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Abstract. The configuration of network resources greatly impacts tharu-
nication overhead for data intensive tasks and constitutesical problem in the
design and maintenance of networks. To address the issesafnce placement,
we analyze and implement a heuristic for solving a known NPyalete graph
optimization problem called MxiMUM Size BOUNDED CAPACITY CUT. Ex-
perimental results for our heuristic demonstrate prongigierformance on both
synthetic and real world data. Next our heuristic is used sigharoutine to solve
another known NP-complete problem calledNMMAX MULTIWAY CUT whose
traits we adapt to yield a resource placement scheme thhtiesxporrelations be-
tween network resources. Our experimental results shotithkeaesulting place-
ment scheme achieves a significant savings in communicatieread.

1 Introduction

While a measure of cost in a network is often dependent upggitren scenario, cost
is generally coupled with the volume of communication betweetwork entities. In
turn, the communication between network entities is depahdpon the allocation of
resources in the network. There are several scenariosatrared by frequent access to
limited and multiple resources such as complex queriesstriduted databases, which
often require the aggregation of several objects, or thetikeyword indices by search
engines in order to efficiently resolve user queries, or peqreer (P2P) file sharing,
where latency and bandwidth usage are highly dependentwbpere files are stored.

In such environments, the location of resources has an ingpathe efficiency of
the system. For example, if resourcésnd B are often requested together, but stored
at different locations, the communication overhead inediflby queries for these re-
sources can be significantly greater thamlifand B are colocated. In this work, we
consider the communication costs between network enttiesmodel the task of re-
source placement using a known graph optimization problénder this model, the
goal is to distribute resources to locations in a networkhsthat the maximum cost
between any given pair of partitions is minimized; this atpends an important notion
of “fairness” to our resource placement scheme.

We also demonstrate that correlation is crucial for motingaa notion of cost in
our placement scheme. Correlation values are calculatad data from prior network
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transactions. Therefore, it is assumed that knowledgemiaonication trends is avail-
able either as traffic engineering matrices, snapshotssifqgmmmunications, or design
considerations. For instance, Internet Service Providautinely trace traffic in P2P
networks and this information can be used to improve netwerformance [12]. Nat-
urally, this approach raises the question of whether sudelations are stable enough
over a sufficient period of time to warrant the additional @utational costs of a
correlation-aware placement scheme. Indeed, it has bemordgdrated that resource
correlationgdo remain stable over at leastonth-long period§23].

From a practical perspective, the resource placement selegnpropose can be
managed by an authority in a distributed setting, such aSBnthere exist proposals
for cooperation between ISPs and P2P networks [5, 20]. Adttdrely, in a centralized
scenario, such a scheme would be useful within single-aidtrative domains, such as
allocation in data-centers. We treat the details of suchgpsas outside the scope of
this paper, and instead focus on the analysis of our scheme.

1.1 Our Contributions

We propose a resource placement scheme that exploits agorelinformation be-
tween network resources; we call this@arrelation-aware resource placement scheme
In formulating our scheme, two known NP-complete problemesdealt with: Max -
IMUM SIZE BOUNDED CAPACITY CUT (MAXSBCC) and MN-MAX MULTIWAY
CuTt (MMMC). We mathematically analyze and implement a hewrifbr MAX S-
BCC based on the technique of semidefinite programming (SD#)heuristic is then
employed as a subroutine for solving MMMC. To the best of cuwwledge, our work
provides the first empirical evaluation of these two protdem

We then identify two challenges to employing MMMC as a modetesource
placement. First, naively employing a cost metric can leadsensible solutions. Sec-
ond, privacy issues are absent from the model. We addreBshatlenges by showing
how correlation adequately motivates important cost rogtrand we mathematically
extend the model to account for privacy constraints. Bpnath experimental evaluation
of our correlation-aware resource placement scheme isumiad with real-world data.

1.2 Related Work

Our work differs from a number of previous treatments on gdteement where cost
metrics are not motivated by correlation and, moreovert @seasured as an ag-
gregate [14] or average [6] across the entire network. Thetmedevant related work
is [23] where the authors address the use of correlationanipg data items in a net-
work. However, again, their work aims to minimize aggregatenotion of cost in
contrast to the substantially different min-max approasédihere.

Our correlation-aware resource placement scheme is bastbé &IN-MAX MUL-
TIWAY CuT problem which was introduced by Tardos and Svitkina [18]e TWIN-
MAX MuLTIwWAY CuT problem is NP-complete and the best known approximation
algorithm relies on obtaining an efficient solution to a gubblem called the MxI -
MUM SIZE BOUNDED CAPACITY CuT problem. In [18], the authors cite an algorithm
developed in [8] to achieve a polylogarithmic approximatiblowever, the algorithm
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of [8] is extremely intricate and, several years after treotietical result, no implemen-
tation exists. Moreover, due to the large number of constraints, this élgaris likely
to be extremely computationally intensive, even for venaBproblem instances.

In contrast, our work incorporates an efficient heuristisdzhon the technique of
semidefinite programming (SDP). SDP has figured prominentiie development of
heuristics for problems in the areas of phylogenic recaresion [16], machine learn-
ing [22], sensor network layout [7], bioinformatics [13]cagraph partitioning [9]; these
results demonstrate that heuristics can benefit greathy fhas optimization technique.

2 Our Heuristic and Analysis

To solve the MN-MAX MULTIWAY CUT problem, we solve a subproblem known as
the MAXIMUM -SIZE BOUNDED-CAPACITY CUT (MAXSBCC) problem introduced
in [18]. The input to Max SBCC is an undirected gragh = (V, E') with weights on
the verticesv(v), capacities on the edgeg), source and sink vertices, v, € V, and
an integerB. Given a partition oft” into S andT’, denote byj(S) the total weight of
the cut edges and denotedyS) the total weight of the vertices ifi. The MAXSBCC
problem is to find ans-t cut (S, T') such that(S) < B, andw(S) = > qw(v) is
maximized. In [18], the authors are concerned witfnas)-bicriteria approximation
algorithm for MAX SBCC. That is, given an instance ofAMSBCC with an optimal
solution(S*, T*), returns in polynomial time a solutiarb’, 7’) such that (S") < aB
andw(S") > pw(S*) wherear > 1 and0 < 8 < 1. Therefore, solutionmay exceed
the budgeand this also turns out to be true for our heuristic.

Consider the quadratic program specified by Equations4)lL)Mariablex; corre-
sponds taw; € V, w; is the weight of vertex;, andw;; is the edge weight ofv;, v;)
which is zero if no such edge exists.

n = 1 + Ysi
14 zsz; max Z “—w; (5)
max Z; 5 Wi Q) ~ 2
s.t. T wis > M (2)

; Y Zym wi; > M (7)

Tery = —1 ) <
z; € {-1,1} (@) vi =1 ®)
Yst = -1 (9)

Equation (1) counts the cumulative weight of the vertice§irLet  denote the
cumulative weight of the edges internal to the Beand leto denote the cumulative
weight of the edges internal to the setEquation (2) counts + 7 — §(S). Equation
(3) states that the source and sink nodes must be in sepanditeops. Equation (4)
guarantees that each vertex belongs to one and only onéqguarfireating each vertex
variablez; as a vectow;, and lettingy;; = v; - vj, the SDP specified by Equations
(5)-(9) is obtained where-’ denotes thal” is positive semidefinite. We now analyze
the semidefinite program to motivate its suitability fomMSBCC. Due to space con-
straints, proofs of the following results are given in th@apdix. LetiV* > M denote

! To the best of our knowledge, no such implementation exigighermore, via email corre-
spondence, Professor R. Krauthgamer (one of the autho8)afthted he was unaware of any
such implementation.
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the value of Equation (7) given by solving the semidefinitegpam and let/ < W*
denote its value after applying the standard technique pétplane rounding.

Lemma 1. Hyperplane rounding of the SDP provideBlasuch that£'[IW] > 0.945W*.

Let S* denote the value of Equation (5) given by the solution to #maidefinite pro-
gram and letS denote the value of this quantity after hyperplane roundivigiestablish
the following critical result:

Lemma 2. Let ¢ be a small positive constant. With probability at ledst % hy-
perplane rounding need only be appli€2iln n/€] times before a rounded solution to
the SDP is obtained such th& > (1.823 — \)W* andw(S) > f'w(S*) where
1> X >0.823.

Finally, we address the quality of our solution:

Theorem 1. With probability at leastl — L, for A € [0.823, 1], the above algorithm
achieves a cutS, T') such that:

551 34 (152) 20

w(S) > (1.823 — \) - w(S™)

As )\ approaches, the quality of our approximation increases corresponigliithere-
fore, the quality of our solution depends heavily dnwhich, in turn, depends on the
value M that we set in our program. This relationship suggests aisteuapproach
whereby we attempt to improve our solution quality by modatifyM/. Throughout, we
refer to the above algorithm byi4s (M) to reflect that the performance dependsidn

2.1 Our Full Heuristic: MaxSBCC Solver

We seek a solution to Mx SBCC by performing multiple iterations of 14 (M) and
modifying the value ofA/ in our semidefinite program formulation at each iteration.
Denote the output of AG by the tuple(v, S, T', Bactuar) Where:

— V. is a boolean variable with valuer ue if the solution returned is an-t cut;
f al se otherwise.

— S:is the set of nodes on the source side of the cut.

— T is the set of nodes on the sink side of the cut.

— Bactual: 1S the bound resulting from our setting of.

Due to space constraints, we outline our heuristic which aleMAX SBCC LVER;
the full pseudocode is given in the appendix. The input intexXNBCC SLVER is
the graphG = (V, E), the desired input boun&, and the number of iterationsof
ALG(M). The core idea is to modify/ at each iteration of AG until we achieve &B
value close, or equal, to our original desired bouRd M is modified by essentially
performing a binary search through the possible valueseirthut bounds.
MAXSBCC SOLVER begins by storing our original input bouri$l= By andM =
W(E) — 2B. Once executed, the solution is checked for validity by étdimg the
booleanv variable. If MAxSBCC LVER failed to find ans-t cut, the next iteration
proceeds with the input boun@d doubled. Once a valid solution is returnés}, ;.. is
examined; ifitis larger than our desirdt), B decreases byB /27| where;j denotes the
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number of iterations where a valid solution has been actig@enversely, ifB,civq1 IS
smaller or equal td3y, B increases by B/27]. Note that such changes in the value of
B are equivalent to modifying/, sinceM = W (E) — 2B in our SDP.

At the end ofr iterations of this process, is returned. If a valid solution was found,
the solution that gave a bound closestBp (ie. the iteration wheréBy — Byctuail
was smallest) is returned. Otherwise, if no valid soluticasviound,S will be empty;
however, if there exists a cut of siZe, or less, then our algorithm will return a valid
cut with high probability and with the attributes demonthby our analysis above.

2.2 MaxSBCC Solver: Experimental Results

Our experiments are performed on systems with up3@) nodes; there are two rea-
sons for this system size. First, although this situatiomj@oving, solving semidefinite
programs is still computationally expensive. The area afidefinite programming is
relatively new and available software for solving such pemgs is consequently lim-
ited. Many solvers scale &(n?) wheren is the dimension of the semidefinite matrix.
However, despite its current computational costs, sermidefprogramming is a stan-
dard technique for solving many challenging problems. Meeg, a number of recent
results address the issue of scalability such as paratelimplementations [17] as well
as devising problem formulations that can be computed mificemtly [15]. We be-
lieve such techniques can allow our algorithm to scale tohmarger system sizes but
are outside the scope of this papeiThe second reason is that, for our experiments
with MAX SBCC, we wish to compare against the optimum solution. Tlosa a par-
ticularly unforgiving comparison in judging the performenof our algorithm. We for-
mulate an integer linear program (ILP) for each of the experital problem instances.
Using the ILP solver CPLEX [1], an optimal solution can beiagkd for the purposes
of comparison. For our experiments we use the SDP solveriSefinite Programming
Algorithm in Matlab [2].

Ouir first data set consists of three unweighted (Table 1) arebtweighted (Table
2) Barabasi-Albert scale free graphs created using theTBRbpology generator [3].
Each graph is connectgdconsists of300 vertices and, for the weighted case, edge
capacities are exponentially distributed in the rafge.., 1024} while node weights
are chosen uniformly at random in the rar{de 1024 }. Our second data set consists of
three unweighted (Table 3) and three weighted (Table 4) ected \WWaxman graphs [19]
of 300 nodes, with the same capacity and node weight distributieinslly, we use a
real-world data set collected in [11] consisting of a tratee®r-to-peer (P2P) traffic and
containing information on data objects both advertised gunetied over the course of
two months; we restrict our use of this data to mp3 files. Cati@n values are derived
for each object by examining how often fiteand filey were colocated at a peer. Edges
with correlation values less than25, using ap-value of0.1, are discarded yielding a
connected component 858 nodes which we used. Each correlation value is multiplied
by a factor of100 and rounded to the nearest integer in order to provide imtiegeit
values for the SDP program. We then select a node of minimugreéel,,,;,,, to be the
source and a node of maximum degrég,., to be the sink. Budget values are selected

2 In terms of our later application to resource placementyiptes results of [23] have shown
that only a small fraction of the total system need be op#mito achieve substantial savings.

3 If the graph is disconnected, our algorithm can be used oh eamponent individually. For
simplicity, we used only connected graphs in our experisient
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Tral|B| 5 |05 [07] S/57.5/6"
2( 1 (2|1 |2]1.000,1.000
10/ 5 10| 9 |10| 0.556, 1.00Q
18 9 |18 20|18/ 0.450, 1.00Q
1 |26/ 15[27] 29 |24 0.517, 1.12
34| 16|30 38|34| 0.421, 0.882
42| 25 |43| 49 42| 0.510, 1.024
46(29946/299 46| 1.000, 1.000
2( 1 (2|1 |2]1.000,1.000
7| 4 |8|5|7]0.800,1.143
12| 6 |12/ 10|12| 0.600, 1.00Q
2 (17 10|22 15 (17] 0.667, 1.294
22 12|23 21(22| 0.571, 1.045
2729931 27(27/11.074, 1.148
31/29931/29931] 1.000, 1.000
2( 1 (2|1 |2]1.000,1.000
9|4 |8|7|9|0571,0.889
16/ 9 |19 15|16{ 0.600, 1.188
3 |23 1223| 23 (23] 0.522, 1.000
30| 15|31/ 30{27| 0.500, 1.148
37| 17|38 38(37| 0.447, 1.027
41(29941/29941| 1.000, 1.000

Tables 1 & 2: Results of the Mx SBCC heuristic on unweighted and weighted Barabasi-Alber
graphs, respectively.

Tiall B | S |0 | 5 |o |5/56/5°

6 | 973 | 6 | 973 | 6 |1.000, 1.00
1096 13409(1360 20362|10960.659, 1.24
2186 20951|259q 31666|21860.662, 1.18
1 |3276 34038|3949 41133(32710.828, 1.20
4366151828436715224443620.997, 1.00
5456156249546( 1562435423 1.000, 1.00
54601156249546( 1562495460 1.000, 1.00
T4 | 369 | 14 | 369 | 14 [1.000, 1.00
751 10592| 959| 13222| 743|0.801, 1.29
1484 13000(149€¢ 23478|14870.554, 1.00
2 |2225 22865(2337 31874(22230.717, 1.04
2962151079297615100329401.001, 1.01
3699155300370215528436561.000, 1.01
37021553003702 1553003702 1.000, 1.00

3 [ 917 | 3 | 917 | 3 |1.000, 1.00
770| 14476(1073 14958| 770|0.968, 1.39
1537 17647|1577 24342|15320.725, 1.02
3 |2304 22645(2317 33561|23040.675, 1.00
3071147415306514799230640.996, 1.00
3836151589383 1515893834 1.000, 1.00

OO OrOyrw O O WV OO O O N OUrorres O

as even increments in the ran@k,i,, dmax). We setr = 5in MAXSBCC SLVER
which we found yielded good solutions.

Tables 1-5 provide the results of MSBCC SLVER in the S andé columns,
while the optimum solution is given in th&* anddé* columns. For both the weighted
and unweighted synthetic data sets, the worst source sigl@x@dmation is0.421 and
the worst cut approximation is 393 and, generally, the approximations are even signif-
icantly better than these worst cases. Moreover, for oueergent using the real-world
data, we observe in Table V that our heuristic yieldsy high quality solutions/\e also
note that Max SBCC LVER performs relatively quickly, completing within no more
than4 hours on a machine utilizing a single3 GHz Intel Itanium2 CPU running SUSE
Linux. In comparison, the trials with CPLEX frequently récgd up to48 hours on the
same system. Overall, the performance ofAMBCC SLVER is promising and, with
our heuristic in hand, we now move onto MMMC and resourcegiaent.

3 Towards Resource Placement: Min-Max Multiway Cut

As a basic abstract model of resource placement, we use tkeMVAX MULTIWAY
CuTt (MMMC) problem as defined in [18]. Given an undirected graph /,E) with
weighted edges and a subset of the verti€es {t1, ..., ;. } which are called terminals,
a multiway cut is a partition of” into disjoint setsS, ..., S, such thatS; contains
t; fori = 1,...,k. The goal in MMMC is to partitionl/ such that the maximum cut
between any two partitions is minimized. If cut size is rethto the cost of commu-
nication between two partitions, then MMMC seekddoly distribute this cost over
all partitions. Therefore, we deal with a setting where l@cemmunication is relatively
cheap, while communication between individual machinedoonains is costly.
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Tral|B| 5 |05 [07] S/57.5/6"
2(1(2| 1210001000 [Ta] B| S [ 0o ] S | o [5/5.6/5
5(2|6|3|5|0.667,1.200 13| 916 | 13 | 916 | 13 |1.000, 1.00p
8| 3 |11] 7 |8|0.428,1.375 344| 6047 | 289| 9049 | 342(0.668, 0.845
1 |11] 5 |12 10|11/ 0.500, 1.09] 675| 8987 | 642| 15041| 675(0.598, 0.95]
14 5 (12 14|14{0.357,0.857 | 1 |10061496671125149377 991|1.002, 1.135
17/2991729917| 1.000, 1.000 13371507651366 1505011256 1.001, 1.088
2( 12| 1|2]1.000,1.000 16681512901668 1512901668 1.000, 1.000
4|3 |5| 2 |4|1.500,1.250 11| 78 | 11| 78 | 11 [1.000, 1.00p
6|5 |8|5|6]1.000,1.333 343| 5844 | 459| 6705 | 336(0.872, 1.366
2 |8| 58| 7 |8|0.714, 1.000 675|15752( 606156514 606 |1.006, 1.000
100 7 11| 9 |10{0.778,1.100 | 2 |10071575201051157146 987 |1.002, 1.065
12 7 |11/ 11]12] 0.636, 0.917 13391582541672 1575201051 1.005, 1.59]
141299 16| 13 |14/23.000, 1.143 1671582541672 15825416721.000, 1.000
16/29916(29916| 1.000, 1.000 15| 631 | 15 | 631 | 15 [1.000, 1.00p
2( 1 (2|1 |2]1.000,1.000 387| 8372 | 367| 9895 | 385|0.846, 0.953
5(4|6|3|5]1.333,1.200 759| 12554/ 734 15957| 756 [0.787, 0.971
8| 5|12 6 |7|0.833,1.714 | 3 |1131159297117315726011061.013, 1.06]L
3 |11 5 |12 10 (11| 0.500, 1.09] 1503160081147416011514710.999, 1.00P
14 9 |16 12|14] 0.750, 1.143 18761614901876 1614901876 1.000, 1.000
17/2991729917| 1.000, 1.000

Tables 3 & 4: Results of the MXSBCC heuristic on unweighted and weighted Waxman
graphs, respectively.

The ‘fairness’ aspect of MMMC distinguishes this work froomamber of other
resource placement models. In contrast, by minimizing tiggegate or average notion
of cost, it is possible for some network participants to su# disproportionate amount
of traffic. Here, we are not concerned with the number of resesiallocated to a net-
work entity, but with the cost of inter-partition traffic inored by holding such items.
With abundant availability of disk-space, we treat bandivigind latency as principal
aspects in our model.

3.1 Experimental Results

In [18], the authors show how(a, 3)-approximation algorithm for Mx SBCC can be
used to achieve & log; n)-approximation for MN-MAX MULTIWAY CUT. Here, we
employ their result using our heuristic forAk SBCC; we call this algorithm MMMC
SOLVER. Due to space constraints, we refer the reader [18] for &urtletails.

Using the data set from [11], the most widely h&l@h0 mp3 files are extracted.
Pair-wise correlations are computed between all data thgew we discard edges with
a correlation value below a cutoff pointwhich differs per trial. Edge capacities were
then multiplied by a factor o100 and rounded to the nearest integer. For each trial,
7 terminal nodes are chosen uniformly at random from the totmhber of nodesv
and the input bound was chosen to be an arbitrary valu®@. MMMC SOLVER is
then run on the graph problem. Since no ILP formulation for MK is known, we
compare against two other algorithms in order to evaluategtiality of our solution.
The first is a simple random placement of nodes to partitidmisivmodels the behavior
we would expect from employing a secure hash function; wetiethis algorithm by
RANDOM. The second is a greedy algorithm, denoted IREEDY, that begins with a
random assignment to partitions and then attempts to refthecgize of the maximum
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RANDOM|GREEDY| MMMC
SOLVER

1290 831 34
1 |0.30 111(4| 1475 888 66
1222 875 39
2708 2273 163
2 10.28 379|5| 2495 2190 300
2480 1962 136
3756 2990 152
3 10.26 813|6| 3567 3179 238
3514 3114 219
5246 4145 288
4 10.2412567| 5208 4060 256
5297 4556 538

Table 5: Results of the MxSBCC heuristic on real world datdable 6: results of test-
ing RANDOM, GREEDY, MMMC SoLVER on MMMC test cases.

Triall ¢ | N

)

B S [0 & |6 [5/5,48/5
25159975 25|159975 25 [1.000, 1.00
115(160957127/1635261130.984, 1.12
205166445228 1659082021.003, 1.12
295/1674382781671082781.002, 1.00
385167825354 168476381/0.996, 0.92
476/176567476/1765674761.000, 1.00

O OO O =0

cut by greedily reassigning vertices. In particular, each-terminal node involved in a
maximum cut is tested in all other partitions. If such a rakin reduces the maximum
cut, the new assignment is immediately kept; otherwisentte remains at its original
location. A solution is returned when no further reductiam de obtained.

Table 6 provides the results of our experiments. The longesting experiment
consisted ofl 256 nodes with7 terminals and the running time of MMMCGVER
was undeB hours. Over all four trials, MMMC SLVER demonstrates superior per-
formance in the size of the maximum cut. The discrepancy éetwRANDOM and
MMMC SoLVER is significant although expected. More strikingly, the eli#nce be-
tween GREEDY and MMMC SOLVER is substantial suggesting that the greedy ap-
proach becomes trapped in local optima which MMMGOGLSER is able to avoid. In
particular, the maximum cut between any two partitionsdgel by MMMC SOLVER
is never more than4% of that yielded by @EEDY.

4 Correlation-Aware Resource Placement: Extending MMMC

Initially, the MIN-MAX MULTIWAY CuT problem appears to model almost any re-
source placement problem. However, this is not the casevimréasons:

1. Cost Dependenciespnsider modelling a P2P network as discussed in the ofigina
work [18] where the terminals are peers and the remainingteaninal vertices
are data items. A data item belonging94pis stored at peer; and edge capacities
reflect expected communication patterns. The goal is teaidata items among
the peers so as to minimize the expected communicationidostever, costs will
likely depend on where items are placed in the netwbidre, MMMC requires
input for the edges and yet this input will be defined by the/\saiution we seek.
Consequently, cost metrics need to be carefully motivated.

2. Privacy: there are often constraints on where resources can be piaded net-
work and, by itself, the MN-MAX MuULTIWAY CUT problem does not address this
issue. This may be due to privacy issues where sensitivecdatanly be allocated
to secure locations. Conversely, a server may refuse toteiaia particular re-
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source given legal concerns or quality of service constsaiResources may even
be physically restricted to certain locations.

We now show how to solve these two problems and arrive at owreletdion-aware
resource placement scheme.

4.1 Cost Metrics Motivated by Correlation

In this section, we demonstrate how the use of correlatioaunmodel avoids the
problem of cost dependencies and motivates two importasttroetrics. Overall, the
main benefit of correlation information is that it is indepent of location. Throughout,
assume we are provided with positive correlation valuesben nodes in the netwofk.

Latency as a Cost Metric: consider resource andd,, which are strongly correlated.
They may be colocated in order to reduce the communicati@emnh@ad involved in
obtaining them both. For instance, in response to a queghimg d;, both resources
d; andd, may be fetched in anticipation of a follow-up request digr alternatively,
less inter-machine communication may be required if bodoueces are located on
one, or even a small number of machines, if substantiakmi@chine communication is
required for a query. Therefore, under scenarios whereitleso$ resources is relatively
small, the correlation values on our input graph to thetMMAX MULTIWAY CUT give
rise to latency as a plausible cost metric.

This problem domain is suited to a number of applicationsifsiance, text search
engines typically utilize inverted indices in order to b&a@ént. Primarily, an inverted
index stores information matching a keyword to documends tontain it. A query
with K terms often requires that the inverted indices offgélterms be accessed. For
distributed search systems, these indices are placed oy different machines. Con-
sequently, the communication overhead between machiogsgthe indices required
for resolving the same query presents a critical factor ppsuting fast search [23].

Bandwidth as a Cost Metric: for sizable data items, bandwidth becomes the dominat-
ing cost, not latency. Consider two large fitsandd, that are highly correlated in the
sense that if a user obtains one, he is likely to obtain thero#s a simple exampld;
andds might be two jpeg files by a user’s favorite artist. In thisesasdoes not matter
whetherd; andds are colocated since our cost metric is dominated by bantiveioit-
sumption which does not necessarily bear any relationghthe correlation value on
the edg€d,, d2) in our input graph.

The situation, however, is quite different for queries iiwg the collection of more
than one data source. For instance, a user may wish to corapfutection over the
aggregation ofl; andd,. There are a number of settings where such complex queries
are useful for allowing richer search capabilities. A ramgrery might require a join
operation ond; andds. Here, it makes sense to have andd, colocated; the query
can be resolved without downloadingatfleast one ofl; or d,. Such complex queries
motivate a meaningful relationship between correlatioth laandwidth consumption.

* Our approach can incorporate negative correlations; hewéuer simplicity we restrict our
attention to positive correlation in the context of our work
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4.2 Adding Privacy Constraints

We enforce privacy constraints by embedding them into thex BCC sub-problem.
The following primal semidefinite form for our SDP of Sectidican be obtained from
Equations (5)-(9) by standard methods:

max C'- X st. (1/2)Ae X =W
EieX =1,for1<i<n
(1/2)Eg 0 X = —1
X =0

whereP e () denotes the standapd, >, F;;Q;;. B’ is such that entry;; = 1 and all
other entries in the first row and first column have valye; the rest of the entries are
0. ThenC = (1/2)I + (1/2)B’, X,; = vivj, andA is the capacity matrix fo. E;;
is ann x n matrix with al in thei;j** andji*" entries and zeros everywhere else.
Using the primal form, privacy constraints are added in tiieofving fashion. As-
suming feasibility, if we wish to constrain the location oparticular resourcé to a
terminalv, we include(1/2)E, , ¢ X = 1; alternatively,(1/2)E, , « X = —1 ensures
thatb will not be stored av. We can also force resourcesandb to be colocated or
separted by settingl /2)E,, ¢ X = 1 or (1/2)E,;, ¢ X = —1, respectively. The
mathematical analysis of Section 2 changes little and th@ltseremain unchanged.

4.3 Experimental Results

Our experimental work is in the context of Section 4.1. Asstarhomogenous multi-
administrative network where users in the network are igptext queries and the cost
of resolving a quenwithin the domain of the particular issuer of the quésyinex-
pensive, while communication between administrative dasi costly. We consider
the problem of placing inverted indices such that (1) the mamication overhead be-
tween domains during query resolutions is reduced and (2pnaain is involved in an
excessive number of transactions involving multiple damsai

We utilized the query dataf [11] which totals5462 queries, each consisting of sev-
eral terms, by users in the network. Using the SMART ‘stoplvbst [4], queries were
pruned to remove trivial ternfsFrom this data set, th& most prevalent terms were
extracted and correlation values between each pair wetaledééd. The most prevalent
terms are not necessarily correlated with one anothertboer, we extracted the largest
group of terms that did share positive correlations. Represl as a connected compo-
nent where nodes are terms and edges are weighted by ciomelalues, this graph was
used as our inpul.0 randomly chosen terminals were chosen to correspond to idisma
There werel?2 trials in total, consisting 063, 144, 238, 336, 423, 523, 630, 734, 847,
956, 1064 and1157 nodes, respectively. In each trial, 862 pruned queries were exe-
cuted. For each term in a particular query that matched aggpuord in our trial, data
was collected; otherwise, the term was ignored.

Distinct Domains Accessed per Query:if terms within a single query require access-
ing multiple domains, then the number of unique domainsssaxprovides a measure

5 All query data was used, not just queries related to mp3 files.
8 Pruning did not remove queries, but trivial terms were reetbivom a large number of queries.
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Trial| GREEDY] MMMC Trial| GREEDY| MMMC Trial| GREEDY| MMMC

SOLVER SOLVER SOLVER

1 1218 1111 1 | 83.0% | 87.7% 1 7.0% 10.0%
2 2247 1996 2 | 73.6% | 81.4% 2 9.7% 12.1%
3 2942 2409 3 | 68.3% | 83.9.% 3 | 11.5% | 13.7%
4 3439 2333 4 | 64.8% | 96.8% 4 | 11.7% | 3.2%
5 3808 2493 5 | 62.4% | 94.7% 51 145% | 5.3%
6 4191 2693 6 | 59.4% | 97.6% 6 | 13.7% | 2.4%
7 4561 2909 7 | 58.3% | 96.8% 7 | 146% | 3.2%
8 4886 3024 8 | 56.8% | 97.8% 8 | 14.7% | 2.2%
9 5285 3159 9 | 55.2% | 98.8% 9 | 16.1% | 1.3%
10 | 5555 3291 10 | 54.4% | 98.8% 10| 15.7% | 1.2%
11 | 5858 3471 11 | 53.6% | 97.8% 11| 159% | 2.1%
12 | 5997 3485 12 | 53.1% | 99.4% 12 | 16.2% | 5.8%

Tables 7: Number of unique domain accesses per query aggregated Ovqueies. Ta-
ble 8: Total percentage of queries that can be resolved within glesidomain.Table 9: Of
the remaining queries that require accessing two or morea@fsrto resolve, the percentage
attributed to the domain involved in the most number of suahdactions.

of communication overhead per query. Table 7 illustratessihim of such access data
over all queries. In comparison with the placement scherengdy GREEDY, MMMC
SOLVER achieves substantially fewer unique domain accesses logamirse of exe-
cuting all5462 queries. In particular, for Triad and above, MMMC SLVER incurs
only 68% down t058% of the unique domain accesgesformed by REEDY.

Queries Involving Multiple Domains: the number of queries requiring communica-
tion between multiple domains concerns both the amount winconication overhead
and also the aspect of fairness. Table 8 depicts data for Mo#tMC SoLVER and
GREEDY on the number of queries that were resolved through a singteaih only
and the number of queries that required two or more domaiessss. For MMMC
SOLVER, at least81% of all queries could be resolved at a single doméitoreover,
for Trial 4 and above, this value grew to 8% or more. In contrast, a significantly
smaller percentage of queries were resolved at a singleidameg GREEDY. In terms

of fairness, with MMMC ®LVER, no domain participated in transactions with other
machines for more thah9% of the queries. This value can be dissected further by
examining how much of thi9% is attributed to each domain. Table 9 gives this infor-
mation; no domain is ever forced to participate in more thé¥b of these transactions
involving more than one domain. Moreover, this value desesasubstantially as the
number of key words is increasedtopping below6% after Trial 4.

5 Conclusion

In this work, we proposed a novel correlation-aware respylacement scheme. A
heuristic was developed for solving theaMSBCC problem. This heuristic is used as
a critical sub-routine for solving MMMC which, after exteéoss to address cost met-
rics and privacy constraints, yields our correlation-aavasource placement scheme.
The results of our experiments were encouraging and dematedthat our scheme can
yield substantial savings in communication overheadrésting future work includes
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analyzing the performance benefits of using negative catical information and par-
allelized implementations of our algorithms.

Acknowledgements:we gratefully thank Jared Saia for his helpful discussions.
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Appendix

In this appendix, we include (1) the additional lemmas awedattoofs that were omitted
from Section 2 and (2) the full pseudocode that was omittechfBection 2.1.

Analysis and Proofs for Section 2

Additional lemmas have been included which did not fit inte thain paper; conse-
quently, the lemmas are renumbered. Throughoutlifét > M denote the value of
Equation (7) given by solving the semidefinite program arndile < W* denote its
value after applying hyperplane rounding.

Lemma 1.Fory € [—1,1], (1 — arccos(y)/m) > 0.945y.

Proof. We can rewrite the above inequality@s-6/m) > a cos 6 for 6 € [0, 7]. Define
f(0) = (1 — (8/7))/ cos and note thatf (#) is convex and minimized at a unique
valuez,,;, € [0,7/2] such thatan z,,;, = 1/(7 — Zmin). The root ofr tan (2, ) —
(Timin) tan (Tmin) — 1 = 01S Ty > 0.3432. Chooser = 0.3432 < @i NOW,
£(0.3432) < 0.9459 and becausg is concave,f(0.3432) — a« = ¢ > 0 where we
considere to be an error term. By obtaining a tight bounet /3, we can get an accurate
estimate ofa sincea = f(0.3432) — e > f(0.3432) — 3. Let f’ be the derivative
of f. Evaluatingf’(0.3432) < —6.2 x 10~ = m gives the slope of the tangent line
tangent atr = 0.3432. We also have tha0.3432 — z,,,;,) < —6.6 x 1076, Finally,
let ymin be the actual value of at its minimum. Therefore = f(0.3432) — y,pin =
(0.3432 — 23 )m < 10-19 and we haver > 0.9459 — 1.0 x 10-10 > 0.945.

Lemma 2.Hyperplane rounding of the SDP provide8lasuch thatE[WW] > 0.9451*.

Proof. Note thatv;v; = 1 iff v; andv; are on the same side of the hyperplane. There-
fore, by Lemma 5, we have:

i<j 1<j

noindentLetS* denote the value of Equation (5) given by the solution to #raidefi-
nite program and le$ denote the value of this quantity after hyperplane rounding
next lemma follows from previous work in [10]:

Lemma 3. Hyperplane rounding of the SDP provides &hsuch thatE[w(S)] >
0.878 w(S™).

We now establish the following critical result:

Lemma 4.Lete be a small positive constant. With probability at Ieast%, hyperplane
rounding need only be applig@ Inn/¢] times before a rounded solution to the SDP is
obtained such thal” > (1.823 — \)IWW* andw(S) > f'w(S*) wherel > X\ > 0.823.

Proof. We argue along similar lines as [21]. By Lemma 5 and Lemma Helpglane
rounding of the SDP program on lines 5-9 gives the following:

E[W] > aW* andE[w(S)] > fw(S)
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Define a random variabl& such thatZ = V‘{,V + ;”((SS}). Note that:
E E
Blz) = 20, [w(f)] >a+ 0> 1.823

There must exist a rounding trialwhere Z achieves at least its expected value, that
is Z; > « + . On this trial, the rounded solutions to the contraints 5 @maf the
SDP,W; and.S; respectively, will satisfyV; > «,;(W*) andw(S;) > G;w(S*) where

a; + fi = a+ [ > 1.823. Therefore, we are guaranteed thait {«;, 5;} > 0.823
and, more precisely, we have:

Wi > (1.823 — 8)W* andw(S;) > fw(S*)

wherel > ' > 0.823. We now show that, with high probability2 In /€] rounding
attempts are sufficient to obtainzathat is arbitrarily close to its expectation. Let=
Pr(Z > (1 — €)E(Z)] wheree > 0 is some small constant. Thef(Z) < (1 —

. . . eE(Z) _ e(at+p) .
€)E(Z) + 2p which implies thap > + = (T We then have:
(1 _p)clnn < (1 _ E(OL +6)/2)21nn/e < e—(a-ﬁ-ﬁ) Inn < nt
The next lemma concerns the cut found by our heuristic:

Lemma5.Let € (0,1] andw(E) = Y, cpcle)) = o+ 71 +6(9). fW > AW,
thend () < WELAM,

Proof. Note thatW = o + 7 — §(S). Then, by assumptioW = o + 7 — §(S) > AW *
and we have:
0(S9)< o+1—AW"
=o+74+5)—0(5) - A\W*
< (w(E) — AM)/2 sinceW* > M

Finally, we address the quality of our solution:

Theorem 1. With probability at leastl — % for A\ € [0.823, 1], the above algorithm
achieves a cutS, T') such that:
1- /\> w(E)

oS) = “(T B

w(S) > (1.823 — \) - w(S™)

Proof. Given a budgetB, we want to set up our SDP by havidg = (w(F) —
2B)/Aactuar- We know thatz will meet its expectation before too long and when that
happensh,ctua € [0.823,1]. However, we do not know the exact value Xf.tua
prior to solving the SDP. Therefore, we can only guaranteg d0S) < (w(F) —
ApredictM ) /2 = Baciuat Wherep, eqice 1S our guess at the actual valug yqi. AS

a result,B, 1w May not be the initially desired we were handed. One way of ad-
dressing this issue is to S&},caicc = 1 and then sefd = (w(E) — 2B)/Apredict
accordingly. For example, i)(E) = 400 and the desired bound 190, one could set
up the SDP withA/ = 200. Then, in the worst case, all executions of our algorithm
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might set the actual value tQ,.;.,; = 0.823. In this case, the SDP solved the problem
using a bound3,ctuar = (400 — 0.823 - 200)/2 ~ 117. Therefore, the approximation
ratio of the cut we obtain i§(S)/B which is at mostB,.t.q:/B. In this concrete ex-
ample, we have3,....i/B = 117/100 and so we have set our input bound too high.
We adopt this procedure and faf...o; = A € [0.823, 1] the ratio by which our cut
can exceed the bound is:

5(S) <w(E)—/\M_)\+<1—)\>wE)

2

B

MAxXSBCC SOLVER Pseudocode
The pseudocode for M\x SBCC SLVER is given below:

MAXSBCC LVER(G, Bo, )

1: B—By,j<— 0,5 {}
2: for (i=1tor)do

3 M—W(E)-2B

4 (v, 8, T, Bactual) — ALG(M)
5: if (v == false)then

6: B+«—2-B
7

8

9

if (v == true A Bactuar > Bo) then
B« B —[B/27]

: je—j+1
10: elseif (v == true A Bactuar < Bo ) then
11: B« B+ [B/27]
12: je—j+1
13: else
14: ReturnS
15: ReturnS




