
Simulation of Distributed Search Engines: Comparing
Term, Document and Hybrid Distribution1

Andrew Kane
arkane@uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada.

Technical Report CS-2009-10
February 18, 2009

1 This paper was originally created as a course project for ‘CS 856 Advanced Topics in Distributed Computing - Performance
Modeling and Analysis’ taught by Professor Johnny Wong in Winter 2008.

mailto:arkane@uwaterloo.ca
mailto:arkane@uwaterloo.ca

Simulation of Distributed Search Engines: Comparing
Term, Document and Hybrid Distribution

Andrew Kane
arkane@uwaterloo.ca

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario, Canada.

ABSTRACT
A method of simulating distributed search engines is presented.
This method measures throughput (queries per second) and
resource usage. Disk and network costs are modelled in a simple
way, while CPU costs are ignored.

Our simulation results show that term distribution can perform
better than document distribution when using a small number of
machines. This goes against the accepted view that document
distribution is faster than term distribution.

We introduced a hybrid distribution scheme that splits a set of
machines and disks into groups and then performs term
distribution within a group and document distribution between
groups. Our simulation results show that this hybrid distribution
scheme has higher throughput rates than document distribution,
but can still scale to large numbers of machines.

A special case of our hybrid distribution scheme groups together
multiple disks on a machine to produce better throughput without
increasing network traffic. Such a scheme could easily be
deployed in a web search engine.

General Terms
Algori thms, Measurement , Performance, Design,
Experimentation.

Keywords
Search Engine, Information Retrieval, Term Distribution,
Document Distribution, Simulation, Modelling.

1. INTRODUCTION
Digital information continues to be created at an ever increasing
rate. In 2007, the amount of information created, captured, or
replicated exceeded available storage for the first time [1]. As a
result, search engines are becoming increasingly important for
locating specific information. In addition, search engines are
increasing in size while, at the same time, the number of searches
are increasing [2].

Distributed search engine performance is increasingly important
for very large engines (web search) and for large engines
(enterprise search). Such systems provision their hardware
relative to max throughput estimations, within some acceptable
query latency.

We examine the distribution of data structures within a distributed
search engine. Specifically we simulate term and document
distribution [3], as well as, a hybrid distribution scheme.

2. SEARCH ENGINE BACKGROUND
A search engine essentially takes a query, identifies the set of
objects that match the query, ranks the objects and presents the
top-k objects [15]. For most search engines, the objects are
documents and the value of k is small.

Search engines have special purpose data structures and
algorithms designed to execute queries with low latency and high
throughput. In distributed search engines, parallelization is highly
exploited to improve performance.

Queries are usually just words or phrases combined together with
the default AND operators. As a result, search engines often treat
text input as a sequence of words (tokens) in a process called
tokenization. Queries can also be augmented with other operators
and modifiers depending on what is supported by the search
engine.

Search engines try to present the ‘best’ results. This is done with a
ranking algorithm which can use many pieces of information from
the documents and the query.

2.1 Indexing
The process of taking objects and constructing the data structures
(indexes) required by the search engine is called indexing. This
process has to ‘read’ objects from some source. This source could
be a cache (Google has a cache of the web), a set of files (desktop
search), or some other source (extracted from a database or data
repository).

These objects are converted to text, often removing layout and
display information at the same time. The text is tokenized into a
sequence of words (tokens) and postings lists are produced (see
Section 2.2). The tokenizer usually normalizes tokens by
converting them to lower case (case-folding) and removing
character modifications like accents.

Objects are usually grouped into batches to produce a set of
postings lists called a subindex. These subindexes can be
combined together to produce larger subindexes through a process
called merging.

In systems that allow updates to objects without re-indexing the
entire data set, these subindexes would also contain a list of
deleted objects known as a delete mask.

The most common words, such as ‘the’, appear in almost every
object and, therefore, have little meaning for a query. These are
called stopwords and are often removed from the index.

mailto:arkane@uwaterloo.ca
mailto:arkane@uwaterloo.ca

2.2 Postings Lists
Each subindex contains a postings list for every token it contains.
A postings list contains the location of all occurrences of its token
within the set of objects found in the subindex. These occurrences
are usually stored in order by object which allows them to be
combined sequentially when a query is executed.

Some search engines produce two levels of postings lists, one at
the object level and one at the occurrence location (offset) level.

Postings lists are stored in a compressed format, usually using
delta encoding [9] and byte or nibble aligned variable length
integer compression [10]. Object level postings lists may also use
run-length encoding [11] which works well for high occurrence
tokens.

2.3 Query Definition
A query is essentially a sequence of tokens or phrases with
modifiers that are combined together using boolean operators. In
web search engines, very few modifiers are used, phrases are rare
and most queries use the default AND operator. So, for
performance analysis, queries are often assumed to be tokens
combined with AND operators.

2.4 Ranking
Ranking algorithms use document and query information to order
the objects that match a given query. Some search engines allow
the ranking algorithm to be specified or tuned at query time, some
on a per install basis, and others use one static algorithm. Web
search engines combine multiple ranking sub-algorithms together
to form an overall ranking algorithm, and they modify it over time
to produce the best results. This is essentially their ‘secret sauce’
and the specifics are closely guarded.

For web search engines, improving the ranking for a page can be
very valuable to the owner of that page, thus many companies
offer to do just that for a fee. The web search engine companies
want their results to be unbiased, so they continually change their
ranking algorithm to combat this ‘cheating’.

2.5 Result Pages
The search results page displays the top-k ranked objects
computed by executing the specified query. The results page
usually includes metadata for each object and a summary of each
object tuned to the given query. The retrieval of metadata and
creation of the summary do not use the search engine postings
lists.

2.6 Term vs. Document Distribution
In order to scale a search engine for a large number of objects and/
or a large number of searches, a distributed system is used. There
are two main methods of distributing postings lists across
machines, term distribution and document distribution (a.k.a.
global distribution and local distribution respectively) [3].

Term distribution puts the entire postings list for a term on a
single machine or disk drive. To execute a query, postings lists
must often be transferred across the network.

Document distribution separates the documents into partitions and
puts all the postings lists for a partition on one machine or disk.
Each partition is essentially a self contained search index. This
method has low network usage but large amounts of random disk
reads.

It is generally accepted that document distribution is faster than
term distribution.

3. SEARCH ENGINE MODELLING
Distributed search engines are very complex systems, with few
general standards for interfaces or implementations. They involve
low level interactions and built-in tradeoffs between hard disk,
memory, CPU and network usage.

Such a system is very hard to model if one of the desired metrics
is query latency. This is one of the reasons that simulation [6, 12]
and modelling [7, 13] of search engines is not common in the
literature.

Experiments on search engines are very common in the literature.
They often use an existing collection of objects and queries as
done in the TREC conference [4]. Sometimes the queries are
generated from a model.

In this paper we model a search engine to measure query
throughput by assuming that each unit of ‘work’ (CPU usage, disk
access, network transfer) is independent and can be executed out
of order. Each resource (CPU, disk, network) is modelled as a
queue of work units which are processed in order. When a query
is started, all the work units needed to ‘execute’ that query are put
onto the appropriate resource queue for processing. A query is
finished when all its work units have been executed.

By assuming that work units are independent and that we are
measuring query throughput, we are essentially identifying the
throughput of the bottleneck resource. Usage rates for resources
are calculated to identify which resource is the bottleneck.

3.1 Postings List Modelling
Text data usually follows a Zipf power law distribution [5]. We
use a similar distribution which was presented as Z(j) in equation
1 from [6]. In our case, we use a different value for the number of
unique tokens (T). The distribution is:

Z(j) = j-0.0752528*ln(j)-0.150669*e16.3027 / S

Where S is the summation of the numerator over all terms. The
terms are sorted by decreasing Z(j) value (highest first). The
function Z(j) represents the probability that any token in the input
data is the jth token.

This is encoded in an array Y[j] and modified as specified below:

Stopwords are modelled by setting Y[j] = 0 for the first W tokens,
which are the highest occurring tokens.

Compression is assumed to be delta encoded, byte aligned
variable length integers. The average number of bits required to
represent each posting in the postings list can be approximated by
determining how many bits (B) it would take to represent the
token if all occurrences were evenly spaced within the data set.
The minimum number of bits for byte encoding is 7 (the 8th bit is
used to specify if more bytes are needed). We calculate B by
multiplying Z(j) by 2 until it is greater than 1, then the number of
multiplications by 2 is the number of bits:

int bits(double x = Z(j)) {
 int result = 7;
 x *= 128;
 for (; x < 1; x*=2, result++);
 return result;

}

The values in Y[j] are multiplied by the approximation of their
average byte count:

for (j in tokens)
 Y[j] *= bits(Z(j)) / 7;

Then the values in Y[j] are divided by the summation of all values
in Y[j].

The values in Y[j] now represent the portion of the index used by
the postings list for each token:

Postings list size for j = Y[j] * (total size of index)

This is essentially the size of the postings list if it was not split
into object and offset postings. It is unclear how to model the size
of the object postings list separately, so we approximate it as Y[j]/
10. This does not take into account the difference in compression
or the distribution of tokens in the text.

3.2 Query Modelling
A query is modelled as a sequence of tokens combined with AND
operators. This model is made up of two distributions, one for the
number of tokens and one for token values. The token values are
used to map between a token in a query and the size of its postings
list as specified in Y[j].

The distribution for the number of tokens in a query is dependent
on the usage of the system being modelled [7, 8] and it is skewed
depending on the types of caching being used [8]. We use a
distribution derived from the ‘result caching’ portion of Figure 6.2
in [8] as specified in Chart 1.

0

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5 6 7 8 9

Fr
ac

tio
n

of
 Q

ue
rie

s

Number of Tokens Per Query

Chart 1. Distribution of tokens per query

The distribution of token values in queries does not follow the
same distribution as tokens in text data, as specified in the
previous section. There is no standard distribution, so we use the
distribution specified as Q(k) from [6] with u=1% and a different
value for the number of unique tokens (T):

Q(k) = 1/(uT) for first uT tokens, 0 otherwise

This distribution function is converted into a cumulative
distribution function which can be used to map a random number
between 0 and 1 into a token index used to access Y[j].

3.3 Query Generator and Entry Control
The query generator creates queries at a specified rate using an
exponential distribution. If the query generator produces queries
faster than they can be executed, then the resource queues could
grow without bound. To prevent this, only a certain number of
queries (E) are allowed to be running concurrently. This is
enforced by dropping queries as needed. A query is running when
any of its work units are being executed or are waiting on a
resource queue.

This setup allows resource usage rates to be examined for specific
query arrival rates. It can also determine the maximum
throughput of the system by setting the query arrival rate higher
than the system can execute.

3.4 CPU Resources
Compression and decompression of postings lists use only a few
operations per byte. A modern CPU can execute 3 billion
operations per second and a modern hard disk drives (HDD) can
stream 60 MB per second giving 50 operations per byte. This
means that compression and decompression are negligible and can
be ignored.

Since ranking algorithms are implemented in many different ways
most of which are not publicly available, it is unclear how to
model the CPU cost of ranking. Rather than guessing at the CPU
cost of ranking, we assume that CPU resources are not the
bottleneck and ignore the CPU work entirely.

3.5 Disk Resources
To execute a query, the search engine reads the postings lists for
the tokens in the query sequentially within each postings list, but
these reads are interleaved between postings lists. Using large
buffers reduces the number of random reads, and prefetching
reduces the query latency. If enough memory is available, each
postings list involved in the query can be read into memory
sequentially and combined afterwards, resulting in better
throughput but worse query latency.

Since we are examining throughput, we optimistically model disk
accesses as a single random read, followed by a sequentially read
of an entire postings list. Modern HDDs can execute
approximately 100 random reads per second and sequentially read
60 MB per second.

Since we are dealing with very large indexes, we assume that all
disks are entirely full and contain only index data. Each HDD is
300 GBs, and each machine contains only one disk.

3.6 Network Resources
Networks of machines can be configured in different ways using
many different types of hardware. For simplicity we assume that
all the machines are connected with a single 1Gbps shared
connection able to operate at 100% capacity and that each
transmission has no overhead or setup cost. This configuration
means the network can transfer 125 MB per second which is
approximately twice as fast as a HDD, but without the random
read costs.

3.7 Term vs. Document Distribution
For document distribution we assume that every disk contains an
equal portion of every postings list. The network communications
costs for combining the results from multiple machines together is
small and therefore ignored in this simulation.

For term distribution we assume that each postings list occurs on
only one disk. This is simulated by randomly picking a disk
containing the postings list for each token in the query. For
multiple tokens in a query, the postings lists are transferred across
the network if they occur on a machine other than the machine
containing the largest postings list used in the query. As before,
any other network communications are ignored in this simulation.

4. SIMULATION RESULTS
The simulation is event-driven and implemented in Java using
JavaSim [14] from the Department of Computer Science,
University of Newcastle upon Tyne, UK.

The simulation was set up as follows: Each run simulates the
search engine for 1000 seconds. The number of stopwords (W) is
100. The number of unique tokens (T) is 1,000,000. The
maximum number of concurrent queries (E) is 100. All
simulations were repeated 10 times. For the experiments
presented, each simulated machine contains only one disk.

In the results presented below, the following abbreviations are
used:

• M = Number of machines

• QPS = Queries per second (averaged over runs)

• STDEV = Standard deviation of QPS

• RR = Random disk reads relative to maximum

• SR = Streaming disk reads relative to maximum

• D = Overall disk usage (combines RR and SR)

• N = Network usage

Note: The performance numbers for term distribution and
document distribution should be the same when using one
machine. This can be used as a verification of our simulation
results.

Table 1. Full postings lists using term distribution

M QPS STDEV D RR SR N
1 0.693 0.027 99% 2% 97% 0%
2 0.687 0.040 100%1% 98% 17%
3 0.687 0.053 99% 0% 98% 34%
4 0.645 0.037 98% 0% 97% 51%
5 0.667 0.024 98% 0% 98% 68%
6 0.660 0.036 97% 0% 97% 84%
7 0.643 0.041 96% 0% 96% 96%
8 0.621 0.025 95% 0% 94% 99%
9 0.556 0.024 90% 0% 89% 99%
10 0.505 0.038 83% 0% 83% 99%

Table 2. Full postings lists using document distribution

M QPS STDEV D RR SR N
1 0.681 0.036 99% 2% 97% 0%
2 0.694 0.030 99% 2% 97% 0%
3 0.692 0.029 99% 2% 97% 0%
4 0.700 0.019 99% 2% 97% 0%
5 0.685 0.022 99% 2% 97% 0%
6 0.688 0.022 99% 2% 97% 0%
7 0.696 0.031 99% 2% 97% 0%
8 0.697 0.022 99% 2% 97% 0%
9 0.701 0.029 99% 2% 97% 0%
10 0.675 0.040 99% 2% 97% 0%

When using the full postings lists to compute queries, we expect
the postings lists to be large. This results in the disk streaming
read (SR) usage rate being a bottleneck as shown in Table 1 and
Table 2.

The term distribution scheme essentially reduces the random reads
(RR) by increasing the network usage (N). Since the RR usage is
very small when using full postings lists, the term distribution
does not improve the throughput (QPS) rate.

As shown in Table 1, when using 8 or more machines, the
network becomes the bottleneck for the term distribution scheme.

Table 3. Object postings lists using term distribution

M QPS STDEV D RR SR N
1 5.709 0.068 99% 19% 80% 0%
2 6.203 0.099 99% 10% 88% 14%
3 6.393 0.096 97% 7% 90% 28%
4 6.439 0.127 97% 5% 91% 44%
5 6.502 0.147 96% 4% 92% 58%
6 6.345 0.099 94% 3% 90% 72%
7 6.344 0.110 94% 3% 91% 87%
8 6.266 0.094 91% 2% 89% 99%
9 5.622 0.116 82% 2% 80% 99%
10 4.972 0.112 73% 1% 71% 99%

Table 4. Object postings lists using document distribution

M QPS STDEV D RR SR N
1 5.702 0.074 99% 19% 80% 0%
2 5.667 0.076 99% 19% 80% 0%
3 5.733 0.083 99% 19% 80% 0%
4 5.704 0.041 99% 19% 80% 0%
5 5.671 0.069 99% 19% 80% 0%
6 5.647 0.040 99% 19% 80% 0%
7 5.721 0.067 99% 19% 80% 0%
8 5.694 0.047 99% 19% 80% 0%
9 5.642 0.040 99% 19% 80% 0%
10 5.675 0.042 99% 19% 80% 0%

When using object postings lists to compute queries, we expect
the postings lists to be much smaller. This results in the QPS rate
being higher, the RR usage being larger and the SR usage being
smaller.

The performance rates stay constant when machines are added in
the document distribution case, as shown in Table 4.

When the number of machines is increased in the term distribution
case, performance rates change as shown in Table 3. The RR
usage rates decrease and the network usage rates increase until it
becomes a bottleneck at 8 machines. The throughput (QPS) rate
increases initially, then decreases substantially when the network
becomes the bottleneck.

These numbers show that term distribution can be faster than
document distribution when using a small number of machines.
This goes against the standard accepted assumption that document
distribution is faster.

Unfortunately, term distribution does not scale to large numbers of
machines. We introduce a hybrid distribution scheme to
overcome this. Our hybrid scheme splits the set of machines into
groups each containing a small number of machines. Document
distribution is used between the groups, but term distribution is
used within each group.

Table 5. Object postings lists using hybrid distribution with
group size of 2

M QPS STDEV D RR SR N
2 6.206 0.093 98% 10% 88% 13%
4 6.166 0.082 99% 10% 88% 28%
6 6.124 0.065 98% 10% 87% 42%
8 6.172 0.072 98% 10% 87% 56%
10 6.210 0.096 98% 10% 87% 70%

Table 6. Object postings lists using hybrid distribution with
group size of 3

M QPS STDEV D RR SR N
3 6.353 0.082 97% 7% 90% 28%
6 6.390 0.085 97% 7% 90% 57%
9 6.294 0.109 96% 7% 89% 85%

Table 7. Object postings lists using hybrid distribution with
group size of 4

M QPS STDEV D RR SR N
4 6.392 0.097 96% 5% 91% 43%
8 6.363 0.094 96% 5% 90% 86%

The results found in Table 5 to 7 show that the hybrid distribution
scheme has faster throughput (QPS) rates than the document
distribution scheme and lower network usage rates than the term
distribution scheme. The network communication between
groups in the hybrid scheme is negligible. If a hierarchical
network structure is used, the hybrid scheme could scale to large
numbers of machines.

This simulation assumes that each machine contains only one disk
drive. If multiple disks are used on each machine, the hybrid
distribution scheme can be used to group all the disks on a
machine. Such a grouping would produce the throughput increase
but it would not incur additional network traffic since the disks in
the group are on the same machine. Such a setup would be
somewhat more fragile than document distribution since a failure
on one disk would prevent the other disks on that machine from
continuing to service queries. For highly redundant systems, such
as those used for web search engines, this fragility would not be
an issue. Such a machine could also be reused as a group with a
smaller number of disks, after reconstituting the index.

For the object postings list example, the setup with the best
throughput appears to be the hybrid distribution using groups of 4
machines. This is illustrated as the purple line in Chart 2. When
scaling that scheme, no more than two groups (8 machines in
total) should be placed on the same network switch/router/hub, to
prevent the network from becoming a bottleneck.

4.5

5.0

5.5

6.0

6.5

7.0

1 2 3 4 5 6 7 8 9 10

Q
P

S

Machines
Document Term Hybrid G2
Hybrid G3 Hybrid G4

Chart 2. QPS throughput rates for term, document and
hybrid distribution schemes

5. CONCLUSION
Our results from simulating distributed search engines show that
term distribution can have higher throughput than document
distribution when using a small number of machines. This goes
against the accepted view that document distribution is faster than
term distribution.

We introduced a hybrid distribution scheme that splits a set of
machines and disks into groups and then performs term
distribution within a group and document distribution between
groups. Our simulations show that this hybrid distribution has
higher throughput rates than document distribution, but can still
scale to a large number of machines.

A special case of our hybrid distribution scheme groups together
multiple disks on a machine to produce better throughput without
increasing network traffic. Such a scheme should be examined for
deployment in large search engines, especially for web search
engines.

6. FUTURE WORK
The models used for disk access and network usage are very
simplistic therefore more complex models should be examined.
The CPU work is ignored in this simulation, thus the CPU usage

of existing search engine should be examined and hopefully
modelled.

The distribution of tokens in queries used in this model is rather
arbitrary. Other distributions should be examined to see if similar
results are produced. Also, query traces should be examined in
the hope of new models being proposed.

Other distribution for the number of tokens in a query should be
examined as this greatly affects network usage rates for the term
distribution and hybrid distribution schemes.

The distribution used for object postings list sizes is not accurate
therefore existing search engine installs should be examined to
produce better distributions.

7. REFERENCES
[1] IDC Report: “The Diverse and Exploding Digital Universe” -

http://www.emc.com/collateral/analyst-reports/diverse-
exploding-digital-universe.pdf

[2] Number of searches increasing - http://
blog.searchenginewatch.com/blog/080130-162515

[3] Badue C., Ribeiro-Neto B., Baeza-Yates R. and Ziviani N.
Distributed query processing using partitioned inverted files.
String Processing and Information Retrieval, 2001. SPIRE
2001. Proceedings. Eighth International Symposium on,
(13-15 Nov. 2001), 10-20.

[4] Text REtrieval Conference (TREC) - http://trec.nist.gov/

[5] Zipf, G. Human Behaviour and the Principle of Least Effort.
Addison-Wesley, 1949.

[6] Tomasic A. and Garcia-Molina H. Query processing and
inverted indices in shared nothing text document information
retrieval systems. The VLDB Journal, 2, 3 (1993), 243-276.

[7] Silverstein C., Marais H., Henzinger M. and Moricz M.
Analysis of a very large web search engine query log. SIGIR
Forum, 33, 1 (1999), 6-12.

[8] Long X. and Suel T. Three-level caching for efficient query
processing in large Web search engines. (2005), 257-266.

[9] Delta compression - http://en.wikipedia.org/wiki/
Delta_compression

[10] Variable length integer compression - http://en.wikipedia.org/
wiki/Variable_length_unsigned_integer

[11] Run-length encoding - http://en.wikipedia.org/wiki/Run-
length_encoding

[12] Cacheda, F., Plachouras, V., and Ounis, I. 2004. Performance
analysis of distributed architectures to index one terabyte of
text. In Proceedings of the European Conference on IR
Research, Sunderland, UK, S. McDonald and J. Tait, Eds.
395--408. Lecture Notes in Computer Science, Springer, vol.
2997.

[13] Baeza-Yates R. and Navarro G. Modeling Text Databases. In
Anonymous Springer US, 2005, 1-25.

[14] JavaSim - http://javasim.ncl.ac.uk/

[15] Witten I. H., Moffat A. and Bell T. C. Managing gigabytes :
compressing and indexing documents and images. Morgan
Kaufmann Publishers, San Francisco, Calif., 1999.

http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://www.emc.com/collateral/analyst-reports/diverse-exploding-digital-universe.pdf
http://blog.searchenginewatch.com/blog/080130-162515
http://blog.searchenginewatch.com/blog/080130-162515
http://blog.searchenginewatch.com/blog/080130-162515
http://blog.searchenginewatch.com/blog/080130-162515
http://trec.nist.gov
http://trec.nist.gov
http://en.wikipedia.org/wiki/Delta_compression
http://en.wikipedia.org/wiki/Delta_compression
http://en.wikipedia.org/wiki/Delta_compression
http://en.wikipedia.org/wiki/Delta_compression
http://en.wikipedia.org/wiki/Variable_length_unsigned_integer
http://en.wikipedia.org/wiki/Variable_length_unsigned_integer
http://en.wikipedia.org/wiki/Variable_length_unsigned_integer
http://en.wikipedia.org/wiki/Variable_length_unsigned_integer
http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Run-length_encoding
http://javasim.ncl.ac.uk
http://javasim.ncl.ac.uk

