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ABSTRACT
We consider the problem of deciding query equivalence for
a conjunctive language in which queries output complex ob-
jects composed from a mixture of nested, unordered col-
lection types. Using an encoding of nested objects as flat
relations, we translate the problem to deciding the equiv-
alence between encodings output by relational conjunctive
queries. This encoding equivalence cleanly unifies and gen-
eralizes previous results for deciding equivalence of conjunc-
tive queries evaluated under various processing semantics.
As part of our characterization of encoding equivalence, we
define a normal form for encoding queries and contend that
this normal form offers new insight into the fundamental
principles governing the behaviour of nested aggregation.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query process-
ing, relational databases; H.2.3 [Database Management]:
Languages—query languages

General Terms
Algorithms, Languages, Theory

Keywords
conjunctive queries, query equivalence, bag-set semantics,
set semantics, normalized bags, aggregation

1. INTRODUCTION
Deciding equivalence between queries has long been of

interest because of its relevance to query optimization [5],
rewriting over views [22], maintenance of materialized views
or integrity constraints [37, 17], and access control [31].
While query equivalence is well understood for simple query
languages such as conjunctive queries (CQs) under both set
and bag-set semantics, modern database systems routinely
face workloads of complex queries built from nested query
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blocks that apply various aggregation functions, introduc-
ing an interleaving of different semantics within a single
query. One well-known source of complex queries arises from
decision-support applications (e.g. TPC-H, TPC-DS). More
recently, with the advent of object-relational mapping tech-
nologies, application programmers with little or no knowl-
edge of SQL can write seemingly simple programs that trans-
late into very complex queries due to the reliance on logical
views to enact object-relational mappings [28]. In short,
the need for optimization techniques that handle complex
queries can only be expected to grow.

In this paper we consider the problem of deciding equiva-
lence between conjunctive queries that return nested struc-
tures. We generalize previous work by allowing arbitrary
nesting of three collection types: sets, bags, and normalized
bags. We show the equivalence problem to be NP-complete
by reducing it to a relationship we call encoding equivalence
between relational CQs. As part of our characterization, we
define a normal form for queries that captures interactions
between collection types in terms of query-implied multi-
valued dependencies. Although equivalence of conjunctive
queries returning complex objects with nested sets has been
considered before [25], the intricacy of the previous charac-
terization makes it difficult to extend to either varied col-
lection types or—as shown in Section 1.2—arbitrary nesting
depths. In contrast, the elegance of our normal form makes
clear how query structure interacts with the semantics of
nested collections of arbitrary types and nesting depths.

1.1 Related Research
Optimization of nested SQL queries has long been of in-

terest. One line of research focuses on algebraic transforma-
tions that change the nesting structure of the query, includ-
ing both merging or decorrelating nested query blocks [20,
10, 2] and commuting aggregation with join or with other
aggregation [40, 16]. An orthogonal line of work gener-
alizes predicate pushdown and moves join predicates be-
tween or introduces semijoins into existing query blocks [24,
29]. Many such transformations have been incorporated into
algorithms that rewrite complex queries over materialized
views [35, 41, 12]. Unfortunately, the query transformation
literature fails to provide a systematic understanding of the
principles governing the interaction between nested query
blocks.

For non-aggregated relational queries, the containment
and equivalence problems are mutually reducible. An exten-
sive body of literature characterizes the containment prob-
lem for CQs [5], queries with disjunction or negation [33],
inequalities [21, 39], and schema constraints [19]. Chaudhuri
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and Vardi [6] and Ioannidis and Ramakrishnan [18] indepen-
dently propose bag/bag-set semantics as a way to model the
input to cardinality-sensitive aggregation functions. Cohen
later proposes “combined semantics” as a generalization of
bag-set semantics in which cardinality depends only on a
specified subset of the query variables [7], while Grumbach
et al. [15] propose “isomorphism modulo a product” as a
relaxation of bag-set equivalence to model the input to ag-
gregation functions such as avg. Our study of equivalence
for nested objects of mixed collection types generalizes all
of these equivalence relations for CQs, as they all reduce to
special cases of encoding equivalence (see Section 4). Con-
tainment is not known to be decidable under bag-set seman-
tics, and so we restrict our attention to equivalence.

Equivalence of aggregation queries has been investigated
previously [8, 9, 15], primarily so as to understand the be-
haviour of specific aggregation functions within an unnested
context. Our abstraction of aggregation functions as collec-
tion constructors is comparatively primitive, but our work is
orthogonal in that we seek to understand the effect of query
nesting. Other authors have shown that constraints induced
by nested aggregation functions easily yield undecidability
in the presence of domain-specific knowledge [23, 32].

Early work on complex objects assumes a model of nested
relations [1], including the well-known nested relational al-
gebra of Thomas and Fischer [36]. More powerful models
and languages encompassing other collection types have also
been proposed—in particular, variations of the Nested Re-
lational Calculus, which typically allow for the creation of
objects with empty subcollections [30, 26, 4]—but this re-
search mostly focuses on power of expression, rather than
the query equivalence problem. To place our work in con-
text, the query language we consider can be described in-
formally as a bag semantic conjunctive algebra extended
with three variants of the nest operator (for constructing
different collection types), but with no unnest operator (we
briefly discuss such an extension in Section 5.3), and no
power to create empty subcollections. Transformation rules
for the nested relational algebra have been defined [34, 27],
but these do not characterize equivalence of arbitrary ex-
pressions.

Containment and equivalence of queries returning com-
plex objects (nested sets only) is studied by Levy and Su-
ciu [25], who consider “conjunctive OQL” (COQL) queries.
Whereas containment of flat relations indisputably corre-
sponds to set inclusion, there is no single definition for con-
tainment of nested sets. Levy and Suciu use an induc-
tive definition previously proposed for Verso relations [3],
and they reduce containment (under this definition) of COQL
queries constructing objects with nesting depth d to test-
ing a relationship between CQs that they call “simulation to
depth d,” defined as follows. Let Q(I1; . . . ; Id;V) be a CQ
whose head has been annotated to distinguish d sets of in-
dex variables, and define I := (I1; . . . ; Id). Given two such
queries, Q simulates Q′ to depth d—denoted Q ¹d Q′—iff
over every database instance the following equation holds:

∀I1.∃I′1 . . . ∀Id.∃I′d.∀V
h
Q(I;V)⇒ Q′(I′;V)

i
(1)

a condition characterized by the existence of a simulation
mapping, and hence NP-complete to decide [25]. For COQL

queries that cannot construct empty sets, containment re-
duces to a single simulation test. Levy and Suciu claim
that arbitrary COQL containment reduces to testing an expo-

nential number of simulation conditions; however, Dong et
al. [13] point out that this is insufficient for implying con-
tainment.1

The containment relationship used by Levy and Suciu
is not antisymmetric (mutual containment does not imply
equivalence) and so they define a separate “strong simu-
lation” relationship between CQs for testing COQL equiva-
lence. Query Q strongly simulates Q′ to depth d—denoted
Q≺≺d Q′—iff:

∀I1.∃I′1 . . . ∀Id.∃I′d.∀V
h
Q(I;V) ⇐⇒ Q′(I′;V)

i
(2)

a condition which they claim is characterized by the exis-
tence of a strong simulation mapping [25], and hence still
NP-complete to decide (although they define this mapping
only for d ≤ 1). While equivalence of general COQL queries
is left open, they claim that equivalence for COQL queries
that cannot construct empty sets reduces to testing a single
strong simulation condition in each direction (Proposition
6.3 [25]). We demonstrate in Example 2 that this reduction
of nested query equivalence to strong simulation is incorrect.

Finally, Van den Bussche et al. prove that the query equiv-
alence problem is undecidable for the Positive-Existential
fragment of the Nested Relational Calculus [38]. Although
PENRC lacks the ability to explicitly test set-emptiness,
Van den Bussche et al.’s proof of undecidability relies on
the ability to construct objects containing empty subsets.
As such, their result does not necessarily transfer to positive
fragments of the nested relational algebra that are incapable
of creating empty subobjects.

1.2 Two Motivating Examples
Our first example illustrates the weakness of current query

rewriting algorithms that depend on sets of algebraic trans-
formations that are sound but incomplete.

Example 1 Consider the following database schema, storing
information about customer orders solicited by a company’s
agents. Assume that the schema includes the obvious primary
and foreign key constraints.

Customer(cid, cname, ctype)
Order(oid, cid, date)
LineItem(oid, lineno, price, qty)
Agent(aid, aname)
OrderAgent(oid, aid)
Date(date, qtr)

The schema also contains a logical view defined by the following
SQL query (we abbreviate relation names with capitals and use
subscripts to distinguish repeated relations). Although the base
relations do not contain duplicates, view AgentSales may (due
to the bag semantics of SQL).

AgentSales(aid, aname, date, ctype, oval)
select aid, aname, date, ctype, sum(price * qty)
from C 1cid O 1oid LI 1oid OA 1aid A

group by aid, aname, date, ctype, oid

1Dong et al. [13] consider containment of a restricted class of
COQL queries (corresponding to XQuery), showing it to be in
co-NEXPTIME, but NP-complete or co-NP-complete for a
variety of further restrictions. To the best of our knowledge,
the complexity of the general COQL containment problem re-
mains open.
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The attribute Customer.ctype is code that classifies customers
as either Residential or Corporate, and sales from the two sec-
tors are always reported separately. Suppose that an end user
wants a report that lists for each agent the quarterly average
order value, with the Residential and Corporate metrics shown
in separate columns. Equipped only with a reporting tool that
generates single-block conjunctive SQL queries (with aggrega-
tion), the user could accomplish this report by generating the
following query.

Q1: select AS1.aname, qtr,
avg(AS1.oval) as avgRsale,
avg(AS2.oval) as avgCsale

from (AS1 1date D1) 1{aid, qtr} (AS2 1date D2)
where AS1.ctype = ‘R’ and AS2.ctype = ‘C’

group by aid, AS1.aname, qtr

Suppose that the database system contains the following ma-
terialized views.

OrderValues(oid, oval)
select oid, sum(price * qty)
from LI group by oid

AnnualAgentSales(aid, qtr, ctype, avgOval)
select aid, qtr, ctype, avg(oval)
from C 1cid O 1oid OV 1oid OA 1date D

group by aid, qtr, ctype

The best rewriting of Q1 found by any RDBMS that we tested
uses schema information to push down the sum aggregate in
AgentSales in order to rewrite over two occurrences of view
OrderValues. However, no RDBMS could remove the prob-
lematic cartesian product between each agent’s quarterly Res-
idential and Corporate orders, and hence no rewritings of Q1

over view AnnualAgentSales were found. In contrast, the fol-
lowing query Q2 does not contain the problematic cartesian
product, and our paper provides an algorithm proving that Q2

is equivalent to Q1 with respect to the given schema constraints
(but not equivalent in general).

Q2: select aname, qtr,
AAS1.avgOval as avgRsale,
AAS2.avgOval as avgCsale

from A 1aid AAS1 1{aid, qtr} AAS2

where AAS1.ctype = ‘R’ and AAS2.ctype = ‘C’

order by aname, qtr

Our second example illustrates why mutual strong-simul-
ation does not imply equivalence of queries with nested sets.

Example 2 Consider a database containing a relation E(P,C)

that denotes parent-child relationships, along with the following
three queries (written in an SQL-like syntax that corresponds to
empty-set-free COQL).

Q3: { select {u.C } from E as x,
(select z.P , { z.C } as C from E as z
group by z.P ) as u

where x.C = u.P group by x.C }

Q4: { select {u.C } from E as x, E as y,
(select z.P , { z.C } as C from E as z
group by z.P ) as u

where x.C = u.P and y.C = u.P
group by x.P , y.P }

E =

a
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Figure 1: Database instance D1

Q′3 A B C

a b1 c1

a b1 c2

a b3 c3

d b2 c1

d b2 c2

d b3 c3

Q′4 AD B C

a a b1 c1

a a b1 c2

a a b3 c3

a d b3 c3

d a b3 c3

d d b2 c1

d d b2 c2

d d b3 c3

Q′5 A DB C

a a b1 c1

a a b1 c2

a a b3 c3

a d b3 c3

d a b3 c3

d d b2 c1

d d b2 c2

d d b3 c3

Figure 2: Evaluating Q′3, Q′4, and Q′5 over D1

Q5: { select {C } from E as x,
(select z.P , { z.C } as C
from E as y, E as z where y.C = z.P
group by y.P , z.P ) as u

where x.C = u.P
group by x.P , }

Query Q3 returns sets of related grandchildren, grouped first
into sets with a common parent, and then into sets with a
common grandparent. Query Q4 is similar to Q3, but the outer
aggregation groups by pairs of grandparents. Query Q5 is also
similar to Q3, but the inner aggregation groups by both parent
and grandparent. Levy and Suciu’s technique [25] associates
Q3, Q4, and Q5 with the following indexed CQs.

Q′3(

I1z}|{
A ;

I2z}|{
B ;

Vz}|{
C ) :−E(A, B), E(B, C)

Q′4(A, D; B ; C ) :−E(A, B), E(B, C), E(D, B)
Q′5( A ;D, B; C ) :−E(A, B), E(B, C), E(D, B)

Consider the database D1 in Figure 1 and the corresponding
query results in Figure 2 (index groups have been visually sep-
arated for clarity). The reader can verify that over database
D1 all six strong simulation conditions Q′3≺≺2 Q′4, Q′4≺≺2 Q′3,
Q′3≺≺2 Q′5, Q′5≺≺2 Q′3, Q′4≺≺2 Q′5, and Q′5≺≺2 Q′4 are satis-
fied (c.f. equation 2); in fact, we can show that they are all
satisfied over any database. However, the queries are not all
equivalent since over D1 queries Q3 and Q5 output the object
{{{c1, c2}, {c3}}} while Q4 outputs {{{c1, c2}, {c3}}, {{c3}}}.
We show later that queries Q3 and Q5 are equivalent.

The remainder of the paper will proceed as follows. In
Section 2 we formalize a data model for objects and a query
language for constructing them. In Section 3 we describe an
encoding of objects within flat relations and reduce equiv-
alence of nested object queries to encoding equivalence be-
tween CQs. We propose a normal form for encoding queries
in Section 4, where we use it to characterize encoding equiv-
alence. Section 5 considers certain extensions of the basic
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technique, including the handling of schema dependencies.
We summarize our results in Section 6 and suggest further
possible extensions.

2. OBJECTS AND OBJECT QUERIES
We define a data model for complex objects, along with

certain transformations between objects that we will find
useful later. We then define a query language for construct-
ing objects out of a database of flat relations.

2.1 Mixed-Type Objects
Our data model utilizes three different collection types:

sets, bags, and normalized bags, which we denote with the
delimiters { · }, {| · |}, and {|∗∗ · |∗∗}, respectively. A normalized
bag is a special case of a bag in which the greatest common
divisor of the element frequencies is one; this is useful for
modelling the semantics of certain statistical functions such
as average or standard deviation.

Example 3 The following four distinct bags correspond to
two distinct normalized bags and a single set. The user can
verify that the collections have four distinct sums, two distinct
averages, and the same max or min.

{| 1, 2 |} // {|∗∗ 1, 2 |∗∗} // { 1, 2 }
{| 1, 1, 2, 2 |}

22eeeeeeee

{| 1, 1, 2, 2, 2 |} // {|∗∗ 1, 1, 2, 2, 2 |∗∗}

99ssssss

{| 1, 1, 1, 1, 2, 2, 2, 2, 2, 2 |}
22eee

Let dom denote a countably infinite set of atomic values.
A sort is a finite instance of the following grammar

τ := dom | { τ } | {| τ |} | {|∗∗ τ |∗∗} | 〈 τ, . . . , τ 〉 (3)

where the delimiters 〈 · 〉 denote a tuple. We call a tuple sort
flat if it is composed of atomic sorts only, and we say that
a sort is a chain sort if it contains precisely one descendant
tuple sort, and that tuple sort is flat. We define the depth of
a sort as the maximum number of collection sorts occurring
along any root-to-leaf path in its hierarchical definition.

We define three semantic indicators s, b, and n which
are used to denote whether a collection is of type set, bag,
or normalized bag, respectively. Any chain sort of depth d
can be abbreviate by a pair (§, k), where § is a signature
composed of d semantic indicators that indicates from left-
to-right the type of successive descendant collection sorts,
and k is the arity of the tuple at the leaf of the type. Given
an arbitrary sort τ , we use Chain(τ) to denote the chain sort
abbreviated as (§, k), where § records the semantic indicators
of the collection sorts in τ in preorder, and k is the total
number of atomic sorts in τ . If § 6= ∅ then §i represents the
ith semantic indicator (i ∈ [1, |§|]).

Example 4 Consider the sorts depicted graphically in Fig-
ure 3 (collection types have been numbered for clarity). Sort
τ1 has depth three and is not a chain sort. Sort Chain(τ1) is
a chain sort of depth five that abbreviates as (bnbnb, 6).

We use [[ τ ]] to denote the (infinite) set of possible values
conforming to sort τ , called the interpretation of τ . We
define a complex object as a finite member of the set

S
τ [[ τ ]].

We say that an object is complete if it does not contain
any empty collections. We say that an object is trivial if it

τ1 Chain(τ1)

dom dom

dom dom

〈 〉

{| 3 |}

{|∗∗ 2 |∗∗}

dom dom

〈 〉

{| 5 |}

{|∗∗ 4 |∗∗}

〈 〉

{| 1 |}

dom dom dom dom dom dom

〈 〉

{| 5 |}

{|∗∗ 4 |∗∗}

{| 3 |}

{|∗∗ 2 |∗∗}

{| 1 |}

Figure 3: Sorts τ1 and Chain(τ1) = (bnbnb, 6)

o1

1 2

a b

〈 〉

{| |}

c d

〈 〉
c d

〈 〉

{| |}

{|∗∗ |∗∗}

e f

〈 〉
g h

〈 〉

{| |}

{|∗∗ |∗∗}

〈 〉

3 4

i j

〈 〉

i j

〈 〉

{| |}

{|∗∗ |∗∗}

k l

〈 〉

{| |}

k l

〈 〉

k l

〈 〉

{| |}

{|∗∗ |∗∗}

〈 〉

{| |}

Figure 4: Object o1 ∈ [[ τ1 ]]

is either an empty collection or a tuple of trivial objects. We
say that an object is a chain object if it conforms to a chain
sort and it is either complete or trivial. Chain objects are
useful because they are straightforward to encode within a
single relation (Section 3.1).

Given any object o ∈ [[ τ ]] that is either complete or triv-
ial, we can transform o into a corresponding chain object
Chain(o) ∈ [[Chain(τ) ]] by a recursive procedure that re-
moves tuple branching by distributing copies of the right
sub-object over the leaves of the left-subobject. The algo-
rithm is given in Appendix A. This transformation is lossless
in that given both τ and Chain(o) the original object o can
be reconstructed. Hence, given any sort τ and any two ob-
jects o, o′ ∈ [[ τ ]] that are each either complete or trivial,
o = o′ iff Chain(o) = Chain(o′).

Example 5 Figure 4 depicts object o1 conforming to sort τ1

from Figure 3. The transformation of o1 into chain object
Chain(o1) conforming to sort Chain(τ1) is shown in Figure 5.

2.2 Object-Constructing Queries
We now specify a query language we call COCQL (“Conjunc-

tive Object-Constructing Query Language”) for constructing
objects out of a database of flat relations (we consider nested
inputs in Section 5.2). Our intent is to approximate the
queries expressible using conjunctive SQL expressions with
non-scalar aggregation and from-clause nesting (i.e., the
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Chain(o1)

1 2 a b e f

〈 〉

1 2 a b g h

〈 〉

{| |}

{|∗∗ |∗∗}

{| |}

1 2 c d e f

〈 〉

1 2 c d g h

〈 〉

{| |}

{|∗∗ |∗∗}

1 2 c d e f

〈 〉

1 2 c d g h

〈 〉

{| |}

{|∗∗ |∗∗}

{| |}

{|∗∗ |∗∗}

3 4 i j k l

〈 〉

{| |}

3 4 i j k l

〈 〉

3 4 i j k l

〈 〉

{| |}

{|∗∗ |∗∗}

3 4 i j k l

〈 〉

{| |}

3 4 i j k l

〈 〉

3 4 i j k l

〈 〉

{| |}

{|∗∗ |∗∗}

{| |}

{|∗∗ |∗∗}

{| |}

Figure 5: Object Chain(o1) ∈ [[Chain(τ1) ]]

language of “stacked views” [12]). As such, COCQL corre-
sponds to a conjunctive fragment of the bag semantic rela-
tional algebra extended with a grouping operator [14]. We
let aname denote an infinite set of attribute names. We also
define a set F = {set,bag,nbag} of aggregation functions
that each aggregate a collection of tuples into a set, bag, or
normalized bag object.

A COCQL query is an expression conforming to the following
grammar.

Q := {E } | {|E |} | {|∗∗E |∗∗}
E := R(A) | σp(E) | E1 1p E2 |

Qdup

W
(E) |Q[Y =f(Z)]

X
(E)

Evaluating COCQL query Q over database D yields the ob-
ject (Q)D, which is either a set, a bag, or a normalized bag
constructed from the result of evaluating the algebraic sub-
query under bag-set semantics (i.e., bag semantics with the
assumption that base relations are sets). Several comments
pertain to the algebraic sub-language:

1. The base relation operator R(A) requires A to be a
tuple of “fresh” attributes names from aname. This
notation should be perceived algebraically as enact-
ing mandatory attribute renaming, rather than as in-
troducing query variables (although we use it here to
simplify later translation to variable-based CQ nota-
tion).

2. Predicate p is a conjunction of equality comparisons
restricted to constants/attributes of atomic sort.

3.
Qdup

W
denotes duplicate-preserving projection. Tuple

W is a sequence of constants/attributes of unrestricted
sort.

4.
Q[Y =f(Z)]

X
denotes generalized projection with group-

ing list X and an optional aggregation expression [14,
16]. In this paper, we restrict X to containing atomic
sorts (a restriction analogous to one in COQL [25]). Ex-
pression Y = f(Z) requires that Y be a “fresh” at-
tribute name from aname, f ∈ F , and Z be a sequence
of constants or attribute names. We note that the case
X = ∅ is treated with the same semantics as X 6= ∅
and so, analogous to the nest operator [36], general-
ized projection cannot construct empty collection ob-
jects (in contrast to SQL, which switches between scalar
and non-scalar aggregation).

Because the algebraic component of COCQL is not capable
of constructing empty collection objects, the result of any
COCQL query is always either a complete or a trivial object.
A COCQL query is satisfiable there exists a database instance
over which it outputs a non-trivial object. COCQL satisfiabil-
ity is verifiable in polynomial time (identical to satisfiability
of CQs with explicit equality), and so for the remainder
of the paper we restrict our attention to satisfiable COCQL

queries.

Example 6 Query Q3 from Example 2 can be expressed in
COCQL as follows. Queries Q4 and Q5 are similar.

Q3: {
Qdup

Y (
QY =set(X)

A (E(A, B′)
1B′=B

QX=set(C)
B (E(B, C)))) }

Because COCQL queries do not explicitly contain tuple con-
structors, we adopt a convention for the evaluation of COCQL
queries that uses the minimal number of tuple constructors
necessary (i.e., no unary tuples). For example, the query in
Example 6 outputs results with sort { { { dom } } }.

3. RELATIONAL ENCODINGS AND ENCOD-
ING QUERIES

In this section we first specify a relational encoding for
complex objects. We then describe a translation from an ar-
bitrary COCQL query Q to a conjunctive query EncQ(Q) such
that whenever query Q outputs object o, query EncQ(Q)
outputs an encoding of Chain(o).

3.1 Encoding Relations
Because COCQL queries are incapable of constructing empty

subcollections, we restrict out attention to objects that are
either complete or trivial. In light of the Chain transforma-
tion previously defined, it suffices to encode chain objects,
which we encode within relations by use of indexes. Figure 6
illustrates the basic idea—given a chain object o of depth d,
to each member of each collection type we assign a locally-
unique index value composed of one or more atomic values.
Then for each leaf tuple 〈x 〉 ∈ o, we generate one relational
tuple 〈 i1; . . . ; id; x 〉 where i1; . . . ; id is the sequence of index
values assigned along the path from the root to t.2

2There are two minor differences between our encoding
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{|∗∗ {|
y1z}|{
〈 1 〉 |}| {z }
w1x1

, {|
y1z}|{
〈 1 〉 |}| {z }
w1x2

, {|
y1z}|{
〈 2 〉,

y2z}|{
〈 2 〉 |}| {z }

w2x1

|∗∗}

R1 W X Y Z

w1 x1 y1 1
w1 x2 y1 1
w2 x1 y1 2
w2 x1 y2 2

Figure 6: Encoding of a chain object

R2 A B C D

a1 b1 c1 1
a2 b1 c1 1
a2 b1 c2 1
a3 b1 c1 1
a4 b1 c1 1
a5 b1 c1 2
a5 b2 c1 2
a6 b2 c2 2

R2[a2] B C D

b1 c1 1
b1 c2 1

R2[a2b1c1] D

1

Figure 7: More encoding relations

More formally, we define an encoding schema of depth d
(d ≥ 0) as a relational schema with the following form.

R(I1; I2; . . . ; Id;V)

Each Ii is a sequence of distinct attributes called the index
attributes at level i, with Ii denoting the set of attributes
in Ii, while V is a sequence of output attributes, with V
denoting the set of attributes in V. For convenience, we
use I [i,j] to denote the sequence IiIi+1 · · · Ij , and I[i,j] the
corresponding set. Each attribute can occur as either an
index attribute, an output attribute, or both; however, an
attribute cannot occur as an index within multiple levels.

We define an encoding relation as an encoding schema
paired with a relational instance over the attributes I[1,d]∪V
that satisfies the functional dependency I[1,d] → V. (When
depicting encoding relations graphically, as in Figure 6, we
separate index levels with a single rule and the index at-
tributes from the output attributes with a double rule.)
Given a relation R and any attribute A ∈ (I[1,d]∪V), we use
adom(A, R) ⊂ dom to denote the active domain of attribute A
within relation R. Given any value a ∈ adom(I [1,l−1], R) we
use R[a] to denote the sub-relation of R indexed by a, which
is itself an encoding relation with schema R(Il; . . . ; Id;V).
For example, Figure 7 shows encoding relation R2 with schema
R2(A; B, C; D) along with sub-relations R2[a2] and R2[a2b1c1].

Consider encoding relation R1 in Figure 6. By applying

the“decoding”query {|∗∗
Qdup

A (
QA=bag(Z)

WX (R1(W, X; Y ; Z))) |∗∗}

method and the one used by Levy and Suciu [25]. First, they
effectively convert arbitrary sorts into chain sorts by merging
all collections at the same depth, whereas we increase the
sort depth by marshalling types in preorder (which is re-
quired because merging collection types loses cardinality in-
formation). Second, because they only consider sets they do
not need indexes for innermost collection (see Example 2),
whereas we require them to retain element cardinalities.

we re-obtain the object in Figure 6.3 We call this object the
nb-decoding of R1, denoted Decode(R1, nb). Because R1

has depth two and one output attribute, for any signature
§ with |§| = 2 we can define a similar decoding query that
yields an object of sort (§, 1). For example, the ss-decoding
of R1 is the object { { 〈 1 〉 }, { 〈 2 〉 } }.

Definition 1 (Encoding-Equality) Given a signature §
and two encoding relations R, R′ of depth |§|, we say that R
and R′ are §-equal—denoted R

.
=§ R′—if Decode(R, §) =

Decode(R′, §).

Example 7 Consider the encoding relation R2 in Figure 7.
Fairly obviously, the nb-decoding of R2 does not yield the ob-
ject in Figure 6, and so R1 6 .=nb R2. However, R1

.
=ns R2

because decoding either relation with signature ns yields the
object {|∗∗ { 〈 1 〉 }, { 〈 1 〉 }, { 〈 2 〉 } |∗∗}.

While Definition 1 captures the desired semantics of §-
equality, the invocation of the Decode procedure makes for-
mal reasoning awkward. In Appendix B we define a mech-
anism called a §-certificate that allows us to characterize
§-equality in a more declarative fashion, which is required
for our proofs of the theorems in Section 4. A §-certificate
is essentially a recursive log of one possible set of compar-
isons justifying the conclusion that two invocations of the
Decode procedure yield the same object.

3.2 Encoding Queries
Assuming standard rule-based syntax for CQs [1], we de-

fine a conjunctive encoding query (CEQ) of depth d as a CQ
with a head resembling a depth-d encoding schema.

Q(I1; . . . ; Id;V) :− R1(X1), . . . , Rn(Xn) (4)

Each Ii is a sequence of distinct variables called the index
variables at level i, with Ii denoting the set of variables in
Ii; we again assume that the index sets of different levels
are disjoint. V is a sequence of variables and constants, with
V denoting the set of variables occurring in V. Finally, we
use B to denote the variables occurring in the query body,
and we require that I[1,d] ∪ V ⊆ B. The result of evaluating

query Q over a database D is an encoding relation (Q)D

whose encoding schema is deduced from the query head in
a manner analogous to CQs.

Definition 2 (Encoding-Equivalence) Given a signature
§ and two CEQs Q, Q′ of depth |§| over the same database
schema, we say that Q and Q′ are §-equivalent—denoted
Q

.≡§ Q′—if over every database D the encoding relations

(Q)D and (Q′)D are §-equal.

Given a satisfiable COCQL query Q with output sort τ , we
construct the corresponding CEQ EncQ(Q) as follows.

1. Create the body of EncQ(Q) by collecting all of the
base relation operators in Q (taking the assigned at-
tribute names as query variables) and then introducing
constants and shared variables to enact the join and
selection predicates.

2. Construct the output list V by enumerating the atomic
sorts of τ in preorder, and emitting for each the corre-
sponding query variable.

3Modulo introduction of unary tuple constructors, a techni-
cality which we ignore.
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3. Let τ1, . . . , τd denote the collection sorts within τ listed
in preorder. For each i ∈ [1, d], calculate Ii as follows.
(a) Locate the query operator within Q that con-

structs collections corresponding to τi. When i =
1 this operator is the explicit collection construc-
tor enclosing the algebraic expression; otherwise
it is a generalized projection operator.

(b) Let E be the algebraic sub-expression that inputs
into the construction operator. Let E′ be a copy
of E with all duplicate-preserving projection op-
erators deleted. Let S be the set of query vari-
ables corresponding to atomic attributes output
by E′.

(c) Define Ii as any ordering of the set S \ I[1,i−1].

Example 8 Consider queries Q1 and Q2 from Example 1. If
we model the output of sum and avg as bags and normal-
ized bags, respectively, then Q1 and Q2 have straightforward
translations into COCQL queries with output sort τ1 from Fig-
ure 3. (These translations into COCQL make use of a well-known
technique of transforming an aggregation block with k aggre-
gation expressions into a join of k such blocks, each with a
single aggregation expression.) Figure 8 illustrates the CEQs
Q6 := EncQ(Q1) and Q7 := EncQ(Q2). (Components of
the queries have been labelled for the sake of clarity; the sig-
nificance of the shaded attributes will be explained later.)

Proposition 1 Given any database schema and any sat-
isfiable COCQL query Q over that schema with output sort
τ , let (§, k) abbreviate Chain(τ). Then, for every database
instance D, the §-decoding of relation (EncQ(Q))D yields
object Chain((Q)D).

Theorem 1 Given two satisfiable COCQL queries Q, Q′ with
the same output sort τ , let (§, k) abbreviate Chain(τ). Then,
Q ≡ Q′ iff EncQ(Q)

.≡§ EncQ(Q′).

4. EQUIVALENCE OF ENCODING QUERIES
We now consider how to determine encoding equivalence

between CEQs, thereby providing an algorithm for COCQL

query equivalence (cf. Theorem 1). In Section 4.1 we de-
fine a normal form for CEQs and prove that conversion to
the normal form preserves encoding equivalence. Our main
result is in Section 4.2, where we prove that testing encod-
ing equivalence between queries in normal form is a simple
generalization of CQ equivalence.

CEQs must yield encoding relations, meaning the query
results always satisfy I[1,d] → V. We assume in this sec-
tion that queries satisfy the syntactic constraint V ⊆ I[1,d]

(a condition satisfied by all queries generated by procedure
EncQ(Q) in Section 3.2). Section 5.1 describes how to relax
this assumption in the presence of schema dependencies.

Encoding equivalence is a relationship that is interesting
in its own right, as the case |§| = 1 suffices to express CQ
equivalence under various processing semantics. For exam-

ple, given two CQs Q(V) and Q′(V ′), testing Q ≡ Q′ under

• set semantics [5] reduces to Q(V;V)
.≡s Q′(V ′;V ′);

• bag-set semantics [6] reduces to Q(B;V)
.≡b Q′(B′;V ′)

where B and B′ are the query body variables;
• bag-set semantics modulo a product [15] reduces to

Q(B;V)
.≡n Q′(B′;V ′); and

• combined semantics [7] reduces to

Q(V ∪M;V)
.≡b Q′(V ′ ∪M′;V ′) whereM andM′ are

the specified multi-set variables.

4.1 Encoding Normal Form
In this section we define a normal form for CEQs which

is based upon multivalued dependencies (MVDs) over rela-
tions [1]. Given an CQ Q that yields a relation over attribute
set U , and a disjoint partitioning of U into three sets X, Y, Z,
we say that Q implies X →→ Y —denoted Q |= X →→ Y —if
for every database D the relation (Q)D satisfies X →→ Y .
This implies the following equivalence by definition,

Q ≡QXY (Q) 1
Q

XZ(Q) (5)

and so deciding CQ-implied MVDs reduces to CQ equiv-
alence. We can reduce CQ containment to deciding CQ-
implied MVDs, so deciding CQ-implied MVDs is NP-complete.

Equation 5—which follows directly from the definition
of MVDs—has consequences for the structure of the query
body. Define the query hypergraph HQ = (B, E) as a pair
where B is the set of variables in bodyQ and E is a set of sub-

sets of B such that for each subgoal Ri(Xi) in bodyQ, there
exists a hyperedge ei ∈ E equal to the set of variables oc-
curring in Xi. We say that X is a strong (Y, Z)-articulation
set in HQ if by deleting the variables in X from HQ we
disconnect each variable in Y from each variable in Z. The
following lemma can be shown to follow from equation 5.

Lemma 1 Given CQ Q(U) and a disjoint partitioning of
the variables in U into three sets X, Y, Z, let Q′(U) be an
equivalent minimal CQ. Then Q implies X →→ Y iff X is a

strong (Y, Z)-articulation set of HQ′ .

Our normal form is calculated by recursively identifying
the core indexes. Given a CEQ Q(I1; . . . ; Id;V) and a
length-d signature §, define the core indexes at level i rel-

ative to §—denoted I§i —as follows. For each i ∈ [1, d] let Qi

be the following CQ.

Qi(I[1,i]I§[i+1,d]) :− bodyQ

Then, I§i is the smallest subset of Ii that satisfies the fol-
lowing conditions. In Appendix C.2 we show that Lemma 1

implies that a unique minimum set I§i always exists.

§i Condition

b Ii ⊆ I§i
s Ii ∩ V ⊆ I§i and Qi |= (I[1,i−1] ∪ I§i )→→ I§[i+1,d]

n Ii ∩ V ⊆ I§i and Qi |= I[1,i−1] →→ I§[i,d]

Any non-core index variable is called redundant. A CEQ is
converted to §-normal form (§-NF) by deleting all redundant
index variables from the query head.

Theorem 2 §-Normalization is NP-complete.

Example 9 Consider the four CEQs in Figure 9. (Queries
Q8, Q9, and Q10 correspond to EncQ(Q3), EncQ(Q4), and
EncQ(Q5), respectively). With respect to signature sss, vari-
able D is redundant in both Q10 and Q11, but both Q8 and
Q9 are in sss-NF. With respect to signature snn, variable D is
redundant in Q11, but the other three queries are in snn-NF.
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Q6(

I1z }| {
A, N, R;

I2z }| {
D1, O1, N2, D2, O2 ;

I3z }| {
C1, M1, L1, P1, Y1;

I4z }| {
D3, O3, N4 , D4, O4;

I5z }| {
C4, M4, L4, P4, Y4;

Vz }| {
N, R, P1, Y1, P4, Y4 ) :−

C(C1, M1, ‘R’), O(O1, C1, D1), LI(O1, L1, P1, Y1), OA(O1, A), A(A, N), D(D1, R), }(AS1 1 D1) avgRsale

C(C2, M2, ‘C’), O(O2, C2, D2), LI(O2, L2, P2, Y2), OA(O2, A), A(A, N2), D(D2, R), }(AS2 1 D2) avgRsale

C(C3, M3, ‘R’), O(O3, C3, D3), LI(O3, L3, P3, Y3), OA(O3, A), A(A, N), D(D3, R), }(AS1 1 D1) avgCsale

C(C4, M4, ‘C’), O(O4, C4, D4), LI(O4, L4, P4, Y4), OA(O4, A), A(A, N4), D(D4, R) }(AS2 1 D2) avgCsale

Q7(

I′1z }| {
A′, N ′, R′;

I′2z }| {
C′1, M

′
1, O

′
1, D

′
1;

I′3z }| {
L′1, P

′
1, Y

′
1 ;

I′4z }| {
C′2, M

′
2, O

′
2, D

′
2;

I′5z }| {
L′2, P

′
2, Y

′
2 ;

V′z }| {
N ′, R′, P ′1, Y

′
1 , P ′2, Y

′
2 ) :−

C(C′1, M
′
1, ‘R’), O(O′1, C

′
1, D

′
1), LI(O′1, L

′
1, P

′
1, Y

′
1 ), OA(O′1, A

′), D(D′
1, R

′), A(A′, N ′), }AAS1 1 A

C(C′2, M
′
2, ‘C’), O(O′2, C

′
2, D

′
2), LI(O′2, L

′
2, P

′
2, Y

′
2 ), OA(O′2, A

′), D(D′
2, R

′) }AAS2

Figure 8: Encoding queries Q6 := EncQ(Q1) and Q7 := EncQ(Q2)

Q8(

I1z}|{
A ;

I2z}|{
B ;

I3z}|{
C ;

Vz}|{
C ) :−E(A, B), E(B, C)

Q9(A, D; B ; C ; C ) :−E(A, B), E(B, C), E(D, B)
Q10( A ;D, B; C ; C ) :−E(A, B), E(B, C), E(D, B)
Q11( A ; B ;C, D; C ) :−E(A, B), E(B, C), E(D, B)

Figure 9: Four sample CEQs

Example 10 Consider Figure 8. Converting query Q6 to
bnbnb-NF removes the shaded indexes from I4 and I2. Query
Q7 is already in bnbnb-NF.

We now describe the intuition behind the normal form.
Bags are sensitive to changes in absolute cardinalities, which
can be caused by deleting any index column; hence §i =

b requires I§i = Ii. Sets are only sensitive to changes in

sub-object values, so the condition for §i = s limits I§i to
the index attributes that determine the contents of the sub-
relations (inner core indexes + output variables). Finally,
normalized bags are sensitive to changes in sub-object values
or relative cardinalities, so when §i = n an index attribute
is redundant if it only serves to inflate the cardinalities of
sub-objects by a multiplicative factor.

Theorem 3 §-Normalization preserves §-equivalence.

4.2 Testing Encoding Equivalence
We now fully characterize encoding equivalence by gener-

alizing the traditional homomorphism test for CQs.

Definition 3 (Index-Covering Homomorphism) Given

two CEQs Q(I1; . . . ; Id;V) and Q′(I′1; . . . ; I′d;V ′), an index-
covering homomorphism from Q′ to Q is a mapping h from
the variables of Q′ to the variables and constants of Q sat-

isfying (1) h(bodyQ′) ⊆ bodyQ, (2) h(V ′) = V, and (3)

∀i ∈ [1, d]: Ii ⊆ h(I′i).

Theorem 4 Two CEQs are §-equivalent iff there exists index-
covering homomorphisms in both directions between their §-
normal forms.

Corollary 1 Deciding §-equivalence is NP-complete.

Corollary 2 Deciding COCQL equivalence is NP-complete.

Example 11 Continuing Example 10, clearly no index-covering
homomorphisms can exist between the normalized Q6 and Q7,
and so Q6 6 .≡bnbnb Q7 which entails Q1 6≡ Q2 (for the COCQL

versions of the queries, and also for the SQL versions assuming
uninterpreted aggregation functions).

5. EXTENSIONS
In this section we discuss a few extensions to the technique

presented so far—namely, adding schema dependencies, al-
lowing nested inputs, and adding an unnest operator.

5.1 Schema Dependencies
In Sections 3 and 4 we reduced COCQL equivalence to a

condition very close to relational CQ equivalence. Because
of this similarity, we can adapt techniques for testing equiv-
alence of CQs over database instances constrained by a set
Σ of schema constraints (denoted Q ≡Σ Q′) to COCQL equiv-
alence. For classes allowing a terminating chase procedure
(e.g., FDs + JDs + acyclic INDs [1]), we can decide encoding
equivalence w.r.t. Σ as follows. Prior to the conversion to
§-NF, we pre-process CEQs by first chasing out the query
bodies and then using FDs to expand out the index sets
in the query head (deleting variables from inner index sets
whenever they are added to outer index sets). The conver-
sion to §-NF is unchanged, but the test for query-implied
MVDs in equation 5 needs to use ≡Σ. Theorem 1 is then

modified to say Q ≡Σ Q′ iff EncQ(Q)
.≡Σ
§ EncQ(Q′).

Example 12 Reconsider queries Q6 and Q7 from Figure 8.
Chasing the query bodies with the primary and foreign key con-
straints from Example 1 does not introduce any new subgoals,
but it does merge the variables N, N2, N4 in Q6. Expanding the
index sets in Q6 yields the following head, with shading again
indicating the redundant index columns that get removed by
bnbnb-normalization.

Q′6( A, N, R; }I1

D1, O1, C1, M1, D2, O2, C2, M2 ; }I2

L1, P1, Y1; }I3

D3, O3, C3, M3 , D4, O4, C4, M4; }I4

L4, P4, Y4; }I5

N, R, P1, Y1, P4, Y4) }V
The head of Q7 is unchanged. The reader can verify that index-
covering homomorphisms exist in both directions between Q′6
and Q7, implying Q′6

.≡Σ
bnbnb Q7 and therefore Q1 ≡Σ Q2.
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5.2 Nested Inputs
Our results extend directly to databases containing col-

lections of non-flat tuples. Consider database instance D of
schema S containing collection R of tuples of sort 〈 τ1, . . . , τk 〉,
as well as two COCQL queries Qa, Qb over S that reference
R. Using a standard shredding of complex objects into flat
relations [25], we can create a new database instance D′ over
flat relational schema S′ and two new COCQL queries Q′a, Q′b
over S′ satisfying (Qa)D = (Q′a)D

′
and (Qb)

D = (Q′b)
D′ . As

a consequence, Q′a ≡ Q′b =⇒ Qa ≡ Qb.
Not every instance D′′ of schema S′ encodes a valid in-

stance of schema S; for example, D′′ could encode duplicate
elements within collection R when R is supposed to be a
set. However, we can show that if D′′ is a counter-example
proving Q′a 6≡ Q′b, then there exists another instance of S′

that is both a counter-example and encodes a valid instance
of schema S. As a consequence, Qa ≡ Qb =⇒ Q′a ≡ Q′b.

5.3 Adding the Unnest Operator
Suppose that the algebraic sub-language of COCQL is ex-

tended with an unnest operator
‘Y→Z(E) which flattens

aggregated objects previously constructed by a generalized

projection operator of the form
QY =f(Z

′
)

X
(E). Syntactically,

we require Z to be a tuple of fresh attribute names satisfying

|Z| = |Z′|.
Within the set-based nested-relational algebra, unnest is

the right inverse of nest (but not vice versa) [1]; however,
this is not the case when mixed collection types are con-
sidered. The aggregation functions set and nbag do not
preserve information about absolute cardinality when con-
structing objects. This means that operators of the formQY =f(Z

′
)

X
(E) with f ∈ {set,nbag} do not, in general, have

a right inverse under bag-set semantics (which is required
for the algebraic sub-language of COCQL in order to allow
construction of bag objects).

We can use this phenomenon to show that the unnest
operator adds expressive power to COCQL. The duplicate-
eliminating projection operator within COCQL is restricted
to only allow atomic sorts within the grouping list X. By
using set construction followed by unnesting, we can effect
duplicate-eliminating projection even when X contains at-
tributes with complex sorts, as follows.

Q
X(E) ≡‘Y→Z(

QY =set(X)
∅ (E)) (6)

Of course, this does not prove that adding unnest necessarily
makes the equivalence problem harder. It may be possible
to adapt our reduction of equivalence to encoding equiva-
lence of CQs. However, the construction of encoding query
EncQ(Q) and the subsequent identifying of “core indexes”
needs to depend not only on the output sort, but also some-
how on the transient intermediate sorts. Our investigation
into this extension is still in the preliminary stages at this
time.

6. CONCLUSIONS
Optimization of complex queries is a problem of very prac-

tical importance. Our work is the first to consider the gen-
eral query equivalence problem for a language allowing both
nesting and a mixture of collection types. In so doing, we
generalize previous work on (un-nested) CQs under various
semantics. We also generalize previous work on queries that

construct nested sets. In contrast to the previous approach
of adapting techniques for nested containment to the equiv-
alence problem, our direct consideration of query equiva-
lence yields a much simpler condition, which is crucial for
extending it to mixed collection types. The normal form that
we propose for encoding queries illumines the the possible
interactions between nested components, and hence lays a
foundation for understanding and thereby optimizing nested
aggregation.

The problem we consider in this paper has many exten-
sions that deserve future attention. The most obvious are
standard extensions to CQs such as allowing (atomic) in-
equalities or some form of disjunction. Equivalence for queries
that can construct empty objects is extremely interesting,
as it is required to model scalar aggregation within SQL, al-
though this is known to make the equivalence problem un-
decidable when the query language also contains disjunc-
tion [38]. Allowing higher-order comparisons—either ex-
plicitly within predicates or implicitly by grouping on ag-
gregated values—has very practical significance, since these
comparisons are very common in decision-support queries.
This extension could also quickly lead to undecidability, but
using uninterpreted aggregation values rather than identifi-
able collection values might allow a decidable fragment. Fi-
nally, it would be valuable to synthesize our work on nesting
with more sophisticated models of aggregation functions.
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APPENDIX
A. CHAIN OBJECTS

Algorithm 1 computes the transformation from a com-
plete or trivial object o to the corresponding chain object
Chain(o). Because any sort τ can be interpreted as a com-
plete object (conforming to itself), Algorithm 1 can also
be used to compute the chain sort Chain(τ); however, the
method described in Section 2.1 for computing Chain(τ) is
much simpler and logically equivalent for the special case of
sorts. The reader can verify that applying Algorithm 1 to
sort τ1 in Figure 3 yields the sort Chain(τ1) also shown in
Figure 3.

Algorithm 1 Transforming objects into chains

Chain(o)

¤ Input: complete or trivial object o
¤ Output: chain object formed from o

1 if o is atomic
2 then return 〈 o 〉
3 elseif o = { o1, . . . , on }
4 then return {Chain(o1), . . . ,Chain(on) }
5 elseif o = {| o1, . . . , on |}
6 then return {|Chain(o1), . . . ,Chain(on) |}
7 elseif o = {|∗∗ o1, . . . , on |∗∗}
8 then return {|∗∗Chain(o1), . . . ,Chain(on) |∗∗}
9 elseif o = 〈 〉

10 then return o
11 elseif o = 〈 o1 〉
12 then return Chain(o1)
13 elseif o = 〈 o1, . . . , on 〉 and n > 1
14 then return Distribute(Chain(o1),

Chain(〈 o2, . . . , on 〉))

Distribute(oa, ob)

¤ Input: chain object oa of sort (§a, k)
Assume that oa is a tree whose m leaves are
the k-ary tuples 〈 a1

1, . . . a
1
k 〉, . . ., 〈 am

1 , . . . am
k 〉

¤ Input: chain object ob of sort (§b, l)
Assume that ob is a tree whose n leaves are
the l-ary tuples 〈 b1

1, . . . b
1
l 〉, . . ., 〈 bn

1 , . . . bn
l 〉

¤ Output: chain object of sort (§a ◦ §b, k + l)
formed by distributing ob over each leaf of oa

and pushing down atomic values
1 o← copy of oa

2 foreach i ∈ [1, m]
3 do oi ← copy of ob

4 foreach j ∈ [1, n]

5 do substitute tuple 〈 ai
1, . . . , a

i
k, bj

1, . . . , b
j
l 〉

for tuple 〈 bj
1, . . . , b

j
l 〉 within oi

6 substitute oi for tuple 〈 ai
1, . . . , a

i
k 〉 within o

7 return o

B. ENCODING EQUALITY REVISITED
In this section we provide a characterization of encoding

equality that avoids the need to evaluate decoding queries.
Consider Example 7 where we claimed that R1

.
=ns R2. Veri-

fying Decode(R1, ns) = Decode(R2, ns) involves two basic

steps: (1) evaluate the two decoding queries, and (2) recur-
sively compare the two constructed objects to verify that
they are isomorphic. The first step implicitly performs a
mapping of index values to sub-objects, while the second
step explicitly maps between sub-objects. We now define
a certificate that embodies the mappings necessary to con-
clude encoding equivalence. Clearly, the allowable mappings
from index values to sub-objects depends upon the semantics
of the enclosing collection type, and so the space of possible
certificates depends upon the decoding signature.

Given a signature § and two non-empty encoding relations

R(I1; . . . ; Id;V) and R′(I′1; . . . ; I′d;V ′) with depth d = |§|,
we define a §-certificate between R and R′ as a tree rooted
by a set node if §1 = s, a bag node if §1 = b, a normalized
bag node if §1 = n, or a tuple node if § = ∅.

A set node ns
(R,R′) proves R

.
=sY R′ (for some signature

Y ). It contains a function f : adom(I′1, R′)→ adom(I1, R)
satisfying

∀x′ ∈ adom(I′1, R′)
`
R[f(x′)]

.
=Y R′[x′]

´
(7)

and an analogous function f ′ : adom(I1, R)→ adom(I′1, R′).
For each pair (x, x′) such that either x′ = f ′(x) or x = f(x′),
node ns

(R,R′) has a child Y -certificate between R[x] and R′[x′].
A bag node nb

(R,R′) proves R
.
=bY R′. It contains a bijec-

tive function f : adom(I′1, R′)→ adom(I1, R) satisfying the
following equation.

∀x′ ∈ adom(I′1, R′)
`
R[f(x′)]

.
=Y R′[x′]

´
(8)

For each pair (x, x′) such that x = f(x′), node nb
(R,R′) has

a child Y -certificate between R[x] and R′[x′].
A normalized bag node nn

(R,R′) proves R
.
=nY R′. It con-

tains two finite domains D1 and D2, and two surjective func-

tions ρ : adom(I1, R)→ D1 and % : adom(I′1, R′)→ D2 that
satisfy the following equation.

∀p ∈ D1.∀q ∈ D2

h
(σρ(I1)=p(R))

.
=bY (σ%(I′1)=q(R

′))
i

(9)

For each pair (p, q) ∈ D1 × D2, node nn
(R,R′) has a child

bY -certificate between σρ(I1)=p(R) and σ%(I′1)=q(R
′).

A tuple node nt
(R,R′) proves R

.
=∅ R′. A non-empty en-

coding relation of depth zero contains precisely one tuple
(of only output values). Therefore, node nt

(R,R′) contains a
single comparison of tuples.

Theorem 5 Given a signature § and two encoding relations
R and R′ of depth |§|, R and R′ are §-equal iff there exists
a §-certificate between R and R′.

Proof. A simple induction on certificate height suffices.
The base case is the tuple nodes, which are trivial. For
the inductive case, it suffices to verify that each collection
node correctly enforces the semantics of the appropriate
collection constructor. For all of the collection nodes,
equality of compared sub-objects follows by induction on
the child certificates. For a set node, the two functions
f and f ′ enforce mutual containment of the two sets of
sub-objects, which is necessary and sufficient to conclude
set equality. For a bag node, the bijective function en-
forces isomorphism of the two collections of sub-objects,
which is necessary and sufficient to conclude bag equal-
ity. Finally, for a normalized bag node the functions ρ
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and % partition relations R and R′, respectively, while
the child bY -certificates enforce that all of the partitions
encode the same bag. This is necessary and sufficient

to conclude normalized bag equality (the ratio |D1|
|D2| cap-

tures the relative “inflation factors” of the two original
bags).

Figure 10 illustrates an ns-certificate proving R1
.
=ns R2

with R1 and R2 shown in Figures 6 and 7, respectively.

C. PROOFS

C.1 Proof of Theorem 1
It is straightforward to verify that the transformation Chain(o)

shown in Algorithm 1 (Appendix A) is invertible, and so
o = o′ iff Chain(o) = Chain(o′). Then, for any D, ob-
ject (Q)D = (Q′)D iff Chain((Q)D) = Chain((Q′)D) iff (by
Proposition 1)

Decode((EncQ(Q))D, §) = Decode((EncQ(Q′))D, §)
and so the theorem follows immediately from Definitions 1
and 2.

Proposition 1 can be proven by a straightforward (but te-
dious) comparison of Algorithm 1 for constructing Chain(o)
with the algorithm in Section 3.2 for constructing EncQ(Q).
The crucial point is that the manner in which EncQ(Q)
chooses the index variables (via a preorder traversal of τ)
emulates the behaviour of line 14 in Algorithm 1.

C.2 Uniqueness of I§i
We prove here that the conditions given in Section 4.1

always determine a unique minimal set of core indexes I§i ⊆
Ii. First, let Q′i(I[1,i]I§[i+1,d]) be a minimal CQ equivalent

to Qi. Next, let a “candidate for I§i ” denote any set X ⊆ Ii

such that if we choose I§i := X then all the conditions in
Section 4.1 are satisfied. We now show that if X1, X2 ⊆ Ii

are both candidates for I§i , then X1∩X2 is also a candidate

for I§i .

Case §i = b:

Ii ⊆ I§i trivially implies X1 = X2 = X1 ∩X2.

Case §i = s:
Ii ∩V ⊆ X1 and Ii ∩V ⊆ X2 trivially implies Ii ∩V ⊆
(X1 ∩ X2). Therefore, we need to prove the following
MVD

Qi |= I[1,i−1] ∪ (X1 ∩X2)→→ I§[i+1,d] (10)

which cannot be derived from axioms for MVDs [1], but
can be reasoned from the query structure as follows.

1. By candidacy of X1,

Qi |= (I[1,i−1] ∪X1)→→ I§[i+1,d]

and so by Lemma 1 I[1,i−1]∪X1 is a strong (I§[i+1,d],

(Ii \X1))-articulation set of HQ′ .
2. By candidacy of X2,

Qi |= I[1,i−1] ∪X2 →→ I§[i+1,d]

and so by Lemma 1 I[1,i−1]∪X2 is a strong (I§[i+1,d],

(Ii \X2))-articulation set of HQ′ .

3. The two articulation sets together imply that delet-

ing I[1,i−1]∪(X1∩X2) from HQ′ causes the two sets

I§[i+1,d] and Ii \ (X1∩X2) to occur in separate par-

titions of the remaining hypergraph. Equation 10
then follows from Lemma 1.

Case §i = n:
Ii ∩ V ⊆ (X1 ∩ X2) is the same as case §i = s, so we
need to prove the following MVD

Qi |= I[1,i−1] →→ (X1 ∩X2) ∪ I§[i+1,d] (11)

which again cannot be derived from axioms for MVDs,
but can be reasoned from the query structure.

1. By candidacy of X1,

Qi |= I[1,i−1] →→ X1 ∪ I§[i+1,d]

and so by Lemma 1 I[1,i−1] is a strong ((X1 ∪
I§[i+1,d]), (Ii \X1))-articulation set of HQ′ .

2. By candidacy of X2,

Qi |= I[1,i−1] →→ X2 ∪ I§[i+1,d]

and so by Lemma 1 I[1,i−1] is a strong ((X2 ∪
I§[i+1,d]), (Ii \X2))-articulation set of HQ′ .

3. The two articulation sets together imply that delet-

ing I[1,i−1] from HQ′ causes the four sets X1 \X2,

X2 \ X1, Ii \ (X1 ∪ X2), and (X1 ∩ X2) ∪ I§[i+1,d]

to occur in separate partitions of the remaining hy-
pergraph. Equation 11 then follows from Lemma 1.

C.3 Proof of Theorem 2
We will first prove that testing query-implied MVDs is

NP-hard, by reduction from the NP-hard problem of decid-
ing containment between boolean CQs. Let Qa and Qb be
two boolean CQs whose bodies contain the disjoint sets of
variables Ba and Bb, respectively. Let A, Z be two fresh vari-
ables. Let Q(V) be a new conjunctive query whose output
variables satisfy V = Ba∪{A, Z}, and whose body is defined
as follows.

bodyQ = bodyQa
∪ bodyQb

∪
[

x∈Ba∪Bb

{R(A, x), R(x, Z)}

Then, Qa ⊆ Qb iff there exists a homomorphism h : Bb → Ba

such that h(bodyQb
) ⊆ bodyQa

iff Q implies Ba →→ A (and

Ba →→ Z). NP-hardness of §-normalization then follows
directly from the definition of §-NF.

Identifying the core indexes at each level can be done
in NP time using an algorithm that traverses query hyper-
graphs.

Case §i = b: Trivial.

Case §i = n: Minimize the body of Qi, then construct
hypergraph HQi . Delete from HQi all nodes corre-

sponding to variables in the set I[1,i−1]. Identify I§i
by traversing the connected components containing any
variable in (Ii ∩ V) ∪ I[i+1,d].

Case §i = s: Minimize the body of Q′, then construct hy-
pergraph HQi . Delete from HQi all nodes correspond-
ing to variables in the set I[1,i−1]∪(Ii∩V). Identify any

non-output members of I§i incrementally by traversing
the connected components containing I[i+1,d] and delet-
ing the “nearest” member of Ii.
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nt

(R1[w1x1y1],

R2[a1b1c1])

〈 1 〉 = 〈 1 〉

ns
(R1[w1x1],R2[a1])

f := {b1c1 → y1}
f ′ := {y1 → b1c1}

nt

(R1[w1x2y1],

R2[a2b1c1])

〈 1 〉 = 〈 1 〉

nt

(R1[w1x2y1],

R2[a2b1c2])

〈 1 〉 = 〈 1 〉

ns
(R1[w1x2],R2[a2])

f := {b1c1 → y1, b1c2 → y1}
f ′ := {y1 → b1c1}

nt

(R1[w2x1y1],

R2[a5b1c1])

〈 2 〉 = 〈 2 〉

nt

(R1[w2x1y2],

R2[a5b2c1])

〈 2 〉 = 〈 2 〉

ns
(R1[w2x1],R2[a5])

f := {b1c1 → y1, b2c1 → y2}
f ′ := {y1 → b1c1, y2 → b2c1}

nb
(σρ(W X)=♥(R1),σ%(A)=♣(R2))

f := {a1 ↔ w1x1, a2 ↔ w1x2, a5 ↔ w2x1}

ns

(R1[w1x1],

R2[a3])

..

.

ns

(R1[w1x2],

R2[a4])

..

.

ns

(R1[w2x1],

R2[a6])

..

.

nb
(σρ(W X)=♥(R1),σ%(A)=♠(R2))

f := {a3 ↔ w1x1, a4 ↔ w1x2, a6 ↔ w2x1}

nn
(R1,R2)

D1 = {♥}, D2 = {♣,♠}, ρ := {w1x1 → ♥, w1x2 → ♥, w2x1 → ♥}, % := {a1 → ♣, a2 → ♣, a3 → ♠, a4 → ♠, a5 → ♣, a6 → ♠}

Figure 10: ns-Certificate proving R1
.
=ns R2

C.4 Proof of Theorem 3
Let Q(I1; . . . ; Id;V) be any CEQ. For every i ∈ [1, d + 1],

let Qi denote the following CEQ.

Qi(I1; . . . ; Ii−1; I§i ; . . . ; I§d;V) :− bodyQ (12)

Observe that Q1 is the §-normal form of Q, which we prove
§-equivalent to Q using induction on i. As a base case,
Equation 12 implies Qd+1 = Q, and so Qd+1 .≡§ Q is trivial.

For the inductive step we need to show that for any database
D that we can construct a §-certificate between (Qi)D and

(Qi+1)D. W.l.o.g., assume that Ii = I§i · J , where J is the
set of redundant indexes in Ii. Because Qi and Qi+1 have
the same body, relation Ri := (Qi)D is formed by a projec-
tion over Ri+1 := (Qi+1)D that retains all attributes except
for J .

Case §i = b:
J = ∅, and so Ri .

=§ Ri+1 is trivial.

Case §i = s:
For each value a ∈ adom(I [1,i−1], R

i), let Ca be a §[i,d]-
certificate rooted by an initially empty set node. We
will incrementally construct Ca until it proves the rela-
tionship Ri[a]

.
=§[i,d]

Ri+1[a]. Because adom(I [1,i−1], R
i) =

adom(I [1,i−1], R
i+1), it is then trivial to construct the

upper levels of a §-certificate proving Ri .
=§ Ri+1.

For each value b ∈ adom(I§i , Ri[a]) = adom(I§i , Ri+1[a]),
the sub-relation Ri[ab] encodes an object of sort (§[i+1,d],
d − i) occurring in the set at level i. By definition

of I§i , relation Ri satisfies I[1,i−1] ∪ I§i →→ I§[i+1,d],

which implies that Ri+1[a] satisfies I§i →→ I§[i+1,d] (and

I§i →→ J ). Let {c1, . . . , ck} be all of the values in set
adom(J , Ri+1[a]). It follows from the MVD that all of
the sub-relations Ri+1[abc1], . . . , R

i+1[abck] are identi-
cal to each other and to the sub-relation Ri[ab]. For
each cj add to Ca the mapping f(bcj) := b, as well as
a child §[i+1,d]-certificate proving that Ri[ab]

.
=§[i+1,d]

Ri+1[abcj ] (which is trivial, because Ri[ab] = Ri+1[abcj ]).
Then, add the mapping f ′(b) := b · c1 (we could choose
any cj). Certificate Ca is complete when this has been
performed for all values of b.

Case §i = n:
The proof is almost identical to case §i = s, but uses

the MVD I[1,i−1] →→ I§[i,d] both to guarantee that the

contents of inner encoding relations are identical (as
in the case §i = s), and to guarantee that for each
value of a ∈ adom(I [1,i−1], R

i) = adom(I [1,i−1], R
i+1)

the multiplicative factor introduced by J is uniform

across all b ∈ adom(I§i , Ri[a]) = adom(I§i , Ri+1[a]).

C.5 Proof of Theorem 4
Assume without loss of generality that Q(I1; . . . ; Id;V)

and Q′(I′1; . . . ; I′d;V ′) are already in §-normal form (justified
by Theorem 3). Assume also that the query bodies bodyQ

and bodyQ′ are minimal relative to the set of index and
output attributes occurring in the query heads (in the sense
of tableau minimization; justified by CQ equivalence).

If index-covering homomorphisms exist in both directions,
then for any database D the encoding relations (Q)D and
(Q′)D differ at most by ordering of attributes within each
index level. A §-certificate proving (Q)D

.
=§ (Q′)D is there-

fore straightforward to construct, since each node is simply
an isomorphism between sub-relations modulo reordering of
intra-index attributes; Q

.≡§ Q′ follows immediately.
The proof for the necessity of mutual index-covering ho-

momorphisms is too long to reproduce in its entirety here,
and so we include only an extended sketch. The full proof
will appear within the author’s Ph.D. dissertation (expected
2009).

The overall proof methodology for proving the existence
of an index-covering homomorphisms follows the traditional
proof for CQ equivalence.

1. Construct a canonical database DQ from bodyQ.
2. Choose a particular embedding γ : bodyQ → DQ that

yields a “canonical tuple” within (Q)DQ .
3. Use the definition of encoding equivalence (specifically,

the existence of a §-certificate between (Q)DQ and (Q′)DQ)
to argue the existence of an embedding φ : bodyQ′ →
DQ that yields a comparable tuple in (Q′)DQ .

4. Define mapping h : Q′ → Q in terms of φ, and use both
the definition of DQ and the properties of the chosen
canonical tuple to prove that h is an index-covering
homomorphism from Q′ to Q.

5. Repeat in the other direction using database DQ′ .
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The complication lies in the third step. An arbitrary certifi-
cate between (Q)DQ and (Q′)DQ does not allow us to con-
clude that for each canonical tuple γ(I1; . . . ; Id;V) there
exists an embedding φ satisfying

γ(I1; . . . ; Id;V) = φ(I′1; . . . ; I′d;V ′)
because the mappings within set, bag, and normalized bag
nodes do not require equality of index values. This makes it
difficult in the fourth step to prove that the homomorphism
h is index-covering.

Overcoming this requires construction of a very complex
canonical databaseDQ which depends heavily on the seman-
tics of the nested collection types represented by §. The iden-
tification of certain tuples as “canonical” is then defined rel-
ative to the structure of DQ. Given an arbitrary §-certificate
between (Q)DQ and (Q′)DQ , we use induction to show that
the mappings in the certificate can be re-organized until for
every canonical tuple γ(I1; . . . ; Id;V), there exists a path
of nodes down the certificate such that at each level i, the
certificate node maps γ(Ii) to a permutation of itself. The
induction starts at the leaves of the certificate and proceeds
upward. Proving at each level that γ(Ii) can be re-mapped
to a permutation of itself requires exploiting the structure of
DQ which has been tailored for the type of mappings implied
by the semantics of type §i. Unfortunately, for set nodes and
normalized bag nodes, the argument based upon semantics
of the mappings can only prove that γ(Ii) maps that con-
tains all of the value in γ(Ii) (but could contain more val-
ues). For the induction hypothesis to be satisfied we require
the stronger property that the mapping effects a permuta-
tion, in order to argue at the next level that the encoded
sub-objects are equal. To deal with this, we actually need
to perform the induction simultaneously in both directions
(i.e., on one certificate proving (Q)DQ

.
=§ (Q′)DQ and simul-

taneously on another certificate proving (Q)DQ′ .
=§ (Q′)DQ′ )

in order to establish that |Ii| = |I′i|.
We will now describe the design of canonical database

DQ. Because the construction combines three different tech-
niques depending upon the type of certificate nodes at each
level (i.e., depending upon §), we will illustrate the three
techniques independently. In the full proof, both the for-
mal definitions of the canonical database and the inductive
arguments for the construction of the index-covering homo-
morphism are completely modular so that they can be in-
terleaved to handle arbitrary encoding signatures.

C.5.1 Bag Nodes
The argument for bag nodes is an adaptation of Cohen et

al.’s proof for equivalence of un-nested count queries [8]. It
relies upon an argument that if two multivariate polynomials
of degree k over n variables are distinct, then there are an
infinite number of points in Nn upon which they disagree.

Let P be an infinite palette of colours, each indexed by a
positive integer:

colour1 colour2 colour3 colour4 . . .

Colour colour1 is intentionally transparent.
Let C be any domain of n constants adhering to some

arbitrary total ordering.

C = {c1, . . . , cn} ∀1 ≤ i < j ≤ n : ci < cj

For each colouri ∈ P satisfying i ≥ 2, let Ci be a fresh

set of constants isomorphic to C, and let δi : C → Ci be

a function that “paints” each cj ∈ C with colour colouri

to yield the constant cj ∈ Ci . As implied by the trans-

parency of colour1, we define C1 = C and the painting func-

tion δ1 : C → C1 trivially as the identity function. Finally,
because the different paintings of C are mutually disjoint, we
define a single “whitewash” function δ−1 that is the inverse
of all painting functions.

Given any point r ∈ Nn and any tuple t over C,
t = 〈 ci1 , ci2 , . . . , cim 〉

we define the r-inflation of t, denoted ∆r(t), as the set of all
possible “paintings” of t generated by independently choos-
ing for each tuple component cij one of the first rij colours

in palette P. The size |∆r(t)| depends upon both r and the
number of occurrences of each constant ci ∈ C within the
tuple. For a given tuple t, let #(t, ci) denote the number of
occurrences of ci within t. Then, the set ∆r(t) has size

|∆r(t)| =
Y
ci∈C

r
#(t,ci)
i (13)

which is a monomial over variables r1, . . . , rn. with coeffi-
cient one and degree equal to the arity of t.

Given any set S of tuples over C, we define ∆r(S) :=S
t∈S ∆r(t), and so

|∆r(S)| = fS(r)

where fS is a multivariate polynomial over variables r1, . . . , rn

with degree equal to the maximum arity of tuples in S.
Given any m sets S1, . . . , Sm of tuples over C with maxi-
mum arity k, we show that there always exists a coordinate
r ∈ Nn such that for every i, j ∈ [1, m],

fSi(r) = fSj (r) ⇐⇒ fSi = fSj ⇐⇒ Si ≈ Sj (14)

where Si ≈ Sj denotes that there exists a bijection between
the tuples of Si and Sj such that tuples are only mapped to
permutations of themselves. When S1, . . . , Sm includes all
possible sets of tuples over C with maximum arity k, then
we say that the coordinate r above is k-distinguishing.

We are now ready to define the canonical database DQ.
Let C be the set of all constants and variables occurring in

bodyQ, and choose r to be any (|I [1,d]|+|I′[1,d]|)-distinguishing
coordinate for C. Then, define DQ as follows.

DQ := ∆r(bodyQ)

Due to the “transparency” of colour1, we guarantee that
bodyQ ⊆ DQ, and so (Q)DQ is guaranteed not to be empty.

Given any certificate between encoding relations (Q)DQ

and (Q′)DQ , we consider each bag node at level i of the
certificate. For each encoded sub-object o, we model the
cardinality of o within the two encoding relations as the
polynomials fSo(r) and fS′o(r). Set So is formed by taking

the index values for Ii that correspond to encodings of o,
and restricting the tuples to non-output attributes; S′o is
analogous. Because bag equivalence entails fSo(r) = fS′o(r),

we apply equation 14 to conclude that So ≈ S′o (noting that

fSo and fS′o both have degree less than (|I [1,d]| + |I′[1,d]|),
and r was selected to be (|I [1,d]| + |I′[1,d]|)-distinguishing).
It is easy to show that the mappings in the bag node must
already agree on output attributes, and so we can re-arrange

14



the mappings until the bijection maps each index value to a
permutation of itself.

We can now choose any tuple γ ∈ (Q)D satisfying

δ−1 ◦ γ(I1; . . . ; Id;V) = 〈 I1; . . . ; Id;V 〉

and by examining any path of nodes down the certificate
tree leading to a tuple node containing γ, we can construct
a homomorphism from Q′ to Q that is guaranteed to be
index-covering for all of the bag levels.

C.5.2 Normalized Bag Nodes
The proof is similar to bag nodes. The complicating factor

is that normalized bag nodes do not enforce that a sub-
object be encoded with the same absolute cardinality in both
encoding relations. That is, for a given sub-object o we do
not know that fSo(r) = fS′o(r), and hence we cannot apply

equation 14 to conclude So ≈ S′o as we did above for bag
nodes.

Normalized bag nodes do enforce that two sub-objects
be encoded with the same relative cardinalities. Therefore,
given two sub-objects o1, o2,

fSo1
(r)

fSo2
(r)

=
fS′o1

(r)

fS′o2
(r)

and so

fSo1
(r)× fS′o2

(r) = fSo2
(r)× fS′o1

(r)

follows. Because both sides of the second equation are poly-

nomials of degree less than (|I [1,d]|+ |I′[1,d]|), we can apply
equation 14 to conclude the following.

So1 × S′o2 ≈ So2 × S′o1

This is not necessarily useful, since it does not guarantee
that every tuple in So1 has a permuted image in S′o1 . How-
ever, by additional architecting of DQ we produce particu-
lar “canonical sub-objects” for which we can show that the
polynomials fSo1

and fSo2
have a greatest common divisor

of degree zero (i.e. a constant). Using this information, we
are able to show that either
• So1 ≈ S′o1 and So2 ≈ S′o2 , or
• degree(fSo1

) > degree(fS′o1
) (which implies |Ii| >

|I′i|).
By simultaneously performing the induction on bothDQ and
DQ′ we rule out the second case, after which the remaining
construction of index-covering homomorphism is similar to
the bag case.

We add additional structure to DQ by combining mul-
tiple labelled copies of bodyQ together before performing
r-inflation. We define the following set of labels L.

L := {c1.c2 . . . cj | j ∈ [1, d] ∧ ∀i ∈ [1, j].(ci ∈ {1, 2})}

For each l ∈ L we define the labelling function λl : B → Bl,
and we define a single de-labelling function λ−1 : (

S
l∈L Bl)→ B

which serves as an inverse for all of the labelling functions.
The labels in L with length d we call “sequences,” while

the labels with length less than d we call “prefixes.” For
every prefix p ∈ L with length m < d we define the label-

generating function θp : I[1,m] → (
S

l∈L Bl) as follows,

θc1.c2...cm(x) :=

(
θc1...c(m−1)(x) if x ∈ I[1,(m−1)]

λc1...cm(x) if x ∈ Im

=

8
>>>>>><
>>>>>>:

λc1(x) if x ∈ I1
λc1.c2(x) if x ∈ I2
...

...

λc1...c(m−1)(x) if x ∈ I(m−1)

λc1...cm(x) if x ∈ Im

while for every sequence s ∈ L we define the label-generating
function θs : B → (

S
l∈L Bl) as follows.

θc1.c2...cd(x) :=

8
><
>:

θc1...c(d−1)(x) if x ∈ I[1,(d−1)]

λc1...cd(x) if x ∈ Id

λc1...cd(x) otherwise

=

8
>>>>>>>>><
>>>>>>>>>:

λc1(x) if x ∈ I1
λc1.c2(x) if x ∈ I2
...

...

λc1...c(d−1)(x) if x ∈ I(d−1)

λc1...cd(x) if x ∈ Id

λc1...cd(x) otherwise

We immediately extend functions θs and θp to tuples, sets,
and subgoals and with identity on query constants. We also
observe that λ−1 serves as an inverse for every θs and θp.

We now define the canonical database DQ in two stages.
First, we form the database Dpre

Q as follows.

D
pre
Q :=

[

c1∈{1,2}
· · ·

[

cd∈{1,2}
θc1...cd(bodyQ)

Next, we let r be any (|I[1,d]|+|I′[1,d]|)-distinguishing coordi-

nate for sets of tuples over adom(Dpre
Q ), and we use r-inflation

to define canonical database DQ as we did with previously
for bags.

DQ := ∆r(Dpre
Q )

By whitewashing and de-labelling DQ, we re-obtain bodyQ.

λ−1 ◦ δ−1(DQ) = bodyQ

Define R := (Q)DQ and R′ := (Q′)DQ . For each label
l ∈ L with length |l| = j, we define the canonical object ol

to be the object encoded by the sub-relation R[θl(I [1,j])].
We additionally define the canonical object o∅ to be the
object encoded by R.

Now given any certificate between R and R′ we restrict our
attention to the normalized bag nodes that equate relations
encoding canonical sub-objects. Consider any such a node
occurring at level i of the certificate which encodes canonical
object ol with |l| = i−1. By combining the facts that bodyQ

is minimal and that Ii does not contain any redundant vari-
ables, we can prove that the polynomials fSol.1

and fSol.2
(which model the cardinalities of canonical sub-objects ol.1

and ol.2) have a GCD of degree zero, after which we con-
clude Sol.1 ≈ S′ol.1 and Sol.2 ≈ S′ol.2 (using simultaneous
induction on DQ′ to establish that |Ii| = |I′i|). Construct-
ing the index-covering homomorphism is then identical to
the bag case.
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C.5.3 Set Nodes
The proofs for both bag and normalized bag nodes hinge

upon applying equation 14 to translate from a counting ar-
gument to an argument that the mappings in the node can
be re-organized so that (certain) index values map to per-
mutations of themselves. Set equality ignores cardinality,
so counting arguments are of no help. Instead, we architect
DQ so that the relation (Q)DQ encodes certain canonical ob-
jects which can only be constructed via indexing on a par-
ticular combination of values. To effect this, we construct
DQ by combining multiple labelled copies of bodyQ, simi-
lar to the approach we used for normalized bags, but with
a much more complicated labelling system that introduces
much more symmetry into DQ.

Define integer N = max(|I[1,d]|, |I′[1,d]|) + 2. The sym-
metry will be specified using mechanisms we will call label-
generating components, sequences, and prefixes. For each
level i ∈ [1, d], let LGCi denote the set of label-generating
components at level i, defined as follows.

LGCi := {(yi, zi) | yi, zi ∈ [1, N ]|Ii|}
We say that component c = (yi, zi) contains a conflict at
position i.j if yi.j = zi.j , and we use CF-LGCi to denote the
conflict-free subset of LGCi.

Let LGS denote the set of label-generating sequences, com-
posed out of label-generating components as follows.

LGS := {c1.c2 . . . cd | ∀i ∈ [1, d] : ci ∈ LGCi}
We say that a sequence s ∈ LGS is conflict-free if it is
composed entirely of conflict-free components, and we use
CF-LGS to denote the conflict-free subset of LGS.

For each integer m ∈ [1, d], let LGPm denote the set of
label-generating prefixes of length m, defined as follows.

LGPm := {c1 . . . c(m−1).ym | ∀i ∈ [1, m− 1]. (ci ∈ LGCi)
∧∃zm. ((ym, zm) ∈ LGCm)}

Every sequence s ∈ LGS corresponds to a unique prefix
in each of LGP1, . . . ,LGPd. Conversely, every prefix p ∈
LGPm with m < d can be extended in N |Im|+|I(m+1)| dif-
ferent ways to yield a prefix in LGPm+1, while every prefix
p ∈ LGPd can be extended in N |Id| different ways to yield a
complete sequence in LGS. We say that a prefix is conflict-
free if it can be iteratively extended into a conflict-free se-
quence, and we use CF-LGPm to denote the conflict-free
subset of LGPm. Every conflict-free prefix p ∈ CF-LGPm

with m < d can be extended in (N − 1)|Im|N |I(m+1)| differ-
ent ways to yield a conflict-free prefix in CF-LGPm+1, while
every conflict-free prefix p ∈ CF-LGPd can be extended in
(N −1)|Id| different ways to yield a conflict-free sequence in
CF-LGS.

Let L denote the following set of labels.

L :={z1 . . . zj .k | j ∈ [1, d− 1]
∧∀i ∈ [1, j].∃yi.((yi, zi) ∈ LGCi)
∧k ∈ [1, N ]}

∪{z1 . . . zd | ∀i ∈ [1, d].∃y.((yi, zi) ∈ LGCi)}

For each l ∈ L we define the set Bl, the labelling function
λl, and the de-labelling function λ−1 as we did previously
for normalized bags.

For each m ∈ [1, d] and each label-generating prefix p ∈
LGPm we define the following label-generating function θp :

I[1,m] → (
S

l∈L Bl) as follows.

θ(y1,z1)...(y(m−1),z(m−1)).ym
(x)

:=

8
>>><
>>>:

θ(y1,z2)...(y(m−2),z(m−2)).y(m−1)
(x)

if x ∈ I[1,m−1]

λz1...z(m−1).ym.j (x)

if ∃j ∈ [1, |Im|] such that x = Im.j

=

8
>>>>>><
>>>>>>:

λy1.j (x) if ∃j ∈ [1, |I1|] such that x = I1.j

λz1.y2.j (x) if ∃j ∈ [1, |I2|] such that x = I2.j

λz1.z2.y3.j (x) if ∃j ∈ [1, |I3|] such that x = I3.j

...
...

λz1...z(m−1).ym.j (x) if ∃j ∈ [1, |Im|] such that x = Im.j

Similarly, for each label-generating sequence s ∈ LGS, we
define the following label-generating function θs : B → (

S
l Bl)

as follows.

θ(y1,z1)...(yd,zd)(x) :=

8
><
>:

θ(y1,z2)...(y(d−1),z(d−1)).yd
(x)

if x ∈ I[1,d]

λz1...zd(x) otherwise

We immediately extend functions θp and θs to tuples, sets,
and subgoals and with identity on constants in C. We also
observe that λ−1 serves as an inverse for every θp and θs.

Suppose that s ∈ LGS contains a conflict at position i.j.
Given any tuple t containing both variable Ii.j and some
variable I ∈ B \I[1,i] (i.e. a non-index variable or a member
of I[i+1,d]), the labelled tuple θs(t) evidences the conflict at

i.j. That is, because θs(Ii.j) = I
z1...z(i−1).yi.j

i.j and θs(I) is
assigned a label that starts with z1 . . . zi, from tuple θs(t)
we can infer that yi.j = zi.j and so conclude that sequence
s has a conflict at position i.j.

We now define the canonical database DQ as follows.

DQ :=
[

s∈CF-LGS

θs(bodyQ)

Because variable s ranges over only conflict-free label-generating
sequences, database DQ does not contain any tuple that
evidences any conflicts. By de-labelling DQ we re-obtain
bodyQ.

λ−1(DQ) = bodyQ

Define R := (Q)DQ and R′ := (Q′)DQ . For each m ∈ [1, d]
and p ∈ LGPm we define the canonical object op to be the
object encoded by the sub-relation R[θp(I [1,j])]. We addi-
tionally define the canonical object o∅ to be the object en-
coded by R. By combining the definition of canonical objects
with the fact that DQ was only generated from conflict-free
sequences, we can prove the following lemma.

Lemma 2 Given any integer m ∈ [2, d] satisfying |Im| > 0,
any prefix p ∈ CF-LGP(m−1), and any prefix q ∈ LGPm that
extends p; canonical object op contains canonical object oq

as a sub-object iff q is conflict-free.

From Lemma 2 we can show that for any m ∈ [1, d] and
prefix p ∈ CF-LGPm, by examining the canonical object op

we can identify all of the values in the set θp(Im). (Prove this
requires using the fact that Im only contains core indexes,
and hence each index in Im is either an output variable or
is related to an inner index variable as per the definition of
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core indexes in Section 4.1.) We can then prove the following
lemma.

Lemma 3 Given any integer m ∈ [1, d], any prefix p ∈
CF-LGPm, and any sub-relation R′[a′[1,m]] that encodes canon-

ical object op; index tuple a′[1,m] must contain all of the values
in θp(Im).

Proof. For each Im.j ∈ Im, θp(Im.j) = I
z1...z(m−1).ym.j

m.j .
By the symmetry in the construction ofDQ, every database
constant that co-occurs with θp(Im.j) also co-occurs sym-
metrically with at least N − 2 other constants of the

form I
z1...z(m−1).n

m.j . Therefore, in order for index tuple

a′[1,m] to uniquely determine the constant θp(Im.j), either

θp(Im.j) must occur in a′[1,m], or a′[1,m] must contain at

least N − 1 > |I′[1,d]| different database constants, which

is a contradiction. Hence, a′[1,m] must contain the value
θp(Im.j).

We can now choose any tuple γ ∈ (Q)DQ satisfying

γ(I1; . . . ; Id;V) = θs(I1; . . . ; Id;V)

for any sequence s ∈ CF-LGS. We can choose any path
of nodes down the certificate tree leading to a tuple node
containing γ, and by applying Lemma 3 inductively along
the path we can prove that each set node at level i must map
the index value γ(Ii) to a tuple of values a′i that contains
all of the same values. Using a simultaneous induction in
the opposite direction (on DQ′), we conclude |Ii| = |I′i| and

therefore a′i must be a permutation of γ(Ii). By composing
the de-labelling function λ−1 with the embedding φ : Q′ →
DQ that generated index tuple a′[1,d] ∈ adom(I′[1,d], R

′), we

obtain an index-covering homomorphism from Q′ to Q.
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