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ABSTRACT
A method of simulating distributed search engines is presented.  
This method measures throughput (queries per second) and 
resource usage.  Disk and network costs  are modelled in a simple 
way, while CPU costs are ignored.

Our simulation results show that term distribution can  perform 
better than document  distribution when using a small number of 
machines.  This goes against the accepted view that document 
distribution is faster than term distribution.

We introduced a hybrid distribution scheme that splits a set of 
machines and disks into groups and then performs term 
distribution within a group and document distribution between 
groups.  Our simulation results show that this  hybrid distribution 
scheme has higher throughput  rates than document distribution, 
but can still scale to large numbers of machines.

A special  case of our hybrid distribution scheme groups together 
multiple disks on a machine to produce better throughput without 
increasing network traffic.  Such a scheme could easily be 
deployed in a web search engine.

General Terms
Algori thms, Measurement , Performance, Design, 
Experimentation.

Keywords
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1. INTRODUCTION
Digital information continues to be created at an ever increasing 
rate.  In 2007, the amount of information created, captured, or 
replicated exceeded available storage for the first  time [1].  As a 
result, search engines are becoming increasingly important  for 
locating specific information.  In  addition, search engines are 
increasing in size while, at the same time, the number of searches 
are increasing [2].

Distributed search engine performance is increasingly important 
for  very large engines  (web search) and for large engines 
(enterprise search).  Such systems provision their hardware 
relative to max throughput estimations, within some acceptable 
query latency.

We examine the distribution of data structures within a distributed 
search engine.  Specifically we simulate term and document 
distribution [3], as well as, a hybrid distribution scheme.

2. SEARCH ENGINE BACKGROUND
A search engine essentially takes a query, identifies the set of 
objects that match the query, ranks the objects and presents the 
top-k objects [15].  For most search engines, the objects are 
documents and the value of k is small.

Search engines have special purpose data structures and 
algorithms designed to execute queries with low latency and high 
throughput.  In  distributed search engines, parallelization is highly 
exploited to improve performance.

Queries are usually just words or phrases combined together with  
the default AND operators.  As a result, search engines often treat 
text input  as a sequence of words (tokens) in a process called 
tokenization.  Queries can also be augmented with other operators 
and modifiers depending on what  is  supported by the search 
engine.

Search engines try to present the ‘best’  results.  This is done with a 
ranking algorithm which can use many pieces of information from 
the documents and the query.

2.1 Indexing
The process of taking objects and constructing the data structures 
(indexes) required by the search engine is  called indexing.  This 
process has to ‘read’  objects from some source.  This source could 
be a cache (Google has a cache of the web), a set of files (desktop 
search), or some other source (extracted from a database or data 
repository).

These objects are converted to text, often removing layout and 
display information at  the same time.  The text is tokenized into a 
sequence of words (tokens) and postings lists are produced (see 
Section 2.2).  The tokenizer usually normalizes tokens by 
converting them to lower case (case-folding) and removing 
character modifications like accents.

Objects are usually  grouped into  batches to produce a set of 
postings  lists called a subindex.  These subindexes can be 
combined together to produce larger subindexes through a process 
called merging.

In systems that allow updates to  objects without re-indexing the 
entire data set, these subindexes would also contain a list of 
deleted objects known as a delete mask.

The most common words, such as ‘the’, appear in almost every 
object and, therefore, have little meaning for a query.  These are 
called stopwords and are often removed from the index.
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2.2 Postings Lists
Each subindex contains a postings list for every token it  contains.  
A postings list  contains the location of all  occurrences of its token 
within  the set of objects  found in the subindex.  These occurrences 
are usually  stored in order by object which allows them to be 
combined sequentially when a query is executed.

Some search engines produce two levels of postings lists, one at 
the object level and one at the occurrence location (offset) level.

Postings lists  are stored in a compressed format, usually using 
delta encoding [9] and byte or nibble aligned variable length 
integer compression [10].  Object level postings lists may also use 
run-length encoding [11] which works well  for high occurrence 
tokens.

2.3 Query Definition
A query is essentially a sequence of tokens or phrases with 
modifiers that are combined together using boolean operators.  In 
web search engines, very few modifiers  are used, phrases are rare 
and most queries  use the default AND operator.  So, for 
performance analysis, queries are often assumed to be tokens 
combined with AND operators.

2.4 Ranking
Ranking algorithms use document and query information to order 
the objects that match a given query.  Some search engines allow 
the ranking algorithm to be specified or tuned at  query time, some 
on  a per install basis, and others use one static algorithm.  Web 
search engines combine multiple ranking sub-algorithms together 
to  form an overall  ranking algorithm, and they modify  it over time 
to  produce the best results.  This is essentially their ‘secret sauce’ 
and the specifics are closely guarded.

For web search engines, improving the ranking for a page can be 
very valuable to the owner of that page, thus many companies 
offer to do just  that for a fee.  The web search engine companies 
want their results to be unbiased, so they continually change their 
ranking algorithm to combat this ‘cheating’.

2.5 Result Pages
The search results page displays the top-k ranked objects 
computed by  executing the specified  query.  The results page 
usually includes metadata for each object and a summary of each 
object tuned to the given query.  The retrieval of metadata and 
creation of the summary do not use the search engine postings 
lists.

2.6 Term vs. Document Distribution
In order to  scale a search engine for a large number of objects and/
or a large number of searches, a distributed  system is  used.  There 
are two main methods of distributing postings lists across 
machines, term distribution and document distribution (a.k.a. 
global distribution and local distribution respectively) [3].

Term distribution puts  the entire postings list  for a term on a 
single machine or disk drive.  To execute a query, postings lists 
must often be transferred across the network.

Document distribution separates the documents into partitions and 
puts  all  the postings lists for a partition on one machine or disk.  
Each partition is essentially a self contained search index.  This 
method has low network usage but large amounts of random disk 
reads.

It is  generally  accepted  that  document  distribution is faster than 
term distribution.

3. SEARCH ENGINE MODELLING
Distributed search engines are very complex systems, with few 
general standards for interfaces or implementations.  They involve  
low level  interactions and built-in tradeoffs between hard disk, 
memory, CPU and network usage.

Such  a system is very hard to model if one of the desired metrics 
is  query latency.  This is one of the reasons that simulation [6, 12] 
and modelling [7, 13] of search engines is  not common in the 
literature.

Experiments on search engines are very common in  the literature.  
They often use an existing collection of objects and queries as 
done in the TREC conference [4].  Sometimes the queries are 
generated from a model.

In this paper we model a search engine to  measure query 
throughput by assuming that each unit of ‘work’ (CPU usage, disk 
access, network transfer) is independent and can  be executed out 
of order.  Each resource (CPU, disk, network) is modelled as a 
queue of work  units which  are processed  in order.  When a query 
is  started, all the work units needed to ‘execute’ that query are put 
onto  the appropriate resource queue for processing.  A query is 
finished when all its work units have been executed.

By assuming that work units are independent and that  we are 
measuring query throughput, we are essentially identifying the 
throughput of the bottleneck resource.  Usage rates for resources 
are calculated to identify which resource is the bottleneck.

3.1 Postings List Modelling
Text data usually follows a Zipf power law distribution [5].  We 
use a similar distribution which was presented as Z(j) in equation 
1 from [6].  In our case, we use a different value for the number of 
unique tokens (T).  The distribution is:

Z(j) = j-0.0752528*ln(j)-0.150669*e16.3027 / S

Where S is the summation of the numerator over all terms.  The 
terms are sorted by decreasing Z(j) value (highest first). The 
function Z(j) represents the probability that any token in the input 
data is the jth token.

This is encoded in an array Y[j] and modified as specified below:

Stopwords are modelled by setting Y[j] = 0 for the first  W tokens, 
which are the highest occurring tokens.

Compression is assumed to be delta encoded, byte aligned 
variable length integers.  The average number of bits required  to 
represent each posting in the postings list can be approximated by 
determining how many bits (B) it would take to represent the 
token if all occurrences were evenly spaced within the data set.  
The minimum number of bits  for byte encoding is  7  (the 8th bit is 
used to specify if more bytes are needed).  We calculate B by 
multiplying  Z(j) by 2 until it  is greater than 1, then the number of 
multiplications by 2 is the number of bits:

int bits(double x = Z(j)) {
    int result = 7;
    x *= 128;
    for (; x < 1; x*=2, result++);
    return result;



}

The values in Y[j] are multiplied by the approximation of their 
average byte count:

for (j in tokens)
    Y[j] *= bits(Z(j)) / 7;

Then the values in Y[j] are divided by the summation of all values 
in Y[j].

The values in Y[j] now represent the portion of the index used by 
the postings list for each token:

Postings list size for j = Y[j] * (total size of index)

This is essentially the size of the postings list if it was not split 
into  object and offset postings.  It  is unclear how to model the size 
of the object postings list separately, so we approximate it as Y[j]/
10.  This does not take into account  the difference in  compression 
or the distribution of tokens in the text.

3.2 Query Modelling
A query is modelled as a sequence of tokens combined with AND 
operators.  This model is made up of two distributions, one for the 
number of tokens and one for token  values.  The token values are 
used to map between a token in a query and the size of its postings 
list as specified in Y[j].

The distribution for the number of tokens in a query is dependent 
on  the usage of the system being modelled [7, 8] and it is skewed 
depending on the types of caching being used [8].  We use a 
distribution derived from the ‘result caching’  portion of Figure 6.2 
in [8] as specified in Chart 1.
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Chart 1. Distribution of tokens per query

The distribution of token values in queries does not follow the 
same distribution as tokens  in text data, as specified in the 
previous section.  There is no standard distribution, so we use the 
distribution specified as Q(k) from [6] with u=1% and a different 
value for the number of unique tokens (T):

Q(k) = 1/(uT) for first uT tokens, 0 otherwise

This distribution function is converted into a cumulative 
distribution function which  can be used to map a random number 
between 0 and 1 into a token index used to access Y[j].

3.3 Query Generator and Entry Control
The query generator creates queries at  a specified rate using  an 
exponential distribution.  If the query generator produces queries 
faster than they can be executed, then the resource queues could 
grow without bound.  To prevent this, only a certain number of 
queries (E) are allowed to be running concurrently.  This  is 
enforced by dropping queries as  needed.  A query is running when 
any of its work units are being executed or are waiting on a 
resource queue.

This setup allows resource usage rates to be examined for specific 
query arrival rates.  It can also determine the maximum 
throughput of the system by setting the query arrival  rate higher 
than the system can execute.

3.4 CPU Resources
Compression and decompression of postings lists  use only a few 
operations per byte.  A modern CPU can execute 3 billion 
operations per second and a modern hard disk drives  (HDD) can 
stream 60 MB per second giving 50 operations per byte.  This 
means that compression and decompression are negligible and can 
be ignored.

Since ranking algorithms are implemented in many different ways 
most of which are not publicly  available, it  is unclear how to 
model the CPU cost of ranking.  Rather than guessing at the CPU 
cost of ranking, we assume that CPU resources are not the 
bottleneck and ignore the CPU work entirely.

3.5 Disk Resources
To execute a query, the search engine reads the postings lists for 
the tokens in the query sequentially within each postings list, but 
these reads are interleaved between postings lists.  Using large 
buffers reduces the number of random reads, and prefetching 
reduces the query latency.  If enough memory is  available, each 
postings  list involved in the query can be read into memory 
sequentially and combined afterwards, resulting in better 
throughput but worse query latency.

Since we are examining throughput, we optimistically model disk 
accesses as a single random read, followed by a sequentially read  
of an entire postings list.  Modern HDDs can  execute 
approximately 100 random reads per second and sequentially read 
60 MB per second.

Since we are dealing  with  very  large indexes, we assume that  all 
disks are entirely full  and contain only index data.  Each HDD is 
300 GBs, and each machine contains only one disk.

3.6 Network Resources
Networks of machines can be configured in  different ways using 
many different types of hardware.  For simplicity we assume that 
all the machines are connected with a single 1Gbps shared 
connection able to operate at 100% capacity and that each 
transmission has no overhead or setup cost.  This configuration 
means the network can transfer 125 MB per second which is 
approximately twice as fast  as a HDD, but without the random 
read costs.

3.7 Term vs. Document Distribution
For document distribution we assume that every disk contains an 
equal portion of every  postings list.  The network communications 
costs for combining the results  from multiple machines together is 
small and therefore ignored in this simulation.



For term distribution we assume that each postings list occurs on 
only  one disk.  This is simulated  by randomly picking a disk 
containing the postings list for each token in  the query.  For 
multiple tokens  in a query, the postings lists are transferred across 
the network if they occur on a machine other than the machine 
containing the largest  postings list used in the query.  As before, 
any other network communications are ignored in this simulation.

4. SIMULATION RESULTS
The simulation is event-driven and implemented in  Java using 
JavaSim [14] from the Department of Computer Science, 
University of Newcastle upon Tyne, UK.

The simulation was set up as  follows:  Each run simulates the 
search engine for 1000 seconds.  The number of stopwords (W) is 
100.  The number of unique tokens (T) is 1,000,000.  The 
maximum number of concurrent queries (E) is 100.  All 
simulations were repeated 10 times.  For the experiments 
presented, each simulated machine contains only one disk.

In the results presented below, the following  abbreviations are 
used:

• M = Number of machines

• QPS = Queries per second (averaged over runs)

• STDEV = Standard deviation of QPS

• RR = Random disk reads relative to maximum

• SR = Streaming disk reads relative to maximum

• D = Overall disk usage (combines RR and SR)

• N = Network usage

Note: The performance numbers for term distribution and 
document distribution should be the same when using one 
machine.  This can be used as a verification of our simulation 
results.

Table 1. Full postings lists using term distribution

M QPS STDEV D RR SR N
1 0.693 0.027 99% 2% 97% 0%
2 0.687 0.040 100%1% 98% 17%
3 0.687 0.053 99% 0% 98% 34%
4 0.645 0.037 98% 0% 97% 51%
5 0.667 0.024 98% 0% 98% 68%
6 0.660 0.036 97% 0% 97% 84%
7 0.643 0.041 96% 0% 96% 96%
8 0.621 0.025 95% 0% 94% 99%
9 0.556 0.024 90% 0% 89% 99%
10 0.505 0.038 83% 0% 83% 99%

Table 2. Full postings lists using document distribution

M QPS STDEV D RR SR N
1 0.681 0.036 99% 2% 97% 0%
2 0.694 0.030 99% 2% 97% 0%
3 0.692 0.029 99% 2% 97% 0%
4 0.700 0.019 99% 2% 97% 0%
5 0.685 0.022 99% 2% 97% 0%
6 0.688 0.022 99% 2% 97% 0%
7 0.696 0.031 99% 2% 97% 0%
8 0.697 0.022 99% 2% 97% 0%
9 0.701 0.029 99% 2% 97% 0%
10 0.675 0.040 99% 2% 97% 0%

When using the full postings lists to compute queries, we expect 
the postings lists to be large.  This results in the disk streaming 
read (SR) usage rate being a bottleneck as  shown in Table 1  and 
Table 2.

The term distribution scheme essentially  reduces the random reads 
(RR) by increasing the network usage (N).  Since the RR usage is 
very small when using full postings lists, the term distribution 
does not improve the throughput (QPS) rate.

As shown in Table 1, when using 8 or more machines, the 
network becomes the bottleneck for the term distribution scheme.

Table 3. Object postings lists using term distribution

M QPS STDEV D RR SR N
1 5.709 0.068 99% 19% 80% 0%
2 6.203 0.099 99% 10% 88% 14%
3 6.393 0.096 97% 7% 90% 28%
4 6.439 0.127 97% 5% 91% 44%
5 6.502 0.147 96% 4% 92% 58%
6 6.345 0.099 94% 3% 90% 72%
7 6.344 0.110 94% 3% 91% 87%
8 6.266 0.094 91% 2% 89% 99%
9 5.622 0.116 82% 2% 80% 99%
10 4.972 0.112 73% 1% 71% 99%



Table 4. Object postings lists using document distribution

M QPS STDEV D RR SR N
1 5.702 0.074 99% 19% 80% 0%
2 5.667 0.076 99% 19% 80% 0%
3 5.733 0.083 99% 19% 80% 0%
4 5.704 0.041 99% 19% 80% 0%
5 5.671 0.069 99% 19% 80% 0%
6 5.647 0.040 99% 19% 80% 0%
7 5.721 0.067 99% 19% 80% 0%
8 5.694 0.047 99% 19% 80% 0%
9 5.642 0.040 99% 19% 80% 0%
10 5.675 0.042 99% 19% 80% 0%

When using object postings lists to compute queries, we expect 
the postings lists to be much smaller.  This results in the QPS rate 
being higher, the RR usage being larger and the SR usage being 
smaller.

The performance rates stay constant when machines are added in 
the document distribution case, as shown in Table 4.

When the number of machines is increased in the term distribution 
case, performance rates change as shown in Table 3.  The RR 
usage rates decrease and the network usage rates increase until  it 
becomes a bottleneck at 8 machines.  The throughput (QPS) rate 
increases initially, then decreases  substantially when the network 
becomes the bottleneck.

These numbers show that term distribution can be faster than 
document distribution when using  a small number of machines.  
This goes against the standard accepted assumption that document 
distribution is faster.

Unfortunately, term distribution does not scale to large numbers of 
machines.  We introduce a hybrid distribution scheme to 
overcome this.  Our hybrid scheme splits the set of machines into 
groups each containing a small number of machines.  Document 
distribution is  used between the groups, but  term distribution is 
used within each group.

Table 5. Object postings lists using hybrid distribution with 
group size of 2

M QPS STDEV D RR SR N
2 6.206 0.093 98% 10% 88% 13%
4 6.166 0.082 99% 10% 88% 28%
6 6.124 0.065 98% 10% 87% 42%
8 6.172 0.072 98% 10% 87% 56%
10 6.210 0.096 98% 10% 87% 70%

Table 6. Object postings lists using hybrid distribution with 
group size of 3

M QPS STDEV D RR SR N
3 6.353 0.082 97% 7% 90% 28%
6 6.390 0.085 97% 7% 90% 57%
9 6.294 0.109 96% 7% 89% 85%

Table 7. Object postings lists using hybrid distribution with 
group size of 4

M QPS STDEV D RR SR N
4 6.392 0.097 96% 5% 91% 43%
8 6.363 0.094 96% 5% 90% 86%

The results  found in Table 5 to 7 show that the hybrid distribution 
scheme has  faster throughput (QPS) rates  than the document 
distribution scheme and lower network  usage rates than the term 
distribution scheme.  The network communication between 
groups in the hybrid scheme is negligible.  If a hierarchical 
network structure is  used, the hybrid scheme could scale to large 
numbers of machines.

This simulation assumes that each machine contains only one disk 
drive.  If multiple disks are used on each machine, the hybrid 
distribution scheme can be used to group all the disks on a 
machine.  Such a grouping would produce the throughput increase 
but it  would not incur additional  network traffic since the disks in 
the group are on the same machine.  Such a setup would be 
somewhat more fragile than document  distribution since a failure 
on  one disk would prevent the other disks on that machine from 
continuing to service queries.  For highly redundant systems, such 
as those used for web search engines, this  fragility would not be 
an issue.  Such a machine could also be reused as a group with a 
smaller number of disks, after reconstituting the index.

For the object postings list example, the setup with the best 
throughput appears to  be the hybrid distribution using groups  of 4 
machines.  This is illustrated as the purple line in Chart 2.  When 
scaling that scheme, no more than two groups (8 machines in 
total) should be placed on the same network switch/router/hub, to 
prevent the network from becoming a bottleneck.
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Chart 2. QPS throughput rates for term, document and 
hybrid distribution schemes

5. CONCLUSION
Our results from simulating distributed search engines show that 
term distribution can have higher throughput than  document 
distribution when using  a small  number of machines.  This goes 
against the accepted view that  document  distribution is faster than 
term distribution.

We introduced a hybrid distribution scheme that splits a set of 
machines and disks into groups and then performs term 
distribution within a group and document distribution between 
groups.  Our simulations  show that this hybrid distribution has 
higher throughput  rates than document distribution, but  can still 
scale to a large number of machines.

A special  case of our hybrid distribution scheme groups together 
multiple disks on a machine to produce better throughput without 
increasing network traffic.  Such a scheme should be examined for 
deployment in large search engines, especially for web search 
engines.

6. FUTURE WORK
The models used for disk  access and network usage are very 
simplistic therefore more complex models should be examined.  
The CPU work is ignored in this  simulation, thus the CPU usage 

of existing search engine should be examined and hopefully 
modelled.

The distribution of tokens in  queries used in  this model is  rather 
arbitrary.  Other distributions should be examined to see if similar 
results are produced.  Also, query traces should be examined in 
the hope of new models being proposed.

Other distribution for the number of tokens in a query should be 
examined as this greatly affects network usage rates for the term 
distribution and hybrid distribution schemes.

The distribution used for object postings list sizes is not accurate 
therefore existing  search  engine installs should be examined to 
produce better distributions.
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