may not be present in the agent. For example, the
Negotiate variation point is optional, which means that if the variation point is selected the agent
will negotiate the price of the target product; (ii) the alternative variation point is associated with
a set of variants, some of which must be chosen. In Figure 4| there are five alternative variation
points. One is the Payment Type, which has three different variants (Credit Card, Pay upon Pick
up and PayPal). There is also a variation point named Services, because we intend to extend the
user agent in the future to incorporate new services for users, but for the moment the only service
provided is Buy Product.

The variability identified and documented in the Domain Variability Analysis is used for two
purposes: (i) to indicate optional and alternative parts that have to be supported among all the
subsequent models and code assets; and (ii) to provide a way for users to choose the appropriate
configuration of their agent.

This variability information is not present in the goal model. Besides the two reasons presented
for documenting variability in a separate model, this practice helps to keep consistency among the
models. For example, the Negotiate variation point is optional, therefore the Negotiate goal is

Buy
Producl

reqmres V VR = e requlres W WP

regumas V VP requlres \/“VP
Store
Selection

ayment
Type

W“ﬂ [”] e e

quUIrE57VF|7VP§
: Credit Pay upon || Pick up Ground Cheaper Faster
Card Pick up at Store Shipping
";;a;‘;;;;;i;‘ Nearer
eqgofiatio PayPal S
Strategy

Legend:
i A o
: . Variation point L [mm may] alternative choice
Optimistic ' Lazy . variant requites VPV requires_VP_VP
! [name]
optional reguires Y VP requires_V_VP
TPIE D mancdatory _reguires ¥ ¥ | requires_V_V

Figure 4: Variability Model.

also optional. So, if one decides to make the Negotiate variation point mandatory, the goal model
does not need to be updated. However, even though this information is not explicitly shown in
goal model, it is important to know what is variable in this model. As a consequence, there is
another model that provide variability traceability links, which ensure the consistent definition of
the common and variable traits of the SPL throughout all artifacts.

Our traceability model consists of a mapping between goals and variability expressions. One
goal may be related to one or more variation points/variants or even a combination of them. For
instance, the goal Pay is optional, given that if the Payment Type is Pay upon Pick up the agent must
not pay for the product because the user is responsible for paying when the product is collected
at the store. So the valid variability expression for this goal is either !Pay upon Pick up or
Credit Card | PayPal.

S Domain Design

After understanding and modeling the domain in terms of goals and identifying variation points,
agents are designed by the identification and specification of their services and plans to achieve
goals.

The definition of agents that offer business services has several advantages. First, agent ser-
vices can be discovered and used by other agents. Agents that are in charge of several responsibili-
ties have a set of goals, beliefs and plans to accomplish each of these responsibilities. Nevertheless,
no technique is used to provide modularization of these sets of goals, beliefs and plans in order to
provide a better understanding of their purpose. Besides providing modularization, encapsulating
these concepts into a service improves the reuse in MASs. Moreover, using this service-oriented

loosely-coupled approach brings to business process models a structure that can significantly im-
prove the flexibility and agility with which processes can be remodeled, thus helping to deal with
variability. In addition, services can be dynamically discovered and used when an agent needs to
adapt itself because of changes in the environment. This last advantage has not yet been explored
in our work.

The Directory Facilitator and Agent Discovery Service, which provide the service of yellow
pages in MASs, are part of the standard agent architecture proposed by FIPA. However, most MAS
methodologies address the development of closed MAS. In this case, discovering agents and their
services is not a concern. In order to deal with open MAS, in which agents are not known a priori,
our approach is to define the Agent Service Specification activity. Their specification may require
the use of other “black-box” services provided by other agents.

Based on the goal model generated in the previous activity, we have identified the services
provided by the user agent. Figure [6] highlights these services. It can be seen that there are four
different atomic services (Search Stores, Negotiate, Choose Store and Buy), which are lower level
services and do not use other internal services. On the other hand, the Buy Product service,
is a composite service, given that it composes atomic services. The Negotiate is an optional
variation point, therefore the Negotiate service is also optional, consequently the Buy Product
can be composed in two different ways: with or without negotiation. Services are considered
atomic from an agent internal viewpoint, however these services can use services provided by other
agents. For instance, the Buy service doest not use any other service provided by the user agent, but
it communicates with the Store and PayPal agents in order to use their services. After identifying
services, their workflows are specified with UML 2.0 activity diagrams. The specification of the
buy service workflow is depicted in Figure[5] The workflow contains different paths, which are
based on the variability of the SPL.

#SETViCen wservicen WSETVicen
Shopping Shipping Payment
i3
A A A T s A
ainvokes » HIE

=x «iMvOkE» ainvoks:

Store

cinyokan | ainvek i
T ¥ ainvoksn

L aplans :
Flay with Credit Card !
Provide
Credit Card
Information

wplany 1 !
Provide Address ! |

! Select
\Ground
Shipping

Provide
Shipping
Address

plany
Select Product

Add Product
to Shopping
Cart

Create
Shopping
Cart

User

Request
Checkout

wplany aplans
Select Store | Pay with PayPal

Salact;‘lck Select Paypal
up at Store caypel] Payment Method

Pay Request
Order

wservicen
Payment

[pick up at stere]

PayPal

Figure 5: Buy Service Workflow Specification.

The workflow specification shows actions to be performed to achieve service goals and in-
vocations of other agents’ services. In addition, it supports the identification of plans to achieve
lower-level goals. While goals provide the agent’s motivation and are the driving force for its
actions, plans represent the agent’s means to act within its environment.

The artifact that describes which plans are used to achieve which goals is the Agent model
(Figure [6). It is divided into two layers: (i) the Goal Layer — it shows agent’s goals and their
decomposition into sub-goals. It is structured according to the Goal model; and (ii) the Plan Layer
— it shows agent’s plans. There are links between goals and plans indicating that a certain plan

achieves a certain goal. For some goals, different plans can be used. In addition, there is one
case (Check Stock goal) that it can either be achieved by the Check Online Stock plan or by its

decomposition into the Look for Near Stores and Check Store Stock goals

e ey Goal Layer
: 1 Buy Product| |
1
. r
e 1.1 Search . 1 |1.2 Negotiate|: (|13 Choose)| | g
sl Stores : 'L store : e s
v s ra r;:i___—“' i
! 1 1F nd| (1.1.2 Verify)(1.1.3 Verify I} 1.4.1 Choose|[1.4.2 Choose|| 1 4.3 Pay|*
iwstores J1 Payment || If Product . 11[_ Product Shipping T \
: Acceptance) | in Stock bt e fi \
! M H | :JI ‘. H [b
i ; {(1.1.3.1Find |(1.1.3.2Check 11/ | 1| i \
: . i| Near Stores || Store Stock | | i ! i !
: | : Iyt R X
! \ gl 7 - i y v
! \ | Consult o g : Provide || Select |/ ! 4
i | Locate Online 1111 1\ !| Select||Address|| Store | 5 '
i | Stores Stock i1 1))|Product ; : |
. Locate Close||Consult Store ;‘ff ' "\ ______ e "._ l
y Stores Stock |1} Lo i ‘ ! '
| ; W= S Tl ‘ b . Pay with ||Pay through(|
i Check Check Pay |, | Choose Choose | | \‘_ (_:[F"_d_'t_qeir?_ = _F'_a_yf';_al_ =i,
i | Credit Card || | upon Pick up | ! ! | Cheaper || Faster | ! Legend:
'l\ Acceptance E' Acceptance | ! I.\ Store Store | ! = goal. —plan
% Check 7 S Choose /| — composed of ----achieved by
e PayPal - ‘\ Nearer .~ |-- atomic service - - compaosite service
*. | Acceptance | .-~ L Store | - Plan Layer

Figure 6: Agent Model.

After specifying an agent’s services and plans, traceability links must be provided between
these concepts and the variation points, similar to the way it was done with goals. This is to ensure
that, for instance, if the Payment Type chosen is Credit Card, the selected plan for the Check
Payment goal is Check Credit Card Acceptance and for the Pay goal is Pay with Credit Card. So
the Traceability model is refined in order to incorporate these new mappings. This Traceability

model facilitates systematic and consistent reuse, and allows the application engineering to be
performed efficiently.

6 Domain Implementation

Based on the models generated in previous activities, code assets are implemented. Techniques
are used to implement them in order to support the defined variability and allow the derivation
of customized agents. We have identified some types of variability and we adopted guidelines
to implement them. These guidelines are specific for the Jadex [19], an agent platform based on
the BDI model. Jadex supports programming software agents in XML and the Java programming
language. An agent is defined in an XML file, named Agent Definition File (ADF), which specifies
the agent’s beliefs, goals and plans. An ADF can also contain the definition of other concepts that
help with the agent implementation, in particular messages that can be sent and received. Plans
are declared in the ADF, but their body is implemented in Java classes, which extend the P1lan
class. In addition, Jadex provides the capability concept, which is an encapsulated agent module
composed of beliefs, goals, and plans that can be reused wherever it is needed. Next, we detail the

10

proposed implementation guidelines.

All goals, whether they are top level goals or sub-goals, need to be declared in the ADF.
However, some of these goals are optional and alternative, such as the Pay goal. The condition
for this goal to be present in a derived agent is according to the variability expression related to it
(Credit Card | PayPal). So, we adopted a translation from variability expressions to tags,
which are put in the code in order to make conditional compilation possible. Figure [/|illustrates
the Pay goal declaration surrounded by the appropriate tag.

Figure 7: Optional goal.

Goals in the agent model (Section[d)) can be achieved by either a plan or through its sub-goals.
In the first case, similar to goals, plans can be optional or alternative. As a consequence, we
used the same strategy to support the variability — we introduced tags into the code according to
variability expressions. For instance, the agent had two different plans to achieve the Pay goal,
and one of them is the Pay with Credit Card plan, which is associated with the Credit Card
variability expression. Figure [§| presents the code fragment related to this plan.

="nsyv.store" />

Figure 8: Alternative plan.

In the second case — when goals are achieved by decomposition into sub-goals — a plan is
created for dispatching the appropriate sub-goals. The plan is declared in the ADF file, and a
Java class is created, which extends the P1an class provided by Jadex. Into the overridden body
method of the plan, the sub-goals are dispatched (Figure [7). These goals can be executed in
an appropriate order by calling the method dispatchSubgoalAndWait (), or just be dis-
patched and executed in any order determined by Jadex reasoning engine, by calling the method
dispatchSubgoal (). Some of the sub-goals are mandatory; while others can be optional or
alternative. In the same way, we adopt tags to delimit variable sub-goals.

The identified agent services with their respective agent concepts (e.g. goals and plans) are
encapsulated into capabilities. Figure [10]shows how a capability is introduced into the ADF. In
addition, Jadex allows the specification of messages to be sent and received in the ADFs, to be

11

public void body ()

IGoal search stores — createGoal ("search stores”™):

oalAndWait (search =stores);

chSubgoalAndWait (negotiate) ;

IGoal ose_store = createGoal ("choose store™):
dispatc bgoalindWait (choose store);

IGoal buy = createGoal ("buy™):
dispatchSubgoalindWait (buy)

Figure 9: Optional sub-goal.

later used in plans. By defining a service in a capability, the goals of the services and messages
that it can send and receive are explicitly defined. Moreover, this capability can be easily reused
either by agents or other capabilities, and it can be (un)plugged easily as well.

Figure 10: Optional service.

7 Application Engineering

The activities presented in previous sections are part of the domain engineering process, resulting
in a reusable infrastructure that supports the identified variability. The Agent Derivation and De-
ployment activity is part of the application engineering process, and its purpose is to derive and
deploy customized agents based on this reusable infrastructure. Based on the models and code as-
sets generated in previous activities, it is possible to select and customize the code assets manually
according to a configuration of the variability model and thus deploy the derived agent. However,
we are working toward developing a tool to automate this process. The first version of the tool is
specific to the e-Marketplace case study.

Basically, our tool selects and provides conditional compilation for the code assets. Traditional
conditional compilation could not be used because the Jadex platform defines agents based on
XML files. In addition, the tool has a web-based interface through which the user can configure
an agent and deploy it into the e-Marketplace MAS. The agent derivation process and deployment
comprise the following steps: (i) the user describes through the web application interface the
product that he wishes to buy and the agent configuration. The product information provided
is based on the ontology defined for the e-Marketplace MAS. The agent configuration is made

12

through the selection of optional and alternative variation points and variants; (ii) with the data
in step (i) and the traceability model, our tool selects the appropriate code assets; (iii) the tool
manipulates the ADFs and Java classes in order to derive customized code for the agent. The tool
translates the selected variation points and variants to tags used in the code, and removes optional
and alternative fragments of the code that were not selected; (iv) the Java classes are compiled; and
(v) the agent is instantiated and deployed into the e-Marketplace MAS using the Jadex platform.

8 Discussions

The work reported in this paper is the result of an exploratory study of the integration of SOA,
MAS and SPL in order to support the development of customized agents to be part of service-
oriented MASs. In this section, we discuss some relevant issues that arose during our study, which
gives directions for future work.

Granularity Levels. Granularity in SPLs refers to the degree of detail and precision of a vari-
ability as produced by a design or implementation element. SPL variability may exist at different
levels of granularity ranging from entire components to single lines of code. In our approach,
we have considered variability at three different levels of granularity: (i) agent goals, (ii) agent
services; and (iii) agent plans. Services correspond to coarse-grained variability. They can be
orchestrated in different ways in order to provide a composite service. In addition, services can
present some fine-grained variability as realized by alternative or optional goals and plans. Ba-
sically, the implementation technique used to implement variability was conditional compilation
into XML files, given that the agent platform used for implementing agents was Jadex. As an evo-
lution of the approach presented here, we aim at exploring other granularity levels, such as agents
and roles. For instance, stores usually present similar organizational structures, consisting of a set
of roles, in which some of them can be optional or alternative, such as the promotion manager
role.

Dynamic Agent Adaptation. Because of the dynamic nature of the Internet, the availability
of any resource cannot be guaranteed at any single moment. One of the main advantages of
SOAs is to promote the automation of flexible and highly adaptive business processes through the
orchestration of loosely coupled services. In addition, some research addressed the development
of self-adaptive MAS to deal with highly dynamic environments [[17]. Our approach allows the
derivation of agents customized according to specific user needs. In the e-Marketplace, flexibility
is provided in the sense that the user agent discovers store agents to achieve their Buy Product goal;
but adaptation in this process is not yet explored. Furthermore, we aim at providing a dynamic
adaptation of the user agent in order to incorporate new services and change existing ones.

Tool Support. The derivation process of user agents in the e-Marketplace case study is accom-
plished by our application-specific tool. The tool deploys a customized version of the user agent
into the e-Marketplace MAS by selecting the appropriate artifacts and manipulating XML and Java
source files in order to remove the code related to unselected variations points and variants of the
product line. However, there are model-based derivation tools [2} 20] that automate the derivation
process of SPLs. One of them is GenArch [2], which was developed in our Software Engineering
laboratory, and was recently extended to incorporate a new domain-specific model that addressed
Jadex [3]]. This GenArch extension is not fully compatible with our approach, however we are
aiming to combine the two approaches.

13

9 Related Work

The main contribution of this paper is a proposal for an integrated approach that exploits the major
benefits of SOA, MAS and SPL in order to build customized service-oriented user agents and
deploy them into existing MASs. We have not seen any research that addresses this problem, but
in this section we describe approaches to personalization of systems that use agent-based solutions,
and the combination these three technologies in a pairwise fashion.

A personalized recommendation system with multi-agents based on web intelligence is pro-
posed in [6]. The approach provides an intelligent user agent, which is in charge of interacting with
the users and receiving the feedback. This agent communicates to other agents that are responsi-
ble for learning and recommending products. The development of a personalized time manager,
represented by an agent, is addressed in [1]]. The agent is designed to assist a human user in man-
aging her time commitments, a large part of which involves managing the communication and
negotiation intrinsic in scheduling meetings. Both approaches provide personalized assistance for
users by means of agents that use artificial intelligence techniques. The idea is to use cognition to
provide customized information, but the agent configuration and behavior are not adjusted to user
needs, as our approach proposes.

There is research in the context of MASs that aims at solving some issues in the service-
oriented development. The approach proposed in [12] addresses dynamic service selection via an
agent framework coupled with a QoS ontology. With this approach, participants can collaborate to
determine each other’s service quality and trustworthiness. Other approaches, such as [24]], deal
with trustworthiness when selecting agents to use their services. This is an important issue in open
systems. In [11], SOA and SPL are integrated through a method, whose goal is to achieve flexi-
bility in network based systems though service orientation, but still managing product variations
thought SPLE techniques. Finally, a domain analysis approach for the development of Multi-agent
Systems Product Liness (MAS-PLs) is presented in [[14]. It integrates notations and activities of
SPL and MAS in order to address agent variability and tracing.

10 Conclusion

The growing popularity of agent-based approaches for developing open, complex, context-aware
and highly interactive systems has motivated the proposal of new methods and processes using the
agent abstraction. In addition, agent-orientation is being combined with SOAs in order to build
applications that provide flexible services to users, while taking advantage of the agent-oriented
paradigm.

Inspired by human societies, several service-oriented multi-agent applications, such as e-
commerce systems, are developed by representing users as agents, which act on the users’ behalf
and automate their tasks. The approach presented in this paper advances the development of these
service-oriented user agents by providing a systematic method to derive customized versions of
the agents. The main goal is to tailor service provision to the preferences and circumstances of the
user requesting the service. The domain-based process proposed involves extended domain anal-
ysis with goals and variability, domain design with the specification of agent services and plans,
and domain implementation. The approach takes advantage of the interplay of SOA, MAS and
SPL. Their comparison presented in this paper showed that they are not mutually exclusive, but
complementary. Moreover, they can contribute to the problem we are addressing.

This paper addresses ongoing research on the customization of service-oriented MASs and the

14

integration of SOA, MAS and SPL. We aim to extend our approach in several directions, which
includes the provision of dynamic adaptation of agents and the integration of the GenArch tool to
support automation of the derivation process.

References

[1] Pauline Berry, Bart Peintner, Ken Conley, Melinda Gervasio, Tomas Uribe, and Neil Yorke
Smith. Deploying a personalized time management agent. In AAMAS 2006, pages 1564—
1571, 2006.

[2] Elder Cirilo, Uird Kulesza, and Carlos Lucena. A Product Derivation Tool Based on Model-
Driven Techniques and Annotations. JUCS, 14:1344-1367, 2008.

[3] Elder Cirilo, Ingrid Nunes, Uird Kuleszaand Camila Nunes, and Carlos Lucena. Automatic
product derivation of multi-agent systems product lines (to appear). In SAC 2009, 2009.

[4] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002.

[5S] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall, 2005.

[6] Longjun Huang, Liping Dai, Yuanwang Wei, and Minghe Huang. A personalized recom-
mendation system based on multi-agent. In WGEC ’08, pages 223-226, 2008.

[7] Michael N. Huhns, Munindar P. Singh, Mark Burstein, Keith Decker, Ed Durfee, Tim Finin,
Les Gasser, Hrishikesh Goradia, Nick Jennings, Kiran Lakkaraju, Hideyuki Nakashima, Van
Parunak, Jeffrey S. Rosenschein, Alicia Ruvinsky, Gita Sukthankar, Samarth Swarup, Katia
Sycara, Milind Tambe, Tom Wagner, and Laura Zavala. Research directions for service-
oriented multiagent systems. IEEE Internet Computing, 9(6):65-70, 2005.

[8] N.R. Jennings and M. Wooldridge. Applications of intelligent agents. In Agent technology:
foundations, applications, and markets, pages 3—28. Springer-Verlag, 1998.

[9] K. Kang, S. Cohen, J. Hess, W. Novak, and Peterson. Feature-oriented domain analysis
(FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, SEI, 1990.

[10] Bruce Krulwich. Automating the internet: Agents as user surrogates. IEEE Internet Com-
puting, 1(4):34-38, 1997.

[11] Jaejoon Lee, Dirk Muthig, and Matthias Naab. An approach for developing service oriented
product lines. In SPLC ’08, pages 275-284, 2008.

[12] E. Michael Maximilien and Munindar P. Singh. A framework and ontology for dynamic web
services selection. IEEE Internet Computing, 8(5):84-93, 2004.

[13] Dirk Muthig and Colin Atkinson. Model-driven product line architectures. In SPLC 2, pages
110-129, 2002.

[14] Ingrid Nunes, Uird Kulesza, Camila Nunes, Elder Cirilo, and Carlos Lucena. A domain
analysis approach for multi-agent systems product lines (to appear). In ICEIS 2009, 2009.

15

[15] Ingrid Nunes, Camila Nunes, Uird Kulesza, and Carlos Lucena. Developing and evolving
a multi-agent system product line: An exploratory study (to appear). In Agent-Oriented
Software Engineering IX, volume 5386 of LNCS, pages 228-242. 2009.

[16] Joaquin Pena, Michael G. Hinchey, and Antonio Ruiz-Cortés. Multi-agent system product
lines: challenges and benefits. Communications of the ACM, 49(12):82—-84, 2006.

[17] G. Picard and M. P. Gleizes. The ADELFE Methodology — Designing Adaptive Cooperative
Multi-Agent Systems, chapter 8, pages 157-176. 2004.

[18] Klaus Pohl, Giinter Bockle, and Frank J. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. 2005.

[19] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A bdi reasoning engine.
In Multi-Agent Programming, pages 149-174, 2005.

[20] Pure::Variants. Url: http://www.pure-systems.com/, 2008.

[21] Mikko Raatikainen, Varvana Mylldrniemi, and Tomi Ménnistd. Comparison of service and
software product family modeling. In SOAPL’07, 2007.

[22] A.S.Rao and M. P. Georgeff. BDI-agents: from theory to practice. In ICMAS 1995, 1995.

[23] Axel van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In RE 01,
page 249, 2001.

[24] Yonghong Wang and Munindar P. Singh. Trust representation and aggregation in a distributed
agent system. In AAAI, 2006.

[25] Mike Wooldridge and P. Ciancarini. Agent-Oriented Software Engineering: The State of the
Art. In AOSE, volume 1957, pages 1-28. 2000.

[26] F. Zambonelli, N.R. Jennings, A. Omicini, and M. Wooldridge. Agent-Oriented Software
Engineering for Internet Applications, pages 326-346. 2000.

[27] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Organizational abstrac-
tions for the analysis and design of multi-agent systems. In AOSE, pages 235-251, 2000.

[28] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing multiagent
systems: The gaia methodology. ACM Trans. Softw. Eng. Methodol., 12(3):317-370, 2003.

16

	splc-2009-techreport.pdf
	splc-2009-techreport.pdf
	Introduction
	Integration of SOA, MAS and SPL
	Approach Overview
	e-Marketplace Case Study

	Domain Analysis
	Domain Design
	Domain Implementation
	Application Engineering
	Discussions
	Related Work
	Conclusion
	References

