
Representation of Programming Constructs with

the Kell-m Calculus

ROLANDO BLANCO, PAULO ALENCAR
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3G1

Technical Report CS-2009-11

Abstract

Kell-m is a new asynchronous, higher-order process calculus with local-
ities, developed for modelling and verifying distributed event-based sys-
tems and applications. Although simple, due to the low level nature of
kell-m, considerable effort is required when modelling complex systems.
In this report we illustrate how common programming constructs such
as variables, procedures, modules and lists can be represented using kell-
m. These constructs facilitate the modelling of systems and applications
using kell-m.

1 Introduction

Kell-m is a new process calculus part of the Kell family of process calculi
(Stefani, 2003). Kell-m was developed for modelling distributed event-based
systems (DEBSs) and applications. Kell-m is also the modelling language in a
model checker tool we have developed for the representation and verification of
DEBSs, and in general, distributed communicating systems.

Systems are modelled with kell-m as processes executing in parallel. Pro-
cesses can, optionally, be localized within kells. Kells can be dynamically created
and destroyed, and kells can be contained within other kells. Similarly to other
process calculi, processes interact by communicating using channels (Milner,
1980, 1999; Parrow, 2001). Only two processes can participate on a communi-
cation on a specific channel at a given time. Processes and names, representing
channels or kells, can be transmitted as part of a communication. Hence, kell-m
is a higher-oder process calculus. Because a process writing on a channel can-
not perform any actions after the write, kell-m is also an asynchronous process
calculus.

As with most low level formalisms, using kell-m for modelling complex sys-
tems can be tedious and error prone. In this report we show how basic pro-

1

gramming constructs can be modelled in kell-m. Most of the constructs here
presented match the functionality of constructs typically used in software de-
velopment, or they can be used to represent other construct. Our goal is to
facilitate the representation of systems using kell-m.

We start our presentation in Section 2, by introducing kell-m’s syntax and
operational semantics. Variables are represented in Section 3. Menus, a form
of procedural abstraction commonly used in process calculi, are represented in
Section 4. In Section 5 we represent conditional statements, and in Section
6 we introduce a simple modularization construct for encapsulating data and
associated operations, similar to abstract data types. We continue with a rep-
resentation for lists in Section 7, and conclude the report in Section 8.

2 Syntax and Operational Semantics

Processes in kell-m have the following syntax:

P ::= 0 | new a P | P |P | K[P] | x | a(w̃) | ξ . P
ξ ::= a(ṽ) | K[x]
v ::= c | x
w ::= c | P

Where P represents a process; 0 is the null process (a process with no
actions); new a P is a restriction, where a fresh channel a is created, and a is
bound in process P ; | is parallel composition of processes; K[P] is a kell with
name K, and executing process P ; w is a name or a process; a(w̃) specifies
a write operation where a combination of zero or more names and processes
are being written on channel a. Note the calculus is asynchronous: a write
operation cannot be followed by any operation.

K represents the name of a kell; x is a process variable; a represents a
channel; c represents a channel variable. ξ . P represents a trigger ; ξ is a
pattern: a(c) . P matches a(d). The channel c is bound in P , and after the
match, occurrences of c are replaced with d: P{c/d}. Hence:

a(d) | (a(c) . P)

reduces (→) to:
→ P{d/c}

We write new a,b,c P to represent new a new b new c P , and new c̃ to
represent new c1, c2, ..., cn when c̃ = c1, c2, ..., cn.

When � is used instead of ., the pattern represents a receptive trigger, and
it is not consumed when a match occurs:

(a(c) � P) | a(d) → (a(c) � P) | P{d/c}

Specifically, � is defined as the following fixed point (Stefani, 2003):

ξ � P ≡ new t (Y (P, ξ, t) | t(Y (P, ξ, t)))

2

with
Y (P, ξ, t) ≡ t(y) . (ξ . (P | y | t(y)))

Hence,

a(c) � P ≡ new t (Y (P, a(c), t) | t(Y (p, a(c), t)))
≡ t(y) . (a(c) . (P | y | t(y))) | t(Y (p, a(c), t))
→ a(c) . (P | Y (P, a(c), t) | t(Y (p, a(c), t)))

if a(d), we obtain:

P{d/c} | Y (P, a(c), t) | t(Y (p, a(c), t))) ≡ P{d/c} | (a(c) � P)

Patterns can also specify kells. For example, K[x] . R matches the kell K[P].
The process variable x is bound in R, and it is replaced with P after the match:

(K[x] . R) | K[P] → R{P/x}

We will use uppercase letters for kell names and processes, and lowercase letters
for channels and variables.

When a kell is matched by a pattern, we say that the kell has been passivated.
For example, a process:

stop(K) � (K[x] . 0)

receives in its channel stop the name K of a kell; it matches the kell K’s process
to x, and reduces the kell to the null process 0. Such a process is useful to stop
the execution of a kell:

T [a(b)] | stop(T) | (stop(K) � (K[x] . 0))
→ T [a(b)] | (stop(K) � (K[x] . 0)) | (T [x] . 0)
→ (stop(K) � (K[x] . 0)) | 0

In the previous example, the kell T[a(b)] is terminated by the process stop(T).
| has higher precedence than, both, � and .. new has higher precedence

than � and ., but lower than |. Associativity of |, �, and . is left-to-right. For
example,

new e a(c) . c(d) . P | a(d)

is equivalent to:
(new e (a(c) . (c(d) . P))) | a(d)

We assume transparent membranes: communication can happen between
any two processes independently of their kell location. This is in contrast with
the regular kell calculus, where communication between processes is restricted
by the location of the process. For example, in the calculus here proposed:

a(c) | B[a(d) . P]

a(c) is matched with a(d) . P . Also, in:

K[a(c)] | U [a(d) . P]

3

a(c) in kell K matches a(d) in kell U . When transparent membranes are as-
sumed, kells can communicate via the channels without the need of constructs ↑,
↓, used in traditional kell calculus to specify messages coming from a containing
(similarly, contained) kell (Stefani, 2003; Bidinger et al., 2005).

The following functions determine the free (fn) and bound (bn) names in a
kell-m process:

bn(0) = ∅ fn(0) = ∅
bn(x) = ∅ fn(x) = {x}
bn(new a P) = {a} ∪ bn(P) fn(new a P) = fn(P) \ {a}
bn(a(w̃)) = bn(w̃) fn(a(w̃)) = {a} ∪ {fn(w̃)}
bn(w̃) =

⋃
wi∈ ew bn(wi) fn(w̃) =

⋃
wi∈ ew fn(wi)

bn(a(c̃) . P) = {c̃} ∪ bn(P) fn(a(c̃) . P) = fn(P) \ {c̃}
bn(K[x] . P) = {x} ∪ bn(P) fn(K[x] . P) = fn(P) \ {x}
bn(P | Q) = bn(P) ∩ bn(P) fn(P | Q) = fn(P) ∪ fn(Q)

The following are the structural equivalences for the kell-m calculus:

new a 0 ≡ 0 P | 0 ≡ P P ≡ P{c̃/d̃},with d̃ ∈ bn(P)

K[0] ≡ 0 new a, b P ≡ new b, a P

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

a /∈ fn(Q)
(new a P) | Q ≡ new a (P | Q)

2.1 LTS Semantics

As is traditional in process algebras, we use a labelled transition system (LTS)
to give the operational semantics of the kell-m calculus. The LTS describes the
possible evolution of a process. Actions performed during the transitions can
be: a(w̃), a(c̃), K[P], K[x], and τ :

• a(w̃), represents an output action on channel a,

• a(c̃) represents an input action (via a matching trigger) on channel a,

• K[P] represents the output of kell K’s process,

• K[x] represents the input of kell’s K process, via a matching trigger.

• τ represents the matching of input and output channel, or kell actions.

The transitions for the calculus are determined as follows:

P
α−→ P ′, P ≡ Q

Struct
Q

α−→ P ′

4

a(w̃)
a(ew)−−−→ 0 Out a(c̃) . P

a(ec)−−−→ P In

K[P]
K[P]−−−→ 0 KellOut K[x] . P

K[x]−−−→ P KellIn

P
α−→ Q, c /∈ bn(α)

Restrict
new c P

α−→ new c Q

P
α−→ Q, K /∈ bn(α)

Advance
K[P] α−→ K[Q]

P
α−→ Q, α /∈ fn(P ′)

Par
P |P ′ α−→ Q|P ′

Pd{w̃/x̃} α−→ Q, P (x̃) def= Pd
Proc

P (w̃) α−→ Q

P
a(ew)−−−→ Q, c ∈ names(w̃), c 6= a

Open

new c P
a(ew′)−−−→ Q, with w̃′ = w̃{new c /c}

P
a(ec)−−−→ P ′, Q

a(ew)−−−→ Q′
L-React

P | Q
τ−→ P ′{w̃/c̃} | Q′

P
K[x]−−−→ P ′, Q

K[R]−−−→ Q′
L-Suspend

P | Q
τ−→ P ′{R̃/x} | Q′

P
a(ed)−−−→ P ′, Q

a(ew)−−−→ Q′, c̃ ⊆ w̃, (new c) ∈ w̃ if c ∈ c̃
L-Close

P | Q
τ−→ new c̃ (P ′{w̃/c̃} | Q′)

R-* transition rules can be trivially deduced by first using the Struct rule, and
then the corresponding L-* rule.

When illustrating transitions for process expressions, we sometimes write
the name of the channel involved in a communication action right after the τ ,
e.g., P

τ,a−−→ Q.
Kells are themselves channels. In terms of classical process theory (Milner,

1999), both a(w̃) and K[P] correspond to concretions. Trigger matching expres-
sions a(c̃) and K[x] in triggers a(c̃) . P , and K[x] . P correspond to abstractions.
Because of our assumption of transparent membranes, communications between
abstractions and concretions can occur at any kell-depth.

We refer to rules *-React, *-Suspend and *-Close as the communication
rules. These are the rules where abstractions and concretions are matched. The
transitions in these rules are decorated with τ .

To illustrate the use of the transition rules, consider the process P defined
as:

P
def= stop(K) . (K[x] . 0) | T[t(x) . x | stop(F)] | F[f(x) . x | stop(T)]

Any process received on channel t or f is executed. If channel t is used, channel
f is discarded, and vice versa. As we will see in Section 5, such a process is
useful to represent conditionals. We will now show that 0 | 0 | T[Pt|0] | 0 can
be inferred from t(Pt) | P as follows (we have rearranged the process expressions
to facilitate the drawing of an inference tree; process expressions involved in the
transitions are double-underlined):

5

stop(K) . (K[x] . 0) | t(Pt) | T[t(x) . x | stop(F)] | F[f(x) . x | stop(T)]

K[x] . 0 0 x 0

x | stop(F)

T[x | stop(F)]

0 | T[Pt | stop(F)]

0

Pt | 0

T[Pt | 0]

0 | T[Pt | 0]

F[x] . 0 | 0 | T[Pt | 0]

0

0 | 0 | T[Pt | 0]

0 | 0 | T[Pt | 0] | 0

In, stop(k) Out, t(Pt) In, t(x)
KellOut

F [f(x) . x | stop(T)]

Par, t(x)

Advance, t(x)

R-React, τ, t

Out, stop(F)

Par, stop(F)

Advance, stop(F)

Par, stop(F)

L-React, τ, stop

KellIn, F[x]

Par, F[x]

Suspend, τ, F

We use the notation Kn[P] to specify a kell K and its process P when the
kell is embedded within n− 1 other kells:

K1[P] when K[P]
K2[P] when ∃K1 : K1[K[P] · · ·]
· · ·
Kn[P] when ∃K1, ..., kn−1 : K1[K2[· · ·Kn−1[K[P] · · ·] · · ·] · · ·]

We call n the depth-level of kell K, and write K∗[P] to specify a kell-m process
at any depth-level. In particular, we write K0[P] when P is not within a kell.

For notational convenience, we introduce generalized versions of the commu-
nication rules *-React, *-Suspend and *-Close as follows (only the left-hand

6

versions are shown, right-hand versions are similarly defined):

P
a(ec)−−−→ P ′, Q

a(ew)−−−→ Q′
L-React

K∗[P] | M∗[Q] τ−→ K∗[P ′{w̃/c̃}] | M∗[Q′]

P
K[x]−−−→ P ′, Q

K[R]−−−→ Q′
L-Suspend

K∗[P] | M∗[Q] τ−→ K∗[P ′{R̃/x}] | M∗[Q′]

P
a(ed)−−−→ P ′, Q

a(ew)−−−→ Q′, c̃ ⊆ w̃, (new c) ∈ w̃ if c ∈ c̃
L-Close

K∗[P] | M∗[Q] τ−→ new c̃ (K∗[P ′{w̃/c̃}] | M∗[Q′])

The generalized rules are equivalent to applications of the Par and Advance

rules, before using the communication rules.

2.2 Reduction Semantics

An alternative to using LTSs to describe the operational semantics of the kell-m
calculus, is the use of reduction rules. When using reduction rules, communica-
tion between processes is inferred, directly, from the syntax of the processes, in-
stead of from transitions where abstraction and concretion actions occur Parrow
(2001).

We now introduce the reduction rules for the kell-m calculus:

L-ReductReact
a(c̃) . P | a(w̃) � P{w̃/c̃} | 0

L-ReductSuspend
M[x] . P | M[PM] � P{PM/x} | 0

P � P ′
ReductRestrict

new c P � new c P ′

P � P ′
ReductInKell

K[P] � K[P ′]

P � P ′
ReductPar

P |Q � P ′|Q

P ′ ≡ P, P � Q, Q ≡ Q′
ReductStruct

P ′ � Q′

Reactions and kell passivations can occur within kells:

7

P | Q � P ′ | Q′
ReductOutKell

K∗[P · · ·] | M∗[Q · · ·] � K∗[P ′ · · ·] | M∗[Q′ · · ·]

where · · · represents zero or more (bound name set, kell-m process)-pairs com-
posed in parallel.

Again, in the reduction rules, we assume that there are no name conflicts
for bound names.

The following reduction rule explicitly handles name extrusion from kells:

(new c̃ P) | Q � new c̃ (P ′ | Q′)
L-ReductExtrusion

K∗[new c̃ P · · ·] | M∗[Q · · ·] � new c̃ (K∗[P ′ · · ·] | M∗[Q′ · · ·])

When illustrating reductions of process expressions, we sometimes write the
name of the channel involved in a communication action, e.g., P � aQ.

R-* reduction rules can be trivially deduced by first using the ReductStruct

rule, and then the corresponding L-* rule.
For example, a process P defined as:

P
def= K[new a, b (c(a(b)) | a(d) . Q)] | c(x) . x

can be reduced as follows:

P � c new a, b (K[0 | a(d) . Q] | a(b)) L-ReductExtrusion

� a new a, b (K[0 | Q{b/d}] | 0) ReductOutKell

When dealing with higher-order expressions, the scope extrusion occurs for any
name in the expression that is bound when the expression is output via a channel
(c(a(b)) in the example).

As observed by Parrow (2001), although reduction rules are simpler than
LTS semantics, in the sense that there are no label on the transitions, there is
loss of information when compared to LTS transitions. For example, consider
the process a(w). This process cannot be reduced. It, nevertheless, has the
potential to communicate with another process via the channel a. Such potential
for communication is manifest in the Out LTS transition, but is lost when using
reduction semantics.

3 Variables

A process for creating variables with names received on channel vname and
values received on channel value can be represented as:

var(vname, value) � vname(r, u) . new R,U (
R[r(rc) . stop(U) | rc(value) | var(vname, value)] |
U [u(newval) . stop(R) | var(vname, newval)]

)

8

A variable is then a channel, that provided a read channel r and a write
channel w, and based on which of these two channels is used, returns the vari-
able’s value, or sets a new value. In the previous process, every time a variable
is used, a new kell R is produced. After multiple reads:

new R R[new R R[new R R· · ·[new R R[var(vname, value)]· · ·]

A better way to construct variables is:

var(vname, value) � vname(r, u) . new R,U,c (
R[r(rc) . stop(U) | rc(value) | c(vname, value)] |
U [u(newval) . stop(R) | c(vname, newval)] |
c(n, val) . var(n,val)

)

The process var(v, a), makes channel v a variable with value a.
Generic, setter and getter processes can be defined as:

set(vname, newval) � new r,u (vname(r,u) | u(newval))

get(vname, rc) � new r,u (vname(r,u) | r(rc))

To retrieve, on channel rc, the value of a variable vname:

get(vname, rc) | rc(value) . · · ·

If we will be using a channel to read the value returned by another process, we
typically name the channel rc, for return channel.

The following type of process invocation is frequently used:

new rc (c(p̃s, rc) | rc(ṽs) . · · ·)

where p̃s represents zero or more parameter names written to c, and ṽs are the
names returned on channel rc. A name can be a channel, a process, or the
name of a kell. For these invocations we write:

@c(p̃s)(ṽs) . · · ·

For example,
new rc (get(name, rc) | rc(val) . P)

can be written:
@get(name)(val) . P

Note that val is bound in P . We use the same syntax when � appears instead
of .. Hence,

@get(name)(val) � P

is the same as
new rc (get(name, rc) | rc(val) � P)

9

We write @c(p̃s) for c(p̃s), when no channel in p̃s is used to return values.
When the values returned on a channel are immediately used as inputs for

another channel, for example:

@get(v2)(val) . set(v1, val)

we write instead:
@set(v1,@get(v2))

Here, we are setting the value of variable v1 to the value stored in v2. We
further add syntactic sugar by writing this process as: v1 := ∗v2. In general,
@set(v, val) is written v := val, and ∗v is syntactic sugar for @get(v)(∗v). The
∗v is just a name. Hence, if the value of a variable v is a channel, ∗v(p̃) is valid,
as well as ∗v(p̃) . P and ∗v(p̃) � P .

4 Menus

Menus are processes that receive as parameters multiple channels and, based on
the channels used, execute an operation (Milner, 1999). Example:

casetf(t, f) � new T, F (T[t() . PT | stop(F)]
|F[f() . PF | stop(T)])

where new T, F (P) stands for new T (new F P). In the example, casetf re-
ceives two channels, t and f . If there is a write on channel t, then process PT

is executed. If the write is on channel f , process PF is executed instead. The
result is unpredicted if there are simultaneous writes on both t and f . A process
wanting to execute PT would be:

new t,f (casetf(t, f) | t() . Q)

Similarly, to execute PF :

new t,f (casetf(t, f) | f() . Q)

For a channel c, when no names are passed in the channel, we sometimes
write c for c(), and c(f)or c().

This menu construct, where only one channel is used, can be seen as a
deterministic form of the the sum P + Q operator of the π-calculus, when only
one of the processes in the sum is intended to execute:

casetf(t, f).(t().PT + f().PF)

10

We generalize this type of menu construction:

menu(name, c1, P1, c2, P2, ..., cn, Pn) � (
name(c1, ..., cn) � new C1, ..., Cn (

C1[c1(p̃s1) . P1 | stop(C2) | stop(C3) | · · · | stop(Cn)]
| C2[c2(p̃s2) . P2 | stop(C1) | stop(C3) | · · · | stop(Cn)]
| · · ·
| Cn[cn(p̃sn) . Pn | stop(C1) | stop(C2) | · · · | stop(Cn−1)]

)
)

Hence, for casetf , we can write menu(casetf, t, PT , f, PF).
When we want to execute the process activated by channel ci in a menu m,

we write:

@m.ci(p̃si) | Q ≡ new c1, ..., cn (m(c1, ..., cn) | ci(p̃si) | Q)

Note that if the activated process returns values via a return channel at the end
of p̃si we can write:

@m.ci(p̃s′i)(ṽals)

where p̃si ≡ (p̃s′i, rc).
We write m.ci to identify the channel used to activate a menu process Pi.

Hence, a process:
apply(c, p̃s′i, rc) � rc(@c(p̃s′i))

can be used to invoke functionality via channels:

@apply(m.ci, p̃s′i)(ṽals) ≡ @m.ci(p̃s′i)(ṽals)

5 Conditional Statements

A process of the form:

@cond(p̃s)(t, f) . casetf(t, PT , f, PF)

is written:
if @cond(p̃s) then PT else PF fi

If the PF process is 0, we write:

if @cond(p̃s) then PT fi

11

An if/elsif statement:

if @cond1(p̃s1) then P1

elsif @cond2(p̃s2) then P2

· · ·
elsif @condn(p̃sn) then Pn

else Pd

fi

is equivalent to:
if @cond1(p̃s1) then P1

else if @cond2(p̃s2) then P2

· · ·
else if @condn(p̃sn) then Pn

else Pd

fi · · · fi

A parallel case with no default condition is written:

casep when @cond1(p̃s1) then P1

when @cond2(p̃s2) then P2

· · ·
when @condn(p̃sn) then Pn

esacp

and is equivalent to:

if @cond1(p̃s1) then P1 else 0 fi |
if @cond2(p̃s2) then P2 else 0 fi |
· · ·
if @condn(p̃sn) then Pn else 0 fi

Negation, is implemented by a process at channel not that, given channels
t′, f ′, t, and f , writes on channel t if it can read from f ′, and writes to f if it
can read from t′:

not(t’,f ’, rc) � new t, f (rc(t,f) | casetf(t′, f(), f ′, t()))

We write:
not @cond(p̃s)

for:
@not(@cond(p̃s))(t, f)

12

6 Modularization

We encapsulate variables and menus into modules, a construct similar to OO
classes but without inheritance and other OO features.

A module is defined as:

module name
var v1, ..., vm

c1(p̃s1) . P1

c2(p̃s2) . P2

· · ·
cn(p̃sn) . Pn

init(p̃s, self) . Pinit

which corresponds to:

name(p̃s, rc) � new self,SELF, v1, ..., vm (
rc(self) | var(v1,⊥) | · · · | var(vm,⊥) | init(p̃s, self) |
init(p̃s, self) . Pinit | SELF[menu(self, c1, P1, c2, P2, ..., cn, Pn)]

)

The module encapsulates variables v1, ..., vm, and implements operations at
channels c1, ..., cn. We call these channels the methods of the module. An
initialization operation init is executed when an instance of the module is cre-
ated. init receives as parameters any values passed to the module, plus the
newly created instance self, and executes the process Pinit. This process Pinit

typically instantiates the module variables v1, ..., vm, and performs any other
required initialization tasks.

Every time an instance of the module is created, a copy of the methods and
variables are encapsulated within a kell SELF. To create an instance inst of a
module name, and to execute the method ci in the newly created instance, a
process executes:

@name(p̃s)(inst) . @inst.ci(p̃si)(vals)

For example, assume a module temperature, used to store the temperature

13

for a given latitude, longitude location:

module temperature
var temp, lat, lon
gettemp(rc) . rc(*temp)
settemp(ntemp) . temp := ntemp
getlat(rc) . rc(*lat)
setlat(nlat) . lat := nlat
getlon(rc) . rc(*lon)
setlon(nlon) . temp := nlon
destroy() . stop(SELF)
init(itemp, ilat, ilon, self) . (temp := itemp | lat := ilat | lon := ilon)

The destroy method discards an instance of the temperature module. We create
a temperature t, by invoking:

@temperature(22, 43, 80)(t)

For simplicity, we assume native support for numbers in our calculus. For ways
to represent numbers in process calculus see Milner (1999).

In general, we assume the existence of the getter and setter methods for a
module and, in the temperature example, we write *t.temp for @t.gettemp()(val),
and t.temp := newtemp for @t.settemp(newtemp).

7 Lists and Iterators

Inspired by the implementation of lists in Milner (1999) (also in Magee et al.
(1995)), a list receives two channels x and y. If the list is empty, the list writes
to x. If the list is not empty, it writes to y the list’s header s and tail ss:

module lists
empty(rc) . new l (rc(l) | l(x,y) � x())
cons(s,ss,rc) . new l (rc(l) | l(x,y) � y(s,ss))
init(self) . 0

Hence, the lists module knows how to construct lists. In the rest of this docu-
ment, we will assume the existence of a list instance of the lists module, defined
as:

@lists()(list)

Using, this list instance, an empty list l is obtained by executing:

@list.empty()(l)

A list l with one element a is constructed by:

@list.cons(a,@list.empty())(l)

14

We now include in the lists menu, methods car and cdr with the usual meaning:

car(l, rc) . new x,y (l(x,y) | y(s,ss) . rc(s))
cdr(l, rc) . new x,y (l(x,y) | y(s,ss) . rc(ss))

Also, we introduce ::, and [; · · · ;] as used in Ocaml (INRIA, 2008):

[] ≡ @list.empty()
a :: [] ≡ [a] ≡ @list.cons(a,@list.empty())

a :: b :: [] ≡ [a; b] ≡ @list.cons(a,@list.cons(b, @list.empty()))
[a; b; c] ≡ a :: b :: c :: []

:: is therefore a shorthand for list.cons. As well, we introduce:

match l with
s :: ss . P1

or [] . P2

to represent:

if @list.isempty(l) then P2 else new x, y (l(x,y) | y(s, ss) . P1) fi

where isempty is in the lists menu, defined as:

isempty(l,rc) . new t, f, x, y, T, F (rc(t, f) | l(x, y) | T[x() . t() | stop(F)]
| F[y(s,ss) . f() | stop(T)])

We also add ht to the lists menu. ht returns the head and tail of a list:

ht(l, rc) . new x,y (l(x,y) | y(s,ss) . rc(s,ss))

This can also be written as:

ht(l, rc) . new x (l(x,rc))

If l is empty, x() will be written, but no process will be waiting for input on x.
Hence, ht should only be invoked on non empty lists.

Other list methods we add to the lists menu are:

foldr(p,v,l,rc) � match l with
[] . rc(v)

or s :: ss . rc(@p(s,@self.foldr(p, v, ss)))
copy(l, rc) . rc(@self.foldr(cpy, [], l))

where,
cpy(s, ss, rc) � rc(@list.cons(s, ss))

15

Which is equivalent to cpy(s, ss, rc) � rc(s :: ss). Hence, we can write:

copy(l, rc) . rc(@list.foldr(list.cons, [], l))

Recall that menu.ci specifies the channel for operation ci in the menu menu,
and can be passed as parameter for another process. For example:

apply(list.cons, s, ss, rc) . rc(@list.cons(h,t))

In general, if a(op1, p1, ..., opn, pn) is a menu, then a.opi is syntactic sugar for
new op1, ..., opn (a(op1, ..., opn) | opi · · ·).

We now continue with more list methods in the lists menu. The del method
deletes all occurrences of e in list l. We assume the existence of the = operator,
which is able to decide if two names are the same.

append(l1, l2, rc) . rc(@self.foldr(list.cons, l2, l1))
reverse(l,rc) � match l with

[] . rc([])
or s :: ss . rc(@self.append(@reverse(ss), [s]))

del(l,e,rc) . rc(@self.foldr(d, [], l))

where,
d(s, l, rc) . if s = e then rc(l) else rc(s :: l) fi

Sorted lists, assuming a channel c, that given two elements, decides if the
first element should be before the second one in the sorted list, can be obtained
with:

conss(h, hs, c, rc) � match hs with
[] . rc(@list.cons(h, []))

or s :: ss . if @c(h,s) then rc(h :: hs)
else rc(@self.cons(s,@self.conss(h, ss))) fi

A parallel foreach iterator is implemented by:

foreach(l, p) � match l with
[] . 0

or s :: ss . @p(s) | @self.foreach(ss, p)

A sequential version of the iterator can be implemented if process p uses a done
channel:

foreachs(l, p, done) � match l with
[] . done()

or s :: ss . @p(s)(pdone) . @self.foreachs(ss, p, done)

We write:
foreach t in ts @p(s)

16

for @list.foreach(ts, p), and

foreachs t in ts @p(s)(pdone) done()

for @list.foreachs(ts, p, done). We also write:

foreach t in ts @t.foo(bar)

for @list.foreach(ts, p), where p(t) . @t.foo(bar).

8 Conclusion

Computations are modelled in kell-m as parallel processes communicating via
channels. This simple computational model allows for a straightforward formal-
ization and it is the basis for a model checker we have developed for modelling
and verifying DEBSs. Due to the low level nature of kell-m, modelling systems
using kell-m requires a considerable effort and can be error prone. In this report
we have illustrated how variables, conditionals, iterators, modules, and lists, can
be represented using kell-m. These programming constructs can then be used
to facilitate system modelling. We are currently working on a translator that,
given a system representation using the constructs here presented, produces an
equivalent kell-m process. Along with the model checker already developed,
this translator will be part of a tool-set for the representation and verification
of DEBSs.

References

Bidinger, P., Schmitt, A., & Stefani, J.-B. (2005). An abstract machine for the
kell calculus. In M. Steffen & G. Zavattaro (Eds.), 7th ifip int. conf. formal
methods for open object-based distributed systems (FMOODS) (Vol. 3535,
pp. 31–46). Springer Verlag.

INRIA. (2008). Objective caml. Available from http://caml.inria.fr/ocaml/
index.en.html

Magee, J., Dulay, N., Eisenbach, S., & Kramer, J. (1995). Specifying distributed
software architectures. In Proceedings of the 5th european software engi-
neering conference (pp. 137–153). London, UK: Springer-Verlag.

Milner, R. (1980). A calculus of communicating systems (Vol. 92). Springer-
Verlag.

Milner, R. (1999). Communicating and mobile systems: the π-calculus. Com-
puter Laboratory, University of Cambridge: Cambridge University Press.

Parrow, J. (2001). An introduction to the pi-calculus. In J. Bergstra, A. Ponse,
& S. Smolka (Eds.), Handbook of pocess algebra (pp. 479–543). Elsevier.

Stefani, J.-B. (2003). A calculus of kells. In Proceedings 2nd international
workshop on foundations of global computing (Vol. 85). Elsevier.

17

