
Incremental Call Graph Construction for the Eclipse IDE

University of Waterloo Technical Report No. CS-2009-07

Usman Ismail
David R. Cheriton School of Computer Science
University of Waterloo Waterloo, ON, Canada

uismail@uwaterloo.ca

1. INTRODUCTION
A call graph is defined as a set of directed edges connect-

ing call sites (statements invoking method calls) to corre-
spondingtarget methods [6]. It is a very powerful tool for
program analysis and can be used to: help plan testing strate-
gies, reduce program size (by eliminating sub-routines that
are not invoked) and help programmers understand and de-
bug large programs. Often the method invoked due to a spe-
cific call is determined at runtime based on the context in
which the call is made, hence in a call graph a single call
site could have multiple target methods. This is especially
evident in object oriented languages where inheritance and
polymorphism make method calls highly dependent on the
execution context. To get the set of target methods associ-
ated with a call site we can either observe one or more exe-
cutions of the program and note all methods invoked from a
call site (dynamic call graph generation) or statically deter-
mine the possible methods (static call graph construction).
Dynamic call graphs tend to under-estimate the number of
target methods for a call site where as static call graphs tend
to over-estimate this this number. A theoretically ideal call
graph is the union of the dynamic call graphs over all pos-
sible executions of the program. Dynamic call graphs are
not safe and generating static call graphs is computationally
expensive. To ameliorate the overhead we propose an incre-
mental call graph generation approach which will compute
graphs for fragments of the program as they are being de-
veloped. It will then recursively combine fragments until a
graph for the whole program is generated. The graph will be
as precise as corresponding traditional algorithms and will
present, upon completion, a safe call graph.

2. MOTIVATION
The theoretically ideal call graph is not computable for

arbitrary programs and the dynamic call graph is not guar-
anteed to be safe; it may not include method calls that are
possible in some executions. This is undesirable if we are
using the graph to eliminate unused subroutines or compute
the coverage of a testing strategy. Therefore for the purposes
of this project we are concentrating on static call graphs. As
stated earlier static graphs overestimate the number of target
methods for each call site. The result of the static graphs is

still safe but not precise. This imprecision will curtail the
possible benefits of any optimizations applied on the pro-
gram using the graph and will under-report coverage of a
testing strategies. There are many techniques that generate
static call graphs, each has a different computational over-
head and each overestimates the number of target methods
to a different degree. We discuss several call graph gen-
eration techniques in section 3.1; however it is intuitively
obvious that techniques that are more precise also tend to
be more computationally expensive as they require complex
analysis. Generating safe and precise call graphs for large
programs consumes considerable time and system resources.
This motivates the need for an incremental call graph gener-
ation scheme that can amortize the work during the develop-
ment of the program. This approach maps well to modern
software engineering methodologies where an initial skele-
ton code is developed for a project and then method stubs
are filled in by various developers over time. We can gener-
ate call graphs for small fragments of the program and then
combine them as the program nears completion. The work
done for generating the graph fragment will not be repeated.
This makes it feasible to apply complex and expensive call
graph generation techniques to get more precise call graphs.

3. RELATED WORK

3.1 Call Graph Generation Techniques

• Reachability Analysis (RA):

The most basic call graph construction scheme is
called Reachability Analysis (RA) and has many vari-
ations in literature such as [9]. RA only takes into
account the name (or sometimes the signature) of a
method, hence a method named ‘m’ is marked as
reachable if a reachable method contains a virtual call
‘e.m()’ where ‘e’ can be any object. This proce-
dure is recursively applied on all methods starting with
the program entry point to generate the complete call
graph. The RA call graph is very conservative as it ig-
nores class hierarchy and hence links a call site to all
methods throughout the program which share a name.
However it is computationally inexpensive as the only

1

class A
method 1

class B
method 2

class C
method 2

class D
method 2, 3

class E
method 3

class F
method 2

Figure 1: Sample Class Hierarchy

state required is a set of all methods in the program.
This list can be pre-computed and stored in a hash ta-
ble, mapping names to actual methods. At each call
site RA needs to lookup the map and add all methods
matching the call to the set of target methods for the
call.

• Class Hierarchy Analysis (CHA): Note that RA gener-
ates an imprecise set of target methods because it lacks
information about the class hierarchy of the object on
which the method is called. CHA [5] addresses this
problem, for every call ‘e.m()’ we filter the set of tar-
get methods to only those defined in static type1 of ob-
ject ‘e’ or one of its subclasses. For example, Figure
1 shows a sample hierarchy. If method 2 is called on
an object of static type class B then B.2() and D.2()
are both target methods. If neither the class or any
of its subclasses contain a method ‘m’, then the tar-
get method is the one defined in the nearest ancestor of
‘e’ that defines ‘m’. For example, if method 1 is called
on an object of static type class C then only A.1() is a
target method. CHA is more precise then RA but also
requires more state; a representation of the class hier-
archy and all methods belonging to each class. At each
call site the algorithm needs to lookup the class hier-
archy and use inheritance rules to determine the target
methods.

• Rapid Type Analysis (RTA): CHA is considerably more
precise then RA but it still overestimates the number
of target methods as it includes methods from all sub-
classes. Not all of the subclasses have instantiated ob-
jects in the context of the call site, The uninstantiated
subclasses cannot contain target methods. RTA [2] de-
termines the set of classes instantiated in the context of
the call site and uses this information to filter the num-
ber of possible target methods further. For example in
Figure 1 if method 2 is called on class C but and there
is no live object of class F in the method where the call

1“Static Type” refers to the declared class type of pointer/refernece
variable, the actual object pointed to by the variable couldbe any
sub-class, implementing class in case of an interface.

Boundary Entry

Boundary Call

Boundary
Return

Entry Summary

Call Summary

Fragment

Analysis
Framework

Figure 2: Program Fragment

originates then F.2() is not included in the call graph.
RTA is more expensive in terms of computation and
memory overhead as it needs to maintain a list of all
instantiated object types for each call site in addition
to the state needed by CHA . However the added com-
plexity can lead to a substantial increase in precession
especially in programs with extensive use of polymor-
phism.

• Advanced Techniques:

There are a myriad of advanced techniques to gener-
ate more precise call graphs (XTA [10], Va-DataReach
[11]) however the contribution of this work is to imple-
ment an incremental approach call graph construction
as opposed a highly precise algorithm. Consequently
we use RTA to implement our approach as opposed
more optimized approaches. We implement our ap-
proach in such a way as to allow for the integration of
other schemes at a later date.

3.2 Call Graphs of Program Fragments
Rountev et al. [8] introduce the concept of data flow anal-

ysis on program fragments as opposed to whole program
analysis. They define a program fragment as an arbitrary
subset of procedures contained in a program. Each frag-
ment has an analysis framework defining the calls within
the boundaries of the fragment. Each fragment can also
have one or more; incoming calls (Boundary Entries), outgo-
ing calls (Boundary Calls) and returns from boundary calls
(Boundary Returns). The boundary entries, calls and returns
define the interaction of the fragment with the rest of the pro-
gram2. Associated with every boundary entry is a summary
of the rest of the program before entering the fragment. Con-
versely associated with every boundary call is a summary of
2Ignoring the side affects of global state

2

Boundary
Entry

Boundary Call

Boundary
Return

Remote Intilizations

Method

Local Initilizations

Object Attributes

Figure 3: Program Fragment

the state of the fragment before a call is made outside the
fragment. The exact contents of the summary are dependent
on the type of analysis being implemented. It is important
to note however Rountev et al. envisage a pre-computation
stage applied to the whole program prior to fragmented anal-
ysis. Furthermore computation of program call graph is a
necessary part of this pre-computation stage. Without a call
graph it is not possible to compute the boundary entry and
the associated summary. In our approach, section 4 we ad-
dress the issue of incomplete information.

4. OUR APPROACH
We implement an incremental call graph construction mech-

anism integrated into an IDE such as Eclipse [1]. To the best
of our knowledge the most comprehensive call graph gen-
eration tool for eclipse isCall Hierarcy [7]. Call Hierarchy
generates a call graph based solely on the static types and
ignores late binding of objects and methods. In addition it
generates a call graph only on user demand and does not
reuse results of one invocation to optimize the next.

To implement incremental call graph construction we bor-
row the concept of aProgram Fragment from Rountev et al.
[8] see section 3.2. We however note that the concept of a
fragment does not map to incremental call graph generation.
There is no set of methods that we can assume are consis-
tent and hence there is no clear demarcation of which meth-
ods should be included within the boundary of the fragment.
Hence we assume each method is in its own fragment (See
figure 3), each call into a method is a boundary call and each
return a boundary return.

We use the RTA algorithm to generate call graphs but
modify and extend it to handle incomplete programs and
to reuse computation from earlier invocations. The non-

incremental RTA is insufficient for a number reasons, it needs
a set of reachable methods which is initialized to program
entry points. The program entry points may or may not ex-
ist when the program is incomplete hence we cannot rely
on the reachability set. Furthermore RTA assumes a traver-
sal of the graph such that all call sites are processed before
their target methods and therefore information about the live
types of parameters passed to methods is known. With in-
complete programs the call site may not yet be defined and
hence there is no information available about the possible
live types passed into a method as parameters. Lastly in-
complete programs can expect changes to the class hierar-
chy, method definitions, and even the source code of meth-
ods at anytime and the current RTA algorithm is unable to
handle such changes.

We propose an approach called Incremental Rapid Type
Analysis (IRTA) that extends RTA to incrementally incor-
porate changes. After its first invocation IRTA will build a
complete call graph of all method calls reachable from the
entry points (if they are defined) and also all method calls
reachable from an arbitrary method selected by the user. We
envisage that users will run an iteration of the incrementalal-
gorithm on a method immediately after they make changes
to it. We can automate this process by hooking a callback
to the relevant event. Each iteration will then output a cor-
rect and consistent call graph although the graph may have
several distinct connected components. Furthermore some
of the components may not be reachable because they do not
contain a program entry point. As more methods and method
calls are added some of these components will merge into
larger components. At the end of any iteration the user can
isolate the reachable components and these collectively form
the program call graph that would have been output by static
RTA. A high-level pseudo code for our approach is presented
in algorithm 1 and details are provided in subsequent sec-
tions.

Algorithm 1 Pseudo code for IRTA
1: Build / Update Class Hierarchy
2: Find Program Entry Points (Add to work list)
3: Find Last Edited Method (Add to work list)
4: Pull method from head of list
5: Parse method for local declarations
6: Parse method for method calls
7: Find target methods corresponding to call site
8: Add Links between methods for calls and returns
9: Propagate live types across calls and returns

10: Find methods that need to be reprocessed and place back
in work list

11: Output all connected components

4.1 Class Hierarchy
The first step in the algorithm is to analyze the class hier-

archy and build a representation in memory for use by later

3

JavaClass

MethodField

Call Site

Return Pointer

Local
Initializations

Remote
Initializations

ParametersTarget Method

Return ValueCall Site

TypeVariable

TypeSource

Figure 4: System Overview

stages of the algorithm. In this stage we identify, for each
class, its fields, methods (as shown in Figure 4) and store
them in memory. We need to identify which classes have
been added to or removed from the hierarchy since the pre-
vious invocation. We therefore traverse all classes in the pro-
gram and for each check if it exists in the representation. We
also check if any class listed in representation is no longer
present in the program. In addition a class defined previously
may have fields or method added to it or removed from it. To
account for these we compute a hash over the signatures of
fields and methods and store it with the class. We recom-
pute the hash every time IRTA is invoked and if the stored
hash differs from the computed hash we know that we need
to re-parse the class to extract field and method definitions.
Note that if a user changes the signature of a method it is
modeled as a deletion of the old method and addition of a
new one. While parsing method signatures we identify the
program entry points and add the corresponding methods to
the work list. Furthermore we identify the last edited method
and add that to the work list as well. These changes are up-
dated in the representation before we start processing source
code within methods to generate call graph.

4.1.1 Adding and Removing Methods

In addition to an updated class hierarchy the previous
phase of the algorithm outputs a set of methods that are
added to the code base (the addition of a class translates to
addition of all its methods). A new method affects the call
graph output from the prior iteration in several distinct ways:
(1) it contains new call sites that must be parsed, (2) it con-
tains new initialized types that it propagates to other meth-
ods and (3) it may be a target method for an existing call
site. 1 and 2 are handled when the method is processed as
described in Section 4.2. The third effect however requires
the reprocessing of methods that are already processed. For
example call site ClassA.Method1 maps to target method

ClassB.Method2 and ClassB is a sub-class of ClassC. If
we now add a definition of Method2 to ClassC then any
call sites mapping to ClassB.Method2 may now also map
to ClassC.Method2. To incorporate these new mappings we
reprocess all call sites that map to a method thatmatches a
newly added method. We define two methods as matching
if the class one method is defined in, inherits from the class
defining the other. In addition, both methods must have the
same name and corresponding parameters must becompat-
ible. Parameters are said to be compatible if the class type
of either inherits from the other. Removing method calls
is much simpler because we already have references of call
sites and they reference target methods for the purposes of
propagating return values (see Section 4.2.2). We remove all
calls emanating at referencing the deleted target method by
following the these return pointers. The details of removing
a method call are given in Section 4.2.1.

4.2 Method Parsing
The algorithm has a worker thread which pulls a method

from the head of the work list and parses its source to ex-
tract all variable declarations, object instantiations and call
sites. The variable declarations and the object instantiations
are used to determine the set of live types for RTA. We also
maintain a set of key-value pairs mapping variable names to
their static types. If methods are overloaded to accept dif-
ferent parameters, the set is useful for determining which
call site maps to which target methods. We also maintain a
key-value pair set of live types storing all initialized types,
local and remote. We initially have no information about re-
mote initializations (Types that are received from non-local
sources, e.g. method parameters and return values). There-
fore we initially assume there are no remote initialized types.
Method parameters and return values from method calls are
initially assumed to return only their statically declaredtypes.
As the concrete types of interfaces may not be statically de-
terminable, in fact the concrete type may not even be defined
we leave support for interface declarations to future work.

Once methods are processed they propagate their initial-
izations, as described in section 4.2.2 and we can update the
call graph accordingly. Note that remote initializations are
stored as a key value mapping from source of the initializa-
tion to the type. Therefore a method may get the same type
from multiple remote sources. This is important because if
one or more of the sources are removed we need to know
if that remote type is still propagated from alternate ones.
Lastly the set of live types also contains the fields defined
in the type containing the method and public fields of other
classes. The current algorithm ignores the existence of pub-
lic fields of non-local classes and assumes that fields of the
containing class only take their statically defined values.We
make these simplifying assumptions because it is very diffi-
cult to determine which methods are editing publicly avail-
able fields using getters and setters or aliased pointers. With-
out identifying the methods that edit a field we cannot deter-

4

mine the set of live types that a field can take. Perhaps we
can integrate a points to analysis [3] into our approach to
identify the possible initialized types of fields.

Once we have the live types we parse the method source
code to extract call sites emanating from the method. Each
call site is of the formα.β(γ1,γ2,...γn). Whereα could be
a variable, field, method call or expression;β is a method
name. Each of the parametersγ1,γ2,...γn could be a variable,
field, method call, expression or a constant. We need to de-
termine the static type ofα; if it is a variable or field, we can
lookup the type from the live types or fields key-value sets,
if it is a method call we can retrieve the return type of the
method and if it is an expression we recursively evaluate it
until we can resolve its static type. Similarly we resolve the
static type for each parameterγ. All methods which define a
method namedβ, accept parametersγ1,γ2,...γn and are de-
fined in a class from the hierarchy ofα are candidates to be
target methods. For example in Java Object.method(String
p) will map to all methods named “method” accepting a
“String” or one of its subtypes as a parameter, defined in
classes which are in the hierarchy of Object. As per RTA we
filter the matches to only those that are live by consulting the
local initializations, remote initializations and the fields key-
value sets. For each of the remaining candidates we create
a new method call instance and add a link from the call site
to the target method. We also add a back-pointer from the
target method to the call site so that the target method can
return information about the live types of its return value
when they are available.

4.2.1 Adding and Removing Method Calls

After extracting the call sites and live types and determin-
ing the target methods that link to a call site we need to add
the calls. This is a two step process: first, we need to add the
forward link, i.e. the method call and then we add a reverse
pointer to the target method pointing back to the call site.
We propagate information about known live types along the
forward call as described in Section 4.2.2. We also place the
target method on the work list because it may need to be re-
processed to account for remote types we are contributing.
We also mark the target method asNeeds Propagation. This
ensures that when the method is pulled off the work list it
will propagate information about the live types it can return
through the return value. For example if the return type of
the method is “List” it may contribute back initializationsof
“ArrayList” or “LinkedList”.

To remove a method call we need to first remove all ini-
tializations that the call site contributes to target methods.
This is possible because each remote initialization has infor-
mation about its source. We therefore ask the target method
to remove all initializations sourced at the call site. Thismay
or may not require the target method to be reprocessed. Af-
ter this we remove the reverse pointer at the target method
linking it to the call site. We also remove all remote initial-
izations at the call site which were contributed by the target

method as possible return values. This may or may not re-
quire the method containing the call site to be reprocessed.
We remove the forward link and add the method containing
the call site and the target method both to the work list.

4.2.2 Live Type Propagation

After all calls, return points and initializations are resolved
we need to propagate live type information to remote meth-
ods. For each of the calls we extract the static types of the
parameters. The only live types that can be propagated to
the target method are the ones that are in the type hierarchy
of one or more of the parameters. Hence we filter all live
types to include only those that are part of the type hierarchy
of one of the parameters. Similarly for each call we expect
a return value, therefore whenever a method is processed we
traverse the list of back pointers and propagates live types
back. Again we filter the live types to those that are in the
hierarchy of its return type of the method.

If the propagation of types results in a change to the list of
remote initializations of the target method (or call site inthe
case of back pointers) then the method is marked as dirty.
The method has already been placed on the work list when
the target method was processed hence it will be processed
in turn. Note that the propagation of types to a method may
not require the method to be reprocessed. For example if the
target method of a call receives a “String” parameter from
call site A and a new call site (Site B) is added which also
contributes a string parameter then no new types have been
learned. In such a scenario the target method or call site does
not need to be reprocessed. Hence when the method is pulled
from work list it will not be reprocessed. By reprocessing
only when required we are able to contain the effect of any
change in source code to only those methods that need to be
changed. To keep track of which call site or target method
contributed a remote initializations, all such initializations
are stored as key value pairs mapping source of the initializa-
tion to contributed type. Another subtle point to note is that
call site B expects the target method to propagate back infor-
mation about its live return types. If the method was repro-
cessed this would take place automatically. If however the
target method is not reprocessed it still needs to propagate
its live types along back pointers. This is why the call site
processing marks all target methods asNeeds Propagation,
hence regardless of whether a target method is processed or
not it returns its live type information to call site.

5. IMPLEMENTATION DETAILS

5.1 Overview
We implement our approach as a plugin for Eclipse SDK

Version: 3.3.2 (Europa) called ICallGraph which adds a View
to the Eclipse workbench; see Figure 5. The user initializes
the generation of call graphs by selecting the correspond-
ing icon and the plugin runs in background generating the
call graph and adding calls to the display as they are dis-

5

Figure 5: Screen Shot of Sample Call Graph

covered. The plugin runs as a background process hence
the user is free to make changes while the plugin is running.
After making changes to a method the user must place her
cursor within the method and reinvoke the plugin. The plu-
gin will add the current method to the work list and when
it is processed the changes will be incorporated into the call
graph. If at any time the work list becomes empty then the
plugin’s processing (worker) thread goes into sleep mode.
If any changes are made to the source code, the affected
methods are added to the work list and the worker thread
is restarted. We will automate the processes of adding mod-
ified methods to the work list but for our prototype we rely
on the user invoking the call to add each edited method to
the work list.

5.2 Limitations
There are several limitations of the in the current imple-

mentation, some are inherent short-commings of the approach
where as others are problems in the implementation that will
be addressed in future iterations of prototyping.

• The first problem with the current implementation is
that it is unable to handle Java source level 5. This is
due to the support for generics and and auto-boxing in
Java five which makes it very difficult to resolve types.
Variables and methods defined using generics have no
static type and hence our current approach of assum-
ing only static types are live and then incrementally
adding types cannot work with generics. Auto boxing
allows function calls on primitive types, for example
5.3.toString(), which which makes it difficult to ana-
lyze call sites.

• Another shortcoming of our implementation is that it
is unable to propagate remote types contained in lists.
For example if a method call accepts a type parame-
ters of type ArrayList then the call site only propagates
live types in the inheritance hierarchy of ArrayList. If
the source code was such that it places objects of other
types in the list before passing it to the target method
then these types need to be added to the remote initial-

izations list of the target method. We currently have no
way of handling such cases and propagating the types.
Propagating all live types will eliminate this problem
but will cause many unnecessary types to be propa-
gated. We plan to update the parser to keep track of
all live types inserted into dynamic data structures and
use this information to propagate types.

• Our current implementation uses the Abstract Syntax
Tree (AST) Parser support built into eclipse to read
source files for analysis but currently our implemen-
tation only parses java files. We have no support for
parsing class files or jar files. Hence we currently are
not able to correctly handle calls to standard library
functions. The current implementation lists static calls
to standard library functions but does not de-virtualize
the call to all types. This is because we do not know
which types in the hierarchy define an overriding method
corresponding to the call. We hope to resolve this in fu-
ture releases by adding parsers to operate on class files
and jar files.

• Our current approach to storing class hierarchy requires
classes to be named hence we are currently unable to
handle anonymous inner classes.

• There are several limitations of our current parser that
we were unable to eliminate due to shortage of time.
Currently our parser requires all control constructs
(Loops and If statements) to be in block syntax. In-
line statements for such constructs are not resolved and
any method calls in inline statements will be missed.
For similar reasons we are unable to processes Switch-
Case statements properly. The switch statement does
not use block syntax because of fall through, i.e. if
there is no break at the end of one case the subsequent
case is also invoked. We hope to correct these issues in
the parser shortly.

• Lastly we note that there is no integrated graph ren-
dering tool for the Eclipse IDE and we are forced to
use tree or list views. We currently output the graph

6

as a list of edges of the form call site→ target method.
This visualization method is not intuitive and will build
or integrate a graph visualization tool into eclipse for
display of the call graph in subsequent version of our
plugin.

6. EVALUATION
Our approach is designed to generate exactly the same

graph as would be generated by running static RTA and there-
fore is guaranteed to be safe. We verify this by running our
algorithm on a completed program to generate the complete
Call Graph in a single iteration. We then remove several
classes and methods from the code and generate the the call
graph from a clean state. Once we have a call graph we
re-insert the removed portions one-by-one and reinvoke the
algorithm for each insertion. The call graph generated in this
fashion matches the original call graph.

We evaluate our approach in terms of the time taken to
recompute the call graph after changes to the source code.
With the static algorithm we would need to recompute graph
every time the source changed but using the incremental ap-
proach we wish to recompute the minimum required graph
subset and complete in the minimum required time. For our
testing we run our algorithm on the Antlr benchmark which
is part of the Dacapo Benchmark Suite [4] on a 2.2 GHz
dual core intel machine with 1 GB of RAM. This is a small
benchmark with approximately 200 classes and the static al-
gorithm had to parse approximately 2300 methods. The total
time taken to generate the call graph is approximately 62 sec-
onds as shown in Figure 6. The first 200 events correspond
to the time taken to generate class hierarchy information for
the classes and the rest shows the time taken to parse meth-
ods. The plot shown is the average across ten runs of the
algorithm. We draw the 90% confidence intervals but they
are too tight to be seen.

To study the effectiveness of the incremental approach we
first generate the static RTA call graph and then make several
changes and see the time taken to recompute the call graph.
The first change we study is that of a new class being added
to the hierarchy. A new class requires all its methods to be
parsed and their calls integrated into graph. However the
more time consuming process is recomputing all call sites
that may now target the new methods. If there are call sites
that target methods which are overridden by the new class
then those call sites have to be reprocessed. The most diffi-
cult class to integrate into the graph is the one with a large
number of methods that override methods of other classes.
To simulate such a troublesome class being added to the pro-
gram we select the three largest classes in the benchmark and
for each we add a sub-class which overrides all methods in
the original class. In addition we also note that if we over-
ride classes with deep hierarchies we will disturb a larger
number of methods. Hence we also select two classes with a
large number of subclasses apply. The time taken to process
each of these additions is shown in Figure 7. The results are

promising as they reduce the cost of computing the graph to
just 10% of original cost. Figure 8 shows the cost of adding
the same classes in terms of number of methods that have to
be reprocessed. The results show that about 5% of the meth-
ods have to be reprocessed to account for a new class being
added to the hierarchy.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 500 1000 1500 2000 2500

T
i
m
e
(
m
s
)

Event

Static Call Graph Construction

Figure 6: Time taken by Static RTA

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

4490
4000

3485
3000

800

ti
m
e
(m
s
)

Line Count

Cost of adding a new class

Figure 7: Time taken to add a new class

We also study the cost of removing calls from the source
in terms of both the time and the number of methods that
have to be reprocessed. Removing a method not only re-
quires all calls emanating from the method to be deleted but
also requires all remote types contributed by that method to
be deleted. This implies that all methods that receive remote
types from the removed method have to be recomputed. This
in turn may remove some calls and contributed remote types
leading to the changes percolating in the system. To sim-
ulate such a scenario we randomly select 5 methods from
the benchmark and remove all code within the methods. We
do not delete that method as it could lead to compilation er-
rors which can render analysis invalid. The time taken to
processes each of these removals is shown in Figure 9. The

7

 0

 20

 40

 60

 80

 100

 120

 140

4490 3485 4000 3000 800

#
 o
f
m
e
th
o
d
s
 r
e
p
ro
c
e
s
s
e
d

Line Count

Cost of adding a new class

Figure 8: Number of methods parsed to add new class

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 3 2 4 5

ti
m
e
(m
s
)

Method #

Cost of Removing Methods

Figure 9: Time taken to remove a method

results show that our approach reduces the cost of computing
the graph to just 12% of original cost. Figure 10 shows the
cost of removing a method in terms of number of methods
that have to be reprocessed, about 4% of the cost of recom-
puting the whole graph.

The results are somewhat promising as we reduce the time
taken to generate a call graph by as much as 90% and re-
duced the number of methods that have to be reprocessed by
as much as 95% or more. However we note that the cost of
updating the graph is not linear in terms of the percentage of
the source code changed. We think this is because multiple
changes map to the same set of reprocessed methods hence
incur the reprocessing cost only once. We need further in-
vestigation of the number of absolute minimum necessary
re-computations and spurious re-computations based on or-
dering of methods on work list.

Lastly we want to find out the overhead in terms of sys-
tem resources of running our algorithm in parallel with the
IDE. In particular we want to know the overhead of updat-
ing the graph in response to a change in the code base. If the
algorithm consumes large amounts of memory for the user

 0

 20

 40

 60

 80

 100

1
�

2 4
�#

 o
f
m
e
th
o
d
s
 r
e
p
ro
c
e
s
s
e
d

Method #

Cost of Removing Methods

Figure 10: Number of methods reprocessed to remove a
method

 40

 45

 50

 55

 60

 65

 0 500 1000 1500 2000 2500

M
e
m

U
s
a
g
e

(
M
B
)

Event

Memory Usage during Call graph generation

Figure 11: Memory Usage in generating a call graph

to use the non-incremental version of call graph generation
algorithm. We compute the memory utilization in generat-
ing a call graph using our approach and the results are shown
in Figure 11. As can be seen the growth in memory utiliza-
tion is limited to the first two hundred events (building class
hierarchy information) and the growth in memory is linear
in terms of number of classes. Eclipse IDE uses approxi-
mately 42MB upon initialization and loading of the project
and our algorithm uses a maximum of 62 MB. This comes to
approximately 100KB for each of the 200 classes. Modern
computers commonly have main memories of one or more
gigabytes and hence this will not be overly burdensome. We
must note that our readings were taken while graphical out-
put was disabled, adding several thousand entries to a view
in eclipse will take much more memory. We hence propose
that the graph be stored in memory but the display be up-
dated in an as needed basis. For example the the users be
allowed to select a method and view all calls emanating too
or terminating at that method. They can then browse the call
graph as needed.

A related question is; with todays powerful computers is

8

an incremental approach really needed? As we have men-
tioned that the delay of the benchmark under consideration
was approximately sixty seconds and can be much higher for
larger benchmarks. This delay can be brought down by the
use of more optimized data structures but will still be signifi-
cant baring advances in processing power. It is an open ques-
tion whether processing power will increase faster then pro-
gram complexity or not. We do however note that by allow-
ing for incremental call graphs we can allow for more com-
plex graph generation algorithms in the same time frames as
current algorithms with static generation.

7. FUTURE WORK

• The first avenue we can explore in this space is incre-
mental parsing of methods. Currently we only distin-
guish between the cases where re-parsing is required
and not required. However we do not use informa-
tion from when the method was previously parsed. As
much of our processing cost is incurred when parsing
methods we can significantly improve running times if
we can use incremental parsing.

• Currently we use only information from the source code
to detect which parts of the code have changed. If we
integrated IDE events that monitor classes and meth-
ods being added and deleted we would not need to
parse code and detect changes.

• As mentioned earlier currently we processes methods
in the order they were placed on the work list but we
note that often many changes affect the same methods.
Hence the same methods are placed on the list again
and again. If we can reorder methods on the work list
such that each method has to be processed the mini-
mum number of times we can greatly reduce the cost
of generating the call graph.

8. SUMMARY AND CONCULSION
As we have discussed call graphs are a very useful tool

for programmers and compilers but generating precise call
graphs for large softwares is very expensive. We can how-
ever apply a standard call graph generation technique incre-
mentally to small program fragments and combine the re-
sults from the fragments to get the entire call graph. The
incremental steps can be applied in the background while
the program is being written hence reducing the apparent
overhead of generating a call graph. Our approach is be in-
tegrated into the an IDE and thus will not require the pro-
grammer to be actively involved in the process of generating
the graph other then initializing the. As it is the first imple-
mentation of a call graph generation algorithm for eclipse
which provides analysis beyond static type we feel it will be
a useful tool for developers and its incremental and exten-
sible nature will allow for the integration of more complex
analysis not available to developers today.

9. REFERENCES
[1] Eclipse - an open development platform,

http://www.eclipse.org/.
[2] David F. Bacon and Peter F. Sweeney. Fast static

analysis of C++ virtual function calls. pages 324–341.
[3] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie

Hendren, and Navindra Umanee. Points-to analysis
using bdds. InPLDI ’03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language
design and implementation, pages 103–114, New
York, NY, USA, 2003. ACM.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. InOOPSLA
’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems,
Languages, and Applications, pages 169–190, New
York, NY, USA, October 2006. ACM Press.

[5] Jeffrey Dean, David Grove, and Craig Chambers.
Optimization of object-oriented programs using static
class hierarchy analysis.Lecture Notes in Computer
Science, 952:77–101, 1995.

[6] Ondřej Lhoták. Comparing call graphs. InPASTE ’07:
Proceedings of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools
and Engineering, pages 37–42, New York, NY, USA,
2007. ACM Press.

[7] Jesper Kamstrup Linnet. Call hierarchy plugin for
eclipse,
http://eclipse-tools.sourceforge.net/call-hierarchy/.

[8] Atanas Rountev, Barbara G. Ryder, and William
Landi. Data-flow analysis of program fragments. In
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, LNCS 1687, pages 235–252,
1999.

[9] Amitabh Srivastava. Unreachable procedures in
object-oriented programming.ACM Lett. Program.
Lang. Syst., 1(4):355–364, 1992.

[10] Frank Tip and Jens Palsberg. Scalable
propagation-based call graph construction algorithms.
ACM SIGPLAN Notices, 35(10):281–293, 2000.

[11] Weilei Zhang and Barbara G. Ryder. Automatic
construction of accurate application call graph with
library call abstraction for java: Research articles.J.
Softw. Maint. Evol., 19(4):231–252, 2007.

9

