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ABSTRACT
This report examines the price/performance benefit of using a 
large cluster of commodity machines rather than server level 
hardware for certain large scale software applications.

A number of tools are presented which make it  easier to produce 
software that runs across large clusters  of commodity machines.  
These tools  are the Chubby locking service, the Google file 
system, MapReduce and BigTable, all written by Google.
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1. INTRODUCTION
Increasingly software applications must handle very large 
amounts of data and very large numbers  of requests.  This is 
especially true of applications on the world wide web, premiere 
among them being the web search engine.

Search engine vendors  like Google have learned that running on a 
large cluster of commodity machines can result in a large price 
performance benefit.

Building software to run on a large cluster of commodity 
machines is not  an easy task.  This  report presents some software 
tools written by Google that make software development easier.

2. DESIGNING A WEB SEARCH SYSTEM
An example is  used to examine the issues associated with building 
a large computer system.  This example will be used to motivate 
the use of a distributed system of commodity machines based on a 
cost benefit analysis.

2.1 Web Search Example
Example #1: How would you build a web search engine such as 
Google, comprising a cache of the web, an indexing system, a 
searching system and presentation  of results  with query specific 
summaries.  The resulting system must scale in disk size, disk 
performance, and CPU performance.  It must also have good 
redundancy and fault tolerance.  Even with all these requirements, 
the system must have a low total cost of ownership (TCO).

2.2 How Big Is The Web?
In 2005, Google claimed their index contained 8  billion web 
pages and the indexable web was thought to be 11.5 billion pages 
[1].  Even at that  time, some people thought that Google was 

indexing much more than 8 billion  pages.  They are indexing 
much more than that now, perhaps  even 100 billion pages.  For 
this example, we will assume the number is 50 billion pages.

The average web page [2] contains approximately 25kB of 
HTML and a total size of approximately 130kB including scripts, 
images, etc.  Many of the scripts and images will be shared 
between multiple web pages, but that effect is ignored here.

The size of the cache of the web in our example is:

 50 billion * 130kB = 6,500 TB

The size of the index in  our example, assuming the standard 30% 
of the text input size, is:

 50 billion * 25kB * 30% = 375 TB

2.3 Serving a Cache of the Web
The cache of the web in  our example is externally visible to the 
end users.  The results pages for searches  using Google allow the 
user to open the cached version of the result, which often loads 
faster than the original location for that result, but  it might not be 
entirely up to date.  Also, this cache allows a user to see the 
contents that  matched their search, even if that data was 
subsequently removed from the original site.  In this  usage 
pattern, the cached result is  not  processed, it is just returned to the 
user.

Given this usage pattern, the cache of the web needs very  little 
CPU resources.  Also, the number of requests is small relative to 
the data size, meaning this data does not need extra disk 
performance via fast disks or replicas.

2.4 Producing the Index
The indexing process must read through all of the data in the 
cache of the web, process it, and produce the searchable index.  
This process does not need to run very often and, with slight 
complications, it  can be done incrementally (I.E. the system could 
index only the data that has changed since the last time it was 
indexed).

Given this usage pattern, the resource requirements for the 
indexing process are negligible when compared to the search 
process resource requirements (below).

2.5 Serving Web Search
In March 2006, Google was serving approximately 91 million 
searches per day in the United States [3].  That  number is much 
higher now and the number for the entire world would be higher 
still.  However, many of the top searches are repeated many times 
and the results  are served from a cache rather than executed 
repeatedly.  For this  analysis, we assume that the search system 
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must support 200 million searches per day which is 2,315 
searches or queries per second (qps).

Disk  performance becomes a big issue for the search process.  
Assuming that the index is split into partitions each fitting on a 
500 GB disk, how many copies  of each partition are needed?    A 
normal disk (7200 RPM) can support  approximately  100 random 
reads per second (rps).  Given 3 terms per query and 2 random 
reads per term we end up with the number of copies of each 
partition:

 2,315 qps * 3 terms * 2 reads / 100 rps/disk = 139 disks.

The number of partitions to support the index is:

 375 TB / 500 GB/partition = 750 partitions.

The number of disks required to support the search process is:

 750 partitions * 139 disks/partition = 104,250 disks.

Note: Both the query rate and the web size affect this number and 
both  are growing quickly over time.  This means  the number of 
disks required  for the search  process is  growing very quickly over 
time.  This could quickly motivate the use of flash memory 
instead of disk (see Section 3.3).

It is unclear how much CPU resources are needed for each 
partition, but it seems reasonable to assume that one disk could 
saturate 1 CPU core given the complex ranking system.

2.6 Serving the Search Results
Producing the search results page does not normally require a lot 
of resources, but we are producing a query specific summary for 
each result.  That  means reading the cached page and processing it 
for each results.  Assuming 10 results per page, the number of 
random disk reads is:

 2,315 qps * 10 results = 23,150 rps.

The cache of the web will  be spread over 500 GB drives 
requiring:

 6,500 TB / 500 GB/drive = 13,000 drives.

Assuming the disk reads are spread randomly across the cache of 
the web, then supporting the query based summary requires:

 23,150 rps / 13,000 drives = 1.8 rps/drive.

Normal disks (7200 RPM) can support 100 rps/drive, so the disk 
resources used by query based summary are negligible.

The CPU resources used by query based summary are assumed to 
also be negligible.

3. COSTS OF RUNNING THE SYSTEM
There are many costs involved in building and running the system 
to  support our example.  These include the cost of purchasing the 
computer hardware, the cost of powering the hardware and the 
cost of administrating the system.  We assume the administration 
costs are the same for commodity hardware and server level 
hardware for our example.

3.1 Hardware Costs
The main costs of the system in our example are the storage of the 
cache of the web and the resources  required by the search process.  
All the other costs are negligible and can be ignored.

3.1.1 Commodity Hardware
This analysis assumes that each machine has a dual core CPU and 
that the disks are 500 GB at 7200 RPM.

The cache of the web requires 13,000 drives (Section 2.6), but has 
low CPU resource requirements.  Implementing  redundancy 
requires more space; in this case we assume 3 times the space as 
used by the Google file system (see Section 4.2),  This means we 
need 39,000 drives.  The low CPU resource usage means we can 
put 4 disks in each machine giving:

 39,000 drives / 4 drives/machine = 9,750 machines.

The search process needs 104,250 disks (Section  2.5) and each 
disk needs 1 CPU core.  Each machine has 2 CPU cores so:

 104,250 cores / 2 cores/machine = 52,125 machines.

In total, the example application’s resource requirements are:

 9,750 + 52,125 = 61,875 machines.

 39,000 + 104,250 = 143,250 drives.

The current online prices [4] are sufficient for this analysis.  A 
Core 2 Duo CPU (E4500 at  2.2GHz) costs  approximately $150, 
and the rest of the machine is  approximately $150.  A 500 GB 
drive at 7200 RPM is approximately $130.

Using these prices, the total cost of hardware for the example 
application would be:

 61,875 * ($150 + $150) + 143,250 * $130

 = $18,562,500 + $18,622,500

 = $37,185,000

A three year replacement schedule is usually assumed [5], which 
means the hardware costs for the system are approximately $12.4 
million per year.

3.1.2 Server Level Hardware
Server level  hardware means large multi-CPU machines attached 
to  large disk systems like Network Attached Storage (NAS) or 
Storage Area Network (SAN) devices which use RAID 
architecture to support redundancy and fault tolerance.

It is often difficult to get prices for server level hardware, but  in 
general the larger the system the more it costs per resource.  The 
more expensive systems may be more reliable, have more features 
or more support.  Therefore, using prices for medium sized 
hardware should be sufficient to approximate the costs for this 
analysis.

Using Dell prices for hardware [6], the PowerVault MD3000 (PV) 
RAID system costs $7,500 without disks and can hold 15 disk 
drives, assuming one parity disk per PV leaves 14 usable disks.  
For the cache of the web we need:

 13,000 drives / 14 drives/PV = 929 PV.

For the search process we need:

 143,250 drives / 14 drives/PV = 10,232 PV.

The price for a PowerVault with 15x500 GB drives is:

 $7,500 + 15 * $130 = $9,450.

So the cost  of the server level  disk system for the example 
application is:



 (929 PV + 10,232 PV) * $9,450 / PV

 = $105,471,450

This is already much more than the cost of the commodity 
hardware system, so we will  not continue to calculate the server 
level machine costs for the example application.

3.2 Power Costs
Power consumption is becoming more of an issue as the price of 
hardware declines.  At these scales  the commodity machines are 
built into  racks with very high power densities, and therefore 
require expensive cooling systems.

Each Core Duo CPU uses about  65W [7] and one motherboard 
with  RAM uses about 25W.  Each disk drive uses about 10W.  The 
power supply is usually  only 75% efficient.  Cooling takes 
approximately 50W per machine [5].  This means the commodity 
hardware power consumption in our example is:

 (61,875*90W + 143,250*10W) / 0.75 + 61,875 * 50W

 = 12,428 kW

Assuming 15 cents per hW-h to cover the power usage, UPS and 
distribution loss, the power costs for the commodity hardware in 
our example application would be:

 12,428 kW * 24*365 h/year * 0.15 $/kW-h

 = $16,330,392 per year

This is a significant cost and is  approximately 132% of the cost  of 
the hardware per year.  Back in 2003, the power costs were much 
smaller compared to the hardware costs, approximately 19% of 
the cost  of the hardware per year [5].  This would  explain  why 
Google seems to be building new data centres where power is  less 
expensive.  As the price of hardware decreases, one would expect 
this  trend to continue.  However, the CPU accounts for a large 
portion of the power consumption and new CPUs are improving 
their power efficiency (operations per W).

3.3 Flash Memory
Flash memory has been dropping in price very quickly and it is 
starting to become an interesting option for replacing hard disk 
drives (HDD) in many applications.  Flash  memory can execute 
more than 100 times as many random reads per second as a HDD, 
and often has faster contiguous read and write performance.

There are hybrid  hard drives (HHD) which combine a normal 
HDD with a large buffer of flash memory.  These could be used to 
reduce the number of random reads serviced by the HDD portion 
of the drive.  In our example, the mapping from a term to the 
location of the postings list on  disk is usually encoded in a B+ tree 
and accounts for some of the random reads per token.  This B+ 
tree might fit  in the flash portion of a HHD, thus  reducing the 
number of random reads per token serviced by the HDD portion.

Flash memory also comes in solid state drives  (SSD) which have 
the same interface as  a normal HDD and can be easily plugged 
into  commodity machines.  The SSDs are approximately $8 per 
gigabyte, compared to $0.25 per gigabyte for HDD [8], which  is 
32  times more expensive.  In our example, the indexing portion 
needed 139 disk copies to service the query stream.  Using the 
100 times speed  up for random reads, SSDs may be able to 
service the query stream with just the minimum 3 copies (for 
redundancy).  The SSDs would also be cheeper then the HDDs 
because each SSD replaces  139/3=46 HDDs (which is larger than 
the price ratio of 32).  Unfortunately, 500 GB SSDs do not exist 

yet, so the calculations from Section 2.5 change more than 
suggested above.  Our CPU resource assumption of one core per 
500 GB disk could also be an issue.

In all likelihood, Google is already experimenting with clusters 
using flash memory, both HHD and SSD.  Hopefully such systems 
will soon be used broadly in production applications.

4. SOFTWARE TOOLS TO BUILD THE 
SYSTEM
Building software to run across large numbers of commodity 
machines is a difficult  endeavor.  Google has released information 
on  a number of the tools they use to build these systems, some of 
which are presented here.

4.1 Chubby Locking System
Chubby [9] is a lock  service in a distributed system.  It is intended  
to  supply synchronization between client processes and store 
small amounts  of information used by multiple clients, for 
example configuration information.  One common use of the 
synchronization features is to elect a “master” or “leader” process 
from a set of possible processes.  This is a distributed consensus 
problem, solved through the use of the Paxos protocol [10].

Chubby is used within Google as a name service rather than the 
Domain Name Service (DNS) because it can support faster refresh 
with  less overhead than DNS especially for a large number of 
clients.  Apparently MapReduce [12] uses Chubby as a 
rendezvous mechanism, though it is not mentioned in the 2004 
paper.  The Google files system (GFS) [11] and BigTable [13] use 
Chubby to pick a primary from redundant  replicas.  Chubby is 
also use to store configuration files and access control  lists 
(ACLs).

4.2 Google File System (GFS)
The Google file system (GFS) is a distributed file system intended 
to  store a relatively small number of large files and to  be 
distributed over a large number of commodity machines.  Each 
file is  broken up into 64 MB chunks.  Reliability and fault 
tolerance are achieved by replicating each file chunk on at least 3 
machines and actively  maintaining the number of replicas.  This 
replication also improves the read performance of the system.  
The file system is accessed through a client side library which 
knows about the 64 MB chunk size and talks to a single master 
process to get locations of desired chunks.

The GFS design is intended to be simple, reliable and have high 
aggregate performance.  There are many optimizations added to 
the system to balance load across machines and network 
connections.  The 64 MB chunk size was picked to allow the 
single master to load all chunk information into  memory, thus 
making many tasks simpler to implement and still  have good 
performance.

For our ongoing example, the GFS could  be used to store the 
entire cache of the web, but the number of files would have to be 
reduced by combining many web pages into a single file.  This 
would create some issues when the cache of the web is updated.  
This type of usage pattern and many others is supported  by the 
BigTable abstraction (see Section 4.4).

In our example, the search process could not be implemented on 
top of GFS because of the 64MB chunk size.  If the web pages are 
partitioned to have a subindex fit  in a 64 MB chunk, then each 
chunk would  have 2 random disk reads for each query term rather 
than each 500 GB disk drive as was  calculated, resulting in much 



higher resource requirements.  If the 500 GB partition is simply 
split into 64 MB chunks then they would appear on different 
machines using  GFS and the disk accesses would have to go 
across the network, resulting in a bottleneck.

4.3 MapReduce
MapReduce [12] is  a programming abstraction that  allows a 
programmer to work on hugh datasets by exploiting parallelism 
across a large number of machines without needing to implement 
the parallelization or understand how it happens.  The resulting 
programs are easier to write, understand, modify, and debug.  The 
abstraction requires only two parts to be written by  the user; the 
map function and the reduce function.

The map function takes a <key, value> pair, processes it  in some 
way, then outputs a set of <key, value> pairs.  The system then 
sorts  these <key, value> pairs by the key and groups them into 
<key, list(values)> pairs.  The reduce function then takes a <key, 
list(values)> pair, processes  it in some way and produces a list of 
values.  In mathematical notation this would be:

 map: <K1, V1> → <K2, V2>

 reduce: <K2, list(V2)> → list(V3)

The MapReduce library executes on a triple <map function, 
reduce function, input  dataset>.  The library splits  the input data 
into  M pieces typically 16 to 64 MB and starts many processes on 
a cluster of machines which will do the work.  One of the 
processes becomes the master, and the others become the workers.  
The intermediate results output  by the map function  are split  into 
R pieces using a partitioning function  hash(key) mod R.  The 
workers can be assigned a map task, meaning they process one of 
the M pieces of input data, buffering results in  memory, and 
periodically writing them to disk partitioned into R parts using the 
partitioning function. The workers can also get assigned reduce 
tasks, meaning for one reduce partition it collects the 
corresponding parts  output  by the map task, and sorts them.  
When all intermediate results  have been collected for a reduce 
partition, it can execute the user defined reduce function for each 
key.

The MapReduce system is optimized in many ways.  The system 
tries to run processes on the machines that  contain  the disk files to 
reduce network usage.  The variables M and R can be static, tuned 
to  the data size or specified by the user.  Tasks that  are taking too 
long  can be killed and restarted, perhaps on another machine, 
which often results in a significantly reduced overall completion 
time.  In addition, workers are pinged periodically to check if they 
have failed.

In our example, the MapReduce abstraction can be used to 
implement the indexing step.  The map function parses each 
document and produces a list of <word-partition, docid-offset> 
pairs, then the reduce function  takes in a <word-partition, list
(docid-offset)> pair and encodes the list(docid-offset) into the on 
disk  index format.  A second pass  could then combine the postings 
lists into full index partitions.

4.4 BigTable
BigTable [13] is a distributed system for storing and manipulating 
structured data.  It is similar to a relational database system, but 
the supported functionality is  simplified to allow the system to 
scale to huge sizes and still support  low latency requirements as 
needed.  The trade-off between scale and performance is tunable 
by  the user who has dynamic control over data layout and format.  

For example, deciding if the data is stored in memory or on disk.

The BigTable data model is a simple map between a <row key, 
column key, timestamp> and some string value:

 <row:string, column:string, time:int64> → string

BigTable stores data in lexicographic order by row key and splits 
the data into row ranges called tablets which allows data to be 
easily distributed.  All data for a particular row is stored in only 
one tablet  and reads/writes to data in a single row are atomic.  
Data tablets are stored in GFS using the Google SSTable format.  
The entire BigTable instance is organized into a B+ style tree with 
three levels.  A pointer to the root of this tree is stored in Chubby.  
The first level is a single tablet which stores the locations  of all 
tablets in the second level.  The second level comprises a special 
metadata table which stores the location and row key ranges  of 
third level tablets.  The third level stores the actual data.

As with most systems at  Google, there are many optimizations 
built into the system to improve performance in specific areas.  
Data location lookup is  optimized in many ways, including 
caching tablet location in memory and prefetching tablet  locations 
in  batches.  Update/commit logs  are shared between all tablets on 
a machine to  optimize for small mutations.  SSTable files are 
immutable so they can be accessed without locking, and easily 
cached in memory potentially on multiple machines, meaning 
tablets have to merge and compact SSTable and commit log 
information.  Users can specify compression formats for data.

There is an integration to allow MapReduce to be easily executed 
over BigTable data, creating a very powerful system.

In our example, BigTable can be used to store the cache of the 
web without having to combine multiple web pages into  one file 
as required when using GFS directly (see Section 4.2).  Updates to 
the cache of the web would also be handled easily.  Using the 
MapReduce integration, the data stored in the cache of the web 
could be processed into partition  indexes as described in  Section 
4.3.

BigTable could also be used to calculate PageRank scores [14] by 
using MapReduce to extract the links from the web page, ordering 
them by the referenced links, and then calculating the PageRank 
value from that.

The search  process  cannot  use BigTable to  store its  index 
structures for the same reasons GFS cannot be used (see Section 
4.2).

5. CONCLUSIONS
This report has  shown the price/performance benefit of using a 
large cluster of commodity machines to  solve certain large  scale 
problems, rather than using conventional server level hardware.  
The price/performance comparison was illustrated in detail using 
a web search engine as an example.

The report presented a description of some tools built at Google.  
These tools make it easier to  create programs that  run on large 
clusters of commodity machines.  Possible uses of these tools are 
presented in context of the previously introduced web search 
engine example.
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