Optimizing distributed XML queries through localization
and pruning

Patrick Kling
pkling@cs.uwaterloo.ca

M. Tamer Ozsu
tozsu@cs.uwaterloo.ca

Khuzaima Daudjee
kdaudjee@cs.uwaterloo.ca

University of Waterloo
David R. Cheriton School of Computer Science
Waterloo, Canada

Technical Report CS-2009-13
March 2009

ABSTRACT

Distributing data collections by fragmenting them is an ef-
fective way of improving the scalability of relational data-
base systems. The unique characteristics of XML data pres-
ent challenges that require different distribution techniques
to achieve scalability. In this paper, we propose solutions to
two of the problems encountered in distributed query pro-
cessing and optimization on XML data, namely localization
and pruning. Localization takes a fragmentation-unaware
query plan and converts it to a distributed query plan that
can be executed at the individual sites that hold XML data
fragments in a distributed system. We then show how the
resulting distributed query plan can be pruned so that only
those sites are accessed that can contribute to the query
result. We demonstrate that our techniques can be inte-
grated into a real-life XML database system and that they
significantly improve the performance of distributed query
execution.

1. INTRODUCTION

XML is commonly used to store data and to exchange
them between a variety of systems. While centralized query-
ing of XML data is increasingly well understood, the same
is not true when the data are spread across multiple sites in
a distributed system.

There are two main reasons why it is important to be able
to query distributed XML data. First, the increasing size
of XML data collections and the increasingly heavy work-
loads evaluated over these collections make it infeasible to
scale centralized solutions. Distributing data collections and
query processing workloads across multiple sites is therefore
necessary in order to maintain good performance.

The second reason why querying distributed XML is an
important problem lies in the fact that XML is frequently
used to exchange data among a wide variety of systems.
Therefore, XML data collections are often federated from
multiple, independently managed sub-collections that origi-
nate at different sites. A distributed query evaluation strat-
egy is well-suited to accessing these types of collections with-
out having to ship large volumes of irrelevant data across the
network and without having to maintain multiple copies of

the same data at multiple sites solely for querying purposes.

These two cases are analogous to distributed database sys-
tems [19] and data integration systems [15], respectively. In
both cases, distributed query processing and optimization
have been shown to be important, but the particular chal-
lenges differ significantly. In this paper, we focus on dis-
tributed XML query processing of the first type, namely
a scenario where a database instance is distributed across
multiple sites in order to improve performance.

Our distribution model for XML data supports horizon-
tal fragmentation, which fragments data based on a selec-
tion defined by predicates, and vertical fragmentation, which
fragments data by projecting to subsets of the types defined
in the schema. Our definitions of horizontal and vertical
fragmentation are based on the same semantics as those that
are commonly used for relational data [19]. The character-
istics of XML, such as its nested data model and structure-
based queries, however, lead to a unique range of challenges
and optimization opportunities for distributed querying that
differ significantly from those seen in the relational scenario.

While a comprehensive study of the problem of querying
XML in a distributed fashion is the subject of our broader
work, this paper focuses on the issues of localization and
pruning. We propose a localization technique that can trans-
form a fragmentation-unaware query into sub-queries that
can be evaluated in parallel at the individual sites in the
system. We then present a novel technique that can prune
sites for which it can infer that they do not contain data
relevant for answering the query.

To motivate our work, consider the following example.
Figure 1 shows a horizontally fragmented data collection
consisting of four documents representing information about
authors and their publications. The horizontal fragmen-
tation is defined based on the first letter of the authors’
last names, placing “John Adams” in fragment f, “Jane
Dean” in fragment f# and “John Smith” as well as “William
Shakespeare” in fragment fi.

Figure 2 shows a similar collection that has been frag-
mented vertically. Ignoring the nodes denoted as “P i” and
“RP ¢ for now, we can see that author nodes are stored
in fragment f{, the nodes related to the author’s name are
stored in fragment f3 , pubs and book nodes are stored in
fragment fi and chapter and reference nodes are stored
in fragment f) .

Cauthor)

__Jane_) (_ Dean__) (_chapter

\
|
|
|
(first) (C1ast) (Cbook) |
|
|
|
I

Cauthor)

(first) ((last) (C book)

{John__» _Smith__» (Cchapter

\
|
|
|
(first) (C1last) (Cbook) |
|
|
|
!

——— e ——— —

reference

Figure 1: A horizontally fragmented collection

Consider evaluating the following query (XQ1):

/author [name [first = ’William’ and
last = ’Shakespeare’]]//book//reference

In the horizontal case, it is easy to see that the fragments
fH and f# cannot possibly contribute to the result of this
query since they correspond to authors whose last names
start with the letters “A” and “D”, respectively. Pruning
these fragments allows us to answer the query without con-
tacting the sites at which they are stored.

If we evaluate XQ1 on the vertically fragmented collec-
tion, in the general case, we have to access all four fragments.
Fragment f3 is needed to evaluate the value constraint pred-
icates, fragment fi is needed to obtain result nodes and
fragments fY and fi are needed to evaluate structural con-
straints. We will later present techniques that can avoid
accessing some of these fragments.

To put our work in proper context, we note that the fol-
lowing issues need to be systematically addressed to develop
a coherent set of techniques for distributed XML processing:

1. Fragmentation algorithm. The issue here is to develop
algorithms that start with a non-distributed XML data-
base and produce a distributed version. In this con-
text, it is important to identify what “fragmentation”
means in the context of XML data, what types of
fragmentation are meaningful and how fragmentation
schemas can be defined.

2. Data localization. This is the process whereby a query
that is posed on a non-distributed version of the XML
database is converted into a set of queries that are
executed at the sites that may contain answers to the

query.

3. Distributed query optimization. Although localization
allows some optimization by focusing query execution
at individual sites, there are global optimization op-
portunities and challenges for operations across mul-
tiple sites that go beyond this (e.g., distributed join,
aggregation).

| Cauthor) Cauthor) Cauthor) |
| |
l\ 1> 2> 3> Cri> (5D J
R e et e
(a) fi
ryo T T T T T T T T T T N\
[R CRP I CRPED ,
| |
| (Cmame) (mame) (mame) |
| |
| CHirst) (Caast) (Cfirst) (last) (Cfirst) ((C1ast) |
I ‘ ‘ I
\ GBI CHWED T IR ORGSR
\Z
(b) f2
ro __ - - —_-TTT-T—-—— N\
[ED &P QP>
| |
I Ceubs) (Cpubs) Cpubs) |
| I
I ook D (Cbock) Cook D |
| |
L&D B> o>)
__________ - ————-
(c) fs
r- - -—_ - - - -O-—-=--—-—-—-=-= N

(chapter) (chapter)

(reference) (reference)

Figure 2: A vertically fragmented collection

Our broader work addresses all of these issues, but in this
paper we focus primarily on localization and pruning. We
propose a general technique that detects situations in which
fragments are not needed to answer a query and then prunes
these irrelevant fragments from a distributed query plan. We
achieve this goal without relying on a globally replicated
index structure, because using such a structure could limit
the scalability of a distributed system and negatively affect
the performance of updates. The specific contributions of
the work presented here are:

1. We formally define fragmentation in the context of
XML databases and propose a succinct method for
specifying the horizontal or vertical fragmentation of
a collection of XML documents.

2. We develop a mechanism that transforms fragmentation-
unaware query plans into equivalent distributed query
plans.

3. We propose the first known technique that can identify
and prune horizontal fragments that are irrelevant for
answering a given query.

4. We present a novel technique that, without relying
on a fully replicated index, allows us to skip verti-
cal fragments that are not needed to evaluate value
constraints.

5. We have implemented these techniques within a real-
life distributed XML database system, which has al-
lowed us to obtain realistic experimental results.

author (name, pubs, agent?)
pubs (bookx*)

book (chapter*)
chapter(reference?)
reference(chapter)

agent (name)

name (first, last)

first (#text)

last (#text)

Figure 3: A schema

The remainder of this paper is structured as follows: Sec-
tion 2 gives details on the data and query models that we
employ. Section 3 describes how fragmentation layouts can
be specified and how workload information can be used to
derive a good specification. Our approach to query localiza-
tion and fragment pruning is described in Sections 4 and 5,
which deal with horizontal and vertical fragmentation, re-
spectively. In Section 6, we evaluate the performance of this
approach. In Section 7, we discuss related work. Finally, we
present our conclusions in Section 8.

2. BACKGROUND
2.1 Datamode

An XML collection can be described as a set of labeled,
ordered trees. The structure of these trees is usually con-
strained by a schema, which specifies how elements may
be nested and what the domain of their textual content is.
We use a simple directed graph representation to describe
this schema information that covers only the aspects of the
schema that are important for our purposes. For example,
our representation ignores the distinction between XML el-
ements and attributes by treating both of them uniformly
as items. It is straightforward to translate a DTD or XML
Schema into the graph representation, which we define next.

Definition 1. An XML schema graph is defined as a 5-
tuple (X, ¥, s,d, p) where X is an alphabet of item types, p
is the root item type, ¥ C ¥ X X is a set of edges between
item types, s : ¥ — {ONCE, OPT,MULT} and m : ¥ —
{string}.

The semantics of this definition are as follows: An edge
Y = (01,02) € ¥ denotes that an item of type o1 may
contain an item of type o2. s(¢) denotes the cardinality of
the containment represented by this edge: If s(¢y) = ONCE,
then an item of type o1 must contain exactly one item of
o2. If s(1) = OPT, then an item of type o1 may or may not
contain an item of type og. If s() = MULT, then an item
of type o1 may multiple items of type 2. m(o) denotes the
domain of the text content of an item of type o, represented
as the set of all strings that may occur inside such an item.
Note that the definition of m (o) may include both the direct
content of an item of type o as well as the content of item
types nested in o. Figure 4 illustrates how the DTD shown
in Figure 3 can be represented as a graph.

2.2 Query model and tree patterns

We focus on a query model that contains the following
subset of XPath:

Figure 4: An XML schema graph

Q:=0|x[Q/Q|Q//Q|QQ]|Q[P]
P :=text() 0y Crext | val() on Coum | PAP | PV P | Cpos

@ defines arbitrarily nested path expressions with child
and descendant axes and node tests for either a valid item
type 0 € 3 or a wildcard * that matches all item types; P
defines arbitrarily nested conjunctive and disjunctive con-
straints on the text or numerical content of an item or on
its context position [9]; text() and val() represent the text
or numerical value of a node; oy and o, represent arbitrary
comparison operators that operate on text (such as = and
starts-with()) or numerical values (such as < and <), respec-
tively; Ctext and Chum represent arbitrary text or numerical
constants; Chos denotes a numerical constant representing
a context position. The class of queries that can be repre-
sented by this query model is sufficient to express a wide
variety of realistic XPath queries [13]. Queries comprised
of the primitives mentioned above can be expressed as tree
patterns [6, 23], which we formalize as follows:

Definition 2. Let (3, ¥, s, m, p) be the schema of the data
collection. A tree patternisa 7-tuple (N, E,r,v, ¢, T, c) where
N is a set of pattern nodes, F C N x N is a set of pattern
edges and (N, E,r) is a tree rooted at » € N. For each
n € N, v(n) € ¥ U {x} denotes a node test. For each
e € E, €¢(e) € {child,descendant} denotes the axis type.
T C N denotes the set of extraction points. For eachn € N,
¢(n) € m(v(n)) denotes a value constraint on the text con-
tent of items of type v(n).

In addition to the class of XPath queries defined above,
these tree patterns can be used to represent queries with
multiple extraction points, i.e., queries whose results are
comprised of tuples that consist of multiple document items.
Therefore, the query model presented here allows for queries
with complex results, which permits us to support a subset
of XQuery that goes beyond simple path expressions.

In the following, we will refer to the tree pattern repre-
sentation of a query as a query tree pattern (QTP). Query
XQ1 given earlier can be expressed as the QTP depicted in
Figure 5, where the reference node is an extraction point.

Figure 5: A query tree pattern (QTP)

A match for a QTP assigns a document item to each pat-
tern node such that all node tests, value constraints and axis
relationships are satisfied. While all nodes in the QTP have
to be matched to document items, only the items associated
with pattern nodes that are designated as extraction points
are returned as part of the result.

3. FRAGMENTATION

3.1 Horizontal fragmentation

Figure 6: Set of fragmentation tree patterns (FTPs)

The horizontal fragmentation model assumes a collection
that consists of multiple document trees. These document
trees can either be entire XML documents or they can be
the result of a previous fragmentation step. In either case,
we require that all document trees correspond to the same
schema. Multiple-document collections where all documents
follow the same schema are a common use case for XML.
Popular example include MathML [8] and CML [18].

A horizontal fragmentation is defined by a set of fragmen-
tation predicates. Each fragment consists of the document
trees that match the corresponding predicate. In order to
ensure that the fragmentation is lossless and that the frag-
ments are disjoint, we require that whenever a document
tree conforms to the schema of the collection, it matches
exactly one of the predicates.

Definition 3. Let D = {di1,d2,...,dn} be a collection of
document trees such that each d; € D corresponds to the
same schema (X, ¥, s, m, p). Then we can define a set of hor-
1zontal fragmentation predicates P = {po,p1,...,pi—1} such
that Vd € D : 3 unique p; € P where p;(d). If this holds,
then FF = {{d € D | pi(d)} | pi € P} is a set of horizontal
fragments corresponding to collection D and predicates P.

We represent the fragmentation predicates as Boolean tree
patterns, i.e., tree patterns with no extraction points. In
the following, we will refer to them as fragmentation tree
patterns (FTPs). Based on this representation, the lossless-
ness of a fragmentation can be enforced by carefully crafting
value constraints so that they cover the entire domain of the
values to which they refer. Alternatively, instead of defin-
ing predicates as mutually exclusive, they could be arranged
in a sequence and each document tree associated with the
fragment that corresponds to the first matching predicate.

If we assume that the document trees in the fragmented
collection shown in Figure 1 conform to the schema in Fig-
ure 4 and that m(last) is the set of strings that start with
upper-case letters of the English alphabet, then the frag-
mentation of this collection could be described by the set of
FTPs shown in Figure 6.

3.2 Vertical fragmentation

Our model of vertical fragmentation can handle collections
that consist of a single or of multiple document trees. Again,
it is possible that these trees are the result of a previous
fragmentation step, which allows us to combine horizontal
and vertical fragmentation.

A vertical fragmentation is defined by fragmenting the
schema graph of the data collection into disjoint subgraphs.
Formally, we define this using a vertical fragmentation func-
tion that assigns to each item type the fragment to which it
belongs.

Definition 4. Let (3, ¥, s, m, p) be a schema graph. Then
we can define a vertical fragmentation function ¢ : ¥ — Fx
where F¥ is a partitioning of X.

Figure 7 shows a fragmented schema graph that corre-
sponds to the schema from Figure 4. The item types have
been fragmented into four disjoint subgraphs. Fragment fY
consists of the item types author and agent, fragment fy
consists of the item types name, first and last along with
their text content, fragment fi consists of pubs and book
and fragment f) includes chapter and reference.

rFT TN

_ -\ rEEse
ubs [chapter]
| ONCE ONCE | \IUIT | OPT ONCE
MULT
first ast 00] reference
1 b k f
LoNS2 L, LEIl_
e wen |
(b) f3
2

Figure 7: A vertically fragmented schema graph

In contrast to horizontally fragmented XML collections,
where the data contained in each fragment is simply a subset
of the document trees in the entire collection, vertically frag-
mented collections contain document tree edges that cross
fragment boundaries. We represent such an edge as a pair of
proxy nodes with matching IDs: a prozy node in one frag-
ment corresponding to a root prozxy in another fragment.
The collection shown in Figure 2 has been fragmented ac-
cording to the fragmented schema from Figure 7. We denote
the proxy pair with ID ¢ as P ¢ and RP ¢. The proxy node P
1 in fragment fY thus corresponds to the root proxy node
RP 1 in fragment fy .

Vertical fragments generally consist of multiple uncon-
nected pieces of XML data. To distinguish them from the
entire document trees stored in horizontal fragments, we re-
fer to them as document snippets. In Figure 2, for example,
fragment fY consists of three snippets each of which consists
of the author item of one of the documents in the collection.

3.3 Designing fragmentation layouts

Using the mechanisms for specifying horizontal and ver-
tical fragmentation, a fragmentation algorithm can create a
fragmentation layout that is suitable for a given workload.
It also needs to take into account the specific performance
goals, such as throughput or response times. While a de-
tailed study of fragmentation algorithms is beyond the scope

of this paper, we briefly point out some of the considerations
involved in designing a fragmentation layout.

For horizontal fragmentation, spreading the document trees
relevant for a given query across a large number of fragments
generally improves response time by evaluating that query in
parallel at multiple sites. Concentrating the data needed for
each common query in a small set of fragments can improve
throughput by reducing inter-query interference.

The number of fragments that are accessed by a given
query plan can be tuned by choosing FTPs based on the
value constraints encountered in the QTP representation of
the query. Based on knowledge of the distributed query
evaluation technique used, the cost for multiple candidate
fragmentation designs can be estimated and a suitable de-
sign chosen.

For a vertical fragmentation layout, on the other hand, it
is generally preferable to minimize the number of fragments
needed to answer a given query. This reduces the portion
of the collection that needs to be inspected and at the same
time limits the number of joins that have to be performed
to combine results from multiple fragments, which improves
both response time and throughput.

Another important consideration when designing a frag-
mentation layout lies in the trade-off between processing
cost on the one hand and communication cost on the other.
This is particularly important with vertical fragmentation,
where results from multiple fragments have to be joined to-
gether.

4. LOCALIZATION AND PRUNING WITH
HORIZONTAL FRAGMENTATION

Based on the definition of horizontal fragmentation, we
can define a naive strategy for evaluating QTPs on a hori-
zontally fragmented collection of data. In an approach that
resembles horizontal localization in the relational context
[19], we can evaluate a query by computing the union of all
fragments and then executing a fragmentation-unaware plan
over the result. Since the definition of horizontal fragmen-
tation (Def. 3) requires that the set of document trees D is
the union of all fragments f € F, this leads to the correct
result:

a(D)=q(|J £

feFr

Our query model implies that each result is derived from
exactly one document tree in the collection. This allows us
to push the fragmentation-unaware query plans down to the
individual fragments:

Definition 5. If q is a plan that evaluates the query on
an un-fragmented collection of document trees D and F' is
a horizontal fragmentation of D, then

q7(F) := sort((D a(f))

feF

is a naive plan that evaluates the same query on F', where
©® denotes concatenation of results, and g7 (F) = q(D).

As shown in the definition, it may be necessary to sort
the results received from the individual fragments in order
to return them in a stable global order as required by the
XQuery data model [11]. For unordered queries, or if we are

willing to relax the ordering constraint, we can reduce the
amount of sorting-induced buffering by only maintaining a
stable order between items in the same document. This may
be a reasonable trade-off in many use cases.

4.1 Pruning fragments

As discussed before, to answer the query shown in Figure
5 on the fragmented collection from Figure 1, only the doc-
uments contained in the fragment f# need to be accessed.
The naive plan, however, accesses every fragment in the col-
lection, which can lead to poor performance.

In this section, we propose a procedure that detects irrel-
evant fragments and prunes them from a distributed query
plan. This procedure relies on the schema of the collection
and the FTPs that define the fragmentation. Both of these
are static over time, do not depend on the size of the data
and can be encoded in a compact manner. This makes it
feasible to replicate them at all sites as metadata.

In relational systems, fragments are usually pruned based
on an algebraic representation of a distributed query [19].
Here, however, the QTP presents a simpler abstraction that
contains all the information necessary to make pruning deci-
sions. We therefore prune based on the QTP representation
before converting the result to an algebraic plan. This allows
us to reduce the problem of pruning horizontal fragments to
that of determining the subset of FTPs for which we can
show that they cannot be satisfied at the same time as the
QTP.

To solve this problem, we transform QTP and FTPs into
a canonical representation. We then traverse them simulta-
neously and check for contradictory constraints. If we find
such a contradiction, there cannot be any results for the
query in the fragment corresponding to the FTP and the
fragment can thus be eliminated from the distributed plan.

4.2 Transformation to canonical form

The goal of transforming tree patterns into a canonical
form is to make sure each pattern node refers to a unique
item within the context of a single document tree. In gen-
eral, pattern nodes may match more than one item in a given
document tree. A constraint associated with such a pattern
node is satisfied if one of the matching items conforms to
the constraint. This makes it impossible to exploit con-
tradictory constraints associated with such pattern nodes.
Even if the constraints themselves are contradictory, they
may be satisfied by different items in the same document.

With QTPs, there are three sources of pattern nodes that
may match multiple items in the same document tree:

Item types reached via MULT edges Item types that
are reached via an edge in the schema that has a cardi-
nality of MULT may occur multiple times in the same
context. Based on the schema in Figure 4, for exam-
ple, the step pubs/book may yield multiple book items
corresponding to a single pubs item.

Descendant steps can also yield multiple results in the
same context. In the QTP shown in Figure 8(a), for ex-
ample, the descendant edge between author and name
can be satisfied either by a name item that is the di-
rect child of a given author item or by a name item
that is reachable through an intermediate agent item.
Because of this, even though the constraints on the au-
thor’s last name imposed by the FTP shown in Figure

Figure 8: QTP and FTP that are not contradictory

8(b) and the QTP shown in Figure 8(a) seem to cause
these two patterns to be contradictory, they are actu-
ally not. Document trees in the fragment correspond-
ing to the FTP predicate will only contain information
about authors whose last names start with the letter
“A”. The QTP, on the other hand, matches books that
are either authored by “William Shakespeare” or by
someone whose agent is “William Shakespeare” and
whose last name might well start with the letter “A”.

Wildcards are another source of multiple matches in the
same context whenever the schema specifies that an
item type may contain multiple other item types.

We define canonical tree patterns as tree patterns that do
not contain any of these primitives:

Definition 6. A tree pattern (N, E,r,v,¢€,T, c) is a canoni-

cal tree pattern iff Vn € N, v(n) € Land V(z,y) € E,e((z,y)) =

child A (v(z),v(y)) € ¥ A s((v(z),v(y))) # MULT.

In order to convert a tree pattern into a canonical tree
pattern, all disallowed primitives have to either be removed
or converted into an equivalent canonical form. It is im-
portant to note that canonical tree patterns are strictly less
expressive than arbitrary tree patterns. Therefore, when a
tree pattern is transformed to a canonical tree pattern, the
result is not generally equivalent to the original tree pattern.
Instead, the canonical tree pattern matches a superset of the
document trees that match the original tree pattern. Since
canonical tree patterns are only used to identify fragments
that can be pruned, but not for the subsequent query eval-
uation on those fragments, this loss of expressiveness does
not pose a problem. Nevertheless, it is important that the
transformation retains as much as possible of the informa-
tion present in the original pattern so that this information
can be exploited for pruning decisions.

In the following, we describe our algorithm for transform-
ing tree patterns into the canonical form.

4.2.1 Unrolling descendant steps

The unrolling of descendant steps can be succinctly im-
plemented as a manipulation of the directed graph represen-
tation of the schema. In order to unroll a descendant step
from a pattern node labeled a to a pattern node labeled b,
we consider the subgraph of the schema graph that consists
of all nodes that are reachable from a and from which b
is reachable (Algorithm 1, lines 31 and 32) . This yields
a graph that contains all the intermediate item types that
may occur on a downward path from a to b. In the example
shown in Figure 9, the nodes that are used to unroll the step
author//name are highlighted.

If there is a cycle in this schema subgraph, we discard
the descendant step and all the pattern nodes that occur

Algorithm 1: pattern transformation algorithm

: pattern tree (N, E,r,v, ¢, T, ¢), schema

(27 qj? 87 m7 p)

output : pattern graph (N, E' v,V ¢, T’ c)

variable : QQ // represents nodes whose children have
yet to be checked

variable : N” // set of nodes to be inserted

variable : E” // set of edges to be inserted

input

1 7’ + new node
2 V' (r") « v(r)
3 (r') « c(r)
a N' — {r'}
5 B — 0
6 T — 10
7 Q — {(rr")}
8 while Q # 0 do
9 // while there are nodes to be processed, pick one
10 | (g,q) «some (¢,9')€Q
1 | Q—Q\{(¢,d)}
12 // for all outgoing edges of q
13 for e = (z,y) € E, with x = q do
14 y < mnew node
15 (') —cly)
16 if €(e) = child then
17 // case 1: child azis
18 if v(y) # * then
19 | V() =v(y)
20 else if J(o1,02) € ¥ unique with v(z) = o1
then
21 | V(Y) — o2
22 else
23 L continue
24 if ¢ = (v(z),v(y)) € U,s(¢p) # MULT then
25 // add this node to the canonical tree
26 N — N u{y'}
27 E'— E'U{(d,y)}
28 Q< Qu{ly,y)}
29 else if v(y) # x then
30 // case 2: descendant azis
31 ¥ « {0 € | o reachable from v(z),
v(y) reachable from o in (X, ¥)}
32 \I’,<—{(U1,0'2)€\I/‘O'1,0'2€Z/}
33 if (X, 0') is acyclic and fp € U with
s(¥) = MULT then
34 V' (y) — v(y)
35 (NN, E//) -
unrolldesc(q,y’, >, V' v(z))
36 N «— N UN"U{y'}
37 E' —FE UE"
38 Q—QU{(y,y)}

39 Ve' € E',€'(¢') « child
40 return(N', E' v’ V' €, T, c)

below it (Algorithm 1, line 33). This is necessary because
the presence of a cycle implies that a matching item may
occur at different levels in the document tree. This creates
ambiguity, making it impossible to take advantage of the
value constraints associated with such a node. Assume, for

Algorithm 2: unrolldesc(z,y, >, V', p’) unrolls descen-
dant step

: origin node x, target node y, transformed
schema (%', ¥')

output : nodes N”, edges E”

variable: S // pattern nodes yet to be processed

input

1 N — @
2 B0
3 S {z}
4 for s € S do
5 if 3(o1,02),(03,04) € V' 02 # 04,v(s) =01 =03
then
6 // more than one outgoing edge from s
7 // insert & node
8 ng < new node
9 V(ng) — @
10 cd(ng) «— L
11 N" — N"U{ng}
12 E" — E"U{(s,n0)}
13 S — Ng

14 // insert edges
15 for (01,02) € ¥',v(s) =01 do

16 if 02 = v(y) then

17 | 7oy —y

18 else

19 Ney < new node
20 V' (ney,) < 02

21 ' (Ney) — L

22 N" — N"U{ns,}
23 S— SU{ns,}

24 | E" — E"U{(ns,n0,)}

25 return(N", E")

example, that we want to unroll the step book//reference.
We can observe that there is a cycle involving the item types
chapter and reference. This corresponds to the fact that
the path can be satisfied either by a reference in a chapter of
the book where we start out, or by a reference in a chapter
referenced by this chapter, and so on.

If the subgraph is acyclic (as in the example shown in
Figure 9), we introduce a new pattern node for each of the
intermediate schema nodes such that the node test of the
pattern node matches the name of the corresponding schema
node (Algorithm 2). In cases where a schema node has more
than one child, an intermediate choice node is inserted (Al-
gorithm 2, lines 6-13, denoted by @), which signifies that
the subsequent branch of the pattern can be satisfied by a

MULT
[ftext] [ftext]
OPT ONCE

reference

Figure 9: Schema restricted to nodes reachable from
author and from which name is reachable

match for any of the child nodes.

After these intermediate nodes have been inserted, the
pattern has been transformed from a tree into a DAG. We
can reconstruct a tree representation by duplicating nodes
that are reachable through more than one path. In general,
however, this is not necessary since we can directly traverse
the more compact DAG, which yields the same result as
traversing the equivalent tree.

Figure 10 shows the tree representation of the unrolled
version of the QTP given in Figure 8(a). Note that while the
step author//book can simply be unrolled into a sequence
of child steps, unrolling author//name requires the insertion
of a choice node and the duplication of the branch below it.
This is because there are two paths from author to name, as
is shown in Figure 9.

Figure 10: Pattern after unrolling descendant steps

4.2.2 Removing wildcard nodes

We convert wildcard nodes whenever they unambiguously
refer to a specific item type (Algorithm 1, lines 18-21). For
example, by relying on the schema shown in Figure 4, the
step agent/* can be translated to agent/name. It is also
possible to convert wildcard nodes that can refer to more
than one item type by introducing choice nodes into the
pattern in a procedure that is largely analogous to the way
descendant steps are unrolled.

4.2.3 Removing nodes referring to items with multi-

ple occurrences in the same context

Figure 11: Canonical pattern

In general, a meaningful conversion of pattern nodes cor-
responding to items with multiple occurrences in the same
context is not possible and we need to eliminate these nodes
from the pattern. One exception to this is the scenario where
the pattern node is associated with an explicit positional
constraint that disambiguates between multiple occurrences
of a matching item (e.g. pubs/book[1]). In this case, we

Algorithm 3: traverse((N, E,r,v,¢,T, ¢) ,
(N, E',v' V' e, T) finds contradictions

input : predicate pattern (N, E,r,v,€,T,c) , query
pattern (N, E',v' V' €, T',c)
output : true iff constraints are satisfiable
variable : result
1 if v(r) =v'(r") and c(r) A (r") is not satisfiable
then
2 | result + false // constraint violation found

3 else if v(r) = ® then
4 // check if at least one choice leads to satisfiable

constraints
5 result < false
6 for n € N with (r,n) € E do
7 if 3(z,y) € E' with
z=7" AN (y) =v'(n) VIV (y) = @) then
8 result «—
L result V traverse((N, E,n), (N', E',y))

9 else
10 L result «— true

11 else if V' (r') = ® then
12 // check if at least one choice leads to satisfiable

constraints
13 result « false
14 for n’ € N’ with (r',n') € E' do
15 if 3(z,y) € E with
z=7A(v(y) =v'(n)Vr(y) = @) then
16 result «—

result V traverse((N, E,y), (N', E',n’))

17 else

18 L result < true
19 else
20 // check all child nodes
21 result < true
22 for n € N with (r,n) € E do
23 if 3(z,y) € E' with
s =1 A (y) = v(n) V' (y) = &V v(n) = &)
then
24 result «—
result A traverse((N, E,n), (N', E',y))

25 return result

could retain the pattern node and exploit its associated con-
straints for pruning (not shown in Algorithm 1). In the ex-
ample from Figure 10, we need to remove the book node
since the schema indicates that a pubs item may have mul-
tiple children of type book. The resulting canonical pattern
is shown in Figure 11.

4.3 Traversal and pruning

After transforming QTP and FTP into canonical tree pat-
terns, Algorithm 3 traverses both patterns simultaneously.
Only nodes occurring in both patterns are visited. For each
pair of corresponding nodes, we check whether the value con-
straints in one pattern contradict those in the other pattern.
Since in canonical tree patterns each node corresponds to a
unique item within the context of a single document tree,

Figure 12: Canonical QTP and FTP that are not
contradictory

a contradiction between patterns allows us to immediately
eliminate the fragment corresponding to the FTP from fur-
ther consideration.

Special care has to be taken when a choice node is encoun-
tered (Algorithm 3, lines 3-18). In this case, a contradiction
exists only if we can find contradictory constraints regard-
less of which branch of the choice we follow. If there is at
least one choice without a contradiction, which may be a
choice that leads to a branch that is not present in the other
pattern, it is not possible to conclude that the fragment can
be eliminated.

In the example shown in Figure 12, the traversal algo-
rithm proceeds as follows. First, the author nodes in QTP
and FTP are visited. Since there is no value constraint asso-
ciated with this node in either pattern, there is no conflict,
therefore we move on to the children of the author nodes.
The pubs node is only present in the QTP and is there-
fore not visited. As the other child of the author node, the
QTP contains a choice node. We now have to check both
branches for conflict. The left branch leads to the name
node, for which there is an equivalent node in the FTP. In
both patterns the name node has a child with node test last.
When inspecting the value constraints associated with the
last nodes, the algorithm detects a contradiction because
the content of the corresponding document item cannot be
equal to the string ‘Shakespeare’ and at the same time start
with the letter ‘A’. Therefore, we know that there is a con-
tradiction for the left branch of the choice node. In order
for there to be a global contradiction, however, the patterns
have to be contradictory for both branches of the choice
node. Therefore, the algorithm still has to inspect the right
branch, for which it encounters a node with the node test
agent. For this node, there is no equivalence in the FTP and
therefore no contradiction. Since the algorithm only found
a contradiction for one branch of the choice node, there is
no global contradiction and the fragment corresponding to
the FTP cannot be pruned.

For the example in Figure 13, on the other hand, the
traversal algorithm does detect a contradiction. After in-
specting the author and name nodes in both patterns, the
algorithm reaches the last nodes and their contradicting
value constraints. This time, the last node does not occur
as the descendant of a choice node so this contradiction is
sufficient to prune the fragment corresponding to the FTP.

4.4 Analysisand optimization

While it may seem that the transformation and traversal
of QTP and FTPs could pose a significant overhead, there

(a) QTP - Zb) FT}Q

Figure 13: Canonical QTP and FTP that are con-
tradictory

are a number of consideration that reduce this impact. The
transformation of the FTPs only has to be performed once
when the fragmentation is set up. It does therefore not pose
a run-time overhead during query execution.

For the transformation of the QTP, we make the follow-
ing observations: child steps are either copied from the
QTP to the canonical QTP or omitted. Both the size of
the canonical QTP and the time consumed by the transfor-
mation are therefore linear in |E311T112|, which is the number
of child steps in the QTP. For each descendant step, in
the worst case, Algorithm 2 introduces one choice node and
one non-choice pattern node for each o in . Therefore,
the size of the canonical QTP is linear in |Eer | [S]. In
order to analyze the time complexity, we also have to take
into account the time consumed by computing the reachable
schema subgraph and by detecting cycles in the resulting
graph. We can compute the subgraph consisting of nodes
that are reachable from node a and from which b is reachable
by first marking all nodes reachable from a, then marking
all nodes from which b is reachable and finally choosing all
nodes that were marked both times. Assuming a suitable
representation of the graph, this can be done in O(|X|+|¥])
time. Using Tarjan’s algorithm [22], we can detect cycles
in O(|X| + |¥|) time. Therefore, the transformation of a
QTP takes O(|ESTL| + |ESIF| (|12 + |¥))) time and yields
a result containing O(|ESTL| + |EZEP| |2]) nodes. Because
this result is also a directed graph, in which nodes may be
shared among multiple branches, the equivalent tree pat-
tern is of size O(|EZLY| |Z] |ESTE] + |ESEF|? |2[%). This
is important, because the time consumed by the subsequent
traversal step depends on the size of the equivalent tree.

The time required to traverse the QTP and the FTPs is
linear in the size of the tree representations of the canon-
ical QTP and the FTPs. Because the traversal has to be
performed for each fragment, it is also linear in the number
of fragments. This leads to an overall time complexity of
O((|EX| [S| |EQRE |+ |EQEF 2 [[2) (| EEIP| |5 |EETL +
ELFE (S) |F).

Since horizontal fragmentation is defined as a partitioning
of the data collection, FTPs need to be disjoint and cover the
entire collection. Because of this, we expect that in many
instances the FTPs will only differ in their value constraints
but not in their structure. It is therefore possible to sim-
plify the traversal process by traversing the QTP together
with a single, abstract FTP, rather than with each FTP in
the fragmentation. In this abstract FTP, value constraints
are replaced with variables. Traversal of QTP and abstract
FTP results in a formula that describes the conditions un-
der which there is a contradiction between the QTP and an
FTP. Figure 14(b) shows an abstract FTP, in which a value
constraint has been replaced with the variable x. Traversing

this abstract FTP with the QTP in Figure 14(a) shows that
there is a contradiction if —(.=’Shakespeare’ A) holds.

We can now instantiate x with the corresponding value
constraint from each of the original canonical FTPs, i.e.,
with the expressions

startswith(CA”’), ..., startswith(’S’), ..., startswith(’Z’)

Solving this formula yields a contradiction for all of these
cases except ¢ = startswith(’S’). A similar optimization is
possible for the QTPs if we assume that the structure of a
query is known at compile time whereas the constants used
in value constraints are only known at run time.

5. LOCALIZATION AND PRUNING WITH
VERTICAL FRAGMENTATION

Based on the definition of vertical fragmentation, we de-
fine a strategy for evaluating QTPs on a vertically frag-
mented collection. First, we decompose the global QTP into
a set of local QTPs corresponding to individual fragments.
Then we use an existing tree pattern evaluation strategy to
evaluate the local QTPs on the fragments (the specific strat-
egy is left to each site to decide). Finally, we combine the
results of this process by joining the matches derived from
individual fragments based on their proxy/root proxy IDs.

The decomposition of a global QTP into a set of local
QTPs directly follows the schema graph. After unrolling
wildcard nodes using the same procedure employed by hor-
izontal pruning, Algorithm 4 divides the global QTP into a
set of subtrees each of which consist of pattern nodes that
match items in the same fragment. Edges between pattern
nodes in the same subtree are assigned the same axis type
as the corresponding edge in the global QTP.

A child edge from a pattern node in a subtree a to one in
a subtree b is converted to a pattern node matching a proxy
in a and a pattern node matching a root proxy in b. These
pattern nodes are marked as extraction points because they
are needed to join the results of local QTPs to generate the
final result.

When descendant edges across fragment boundaries are
encountered, they are unrolled into child steps according to
the same procedure that is used by the horizontal trans-
formation algorithm (not shown in Algorithm 4). It is im-
portant to note that this unrolling may turn a single cross-
fragment descendant step into multiple cross-fragment child
steps. This corresponds to a case where a descendant step
traverses multiple fragments. Consider, for example the
descendant step author//reference. When this step is
unrolled, it yields two cross-fragment child steps, namely
author/pubs and book/chapter. Therefore, an additional
local QTP corresponding to fragment fi (which contains
the pubs and book item types) is introduced, even if there is

Figure 14: Canonical QTP and abstract FTP

Algorithm 4: Vertical localization

input : global QTP (N, E,r,v,¢,T,c), schema
(X, ¥, s,m, p), vertical fragmentation
function ¢ : ¥ — Fx

output : set of local QTPs with fragment they are

evaluated on

Q={((N",E vV, e T,), f € Fs)}
Q«— {(N',E' v v, €, T) maximal | (3f €
Fs,Vn' € N : ¢(v(n)) = f)AN(E'=EN(N'"x N')) A
((N',E") is connected and rooted at r') A (v' =
VAE =e)ANT' =TNN')A(d =c¢)} // construct
local QTPs without cross-fragment edges

=

2 for (n1,n2) € B, 6(u(n1)) # ¢(v(n2)) do
3 1 +— unique ID
4 Q1<—(N1,E1,7'1,V1,€1,T1,C1)GQ,nl€N1
5 g2 — (N2, E2,72,v2,€2,T2,¢2) € Q,n2 € N2
6 p; < new pattern node
7 rp; «— new pattern node
8 Ny «— N1 U {pl}
9 Ny «— Ny U {Tpi}
10 vi(p;) < proxy i
11 v2(rpi) < root proxy i
12 T, «— Ty U {pz}
13 Ty — To U{rp;}
14 | Eyv— ExU{(n1,pi)}
15 E> — E> U {(’I“pi,’na)}
16 T2 <— TDP;

no pattern node in the global QTP that refers to item types
in this fragment.

Localizing the global QTP shown in Figure 5 yields the set
of local QTPs shown in Figure 15(a)—(d). Note that while
the unrolling of cross-fragment descendant steps can increase
the size of the QTPs, this is mitigated by the pruning tech-
nique that we propose. In addition, local optimization tech-
niques can evaluate linear paths of child steps efficiently by
taking schema information into account.

If the global QTP does not reach a certain fragment and
if no intermediate QTP has to be generated for it because
of cross-fragment descendant steps then the localized plan
derived from the local QTPs will not access this fragment.
Therefore, the localization technique eliminates some verti-

Figure 15: Local QTPs

10

X(B:P.id=B:RP.id)

W a:pid=a:rPid) YW(C:Pid=C:RP.id)

pa(£Y) o(fY) pelfs) palf))

Figure 16: Initial vertical plan

cal fragments even without further pruning.

Local QTPs are then evaluated on the corresponding frag-
ments using existing, local tree pattern evaluation techniques.
Finally, whenever two subtrees of the global QTP share a
cross-fragment edge, the plans corresponding to their local
QTP representations are joined together based on the IDs
of the proxy pair representing this edge. Assuming that pa,
Db, Pe and pg represent local plans that evaluate the QTPs
shown in Figures 15(a), (b), (c¢) and (d), respectively, we
could evaluate the query using the plan shown in Figure 16.

5.1 Skipping fragments

The localization strategy for vertical fragmentation avoids
accessing fragments that are not reached by the global QTP.
Intermediate fragments, however, have to be accessed even
if no constraints are evaluated on them. In our example,
we have to evaluate the local QTP shown in Figure 15(c)
and therefore access fragment fy in order to determine, for
example, that proxy P 2 in fragment f is indirectly con-
nected to root proxy RP 7 in fragment f;. We propose
a pruning technique that allows us to avoid accessing such
intermediate fragments.

So far, we have made no assumptions on how IDs are as-
signed to proxy pairs when data are inserted into a vertically
distributed collection. We now propose a proxy numbering
scheme called skipping IDs that is based on the Dewey num-
bering system' and that allows us to infer whether a root
proxy node is the descendant of a given proxy node. To de-
fine this numbering scheme, we need to distinguish between
the following two cases: (i) If a document snippet does not
have a root proxy node as its root (i.e., if the snippet con-
tains the root element of a document tree in the collection),
then the proxy nodes in this fragment (and, of course, the
root proxy nodes in other fragments that correspond to these
proxy nodes) receive simple numeric IDs. In the collection
shown in Figure 2, fragment f{ is the only such fragment.
The proxy nodes in this fragment therefore receive numeric
IDs, which means that P 1 through P 6 are already num-
bered in accordance with our numbering scheme. (ii) If a
document snippet is rooted at a root proxy node, then the ID
of each of their proxy nodes is prefixed by the ID of the root
proxy node of the snippet, followed by a numeric identifier
that is unique within this snippet. In Figure 2, fragments
13, f¥ and fY consist of snippets that are rooted at a root
proxy. However, only fragment fi contains proxy nodes.
Therefore, only P 7 through P 9 have to be renumbered.
P 7 is part of a snippet that is rooted at the root proxy
node RP 2. We would therefore have to renumber it to P

1'We have also experimented with other numbering schemes,
such as one where each proxy pair is identified by its pre-
order and post-order position in the collection. Our tech-
niques are also applicable to these representations.

(first) C last) C fn—st) (last) (Cfirst) (Clast)

| @r> CRPAD RP6D
: :
i i
N /
(o) f5
: (Cchapter) (chapter) (chapter) i
: (zaference) (refeane) (Feference) /l
(@ f&

Figure 17: A vertically fragmented collection with
skipping IDs

2.1. Similarly, P 8 would be renumbered to P 4.1 and P
9 to P 6.1. Figure 17 shows the result of renumbering the
proxy nodes in the vertically fragmented collection shown in
Figure 2.

If all proxy pairs are numbered according to this scheme, a
root proxy node is the descendant of a proxy node precisely
when the ID of the proxy node is a prefix of the ID of the
root proxy node. When evaluating query patterns, we can
exploit this information by removing local QTPs from the
distributed query plan if they contain no value or structural
constraints and no extraction point nodes other than those
corresponding to proxies. These local QTPs are only needed
to determine whether a root proxy node in some other frag-
ment is a descendant of a proxy node in a third fragment,
which we can now infer from the skipping IDs. Using this
optimization, we can rewrite the query plan from Figure 16
to the simpler plan shown in Figure 18, which avoids access-
ing fragment £y .

X(B:P.id=prenxC: RP.id)
N(A:Pid=A:RP.id)

Pd(f4v)

pa(f) po(f3)

Figure 18: Skipping vertical plan

11

5.2 Dealing with structural ambiguity

While skipping IDs allow us to skip fragments on which
no constraints are placed, sometimes structural constraints
make it necessary to access intermediate fragments, even if
they are not needed for evaluating value constraints. To il-
lustrate this, consider the modified fragmented schema shown
in Figure 19, which adds article as an additional type of
publication. If we evaluate the local QTPs shown in Fig-
ure 15 on this modified schema, we can no longer eliminate
the local QTP in Figure 15(c) because skipping the cor-
responding fragment would mean that we could no longer
distinguish between the snippets in fragment f} " that are
part of a book and those that are part of an article.

We propose a technique that lets us skip such fragments
by keeping track of some structural information in the proxy
IDs if there is ambiguity. We define structural ambiguity as
follows: Let f, be a fragment whose snippets are rooted
at root proxy nodes and that snippets in f, contain proxy
nodes that refer to fragment f;. Then f, is structurally
ambiguous with respect to fp if there is more than one path
in the schema of f, that leads from a root proxy node in f,
to a proxy node in f, that corresponds to fs.

If f, is structurally ambiguous with respect to fp, then we
add label path information to the proxy ID of each proxy
node in f, that corresponds to f,. This information consists
of the labels encountered on a path from the root proxy of
the snippet in which the proxy occurs to the proxy itself.
Since the label path information is part of the locally unique
identifier specified by our numbering scheme, it is also part
of the prefix of the IDs of proxy nodes that are descendants
of the proxy node for which it was inserted.

In the case of the fragmented schema shown in Figure 19,
there is one instance of structural ambiguity. The fragment
1y s structurally ambiguous with respect to fi " This
is because there are two label paths from a root proxy in

v " that could lead to a proxy node that corresponds to
fX,: pubs/book and pubs/article. We therefore store the
label path as part of the ID of each proxy node in fy " that
corresponds to ffl. Figure 20 shows a sample instance of
fragment fy " with label path IDs.

Label paths contain sufficient information to evaluate struc-
tural constraints such as those seen in Figure 15(c). In com-

| |
| ONCE ONCE |
| |
| |
| i) G !
i#text! |#text! MULT
(b) 1% MULT
2
r~ = e
| |
| orr ONCE |
I I
______ -
Vl
(d) fa

Figure 19: A modified fragmented schema graph

Q1 | /open_auction[./interval/end[.= xs:date(’12/28/2001°)]][initial > 200]//item/name
Q2 | /open_auction[./interval/end[.>= xs:date(’01/01/1998°)][. < xs:date(’12/28/1998°)]1] [initial > 200]//item/name
Q3 | /open_auction[./interval/end[.>= xs:date(’01/01/1998°)]1[. < xs:date(’12/28/1999°)]] [initial > 200]//item/name
Q4 | /open_auction[./interval/end[.>= xs:date(’01/01/1998°)][. < xs:date(’12/28/2000°)1] [initial > 200]//item/name
Q5 | /open_auction[./interval/end[. >= xs:date(’01/01/1998°)][. < xs:date(’12/28/2001°)]] [initial > 120]//item/name
Q6 | /open_auction[initial > 200]/interval/end
Q7 | /open_auction//person//category[id=’category10’]
Q8 | /open_auction/bidder//person//category[id=’categoryl0°’]
Q9 | /open_auction/bidder//person[creditcard]//category[id=’category10’]

Q10 | /open_auction/bidder//person[creditcard] /profileleducation]//category[id=’category10’]

Table 1: Queries used in experiments

G&e D

pubs
(Carticle

4.1[pubs/article

|
|
|
|
|
|
I
7/

Figure 20: Fragment fi with label path IDs

bination with skipping IDs, they therefore allow us to eval-
uate the query using the plan shown in Figure 21, which

avoids accessing fy .

X (B:P.id=presixC:RP.id)

X(A:Pid=A:RP.id) O(C:RP==[pubs/article])

pa() 2o(f3) pa(fi’)
Figure 21: Label path plan

5.3 Analysis

Both skipping IDs and label paths are inserted at fragmen-
tation time and whenever data is added to the collection.
Since they are not replicated, local insertions and deletions
can be handled without having to modify other fragments.

The vertical pruning techniques proposed here operate
solely on the QTP and the fragmented schema graph. They
are independent of the size of the data and constants used
in value constraints. This allows us to perform pruning at
query compile time, thereby minimizing the run-time over-
head introduced by pruning.

Label paths are useful not only for localization but also
for pruning irrelevant snippets within fragments. Studying
the further uses of label paths in a distributed context is the
subject of future research.

6. PERFORMANCE EVALUATION

We implemented our techniques within the native XML
database system NATIX [4], to validate the approach and to
perform realistic experiments. Our goal is to show that our
techniques can improve the performance of query processing
through distribution and pruning.

The data collection we use for our experiments is based on
the XMark benchmark [21]. XMark provides a single docu-

12

ment consisting of on-line auction data that can be scaled to
a wide variety of sizes. Since the horizontal fragmentation
model assumes a collection that consists of multiple separate
document trees rather than one large document tree, we de-
normalize the XMark data into multiple documents by du-
plicating references shared between more than one auction.
As shown in Table 2, we use collections that are 35 MB, 350
MB and 3.5 GB in size after denormalization.

All experiments are conducted on virtualized Linux in-
stances within Amazon’s Elastic Compute Cloud. For each
fragment, we use a separate “small” instance, which provides
1.7 GB of memory, a single-core 32 bit CPU and 160 GB of
storage. In addition to this, we use a “medium” dual-core
instance to dispatch the queries. All instances are running
in the same “availability zone”, providing low-latency, high-
throughput communication.

6.1 Horizontal fragmentation

For the horizontal fragmentation model, the primary goal
of our evaluation is to show that our pruning algorithm
significantly increases throughput in a distributed system,
without adding overhead that would significantly reduce re-
sponse times.

6.1.1 Balanced fragmentation

The data generated by XMark are uniformly distributed
across the years 1998-2001 with respect to the end date of
the auction. We exploit this property to define a balanced
horizontal fragmentation consisting of 16 fragments of equal
size, each of which corresponds to the auctions ending in one
particular quarter of one of the four years. Figure 22 shows
the FTP corresponding to one of the fragments.

Figure 22: XMark FTP

We use the queries Q1 through Q5 shown in Table 1. Q1
is focused on one particular date. Our pruning algorithm

Scale fac. [XMark size | Conv. size [Number of docs. |

0.1 12 MB 38 MB 1200
1 112 MB 338 MB 12000
10 1.1 GB 3.5 GB 120000

Table 2: XMark instances used

leverages this to produce a plan that only needs to inspect
a single fragment. Q2-Q5 require 4, 8, 12, and all 16 frag-
ments, respectively.

To measure the throughput achieved by the various tech-
niques, we use 24 processes on the dispatcher instance that
are constantly issuing queries on the distributed system.
While this may seem like a large number of processes for
a dual-core machine, the dispatcher spends most of its time
waiting for results to arrive from other sites, where the bulk
of query processing is performed. For each query instance,
the dispatcher randomly varies the dates mentioned in the
query while retaining the length of the date range as spec-
ified in Q1-Q5. This results in a query workload whose re-
sults are evenly distributed across the four years.

The results of this experiment are shown in Table 3. For
each collection size and query, we see, from left to right in
the next three columns, the throughput rates achieved by
a single, centralized NATIX instance, a distributed system
without pruning, and a distributed system using the pruning
techniques presented in this paper. Even without pruning,
distribution significantly increases throughput. Enabling
pruning further improves throughput by a factor of up to
12. Naturally, the impact of pruning is most pronounced for
Q1 where a single date is selected and where our pruning
algorithm can therefore avoid accessing all but one of the
16 fragments. Pruning also helps for the queries that in-
volve a range of dates, particularly when this range is small,
though the effect is less pronounced. For Q4 and Q5, where
a large portion of the fragments or all fragments have to be
inspected, pruning offers no advantage over simple distribu-
tion.

This illustrates the importance of a fragmentation lay-
out that is well suited to the workload. It shows that frag-
menting on attributes on which single-value selections are
performed leads to greater pruning opportunities than frag-
menting on attributes that are used in wide range predicates.
Even in such cases, however, distributed evaluation by far
outperforms centralized querying.

Throughput (queries/sec.)

[Balanced frag.]| Skewed frag.
Col. size | Query || Central || Dist. | Pruning [| Dist. [Pruning
35 MB Q1 1.64 7.13 28.08 4.92 19.93
Q2 1.44 6.94 16.64 4.67 11.75
Q3 1.34 6.39 6.65 4.53 5.56
Q4 1.24 6.32 6.34 4.24 4.53
Q5 1.17 6.40 6.40 3.88 3.86
350 MB Q1 0.20 2.26 24.55 0.80 2.97
Q2 0.18 2.14 4.50 0.71 2.21
Q3 0.17 1.72 1.78 0.71 1.10
Q4 0.15 1.74 1.76 0.62 0.67
Q5 0.13 1.62 1.64 0.56 0.54
3.5 GB Q1 < 0.01 0.30 3.60 0.08 0.33
Q2 < 0.01 0.24 0.50 0.08 0.29
Q3 < 0.01 0.24 0.24 0.08 0.13
Q4 < 0.01 0.21 0.22 0.08 0.08
Q5 < 0.01 0.18 0.19 0.06 0.07

Table 3: Throughput

6.1.2 Skewed fragmentation

While pruning performs well on a balanced fragmentation,
in practice it is not always possible to achieve this balance.
We therefore measure the effect of pruning with a skewed
fragmentation, which places the auctions ending in 1998 in

13

a single fragment, splits the auction ending in 1999 into two
fragments, those ending in 2000 into 4 fragments and the
auctions of 2001 into the remaining 9 fragments.

The results are shown on the rightmost two columns of
Table 3. Even in the presence of skew, distribution results in
a significant boost in performance over centralized querying
in all cases. Adding pruning leads to a further improvement
wherever the queries are sufficiently focused with respect to
the end dates. Just as in the balanced scenario, this effect
is most pronounced for Q1, whose plan can be pruned to a
single fragment.

To further improve querying performance on a skewed dis-
tribution, it could be beneficial to replicate the most heavily
loaded fragments. We plan to examine this combination as
part of our future work.

6.1.3 Response time

Next, we verify that the improvement in throughput does
not come at the expense of increased response times. We
measure the time it takes to evaluate the queries Q1-Q5 in
an otherwise idle system using the balanced fragmentation.
The results are shown in Table 4. Distribution has a large
positive impact on response times when compared to cen-
tralized processing. Enabling pruning does not lead to in-
creased response times. Instead, it appears to have a small
positive impact for Q1 since the dispatcher only has to wait
for a single site to finish, which is not necessarily the slowest.

‘ [| Response time (seconds) |
| Col. size | Query || Central [Dist. | Pruning |

35 MB Q1 0.75 | 0.27 0.19
Q2 0.78 | 0.24 0.22

Q3 0.81 | 0.27 0.25

Qd 0904 | 025 0.27

Q5 0.95 | 0.25 0.27

350 MB Ql 197 | 0.57 0.49
Q2 561 | 0.6 0.66

Q3 6.05 | 0.66 0.66

Qi 6.50 | 0.65 0.70

Q5 6.85 | 0.67 0.67

3.5 GB QL || 403.65 | 3.43 3.26
Q2 |[40703 | 463 175

Q3 || 403.65 | 4.80 174

Q4 || 40991 | 4.74 1.68

Q5 || 405.96 | 5.46 541

Table 4: Response time (horizontal)

6.1.4 Pruning efficacy

In addition to evaluating the performance impact of prun-
ing, we are interested in how effectively the pruning tech-
nique limits query execution to the fragments that actually
yield part of the result. To determine this, we measure the
fraction of those sites accessed by a pruned query plan that
yield part of the query result. We omitted Q1 from this
experiment, since it can be answered using a single frag-
ment. We vary the cut-off value for the initial bid of the
auction, which affects the selectivity of the queries, with a
lower value yielding more query results. The results for the
largest collection are shown in Figure 23. The remaining
results are given in Table 5, which shows, from left to right,
the collection size, the query, the number of fragment ac-
cessed after pruning, the number of fragments that return
part of the result and the percentage of fragments accessed

that return part of the result. We can see that pruning is
more effective for the queries that select a large number of
results (corresponding to lower bid values). This is because
a query that selects a larger portion of the collection is more
likely to find a match within a given fragment.

100 r&& R %
S 80t
>
&
5] 60
£
(]
2 40t
5
a Q2 —+—
20 Q3
Q4 Ko
ol - ‘
300 400 500 600 700 800
Bid value

Figure 23: Pruning efficacy

6.2 Vertical fragmentation

The goal of the evaluation of our techniques for vertical
fragmentation is to demonstrate that it can significantly im-
prove performance in a distributed system. We also show
how this increase in performance correlates with the effec-
tiveness of our pruning algorithms.

6.2.1 Response time

The experimental evaluation of our vertical techniques fo-
cuses on response times. In a vertically fragmented system,
a single type of query always accesses the same fragments
resulting in a closed system in which throughput can only
be improved by reducing the response time. This makes a
separate study of throughput unnecessary.

We again use the denormalized XMark collections, which
we fragment into six vertical fragments based on the frag-
mented schema shown in simplified form in Figure 24. This
results in a skewed fragmentation because different item
types in the collection occur with different frequencies. We
evaluate the queries Q6-Q10 shown in Table 1. Q6 only
involves a single fragment (shown in Figure 24(a)). Previ-
ous work has shown that this is the ideal case for vertical
fragmentation [3]. The remaining queries, however, reach
five of the six fragments in the collection (Figure 24(a), (c),
(d), (e) and (f)). Traversing such a large number of vertical
fragments poses a challenge for distributed query evaluation
because the large number of joins required to assemble the
results from individual fragments can degrade performance.
A carefully designed fragmentation layout will therefore aim
to reduce the frequency of this scenario, although we cannot
always avoid it. One of the goals of this experiment is to
show that our pruning techniques allow us to achieve good
performance even in this adversarial case. While Q7 to Q10
reach the same number of fragments, they differ in the num-
ber of structural and value constraints they contain, which
increases as we go from Q7 to Q10.

Table 6 shows, from left to right, the response times ob-
tained by centralized querying, distributed querying without
skipping, pruning based on skipping IDs and pruning based
on skipping IDs as well as label paths. For Q6, which rep-

14

Col. size | Query | Bid || F. q'd | F. res. Eff.
35 MB Q2 [200 1 4] 100.0%
300 1 1 [100.0%
100 1 T 250%
500 1 T 25.0%
600 1 T 250%
700 1 0 0.0%
800 1 0 00%
Q3 [200 8 8 [100.0%
300 8 8 [100.0%
400 8 3| 375%
500 8 3 375%
600 8 3| 375%
700 8 0 00%
800 8 0 0.0%
Q4 [200 12 12 [100.0%
300 12 12 [100.0%
100 12 6| 50.0%
500 12 5 4L7%
600 12 5 4L7%
700 12 1T[83%
800 12 0 0.0%
Q5 | 200 16 16 | 100.0%
300 16 16 | 100.0%
400 16 10 [62.5%
500 16 7 438%
600 16 6| 37.5%
700 16 2| 125%
800 16 1| 63%
350 MB Q2 [200 1 4] 100.0%
300 1 1 [100.0%
400 1 1] 100.0%
500 1 3 75.0%
600 1 2| 50.0%
700 1 T 25.0%
800 1 1| 25.0%

Q3 [200 8 8 [100.0%
300 8 8 [100.0%
100 8 8 [100.0%
500 8 7| 875%
600 8 I 50.0%
700 8 3| 375%
800 8 3| 375%
Q4 [200 12 12 [100.0%
300 12 12 [100.0%
400 12 12 [100.0%
500 12 1 91.7%
600 12 7| 583%
700 12 6| 50.0%
800 12 5 4AL7%

Q5 | 200 16 16 | 100.0%
300 16 16 | 100.0%
100 16 16 | 100.0%
500 16 15 | 948%
600 16 10 | 625%
700 16 8 [50.0%
800 16 7 4338%
3.5 GB Q2 [200 1 4] 100.0%
300 1 1 [100.0%
100 1 1 [100.0%
500 1 1 [100.0%
600 1 1 [100.0%
700 1 T 250%
800 1 T 25.0%

Q3 [200 g 8 [100.0%
300 8 8 [100.0%
100 8 8 [100.0%
500 8 8 [100.0%
600 8 8 [100.0%
700 8 I 50.0%
800 8 3 375%

Q4 [200 2 12 [100.0%
300 12 12 [100.0%
100 12 12 | 100.0%
500 12 12 [100.0%
600 12 12 [100.0%
700 12 8| 66.7%
800 12 5 4L7%

Q5 | 200 16 16 | 100.0%
300 16 16 | 100.0%
100 16 16 | 100.0%
500 16 16 | 100.0%
600 16 16 | 100.0%
700 16 12 [75.0%
800 16 8 [50.0%

Table 5: Pruning efficacy

[creditcard] |

~(d)

Figure 24: Vertically fragmented schema graph used
for performance evaluation

Response time (seconds) |

Col. size | Query || Central [Dist. | Skip. | Label |
35 MB Q6 0.48 0.25 0.23 0.28
Q7 2.53 6.57 1.61 1.61
Q8 1.95 6.40 3.37 1.62
Q9 1.71 5.19 3.71 1.99
Q10 1.39 4.87 4.62 2.98
350 MB Q6 3.58 1.78 1.82 1.83
Q7 22.09 77.72 14.90 14.90
Q8 17.23 77.79 37.30 14.95
Q9 14.57 64.50 46.30 23.30
Q10 11.82 63.54 59.22 36.75
3.5 GB Q6 374.77 17.67 17.41 17.60
Q7 416.95 | 829.09 | 161.95 | 160.76
Q8 403.22 | 826.21 | 398.13 | 160.84
Q9 398.37 | 684.81 | 489.48 | 251.92
Q10 388.86 | 672.18 | 622.85 | 387.09

Table 6: Response time (vertical)

resents the ideal case for vertical fragmentation, we can see
that all three distributed techniques significantly outperform
the centralized approach. This is because they only need to
access a single fragment, rather than the entire collection.

For the remaining queries, simple distributed evaluation
is much slower than centralized querying due to the large
number of joins that need to be performed. By using our
pruning techniques, however, we can achieve performance
that surpasses that of a centralized system on the 3.5 GB
collection. The benefit of pruning decreases as the number of
constraints in the query increases. We can also see that the
impact of pruning with label paths is generally much greater
than that of pruning based skipping IDs alone. Only for Q6
and Q7 do label paths not offer any additional benefit.

6.2.2 Pruning efficacy

In order to examine why pruning techniques are so ef-
fective in improving distributed querying performance, we
examine the number of fragments that the distributed plans
access. As shown in Table 7, Q6 is answered by accessing a
single fragment, regardless of whether we prune or not. This
explains why all three distributed approaches yield compa-
rable performance in this case. For Q7, both pruning tech-
niques do equally well by generating plans that access only

15

a single fragment. For Q8, Q9 and Q10, where label paths
improve the performance of pruning, the label path-based
pruning technique results in a plan that accesses fewer frag-
ments than that produced by skipping ID-based pruning.

‘ [Fragments accessed |
‘ Query H Frag. ‘ Skip. ‘ Label ‘

Q6 1 I I
Q7 5 I I
Q3 5 2 1
Q9 5 3 2
Q10 5 4 3

Table 7: Number of fragments accessed

6.3 Other techniques

Since this is the first pruning technique proposed for frag-
mented XML data, there is little opportunity for direct com-
parison with other approaches. Since fragment pruning is
decoupled from other query processing steps, our techniques
can easily be combined with other distributed query process-
ing techniques. The work presented here is also orthogonal
to local XML query evaluation strategies, which have been
the subject of intense research and which can be used to
further improve the results shown here.

7. RELATED WORK

Much of existing work on distributed XML query pro-
cessing assumes a distribution model without an explicit
fragmentation specification [1, 2, 7, 10]. While there are
certain optimizations that can be performed in the absence
of a fragmentation specification and while the flexibility of
this approach is certainly appealing, having a well-specified
fragmentation is a significant asset for effective distributed
query optimization. When freely distributing data in or-
der to improve query performance, such a specification can
be obtained. One of the approaches that does not rely on a
fragmentation specification and that supports a query model
similar to ours is based on the idea of computing partial
matches at each fragment and then combining them [10].
This provides impressive complexity properties although it
is limited to queries with a single extraction point. Unlike
the work reported here, however, there is no focus on elimi-
nating irrelevant fragments from a distributed query plan.

Another area of active research has been query language
extensions that include communication and distribution prim-
itives [12, 20, 24]. These approaches cater primarily to a
data integration scenario. They might, however, be useful
as a backend language for a distributed database system.

In the area of specifying structure-based XML fragmen-
tation, there are a number of approaches that emulate the
horizontal and vertical fragmentation seen in relational dis-
tributed database systems [3, 5, 14, 16, 17]. Our notion of
horizontal fragmentation is inspired by this work. One of
these approaches [3] alludes to the possibility of pruning ir-
relevant horizontal fragments. However, the authors do not
provide details on how this pruning could be performed.

It is possible to follows a different approach to specify-
ing a vertical fragmentation collection [5]. Instead of bas-
ing a fragmentation purely on the item types present in
the schema, this approach defines vertical fragmentation in
terms of label paths from the root of the document. In the

example shown in Figure 7, this would allow the separa-
tion of name elements that are reachable directly through an
author element from those that are reachable via an agent
element. While our definition does not directly support this,
the same effect can be achieved by fragmenting vertically as
shown in Figure 7 and subsequently performing a horizontal
fragmentation of name. Following our definition, a vertical
fragmentation of XML data is purely based on the schema.
This enables us to use skipping optimizations, which would
be more difficult to achieve in a path-based approach. Some
existing techniques [5] make structural information available
outside the corresponding fragment by using an approach
that is similar to the label paths employed by our technique.
In contrast to the work presented here, however, they store
this information for all document nodes, whereas we only
store it for proxy nodes and only if there is indeed ambigu-

ity.

8. CONCLUSION

We have shown how tree pattern queries can be evalu-
ated in a distributed system by employing a predicate-based
definition of horizontal fragmentation and a schema-based
definition of vertical fragmentation. We have proposed a
horizontal fragment pruning algorithm that significantly im-
proves the query throughput in a distributed XML data-
base system, without incurring a significant response time
penalty. In the case of vertical fragmentation, we have
shown that our pruning techniques can significantly improve
response times even for queries that span many fragments.
This allows greater flexibility in designing a vertical frag-
mentation.

One direction of future work is to examine the optimiza-
tion opportunities of our fragmentation model that go be-
yond localization and pruning. Expanding our query model
such that it can express a larger subset of XQuery is another
important goal. It would also be interesting to investigate
what particular optimizations are possible for a hybrid of
vertical and horizontal fragmentation.

9. REFERENCES

[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu,
T. Milo, and N. Preda. Lazy query evaluation for
Active XML. In Proc. of ACM SIGMOD, 2004.

[2] S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu,
and T. Milo. Dynamic XML documents with
distribution and replication. In Proc. of ACM
SIGMOD, 2003.

[3] A. Andrade, G. Ruberg, F. A. Baiao, V. P.
Braganholo, and M. Mattoso. Efficiently processing
XML queries over fragmented repositories with
PartiX. In Current Trends in Database Technology,
EDBT, 2006.

[4] M. Brantner, S. Helmer, C.-C. Kanne, and
G. Moerkotte. Full-fledged algebraic XPath processing
in Natix. In Proc. of ICDE, 2005.

[5] J.-M. Bremer and M. Gertz. On distributing XML
repositories. In Proc. of WebDB, 2003.

[6] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: optimal XML pattern matching. In Proc. of
ACM SIGMOD, 2002.

[7] P. Buneman, G. Cong, W. Fan, and
A. Kementsietsidis. Using partial evaluation in

(12]

(13]

(14]

(22]

23]

24]

distributed query evaluation. In Proc. of VLDB, 2006.
S. Buswell, S. Devitt, A. Diaz, P. Ion, R. Miner,

N. Poppelier, B. Smith, N. Soiffer, R. Sutor, and

S. Watt. Mathematical Markup Language (MathML)
1.01 Specification, 1999.
http://www.w3.org/TR/REC-MathML/.

J. Clark and S. DeRose. XML Path Language
(XPath), 1999. http://www.w3.org/TR/xpath/.

G. Cong, W. Fan, and A. Kementsietsidis. Distributed
query evaluation with performance guarantees. In
Proc. of ACM SIGMOD, 2007.

M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and
N. Walsh. XQuery 1.0 and XPath 2.0 Data Model
(XDM), 2007.
http://www.w3.org/ TR /xpath-datamodel/.

M. F. Fernandez, T. Jim, K. Morton, N. Onose, and
J. Siméon. Highly distributed XQuery with DXQ. In
Proc. of ACM SIGMOD, 2007.

Z. G. Ives, A. Y. Halevy, and D. S. Weld. An XML
query engine for network-bound data. The VLDB
Journal, 11(4):380-402, 2002.

K. Kido, T. Amagasa, and H. Kitagawa. Processing
XPath queries in PC-clusters using XML data
partitioning. In Special Workshop on Databases for
Next-Generation Researchers, ICDE, 2006.

M. Lenzerini. Data integration: a theoretical
perspective. In Proc. of PODS, 2002.

H. Ma and K.-D. Schewe. Fragmentation of XML
documents. In Proc. of SBBD, 2003.

H. Ma and K.-D. Schewe. Heuristic horizontal XML
fragmentation. In Proc. of CAiSE, 2005.

P. Murray-Rust. Chemical markup language. World
Wide Web Journal, 2(4):135-147, 1997.

M. T. Ozsu and P. Valduriez. Principles of distributed
database systems (2nd ed.). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1999.

C. Re, J. Brinkley, K. Hinshaw, and D. Suciu.
Distributed XQuery. In Workshop on Information
Integration on the Web, VLDB, 2004.

A. Schmidt, F. Waas, M. Kersten, M. J. Carey,

I. Manolescu, and R. Busse. XMark: a benchmark for
XML data management. In Proc. of VLDB, 2002.

R. Tarjan. Depth-first search and linear graph
algorithms. SIAM Journal on Computing, 1972.

N. Zhang, V. Kacholia, and M. T. Ozsu. A succinct
physical storage scheme for efficient evaluation of path
queries in XML. In Proc. of ICDE, 2004.

Y. Zhang and P. Boncz. XRPC: interoperable and
efficient distributed XQuery. In Proc. of VLDB, 2007.

