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Abstract

A distributed and interface-based publish/subscribe system is proposed in this report.
Components in the proposed system react with each other via events only, and these reac-
tions are described in the component interfaces using a variation of Harel statecharts. By
encapsulating component behaviour within the interfaces, the goal of the system is to allow
the study of modularization and composition mechanisms in distributed event based appli-
cations. The presentation of the proposed system is complemented by a metamodel that
describes the structural, control, and runtime aspects of distributed event systems.

1 Introduction

Distributed Event Based Systems (DEBSs) are implicit invocation systems comprised of dis-
tributed functional components that interact with each other via events. Events represent
happenings in the system or the environment where the system runs. Events are generated
by components called publishers. Components interested in the events that have been gener-
ated, are called subscribers. A subscriber is notified when an event of interest to the component
is generated by a publisher. The reaction by the subscriber is consider functionality that is
implicitly invoked by the publisher component via the event.

DEBSs allow the development of applications by integrating functionality implemented by
components that are autonomous and heterogeneous. Providers and users of functionality can
be decided at run time, without requiring a priori knowledge of their names and locations.
This low coupling between functional components make DEBS suitable for the development
of applications in systems with a large number of functional components, running in different
computers/devices. Such systems are expected in ubiquitous computing environments [28], as
well as web environments integrating a large, or unpredictable, number of applications [14, 23].

The implicit invocation of functionality via events, as well as the autonomy, heterogeneity,
and potentially large number of components make the development and maintenance of appli-
cations in DEBSs difficult. Moreover, the development of event based systems is still an ad hoc
and informal process poorly supported by current software engineering methodologies [10, 21].
As observed in [21], hierarchical structuring mechanisms do not exists for the development of
applications on DEBSs. In the case of UML [2], the treatment of implicit invocation is limited
to annotating class diagrams and using interaction diagrams to model how system components
react to events. Fiege [12] proposes to use event visibility as a structuring abstraction in implicit
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invocation systems. The visibility of an event determines the components that can produce and
react to the event. Fiege’s proposal does not include methodologies for the identification and
modeling of the structural and other properties of an implicit invocation system.

In this report we propose a generic DEBS that will be the basis for our work in modular-
ization and composition of functionality in DEBSs. Central to the generic DEBS, and to our
efforts for modularization and composition of functionality in DEBSs, is the concept of reactive
component interfaces. Reactive component interfaces describe the functionality implemented
by the components in the system: the behaviour that causes the generation of events, and the
behaviour that must be exhibited when reacting to events. Based on the work by [24] the be-
havioural descriptions in the reactive component interfaces are done using a variation of Harel
statecharts. This variation is suitable for describing functionality executing in autonomous and
heterogeneous components that communicate via events only.

Complementing the description of a generic DEBS, is a metamodel for distributed event
based systems. This metamodel serves to study the structural, control, and runtime aspects
of DEBS. Included in the metamodel is the enumeration of some of the relationships occurring
among reactive component interfaces.

The event model for a generic DEBS is presented in section 2, including assumptions about
time, event schemas, regions and access roles. Reactive Component Interfaces are introduced
in section 3. Interface statecharts, a variation of Harel statecharts used in reactive component
interfaces are presented in section 4. A metamodel for DEBSs is presented in section 5. We
conclude the report with the presentation of related work in section 6, and future work in section
7.

2 Event Model

We assume a DEBS is a system made up of independent functional components (components for
short) interacting with each other via events. Components are uniquely identified and each com-
ponent executes in its own program space. Components may be located on separate computers
(devices) communicating via a network. Components have the ability to publish (announce)
events and/or subscribe to (react, be informed about) events in the system. Reactive compo-
nent interfaces (interfaces for short) describe the functionality provided by the components. A
component implements one or more interfaces.

Components are logically grouped in regions. Each region has a number of specialized com-
ponents in charge of administrative and component interaction controlling activities.

2.1 Events

An event is a data representation of a happening in the system or the environment in which the
system executes. Events are published by components via component interfaces. An event has
a schema that determines, among several properties, the data attributes associated to the event.
Attributes are of basic types (int, float, string, ...) or data structures defined on basic types or
other data structures. An event has exactly one event schema.

Each published event in the system has a context. The context specifies the interface that
produced the event, the time when the event happened or was observed, and the time when the
event was published. A time-to-live (TTL), determined by the interface publishing the event,
specifies the amount of time after which the event is no longer relevant to the system.
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2.2 Time

Each component has a clock. Components periodically synchronize their clocks with the clocks
of specialized components. These specialized components are called time servers. Time at a
component is represented by a pair (t, ∆t) where t is the component’s clock time and ∆t is a
upper bound estimation of the divergence between the clock of the component and the clocks
of the time servers. Hence, a pair (t, ∆t) represents the time interval (t−∆t) to (t + ∆t).

For a component, the time offset ∆t should be dynamically adjusted based on the frequency
of the synchronization between the component’s clock and the time servers clocks, and the
divergence between clocks when they were last synchronized. Providing a formula to calculate
the time offset is outside the scope of this work.

2.3 Access Roles

An access role (role for short) characterizes a set of components [11]. Roles are uniquely identified
and can be dynamically created and dropped. Roles are granted to (revoked from) components,
regions, and other roles. When a role is granted to a region, every single component in the
region is granted the role. Similarly, if a role is revoked from a region, every component in the
region is revoked the role, even if the role was directly granted to a component in the region.

A role can be granted to another roles if both roles belong to the same region. Requiring the
granted and grantee roles to be in the same region, guarantees that a region does not rescind
the control over the granted role.

The role public is granted by default to every single component and cannot be revoked from
any component. The public role itself cannot be dropped from the system.

Roles are created within a region by invoking the operation addR(rname, ttl). Parameters
are the name of the role and the amount of time the role is relevant in the system. A role is
automatically dropped when a time ttl has passed since the role was created. Invoking addR
for a role already in a region has the effect of updating the the TTL of the role by ttl. By
invoking the operation dropR(rname), a role can be dropped before its TTL. Roles and role
membership are managed by specialized components in each region.

Role names are assumed to be unique and are used as role identifiers. Naming conventions
based on some namespace hierarchy can be used to guarantee the uniqueness of role names. The
problem of uniquely naming roles is outside the scope of this work.

Roles are granted to components by invoking the operation grant(rname, cid), where
rname is the name of the role, and cid is the identifier of the component. Roles are revoked
from components by invoking revoke(rname, cid). The component granting or revoking the
role must have been the creator of the role. Similarly, roles can be granted/revoked to/from all
components in a region by invoking grant(rname, rgname)/revoke(rname, rgname), where
rgname is the region’s name.

Roles can be granted to, and revoked from, other roles effectively creating hierarchies of roles.
It is assumed that there are no cycles in these hierarchies and, as previously mentioned, roles
within a hierarchy must belong to the same region. The operations to invoke in these cases are
grant(rname1, rname2) and revoke(rname1, rname2) where rname1 is the role being granted
(revoked), and rname2 is the role to (from) which role1 is being granted (revoked).

Formally, R is the set of roles, Reg is the set of regions, and C is the set of components in
the system. Relations GR ⊂ R×R, GReg ⊆ R×Reg and GC ⊆ R×C, specify the roles granted
to other roles (GR), to regions (GReg), and directly to components (GC). The role public always
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exists in the system, {public} ⊆ R. Since no cycles are allowed in GR, if (ra, rb) ∈ GR, then
ra 6= rb and ¬∃(r1, ..., rn) with n > 2 and r1 = ra, rn = rb, such that (ri, ri−1) ∈ GR for i = 2...n.

Rc is the set of roles a component c ∈ C has been granted. Rc contains at least the public
role. Formally, with G+

R the transitive closure of GR, then r ∈ Rc if:

(a) r = public, or

(b) (r, c) ∈ GC , or

(c) ∃r′ with (r′, c) ∈ GC and (r′, r) ∈ G+
R, or

(d) ∃E ∈ Reg, with c ∈ E, and

(d1)
(

(r, E) ∈ GReg, or

(d2) ∃r′ with (r′, E) ∈ GReg and (r′, r) ∈ G+
R

)
Hence, role public is in Rc (expr. (a)), as well as any role directly granted to the component

(expr. (b)). If a role r′ has been granted to component c, then any role r granted to r′ is also
in Rc (expr. (c)). Since roles can also be granted to all components in a region, assuming that
component c belongs to region E, then any role granted to E (expr. (d1)), or granted to a role
granted to E (expr. (d2)) is also in Rc.

If the role r is not the public role and (r, c) ∈ GC , then it is said that r has been directly
granted to component c. In any other case r is said to be indirectly granted. A role r can be
both, directly and indirectly granted to a component.

2.4 Event Schemas

Every event in the system has an event schema. An event schema specifies the data attributes
that every event of the given event schema must have. Event schemas are created within a
region by invoking addES(ename, attrs, ttl), where ename is the name of the event schema,
attrs are the data attributes associated to events of the event schema, and ttl is the TTL for
the event schema. Event schemas are stored and maintained by specialized components in each
region. The name of an event schema is assumed to be unique. As with role names, naming
conventions based on some namespace hierarchy can be used to guarantee the uniqueness of
event schema names. The problem of uniquely naming event schemas is outside the scope of
this work.

When a period of time ttl has passed since an event schema was created, the event schema
is removed from the region. As with roles, invoking addES for an event schema that already
exists, has the effect of extending the TTL for the event schema by a period of time ttl. Event
schemas can be dropped before they expire by invoking dropES(ename).

2.5 Event Advertisement, Publishing, and Subscribing

Before publishing an event, a component must advertise the event to the system by invoking
adv(iname, ename, ttl). iname is the name of the interface doing the advertisement, ename
is the event schema of the events that are being advertised, and ttl is the TTL for the adver-
tisement. To avoid removal of the advertisement, the component must re-advertise the event
type before ttl. An advertisement can be removed before it expires by invoking unadv(iname,
ename). Advertisement of an event is rejected by the system if the component executing the
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request has not been granted the access role required to implement the interface iname (see
Section 3).

Once an event type has been advertised, a component can publish the event by invoking
pub(iname, event). A component wishing to react to events of a schema ename published
via the interface iname must first subscribe to the events by invoking subs(iname, ename,
ttl). The subscription expires after a ttl time. Expiration of the subscription can be avoided
by invoking subs for the interface and event schema before a period ttl. A component can
subscribe to an event schema produced by an interface, only if it has been granted the role
required by the interface to react to events of the given event schema.

2.6 Regions

Components are logically grouped in regions. Regions can contain other regions forming a tree
hierarchy. The root of the hierarchy is named the world region. Every region has specialized
components in charge of membership, role, interface, and event schema administration.

The region hierarchy can be used to guarantee uniqueness of component identifiers, role
names, interface names, and event schemas names.

Reg is the set of regions in the system. The relation SubReg = Reg × Reg determines the
region hierarchy. For regions ep and ec in Reg, (ep, ec) ∈ SubReg specifies that region ec is a
direct subregion of ep. Since the world region is the root of the hierarchy, then it cannot be a
direct subregion of any other region: world ⊆ Reg and ¬∃r ∈ Reg such that (r,world) ∈ SubReg.
Also, if (ep, ec) ∈ SubReg, then:

(a) ec is a direct subregion of one and only one region: ¬∃e′p ∈ Reg with ep 6= e′p, such that
(e′p, ec) ∈ SubReg.

(b) There is a path from the region world to ec, as defined by the relation SubReg. Hence,
∃e1, e2, ..., en ∈ Reg with e1 = world, en = ec, 2 ≤ n ≤ |Reg|, such that (ei, ei+1) ∈ SubReg,
1 ≤ i < n.

Every region different than the world region is a direct subregion of another region. Hence,
if e ∈ Reg and e 6= world, then ∃e′ ∈ Reg such that (e′, e) ∈ SubReg.

A region ec is said to be a subregion of e, if either:

(a) ec is a direct subregion of e: (e, ec) ∈ SubReg, or

(b) ec is an indirect subregion of e: There is a path from e to ec as specified by the SubReg
relation: ∃e1, ..., en ∈ Reg with e1 = e, en = ec, 2 ≤ n ≤ |Reg|, such that (ei, ei+1) ∈
SubReg, 1 ≤ i < n.

We define the relation InRegion = Reg × Reg, such that (ep, ec) ∈ InRegion if ec is a direct
or indirect subregion of ep.

2.7 Cascade Operations

Removal of event schemas and roles have cascading effects. If an event schema is removed,
all related interfaces, advertisements and subscriptions will be removed as well. Publishing of
events of a removed event schema are rejected by the system. Similarly if a role is removed from
the system, any dependent interfaces are removed from the system as well.
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3 Reactive Component Interfaces

Interfaces are at the centre of the distributed event system here proposed. Components execute
one or multiple interfaces. A interface specifies the events that are published and subscribed to
by every component implementing the interface, as well as the behaviour that these components
must exhibit. Interfaces also specify the roles required by other components that wish to react
to the events generated by the interface, as well as the role required by a component to be
authorized to execute an implementation of the interface.

An interface I is represented by a tuple < iname, Ine,Oute,ST, rimpl, ttl >, where:

• iname is the name of the interface. This name is unique within the system.

• Ine specifies the events the interface reacts to. Ie is a set of tuples < i, e >, where i is the
name of an interface, and e is an event schema. < i, e > indicates that the interface reacts
to events with schema e generated by interface i.

• Oute specifies the events the interface generates. Oute is a set of tuples < e, r, ttl >,
indicating that the interface generates events with event schema e, that role r is required
by any component wishing to react to these events, and that each event with schema e
generated by the interface is relevant to the system for a TTL ttl. If the interface imposes
no restriction on the components that can react to the event, then r is public.

• ST is a statechart specifying the behaviour of the interface. We define the function be-
haviour such that behaviour(I) = ST.

• rimpl is the role required by a component to run an implementation of the interface.

• ttl is the interface’s own TTL.

Interfaces are created within a region by invoking the operation addI(iname, Ine, Oute,
ST, rimpl, ttl). An interface is dropped by invoking the operation dropI(iname), or after
the interface’s TTL. Invoking addI for an interface already created has the effect of refreshing
the TTL of the interface by ttl.

We define the functions intevsin, intevsout, intbehav, such that for an interface I =< iname,
Ine, Oute, ST, rimpl, ttl >: intevsin(I) = Ine, intevsout(I) = Oute, and intbehav(I) = ST.

The behavioural specification of an interface is done using a statechart. The statechart
represents the actions that lead to the publication of the interface events, as well as the actions
taken when an event subscribed to is received. The statecharts here proposed are a variation of
Harel statecharts [17], and include some of the principles for statechart composition proposed
by Simons in [24], and properties of the Requirements-Oriented Statechart (ROSC) variant
proposed by Glinz [15].

4 Interface Statecharts

We represent a statechart ST with a tuple < S, s0, sf , L, δ >, where S is the set of states, s0 is
the initial state, sf is the final state, L are the transition labels, and δ is the transition relation
δ : S×L×S. We define functions states, init, fin, labels and trans such that for every statechart
ST =< S, s0, Sf , L, δ >, then states(ST ) = S, init(ST ) = s0, fin(ST ) = sf , labels(ST ) = L and
trans(ST ) = δ.
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For a statechart ST, every state s in S is either s0 the initial state, sf the final state, a simple
state, a history state, or a composite state. A composite state represents one substatechart, or
several substatecharts operating concurrently. We call Shist the set of history states, Ssimple
the set of simple states, and Scomp the set of composite states. S = {s0} ∪ {sf} ∪ Ssimple ∪
Shist ∪ Scomp, with {s0} ∩ {sf} ∩ Ssimple ∩ Shist ∩ Scomp = ∅. We also define functions
initial, final, simple, comp, hist such that initial(S) = s0, final(S) = sf , simple(S) = Ssimple,
comp(S) = Scomp, and hist(S) = Shist.

Each substatechart in a composite state is itself a statechart. For a state s ∈ Scomp, we
define substc(s), the set of substatecharts in s. Clearly, |substc(s)| ≥ 1 for every s ∈ Scomp,
otherwise the state s would not be a composite state. Substatecharts in a composite state do
not share states. We define allsubstc, the set of all substatecharts in ST as:

allsubstc(ST ) =
⋃

s∈comp(states(ST ))

substc(s)

The set of all substatecharts in ST and, recursively, their substatecharts is defined as:

allsubstc∗(ST) =
⋃

s∈comp(states(ST))

substc∗(s)

where substc∗ is the recursive application of function substc, on s and all substatecharts in
substc(s).

Since there are no shared states, no transition goes from one state in one substatechart to
another state in another substatechart: if |substc(s)| > 1, then ∀ST′,ST′′ with ST′ ∈ substc(s),
ST′′ ∈ substc(s) and ST′ 6= ST′′, states(ST′) ∩ states(ST′′) = ∅.

Final states in a substatechart do not halt the execution of the statechart containing the
substatechart reaching its final state. In other words, final states are not halting states. Note
this is different than UML, in which a final state may be a halting state.

4.1 Remote Substatecharts

An interface may compose the behaviour of other interfaces. For a statechart ST we de-
fine the function remotesubstc(ST) as the substatecharts in ST representing behaviour from
other interfaces. Formally, assuming IS to be the set of all interfaces, and having the interface
I ∈ IS with behaviour ST = intbehav(I), then ST′ ∈ remotesubstc(ST ) if ∃I ′ ∈ IS such that
intbehav(I ′) = ST′. Similarly we define the function allremotesubstc(ST) as the statecharts in
allsubstc∗(ST) representing behaviour from other interfaces.

Graphically, a notation shall exist that indicates whether a substatechart is remote, and
whether a composite state contains remote substatecharts. If a substatechart is remote, the
notation should also include the name of the interface being composed.

4.2 Transitions

The transition labels of a statechart are determined by the relation L = 2E ×G × A, where E
is the set of events in the statechart. G are guard conditions on local variables V , plus true
which is used to indicate that the transition label does not impose conditions. A is the set of
uninterruptible actions, plus the symbol ⊥. ⊥ is used to represent that no uninterruptible action
is taken. We define functions events, guards and vars on L, such that events(labels(ST)) = E,
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guards(labels(ST)) = G, and vars(labels(ST)) = V . Also, for a label l = (N, g, a), with N ⊆ E,
l ∈ L, we define functions levents(l) = N , lguard(l) = g, and laction(l) = a.

In most cases, the set of events N specified in a transition label will contain only one event.
Multiple events N = e1, ...en with 2 ≤ n < |E|, trigger a transition only after all events ei ∈ N
have occurred, and no event ej ∈ N with ej 6= ei has expired before ei occurs – recall that events
expire after an associated TTL (see Section 2.1). As will be shown later, multi-event triggered
transitions are used to synchronize multiple concurrent substatecharts in a composite state (see
Section 4.5).

Two different substatecharts in an interface can refer to the same local variable in their
transition labels only if the substatecharts are both local to the interface. Hence, for a interface
statechart ST, with both ST′ and ST′′ in allsubstc∗(ST), if vars(labels(ST′))∩vars(labels(ST′′)) 6=
∅, then ST′ /∈ remotesubstc∗(ST) and ST′′ /∈ remotesubstc∗(ST). This requirement guarantees
that communication between different interfaces is not performed using shared variables.

4.3 Internal and Distributed Events

In a statechart, we distinguish between events that are generated internally by the component
for its own functioning and distributed events that are advertised/published/subscribed to via
invocations to the adv, pub, subs operations. Internal events are broadcasted within an inter-
face, while distributed events are communicated to other components subscribed to the event.
Therefore, distributed events are primarily used for inter-component interaction.

For a statechart ST, part of an interface < iname, Ine,Oute,ST, rimpl, ttl >, we define
the functions intevents and distevents, such that intevents determines the events in E =
events(labels(ST)) that are internal events, and distevents determines the events in E that are
distributed events. E = distevents(E) ∪ intevents(E) and distevents(E) ∩ intevents(E) = ∅.
Also, if an event is a distributed event, then there is a state in the statechart or any of its
substatecharts such that the event is announced and published, or subscribed to. Note that we
assume that operations adv, pub, subs are interruptible operations and, therefore, need to be
modeled as states in a statechart.

More formally, if e ∈ distevents(events(labels(ST))), and R is the set of roles in the system,
then:

(a) Advertisement and publishing of e is done in a simple state of the statechart: ∃r, ttl, si, sj

with r ∈ R, < typeof(e), r, ttl >∈ Oute, si ∈ simple(states(ST)) and sj ∈ simple(states(ST)),
such that si ≡ adv(typeof(e)) and sj ≡ pub(e), or

(b) The event e is subscribed to in a simple state of the state chart: ∃i, s with < i, typeof(e) >∈
Ine, s ∈ simple(states(ST)), such that s ≡ subs(i, typeof(e)), or

(c) Advertisement and publishing of e, or its subscription is done in a substatechart: ∃s, ST ′

with s ∈ comp(states(ST)) and ST’ ∈ substc∗(s), such that:

(c1) ∃si, sj with si ∈ simple(states(ST’)) and sj ∈ simple(states(ST′)), such that si ≡
adv(typeof(e)) and sj ≡ pub(e), or

(c2) ∃i, s with < i, typeof(e) >∈ Ie, s ∈ simple(states(ST′)), such that s ≡ subs(i, typeof(e)).

Where typeof(e) is a function that specifies the event schema of an event e. Recall that
substc∗(s), is the recursive application of function substc, on s and all substatecharts in substc(s).
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[ action completed ]event

Figure 1: Synchronous and Asynchronous Event Processing

We are not the first ones to propose a separation between the event model used for the
internal behaviour of a component and the event model used for inter-component interactions.
For example, in RSML, the Requirements State Machine Language [18], events are broadcasted
within a statechart modeling a single physical component. Inter-component interaction in RSML
is modeled via addressed (directed) events: a component executes a send operation that specifies
the component intended to receive the event. The recipient receives the event by executing a
receive operation. Addressing of events has the disadvantage of increasing the coupling between
components. This is because components need to be aware about what other components are
interested in their events. In contrast to RSML, the use of a publish/subscribe mechanism, as
proposed in our event model, provides inter-component communication via unaddressed (also
known as undirected) events.

If a statechart has states representing behaviour from other interfaces (remote substate-
charts), only distributed events can be used to communicate with the remote substatecharts.
Hence, internal events can be reacted to only by states representing local behaviour. Formally,
for every statechart ST, and every substatechart ST′ ∈ allsubstc∗(ST):

intevents(events(labels(ST))) ∩ intevents(events(labels(ST′))) = ∅

4.4 Asynchronous Event Processing

In contrast to Harel statecharts, events in interface statecharts are processed asynchronously:
a component may not react instantaneously to an event, and the reaction may take time to
execute. Figure 1a shows part of a statechart with states A and B. In this figure, the statechart
reacts instantaneously to the event event by executing the action action. action executes instan-
taneously and, therefore, is uninterruptible. Figure 1b shows the same part of the statechart
with the assumption that events are handled asynchronously. Like UML statecharts [16], in our
statecharts, events are queued until the statechart is ready to process them. Unlike Harel and
UML statecharts, a state is required to model the execution of the reaction to the event. Hence
the statecharts here used are closer to flowcharts than other statecharts proposed elsewhere [24].

4.5 History, Variables, and Interlevel Transitions

History and deep history states are allowed.
There is no shared memory between components. Hence, variables are only supported for

statecharts modeling the behaviour of non-derived components. Guard conditions on state
transitions can only specify conditions on local variables.

In order to be able to analyze the behaviour of component interfaces at different levels of
containment, it is required that the statecharts modeling the behaviour be encapsulated. In
other words, it should be possible to analyze a substatechart independently of the operation
of the statechart containing the substatechart. Conversely, it should be possible to analyze a

9



A B C
e1 e5

e2 e6

ST

B1

B2

B3

A CB
e1 e5

e6

e2

e3

e4

e5

ST

(a) (b)

Figure 2: Statechart Boundary-crossing

statechart without knowing the operation of its substatecharts. Simons [24] enumerates several
properties that statecharts must have to encapsulate behaviour. From these properties, we
require the following:

• Boundary-crossings transitions are not allowed. Transitions do not lead directly from
or to substates of composite states. Hence, for a statechart ST we have that ∀ST ′ ∈
allsubstc∗(ST ), states(ST ) ∩ states(ST ′) = ∅. The statechart in Figure 2 illustrates why
boundary-crossing transitions break statechart encapsulation. In Figure 2a states A and C
are simple states, while state B is a composite state. Figure 2b shows the same statechart
with the substatechart for state B expanded. There are two boundary crossing transitions
in this statechart: from state A to state B2 when event e2, and from state B3 to C when
event e6. The transition from A to B when e2, prevents the analysis in isolation of the
statechart in 2a. This is because in order to analyze the statechart one needs to be aware
of the substate B2, a state not at the same level of abstraction as A, B, or C. The other
boundary crossing transition, from state B3 to C, prevents the analysis in isolation of the
substatechart for B, since one needs to be aware of state C. In this case C is not a the
same abstraction level as B1, B2, or B3.

• Events are generated at final states. When a substatechart reaches a final state, it must
generate an event that lets the outer statechart know that the substatechart has reached
a final state. Formally, ∀ST ′ ∈ allsubstc(ST ), then ∀(s, l, sf ) ∈ trans(ST ′), with sf ∈
final(states(ST ′)), and l = (N, g, a), N ⊆ events(labels(ST )), then N 6= ∅. These events
are called “outcome events”. As an example, in Figure 3, events o1, and o2 are the outcome
events for the substatechart in state B.

Figure 4 shows the case when a composite state contains two substatecharts operating
concurrently. In this example, state C is reached only after both substatecharts in B
reach their final states. The transition from B to C is triggered after both o1 and o2
occur. If o1 and o2 occur at different times, the state C is not reached if the TTL of the
first occurring event is reached before the other event occurs.
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Figure 4: Substatechart Synchronization

• Transitions from composite states can only be triggered by outcome events. In UML and
Harel statecharts it is possible to have a transition leaving a composite state, where the
event triggering the transition is not an outcome event. Figure 5a shows an example of
a statechart with a transition from the composite state B to state C triggered by an
event e4 that is not an outcome event of any substatechart in B. In both UML and
Harel’s statecharts, this construct is almost equivalent to a transition from every substate
within the composite state, to the state the transition leads to (Figure5b). It is not
completely equivalent because in the statechart in Figure 5b there is nondeterminism if
the substatechart for B is in state B2 and both events e3 and e4 occur. On the other hand,
the statechart in Figure 5a is deterministic. This is because both UML and Harel handle
events e3 and e4 with different priority. In the case of Harel, state C is selected as the
next step. UML reverses the priority, and state B3 is selected instead. By giving priority
to the inner state B3 over the outer state C, UML statecharts are difficult to analyze.
The reason is that, to decide the next state in a statechart, it is required to inspect any
relevant substatecharts. In Harel statecharts, there is not such problem, since the outer
state will always have the priority over any active substate. In any case, we disallow such
a construct since it contains boundary crossing transitions. Formally, for a statechart ST
and ∀(si, l, sj) ∈ trans(ST ) with l = (N, g, a), if si ∈ comp(states(ST )), then ∀e ∈ E,
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Figure 5: Transitions from Composite States

∃ST ′ ∈ substc(si), (s′, l′, s′f ) ∈ trans(ST ′), s′f ∈ final(states(ST ′)), l′ = (N ′, g′, a′) such
that e ∈ N ′.

Note that since all substatecharts are statechart themselves, these requirements propagate
down all levels of statechart containment.

4.6 Other Statechart Considerations

We assume no free boundary transitions. Hence, each transition must be labeled with an event
and/or condition and/or action. Note any action in a transition is assumed to be uninterruptible.

5 Distributed Event System Metamodel

Based on the distributed event model described in the previous sections, and some of the dis-
tributed event systems proposed elsewhere [4, 22], this section introduces a metamodel for dis-
tributed event systems. Structural and control models are used to describe the reactive compo-
nents interfaces in the system. A runtime model describes the entities in the system while in
operation. Finally, the relationships between interfaces are described.

5.1 Structure and Control

Components in a DEBS exhibit behaviour described by reactive component interfaces. Struc-
turally, these interfaces specify the distributed events the components generate and react to.
Each interface also has a statechart that describes the execution of the component implement-
ing the interface as it pertains to the generation of, and reaction to, distributed events. The
UML class diagram in Figure 6, shows the structure of the interfaces. Distributed events are
themselves composed by data attributes of predetermined data types.

Actual code (e.g. library, program, module, etc) implementing an interface is represented in
Figure 6 by the interface implementation class. A given interface may have multiple implemen-
tations, and these implementations are run by the components.

Interfaces may derive some of their behaviour from other interfaces. Section 5.3, list some of
the relationships that occur when interfaces are composed. Behaviour specified by a statechart
can compose behaviour from other statecharts as well.
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Figure 6: DEBS Metamodel - Structural View

Logically, components are grouped in regions. As shown in Figure 7, a region is always
within another region, forming a tree-like hierarchical structure. At the root of the hierarchy
is the “world” region (not shown in the Figure). Two kinds of components exist in the system:
application and coordination components. Application components run application-specific in-
terface implementations that are not related to the basic operation of the DEBS and its services.
Coordination components, on the other hand, are in charge of the administrative activities in
the DEBS. We assume that these administrative activities are implemented via events, although
some systems may provide an explicit (synchronous RPC-like) implementation. Irrespectively
of their implementation, administrative activities include the management of component mem-
bership, roles, event schemas, and interfaces.

Component membership services allow components to discover, join, and leave regions. Role
coordination services, allow components to create and delete roles, and to grant (revoke) roles
to (from) other components, regions, and roles. Granting a role to a region is equivalent to
granting the role to every component in the region. Also, every component that joins the region
will be assumed to have been granted the role, until the role is revoked from the region.

Roles are used to restrict which components can execute interface implementations, and
which components can react to events generated by an interface implementation. Only compo-
nents that have been granted the required roles, are permitted to execute these functionalities.
Enforcement of the required roles is done by the role coordination services.

As shown in Figure 7, a role can be granted to another role. The restriction that both roles
belong to the same region is assumed in this case. The reason for this restriction, is that if a
role r in region reg is granted to a role r′ in another region reg′, then the region reg where
the granted role r is defined looses control of the role. This is because the role r can then be
indirectly granted to a component c′ in region reg′, if the role r′ is granted to c.

Event schema coordination services allow the creation, deletion and modification of event
schemas. Interface coordination services provide similar functionality with regard to interfaces.
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5.2 Runtime

Execution of a DEBS starts by launching the components in charge of managing the “world”
region. Once the main region has been setup, components can join the region. These components
can create other regions, roles, event schemas, and interfaces. Time-to-live values are specified
when event schemas and interfaces are created. Event schemas and interfaces are automatically
removed from the systems after their TTLs. TTLs, specified when the interface is created,
indicate the TTL of each event generated by implementations of the interface (Figure 8).

Components run on hardware nodes. Each node has a clock that is periodically synchronized
with time servers in the system. Although, this does not guarantee that all nodes’ clocks will run
in sync, it is assumed that their clocks are running close to each other. Some of the operations
executed by components are listed in Figure 8. These operations are executed via interface
implementations.

5.3 Interface Relationships

The simplest relationship between components in a DEBS is event visibility: two components are
related if they can potentially react to the same events [12]. In the event model here proposed,
event visibility is related to the concept of access roles granted to the components. Hence, two
components have the same event visibility if the roles they have been granted allow them to
subscribe to the same events. Therefore, event visibility is, at least in our proposal, an access
based relationship.

Since components implement reactive component interfaces, it is possible to analyze the
relationships between components at an interface level. This analysis can be done by looking
at the actions that interfaces perform on events. Another option is to analyze the interactions
between interfaces when implementing application-level functionality. Interface relationships
defined based on event actions are called event-centred relationships. Interface relationships
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based on interactions are called structural relationships.

5.3.1 Event-Centred Relationships

Relationships between interfaces can be defined based on the actions that the interfaces perform
on the events. Interfaces can generate, forward, filter, transform, and consume events:

• A generator interface for an event, is an interface that is able to sense a happening from
the environment or its own state and generates (publishes) an event to represent this
happening.

• A forwarder interface reacts to an event by publishing another event with exactly the same
event schema as the original event.

• A filter interface, reacts to events by publishing another event with exactly the same event
schema as the original event if a condition holds. This condition is typically expressed in
terms of the received event itself or its context, but it may also include conditions on the
environment, the interface’s own state, or other previously received events.

• A transformer interface reacts to an event by publishing one or multiple events with event
schemas resulting from the transformation of the original schema. Possible event trans-
formations are: translation, aggregation, splitting, and enrichment [8]. Translation occurs
when the data in the event is modified to another representation. Semantically, the trans-
lated data may or may not be equivalent to the original data. Aggregation represents the
case when data from more than one event is aggregated into the event schema of another
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Figure 9: DEBS Metamodel - Event-Centred Relationships

event. Splitting occurs when data from one event is republished as several events. Enrich-
ment occurs when the data from the received event is complemented with data from other
sources.

• A sink interface for a given event, is an interface that does not publish other events as a
reaction to the received event.

Relationships between interfaces can then be defined based on these actions. Figure 9 shows
the relationships. The simplest relationship between two interfaces is the source-for relationship.
This relationship occurs when one interface is the source of events that another interface is
subscribed to.

5.3.2 Behavioural and Structural Relationships

Interface relationships can be characterized by studying the compositions between interfaces
when carrying out application level functionality. The UML class diagram in Figure 10 shows
the relationships:

• The simplest and most common relationship is the reacts to relationship. One interface
I =< iname, Ine, Oute, ST , rimpl, ttl > reacts to another interface I ′ =< iname′, In′e,
Out′e, ST ′, r′impl, ttl′ > if there is at least one event generated by I ′ that I subscribes
to, and the behaviour ST ′ of the interface I ′ specifies a reaction to the event. Formally,
∃o′e =< e′, r′, ttl′ > with o′e ∈ Out′e such that < e′, iname′ >∈ Ine.

• One interface I delegates the handling of an event to another interface I ′, when the interface
I, forwards all received events from an interface I ′′ with a particular event schema, to I ′.
If the interface I ′ reacts to events from I only, and all events published by I ′ are only
handled by i, then I encapsulates the behaviour of I ′.

• One interface I extends another interface I ′, when the functionality provided by I is a
superset of the functionality provided by I ′ and the behaviour of I matches the behaviour
of I ′ with regards to the events it generates and the events it reacts to.

• Interfaces exhibit some of the part-whole relationships found elsewhere [29, 20, 1]. In par-
ticular, an interface I may implement functionality required by another interface I ′ to carry
out a particular activity. In such a case I is member-of the activity being implemented by
I ′. Note there is no exclusivity nor life-cycle requirements in this relationship. Also note
that this relationship is transitive. When the interface I exists only while I ′ exists, and
its functionality is only performed for I ′, then there is an integral part-of relationship.
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Some of these relationships model interactions occurring in other types of systems. For
example, the delegation relationship is similar to the relationship that exists between a class in
its superclass in object orientation. In OO, method invocation is delegated from a class to its
superclass when the subclass does not provide an implementation for the method. In the case
of DEBSs, the delegation models the case when the reaction to the event is delegated from one
interface to another.

5.4 Other Relationships

Besides interface relationships, many other relationships occur in DEBSs, including between
regions, between regions and interfaces, and between components and interfaces.

The simplest relationship between regions is the contained in relationship, used to represent
the fact that a region is immediately contained within another region. A region can only be
immediately contained within one other region. Other relationships between regions can be
established when administrative components of one region server as administrative components
of other regions. Similarly, event schema and interface definitions in one region may be used by
interfaces in other regions. For example, one can envision widely used event schema definitions
in the “world” region being available to all other regions. In this case, relationships can be
established between the regions and the interfaces that use the event schemas defined within
those regions.

Components create interfaces and run interface implementations. Besides these obvious rela-
tionships, the context provided by a component (e.g. its location), may influence the behaviour
of an interface. The study of the relationships between components and interfaces is part of our
ongoing investigation into composition of reactive component interfaces.

6 Related Work

Several models have been proposed to represent event systems and the composition of function-
ality in these systems. Some representative works use Process Algebra [7, 9], Interface Automata
[6], and variations of Finite State Machines [3]. These works differ from our proposal in the types
of event systems they model, and/or the communication mechanisms assumed between compo-
nents. For example, [7] assumes an event models with centralized dispatching of events, whilst
[9] allows communication of components via global variables. [9] is interested in computing the
behavioural specification of the whole system, while we are interested in the the ability to model
component behaviour and their compositions.

With regards to structuring DEBSs, we are only aware of the proposal to use event visibility
[13] as an structuring abstraction.
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Process Algebra and Trace Semantics In [7], Dingel et al. recognize the lack of a estab-
lished methodology for specifying and verifying systems where the invocation of functionality is
done via events (“implicitly” is the term used by Dingel and other researchers). Dingel et al.
argue that such a methodology should be compositional: the verification of a component should
be decoupled from the verification of the system in which its events are bound to other com-
ponents. Otherwise changes to the binding between publishers and subscribers would require
re-verification of the components that publish the events 1.

In the same work, Dingel et al. propose a formal model for the compositional verification of
synchronous implicit invocation systems. In their model, a system S consist of a set of methods
M . A distinguished dispatcher method disp ∈ M stores and delivers the events. Another
distinguished method mEnv ∈ M represents the environment where the system executes. A
method m ∈ M is a UNITY program [5]. Actions in the method, can be regular UNITY actions
plus communication actions that allow the method to announce and consume events. Behaviour
of each method is represented by an automaton. First order linear time temporal logic without
the next operator is used to specify the ongoing behaviour of the system.

In order to define the semantics on an event, the environment is constrained to be a method
that just announces the event. Syntactic conditions on the variables used by each of the methods
are used to specify groups of methods that are independent. The idea is that two sets of methods
are independent if the methods in one group do not mention the variables used by the methods
in the other group. The intention of this definition, is to find independent groups of methods, so
that reasoning made within each of the groups can be generalized to the whole system. Hence,
a verification of an independent group implies the same verification for the whole system. This
is in essence the compositional reasoning that Dingel et al. argue a verification formalism for
implicit invocation systems should have.

Dingel’s work applies to centralized synchronous systems. No consideration is made for
semantical issues in event-based systems related to delivery policies, event-type issues, event
distribution guarantees, nor event composition. It is not clear if by considering each event in
isolation, the semantics of the event can be defined/studied. This is related to the fact that in
Dingel’s work, an event cannot cause the announcement of other events.

Interface Automata Interface Automata [6] has been used to describe the behaviour of
reactive systems [25, 26]. Interface Automata is an automata-based language used to capture
both input assumptions about the order in which a component reacts to events, and output
guarantees about the order in which the component generates events. Interface compatibility is
decided based on an optimistic approach. In a traditional pessimistic approach two components
are compatible if they can be used together in all systems. In the optimistic approach proposed
with Interface Automata, a helpful environment is assumed: two components are compatible if
they can be used together in at least one design. The advantage of the optimistic approach is
a simpler model. Interface automata interact through the synchronization of input and output
events. Internally, actions of concurrent automata are interleaved asynchronously. This makes
them different than our proposed statecharts, where both the interaction between interfaces
and internal substatecharts is done asynchronously. Another major difference with our work, is
their assumption that messages are not queued. In Interface Automata, the arrival of a message
while on an state not prepared to handle the message, would indicate an incompatibility between
the environment and the automaton. In statecharts, on the other hand, the message would be

1The terms “announce” and “register” are used by Dingel for “publish” and “subscribe”
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queued until the statechart is at a state ready to handle the message.

Finite State Machines In [3], Bultan et al. analyze component composition by looking at
the conversations between the components. A conversation is the concatenation of all the events
exchanged by the components being composed. The behaviour of the components themselves is
represented by Mealy machines [19]: finite state machines with input and output. A component
is then viewed as a Mealy machine that decides, based on the received events and the events
already sent, if a new event should be sent. In contrast to interface automata, and similarly to
our statecharts, Mealy machines interact asynchronously. But in order to perform the analysis
of the compositions, it is required to have a global watcher that keeps track of all events as
they occur. The authors start by trying to deduce global behaviour by analyzing the behaviour
of the components. They find this bottom-up approach flawed and propose to perform a top-
down approach instead. Their argument is that given a conversation, it is not possible to find
a regular language (“global behaviour”) as its core. This is because of the asynchronous nature
of the interactions. In the top down approach, on the other hand, they start with conversations
that represent the intended global behaviour of the system, and construct Mealy machines
that realize that conversation. Similarly to our work, the authors final goal is to understand
component composition in distributed systems. Our approach diverges from theirs since our
focus is to study the composability of functionality in DEBSs, instead of deducing a global
(local) behaviour based on a local (global) behaviour.

Structuring DEBSs Fiege et al. propose to use event visibility, and its abstraction scopes
as a mechanism for encapsulation and information hiding in event-based systems [13, 12, 21]. A
scope is a set of event producers and consumers. Visibility of events produced within a scope
is limited to the consumers in the same scope. Scope interfaces allow the exchange of event
notifications with the rest of the system. In our proposal, event visibility is considered an access
restriction issue instead of a engineering construct. Moreover, although by doing a mapping
between scopes and regions one could implement a scope-based system in our generic DEBS,
we consider that a more essential analysis of the relationships between components in a DEBS
is required. Beyond whether or not two components are within the same scope, we are more
interested in studying how components interact via events, and how functionality is composed
based on those interactions.

7 Conclusion and Future Work

We have presented a generic DEBS to be used in the study of modularization of applications
where functionality is composed via events only. Interfaces specify not only the events generated
and of interest to components, but the behaviour that a component must exhibit when the events
are generated and received. Gem, an initial implementation of the DEBS is described in [27].

Based on the proposed metamodel and the initial DEBS implementation, we are currently
working towards formalizing the DEBS computational model. Our intention is to use the formal-
ization to represent the composition of functionality in DEBS applications, and in combination
with the DEBS implementation, to study the properties of these compositions.
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