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Abstract. The configuration of network resources greatly impacts the commu-
nication overhead for data intensive tasks and constitutesa critical problem in the
design and maintenance of networks. To address the issue of resource placement,
we analyze and implement a heuristic for solving a known NP-complete graph
optimization problem called MAXIMUM SIZE BOUNDED CAPACITY CUT. Ex-
perimental results for our heuristic demonstrate promising performance on both
synthetic and real world data. Next our heuristic is used as asub-routine to solve
another known NP-complete problem called MIN-MAX MULTIWAY CUT whose
traits we adapt to yield a resource placement scheme that exploits correlations be-
tween network resources. Our experimental results show that the resulting place-
ment scheme achieves a significant savings in communicationoverhead.

1 Introduction

While a measure of cost in a network is often dependent upon the given scenario, cost
is generally coupled with the volume of communication between network entities. In
turn, the communication between network entities is dependent upon the allocation of
resources in the network. There are several scenarios characterized by frequent access to
limited and multiple resources such as complex queries in distributed databases, which
often require the aggregation of several objects, or the useof keyword indices by search
engines in order to efficiently resolve user queries, or peer-to-peer (P2P) file sharing,
where latency and bandwidth usage are highly dependent uponwhere files are stored.

In such environments, the location of resources has an impact on the efficiency of
the system. For example, if resourcesA andB are often requested together, but stored
at different locations, the communication overhead incurred by queries for these re-
sources can be significantly greater than ifA andB are colocated. In this work, we
consider the communication costs between network entitiesand model the task of re-
source placement using a known graph optimization problem.Under this model, the
goal is to distribute resources to locations in a network such that the maximum cost
between any given pair of partitions is minimized; this aspect lends an important notion
of “fairness” to our resource placement scheme.

We also demonstrate that correlation is crucial for motivating a notion of cost in
our placement scheme. Correlation values are calculated using data from prior network
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transactions. Therefore, it is assumed that knowledge of communication trends is avail-
able either as traffic engineering matrices, snapshots of past communications, or design
considerations. For instance, Internet Service Providersroutinely trace traffic in P2P
networks and this information can be used to improve networkperformance [12]. Nat-
urally, this approach raises the question of whether such correlations are stable enough
over a sufficient period of time to warrant the additional computational costs of a
correlation-aware placement scheme. Indeed, it has been demonstrated that resource
correlationsdo remain stable over at leastmonth-long periods[23].

From a practical perspective, the resource placement scheme we propose can be
managed by an authority in a distributed setting, such as an ISP; there exist proposals
for cooperation between ISPs and P2P networks [5, 20]. Alternatively, in a centralized
scenario, such a scheme would be useful within single-administrative domains, such as
allocation in data-centers. We treat the details of such a setup as outside the scope of
this paper, and instead focus on the analysis of our scheme.

1.1 Our Contributions

We propose a resource placement scheme that exploits correlation information be-
tween network resources; we call this acorrelation-aware resource placement scheme.
In formulating our scheme, two known NP-complete problems are dealt with: MAX -
IMUM SIZE BOUNDED CAPACITY CUT (MAX SBCC) and MIN-MAX MULTIWAY

CUT (MMMC). We mathematically analyze and implement a heuristic for MAX S-
BCC based on the technique of semidefinite programming (SDP). Our heuristic is then
employed as a subroutine for solving MMMC. To the best of our knowledge, our work
provides the first empirical evaluation of these two problems.

We then identify two challenges to employing MMMC as a model of resource
placement. First, naively employing a cost metric can lead to insensible solutions. Sec-
ond, privacy issues are absent from the model. We address both challenges by showing
how correlation adequately motivates important cost metrics, and we mathematically
extend the model to account for privacy constraints. Finally, an experimental evaluation
of our correlation-aware resource placement scheme is conducted with real-world data.

1.2 Related Work

Our work differs from a number of previous treatments on dataplacement where cost
metrics are not motivated by correlation and, moreover, cost is measured as an ag-
gregate [14] or average [6] across the entire network. The most relevant related work
is [23] where the authors address the use of correlation in placing data items in a net-
work. However, again, their work aims to minimize anaggregatenotion of cost in
contrast to the substantially different min-max approach used here.

Our correlation-aware resource placement scheme is based on the MIN-MAX MUL-
TIWAY CUT problem which was introduced by Tardos and Svitkina [18]. The MIN-
MAX MULTIWAY CUT problem is NP-complete and the best known approximation
algorithm relies on obtaining an efficient solution to a sub-problem called the MAXI -
MUM SIZE BOUNDED CAPACITY CUT problem. In [18], the authors cite an algorithm
developed in [8] to achieve a polylogarithmic approximation. However, the algorithm
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of [8] is extremely intricate and, several years after the theoretical result, no implemen-
tation exists.1 Moreover, due to the large number of constraints, this algorithm is likely
to be extremely computationally intensive, even for very small problem instances.

In contrast, our work incorporates an efficient heuristic based on the technique of
semidefinite programming (SDP). SDP has figured prominentlyin the development of
heuristics for problems in the areas of phylogenic reconstruction [16], machine learn-
ing [22], sensor network layout [7], bioinformatics [13] and graph partitioning [9]; these
results demonstrate that heuristics can benefit greatly from this optimization technique.

2 Our Heuristic and Analysis

To solve the MIN-MAX MULTIWAY CUT problem, we solve a subproblem known as
the MAXIMUM -SIZE BOUNDED-CAPACITY CUT (MAX SBCC) problem introduced
in [18]. The input to MAX SBCC is an undirected graphG = (V, E) with weights on
the verticesw(v), capacities on the edgesc(e), source and sink verticesvs, vt ∈ V , and
an integerB. Given a partition ofV into S andT , denote byδ(S) the total weight of
the cut edges and denote byw(S) the total weight of the vertices inS. The MAX SBCC
problem is to find ans-t cut (S, T ) such thatδ(S) ≤ B, andw(S) =

∑

v∈S w(v) is
maximized. In [18], the authors are concerned with a(α, β)-bicriteria approximation
algorithm for MAX SBCC. That is, given an instance of MAX SBCC with an optimal
solution(S∗, T ∗), returns in polynomial time a solution(S′, T ′) such thatδ(S′) ≤ αB
andw(S′) ≥ βw(S∗) whereα ≥ 1 and0 < β ≤ 1. Therefore, solutionsmay exceed
the budgetand this also turns out to be true for our heuristic.

Consider the quadratic program specified by Equations (1)-(4). Variablexi corre-
sponds tovi ∈ V , wi is the weight of vertexvi, andwij is the edge weight of(vi, vj)
which is zero if no such edge exists.

max
n

∑

i=1

1 + xsxi

2
wi (1)

s.t.
∑

i<j

xixj wij ≥ M (2)

xsxt = −1 (3)

xi ∈ {−1, 1} (4)

max

n
∑

i=1

1 + ysi

2
wi (5)

s.t. Y = (yij) � 0 (6)
∑

i<j

yij wij ≥ M (7)

yii = 1 (8)

yst = −1 (9)

Equation (1) counts the cumulative weight of the vertices inS. Let τ denote the
cumulative weight of the edges internal to the setT and letσ denote the cumulative
weight of the edges internal to the setS. Equation (2) countsσ + τ − δ(S). Equation
(3) states that the source and sink nodes must be in separate partitions. Equation (4)
guarantees that each vertex belongs to one and only one partition. Treating each vertex
variablexi as a vectorvi, and lettingyij = vi · vj, the SDP specified by Equations
(5)-(9) is obtained where ’�’ denotes thatY is positive semidefinite. We now analyze
the semidefinite program to motivate its suitability for MAX SBCC. Due to space con-
straints, proofs of the following results are given in the appendix. LetW ∗ ≥ M denote

1 To the best of our knowledge, no such implementation exists.Furthermore, via email corre-
spondence, Professor R. Krauthgamer (one of the authors of [8]) stated he was unaware of any
such implementation.
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the value of Equation (7) given by solving the semidefinite program and letW ≤ W ∗

denote its value after applying the standard technique of hyperplane rounding.

Lemma 1. Hyperplane rounding of the SDP provides aW such thatE[W ] ≥ 0.945W ∗.

Let S∗ denote the value of Equation (5) given by the solution to the semidefinite pro-
gram and letS denote the value of this quantity after hyperplane rounding. We establish
the following critical result:

Lemma 2. Let ǫ be a small positive constant. With probability at least1 − 1
n , hy-

perplane rounding need only be applied⌈2 lnn/ǫ⌉ times before a rounded solution to
the SDP is obtained such thatW ≥ (1.823 − λ)W ∗ and w(S) ≥ β′w(S∗) where
1 ≥ λ ≥ 0.823.

Finally, we address the quality of our solution:

Theorem 1. With probability at least1 − 1
n , for λ ∈ [0.823, 1], the above algorithm

achieves a cut(S, T ) such that:

δ(S) ≤ λ +

(

1 − λ

2

)

w(E)

B

w(S) ≥ (1.823 − λ) · w(S∗)

As λ approaches1, the quality of our approximation increases correspondingly. There-
fore, the quality of our solution depends heavily onλ which, in turn, depends on the
valueM that we set in our program. This relationship suggests a heuristic approach
whereby we attempt to improve our solution quality by modifying M . Throughout, we
refer to the above algorithm by ALG(M) to reflect that the performance depends onM .

2.1 Our Full Heuristic: MaxSBCC Solver

We seek a solution to MAX SBCC by performing multiple iterations of ALG(M) and
modifying the value ofM in our semidefinite program formulation at each iteration.
Denote the output of ALG by the tuple(v, S, T, Bactual) where:

– v: is a boolean variable with valuetrue if the solution returned is ans-t cut;
false otherwise.

– S: is the set of nodes on the source side of the cut.
– T : is the set of nodes on the sink side of the cut.
– Bactual: is the bound resulting from our setting ofM .

Due to space constraints, we outline our heuristic which we call MAX SBCC SOLVER;
the full pseudocode is given in the appendix. The input into MAX SBCC SOLVER is
the graphG = (V, E), the desired input boundB0 and the number of iterationsr of
ALG(M). The core idea is to modifyM at each iteration of ALG until we achieve aB
value close, or equal, to our original desired boundB0. M is modified by essentially
performing a binary search through the possible values of the input boundB.

MAX SBCC SOLVER begins by storing our original input boundB = B0 andM =
W (E) − 2B. Once executed, the solution is checked for validity by inspecting the
booleanv variable. If MAX SBCC SOLVER failed to find ans-t cut, the next iteration
proceeds with the input boundB doubled. Once a valid solution is returned,Bactual is
examined; if it is larger than our desiredB0, B decreases by⌈B/2j⌉wherej denotes the
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number of iterations where a valid solution has been achieved. Conversely, ifBactual is
smaller or equal toB0, B increases by⌈B/2j⌉. Note that such changes in the value of
B are equivalent to modifyingM , sinceM = W (E) − 2B in our SDP.

At the end ofr iterations of this process,S is returned. If a valid solution was found,
the solution that gave a bound closest toB0 (ie. the iteration where|B0 − Bactual|
was smallest) is returned. Otherwise, if no valid solution was found,S will be empty;
however, if there exists a cut of sizeB0 or less, then our algorithm will return a valid
cut with high probability and with the attributes demonstrated by our analysis above.

2.2 MaxSBCC Solver: Experimental Results

Our experiments are performed on systems with up to1300 nodes; there are two rea-
sons for this system size. First, although this situation isimproving, solving semidefinite
programs is still computationally expensive. The area of semidefinite programming is
relatively new and available software for solving such programs is consequently lim-
ited. Many solvers scale asO(n3) wheren is the dimension of the semidefinite matrix.
However, despite its current computational costs, semidefinite programming is a stan-
dard technique for solving many challenging problems. Moreover, a number of recent
results address the issue of scalability such as parallelized implementations [17] as well
as devising problem formulations that can be computed more efficiently [15]. We be-
lieve such techniques can allow our algorithm to scale to much larger system sizes but
are outside the scope of this paper.2 The second reason is that, for our experiments
with MAX SBCC, we wish to compare against the optimum solution. This allows a par-
ticularly unforgiving comparison in judging the performance of our algorithm. We for-
mulate an integer linear program (ILP) for each of the experimental problem instances.
Using the ILP solver CPLEX [1], an optimal solution can be achieved for the purposes
of comparison. For our experiments we use the SDP solver ‘SemiDefinite Programming
Algorithm in Matlab [2].

Our first data set consists of three unweighted (Table 1) and three weighted (Table
2) Barabási-Albert scale free graphs created using the BRITE topology generator [3].
Each graph is connected3, consists of300 vertices and, for the weighted case, edge
capacities are exponentially distributed in the range{1, ..., 1024} while node weights
are chosen uniformly at random in the range{1, 1024}. Our second data set consists of
three unweighted (Table 3) and three weighted (Table 4) connected Waxman graphs [19]
of 300 nodes, with the same capacity and node weight distributions. Finally, we use a
real-world data set collected in [11] consisting of a trace of peer-to-peer (P2P) traffic and
containing information on data objects both advertised andqueried over the course of
two months; we restrict our use of this data to mp3 files. Correlation values are derived
for each object by examining how often filex and filey were colocated at a peer. Edges
with correlation values less than0.25, using ap-value of0.1, are discarded yielding a
connected component of358 nodes which we used. Each correlation value is multiplied
by a factor of100 and rounded to the nearest integer in order to provide integer input
values for the SDP program. We then select a node of minimum degree,dmin, to be the
source and a node of maximum degree,dmax, to be the sink. Budget values are selected

2 In terms of our later application to resource placement, previous results of [23] have shown
that only a small fraction of the total system need be optimized to achieve substantial savings.

3 If the graph is disconnected, our algorithm can be used on each component individually. For
simplicity, we used only connected graphs in our experiments.
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Trial B S δ S∗ δ∗ S/S∗, δ/δ∗

1

2 1 2 1 2 1.000, 1.000
10 5 10 9 10 0.556, 1.000
18 9 18 20 18 0.450, 1.000
26 15 27 29 24 0.517, 1.125
34 16 30 38 34 0.421, 0.882
42 25 43 49 42 0.510, 1.024
46 299 46 299 46 1.000, 1.000

2

2 1 2 1 2 1.000, 1.000
7 4 8 5 7 0.800, 1.143
12 6 12 10 12 0.600, 1.000
17 10 22 15 17 0.667, 1.294
22 12 23 21 22 0.571, 1.045
27 299 31 27 27 11.074, 1.148
31 299 31 299 31 1.000, 1.000

3

2 1 2 1 2 1.000, 1.000
9 4 8 7 9 0.571, 0.889
16 9 19 15 16 0.600, 1.188
23 12 23 23 23 0.522, 1.000
30 15 31 30 27 0.500, 1.148
37 17 38 38 37 0.447, 1.027
41 299 41 299 41 1.000, 1.000

Trial B S δ S∗ δ∗ S/S∗, δ/δ∗

1

6 973 6 973 6 1.000, 1.000
1096 13409 1360 20362 10960.659, 1.241
2186 20951 2590 31666 21860.662, 1.185
3276 34038 3943 41133 32710.828, 1.205
4366151828436715224443620.997, 1.001
5456156249546015624354231.000, 1.007
5460156249546015624954601.000, 1.000

2

14 369 14 369 14 1.000, 1.000
751 10592 959 13222 743 0.801, 1.291
1488 13000 1496 23478 14870.554, 1.006
2225 22865 2332 31874 22230.717, 1.049
2962151079297615100329401.001, 1.012
3699155300370215528436561.000, 1.013
3702155300370215530037021.000, 1.000

3

3 917 3 917 3 1.000, 1.000
770 14476 1073 14958 770 0.968, 1.393
1537 17647 1572 24342 15320.725, 1.026
2304 22645 2317 33561 23040.675, 1.006
3071147415306514799230640.996, 1.000
3838151589383815158938381.000, 1.000

Tables 1 & 2: Results of the MAX SBCC heuristic on unweighted and weighted Barabási-Albert
graphs, respectively.

as even increments in the range[dmin, dmax]. We setr = 5 in MAX SBCC SOLVER

which we found yielded good solutions.
Tables 1-5 provide the results of MAX SBCC SOLVER in the S and δ columns,

while the optimum solution is given in theS∗ andδ∗ columns. For both the weighted
and unweighted synthetic data sets, the worst source side approximation is0.421 and
the worst cut approximation is1.393 and, generally, the approximations are even signif-
icantly better than these worst cases. Moreover, for our experiment using the real-world
data, we observe in Table V that our heuristic yieldsvery high quality solutions. We also
note that MAX SBCC SOLVER performs relatively quickly, completing within no more
than4 hours on a machine utilizing a single1.3 GHz Intel Itanium2 CPU running SuSE
Linux. In comparison, the trials with CPLEX frequently required up to48 hours on the
same system. Overall, the performance of MAX SBCC SOLVER is promising and, with
our heuristic in hand, we now move onto MMMC and resource placement.

3 Towards Resource Placement: Min-Max Multiway Cut

As a basic abstract model of resource placement, we use the MIN-MAX MULTIWAY

CUT (MMMC) problem as defined in [18]. Given an undirected graph G= (V,E) with
weighted edges and a subset of the verticesT = {t1, ..., tk} which are called terminals,
a multiway cut is a partition ofV into disjoint setsS1, ..., Sk, such thatSi contains
ti for i = 1, ..., k. The goal in MMMC is to partitionV such that the maximum cut
between any two partitions is minimized. If cut size is related to the cost of commu-
nication between two partitions, then MMMC seeks tofairly distribute this cost over
all partitions. Therefore, we deal with a setting where local communication is relatively
cheap, while communication between individual machines ordomains is costly.
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Trial B S δ S∗ δ∗ S/S∗, δ/δ∗

1

2 1 2 1 2 1.000, 1.000
5 2 6 3 5 0.667, 1.200
8 3 11 7 8 0.428, 1.375
11 5 12 10 11 0.500, 1.091
14 5 12 14 14 0.357, 0.857
17 299 17 299 17 1.000, 1.000

2

2 1 2 1 2 1.000, 1.000
4 3 5 2 4 1.500, 1.250
6 5 8 5 6 1.000, 1.333
8 5 8 7 8 0.714, 1.000
10 7 11 9 10 0.778, 1.100
12 7 11 11 12 0.636, 0.917
14 299 16 13 14 23.000, 1.143
16 299 16 299 16 1.000, 1.000

3

2 1 2 1 2 1.000, 1.000
5 4 6 3 5 1.333, 1.200
8 5 12 6 7 0.833, 1.714
11 5 12 10 11 0.500, 1.091
14 9 16 12 14 0.750, 1.143
17 299 17 299 17 1.000, 1.000

Trial B S δ S∗ δ∗ S/S∗, δ/δ∗

1

13 916 13 916 13 1.000, 1.000
344 6047 289 9049 342 0.668, 0.845
675 8987 642 15041 675 0.598, 0.951
10061496671125149377 991 1.002, 1.135
1337150765136615050112561.001, 1.088
1668151290166815129016681.000, 1.000

2

11 78 11 78 11 1.000, 1.000
343 5844 459 6705 336 0.872, 1.366
675 157520 606 156514 606 1.006, 1.000
10071575201051157146 987 1.002, 1.065
1339158254167215752010511.005, 1.591
1672158254167215825416721.000, 1.000

3

15 631 15 631 15 1.000, 1.000
387 8372 367 9895 385 0.846, 0.953
759 12554 734 15957 756 0.787, 0.971
1131159297117315726011061.013, 1.061
1503160081147416011514710.999, 1.002
1876161490187616149018761.000, 1.000

Tables 3 & 4: Results of the MAX SBCC heuristic on unweighted and weighted Waxman
graphs, respectively.

The ‘fairness’ aspect of MMMC distinguishes this work from anumber of other
resource placement models. In contrast, by minimizing the aggregate or average notion
of cost, it is possible for some network participants to suffer a disproportionate amount
of traffic. Here, we are not concerned with the number of resources allocated to a net-
work entity, but with the cost of inter-partition traffic incurred by holding such items.
With abundant availability of disk-space, we treat bandwidth and latency as principal
aspects in our model.

3.1 Experimental Results

In [18], the authors show how a(α, β)-approximation algorithm for MAX SBCC can be
used to achieve an(α logβ n)-approximation for MIN-MAX MULTIWAY CUT. Here, we
employ their result using our heuristic for MAX SBCC; we call this algorithm MMMC
SOLVER. Due to space constraints, we refer the reader [18] for further details.

Using the data set from [11], the most widely held2000 mp3 files are extracted.
Pair-wise correlations are computed between all data objects and we discard edges with
a correlation value below a cutoff pointc which differs per trial. Edge capacities were
then multiplied by a factor of100 and rounded to the nearest integer. For each trial,
τ terminal nodes are chosen uniformly at random from the totalnumber of nodesN
and the input bound was chosen to be an arbitrary value of1000. MMMC SOLVER is
then run on the graph problem. Since no ILP formulation for MMMC is known, we
compare against two other algorithms in order to evaluate the quality of our solution.
The first is a simple random placement of nodes to partitions which models the behavior
we would expect from employing a secure hash function; we denote this algorithm by
RANDOM. The second is a greedy algorithm, denoted by GREEDY, that begins with a
random assignment to partitions and then attempts to reducethe size of the maximum
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B S δ S∗ δ∗ S/S∗, δ/δ∗

25 159975 25 159975 25 1.000, 1.000
115 160957127 163526113 0.984, 1.124
205 166445228 165908202 1.003, 1.129
295 167438278 167108278 1.002, 1.000
385 167825354 168476381 0.996, 0.929
476 176567476 176567476 1.000, 1.000

Trial c N τ RANDOM GREEDY MMMC
SOLVER

1 0.30 111 4
1290 831 34
1475 888 66
1222 875 39

2 0.28 379 5
2708 2273 163
2495 2190 300
2480 1962 136

3 0.26 813 6
3756 2990 152
3567 3179 238
3514 3114 219

4 0.2412567
5246 4145 288
5208 4060 256
5297 4556 538

Table 5: Results of the MAX SBCC heuristic on real world data.Table 6: results of test-
ing RANDOM, GREEDY, MMMC SOLVER on MMMC test cases.

cut by greedily reassigning vertices. In particular, each non-terminal node involved in a
maximum cut is tested in all other partitions. If such a relocation reduces the maximum
cut, the new assignment is immediately kept; otherwise, thenode remains at its original
location. A solution is returned when no further reduction can be obtained.

Table 6 provides the results of our experiments. The longestrunning experiment
consisted of1256 nodes with7 terminals and the running time of MMMC SOLVER

was under8 hours. Over all four trials, MMMC SOLVER demonstrates superior per-
formance in the size of the maximum cut. The discrepancy between RANDOM and
MMMC SOLVER is significant although expected. More strikingly, the difference be-
tween GREEDY and MMMC SOLVER is substantial suggesting that the greedy ap-
proach becomes trapped in local optima which MMMC SOLVER is able to avoid. In
particular, the maximum cut between any two partitions yielded by MMMC SOLVER

is never more than14% of that yielded by GREEDY.

4 Correlation-Aware Resource Placement: Extending MMMC

Initially, the MIN-MAX MULTIWAY CUT problem appears to model almost any re-
source placement problem. However, this is not the case for two reasons:

1. Cost Dependencies:consider modelling a P2P network as discussed in the original
work [18] where the terminals are peers and the remaining non-terminal vertices
are data items. A data item belonging toSi is stored at peerti and edge capacities
reflect expected communication patterns. The goal is to allocate data items among
the peers so as to minimize the expected communication cost.However, costs will
likely depend on where items are placed in the network. Here, MMMC requires
input for the edges and yet this input will be defined by the very solution we seek.
Consequently, cost metrics need to be carefully motivated.

2. Privacy: there are often constraints on where resources can be placedin the net-
work and, by itself, the MIN-MAX MULTIWAY CUT problem does not address this
issue. This may be due to privacy issues where sensitive datacan only be allocated
to secure locations. Conversely, a server may refuse to maintain a particular re-
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source given legal concerns or quality of service constraints. Resources may even
be physically restricted to certain locations.

We now show how to solve these two problems and arrive at our correlation-aware
resource placement scheme.

4.1 Cost Metrics Motivated by Correlation

In this section, we demonstrate how the use of correlation inour model avoids the
problem of cost dependencies and motivates two important cost metrics. Overall, the
main benefit of correlation information is that it is independent of location. Throughout,
assume we are provided with positive correlation values between nodes in the network.4

Latency as a Cost Metric: consider resourcesd1 andd2, which are strongly correlated.
They may be colocated in order to reduce the communication overhead involved in
obtaining them both. For instance, in response to a query involving d1, both resources
d1 andd2 may be fetched in anticipation of a follow-up request ford2; alternatively,
less inter-machine communication may be required if both resources are located on
one, or even a small number of machines, if substantial inter-machine communication is
required for a query. Therefore, under scenarios where the size of resources is relatively
small, the correlation values on our input graph to the MIN-MAX MULTIWAY CUT give
rise to latency as a plausible cost metric.

This problem domain is suited to a number of applications. For instance, text search
engines typically utilize inverted indices in order to be efficient. Primarily, an inverted
index stores information matching a keyword to documents that contain it. A query
with K terms often requires that the inverted indices of allK terms be accessed. For
distributed search systems, these indices are placed on many different machines. Con-
sequently, the communication overhead between machines storing the indices required
for resolving the same query presents a critical factor in supporting fast search [23].

Bandwidth as a Cost Metric: for sizable data items, bandwidth becomes the dominat-
ing cost, not latency. Consider two large filesd1 andd2 that are highly correlated in the
sense that if a user obtains one, he is likely to obtain the other. As a simple example,d1

andd2 might be two jpeg files by a user’s favorite artist. In this case, it does not matter
whetherd1 andd2 are colocated since our cost metric is dominated by bandwidth con-
sumption which does not necessarily bear any relationship to the correlation value on
the edge(d1, d2) in our input graph.

The situation, however, is quite different for queries involving the collection of more
than one data source. For instance, a user may wish to computea function over the
aggregation ofd1 andd2. There are a number of settings where such complex queries
are useful for allowing richer search capabilities. A rangequery might require a join
operation ond1 andd2. Here, it makes sense to haved1 andd2 colocated; the query
can be resolved without downloading ofat least one ofd1 or d2. Such complex queries
motivate a meaningful relationship between correlation and bandwidth consumption.

4 Our approach can incorporate negative correlations; however, for simplicity we restrict our
attention to positive correlation in the context of our work.
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4.2 Adding Privacy Constraints

We enforce privacy constraints by embedding them into the MAX SBCC sub-problem.
The following primal semidefinite form for our SDP of Section2 can be obtained from
Equations (5)-(9) by standard methods:

max C · X s.t. (1/2)A • X = W

Eii • X = 1, for 1 ≤ i ≤ n

(1/2)Est • X = −1

X � 0

whereP •Q denotes the standard
∑

i

∑

j PijQij . B′ is such that entryb′11 = 1 and all
other entries in the first row and first column have value1/2; the rest of the entries are
0. ThenC = (1/2)I + (1/2)B′, Xij = vivj, andA is the capacity matrix forG. Eij

is ann × n matrix with a1 in theijth andjith entries and zeros everywhere else.
Using the primal form, privacy constraints are added in the following fashion. As-

suming feasibility, if we wish to constrain the location of aparticular resourceb to a
terminalv, we include(1/2)Ev,b • X = 1; alternatively,(1/2)Ev,b • X = −1 ensures
that b will not be stored atv. We can also force resourcesa andb to be colocated or
separted by setting(1/2)Ea,b • X = 1 or (1/2)Ea,b • X = −1, respectively. The
mathematical analysis of Section 2 changes little and the results remain unchanged.

4.3 Experimental Results

Our experimental work is in the context of Section 4.1. Assume a homogenous multi-
administrative network where users in the network are issuing text queries and the cost
of resolving a querywithin the domain of the particular issuer of the queryis inex-
pensive, while communication between administrative domains is costly. We consider
the problem of placing inverted indices such that (1) the communication overhead be-
tween domains during query resolutions is reduced and (2) nodomain is involved in an
excessive number of transactions involving multiple domains.

We utilized the query data5 of [11] which totals5462 queries, each consisting of sev-
eral terms, by users in the network. Using the SMART ‘stopword’ list [4], queries were
pruned to remove trivial terms.6 From this data set, theK most prevalent terms were
extracted and correlation values between each pair were calculated. The most prevalent
terms are not necessarily correlated with one another; therefore, we extracted the largest
group of terms that did share positive correlations. Represented as a connected compo-
nent where nodes are terms and edges are weighted by correlation values, this graph was
used as our input.10 randomly chosen terminals were chosen to correspond to domains.
There were12 trials in total, consisting of53, 144, 238, 336, 423, 523, 630, 734, 847,
956, 1064 and1157 nodes, respectively. In each trial, all5462 pruned queries were exe-
cuted. For each term in a particular query that matched a top key word in our trial, data
was collected; otherwise, the term was ignored.

Distinct Domains Accessed per Query:if terms within a single query require access-
ing multiple domains, then the number of unique domains accessed provides a measure

5 All query data was used, not just queries related to mp3 files.
6 Pruning did not remove queries, but trivial terms were removed from a large number of queries.
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Trial GREEDY MMMC
SOLVER

1 1218 1111
2 2247 1996
3 2942 2409
4 3439 2333
5 3808 2493
6 4191 2693
7 4561 2909
8 4886 3024
9 5285 3159
10 5555 3291
11 5858 3471
12 5997 3485

Trial GREEDY MMMC
SOLVER

1 83.0% 87.7%
2 73.6% 81.4%
3 68.3% 83.9.%
4 64.8% 96.8%
5 62.4% 94.7%
6 59.4% 97.6%
7 58.3% 96.8%
8 56.8% 97.8%
9 55.2% 98.8%
10 54.4% 98.8%
11 53.6% 97.8%
12 53.1% 99.4%

Trial GREEDY MMMC
SOLVER

1 7.0% 10.0%
2 9.7% 12.1%
3 11.5% 13.7%
4 11.7% 3.2%
5 14.5% 5.3%
6 13.7% 2.4%
7 14.6% 3.2%
8 14.7% 2.2%
9 16.1% 1.3%
10 15.7% 1.2%
11 15.9% 2.1%
12 16.2% 5.8%

Tables 7: Number of unique domain accesses per query aggregated over all queries. Ta-
ble 8: Total percentage of queries that can be resolved within a single domain.Table 9: Of
the remaining queries that require accessing two or more domains to resolve, the percentage
attributed to the domain involved in the most number of such transactions.

of communication overhead per query. Table 7 illustrates the sum of such access data
over all queries. In comparison with the placement scheme given by GREEDY, MMMC
SOLVER achieves substantially fewer unique domain accesses over the course of exe-
cuting all 5462 queries. In particular, for Trial4 and above, MMMC SOLVER incurs
only68% down to58% of the unique domain accessesperformed by GREEDY.

Queries Involving Multiple Domains: the number of queries requiring communica-
tion between multiple domains concerns both the amount of communication overhead
and also the aspect of fairness. Table 8 depicts data for bothMMMC SOLVER and
GREEDY on the number of queries that were resolved through a single domain only
and the number of queries that required two or more domain accesses. For MMMC
SOLVER, at least81% of all queries could be resolved at a single domain. Moreover,
for Trial 4 and above, this value grew to be95% or more. In contrast, a significantly
smaller percentage of queries were resolved at a single domain using GREEDY. In terms
of fairness, with MMMC SOLVER, no domain participated in transactions with other
machines for more than19% of the queries. This value can be dissected further by
examining how much of this19% is attributed to each domain. Table 9 gives this infor-
mation; no domain is ever forced to participate in more than14% of these transactions
involving more than one domain. Moreover, this value decreases substantially as the
number of key words is increased,dropping below6% after Trial 4.

5 Conclusion

In this work, we proposed a novel correlation-aware resource placement scheme. A
heuristic was developed for solving the MAX SBCC problem. This heuristic is used as
a critical sub-routine for solving MMMC which, after extensions to address cost met-
rics and privacy constraints, yields our correlation-aware resource placement scheme.
The results of our experiments were encouraging and demonstrated that our scheme can
yield substantial savings in communication overhead. Interesting future work includes
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analyzing the performance benefits of using negative correlation information and par-
allelized implementations of our algorithms.

Acknowledgements:we gratefully thank Jared Saia for his helpful discussions.
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Appendix

In this appendix, we include (1) the additional lemmas and the proofs that were omitted
from Section 2 and (2) the full pseudocode that was omitted from Section 2.1.

Analysis and Proofs for Section 2

Additional lemmas have been included which did not fit into the main paper; conse-
quently, the lemmas are renumbered. Throughout, letW ∗ ≥ M denote the value of
Equation (7) given by solving the semidefinite program and let W ≤ W ∗ denote its
value after applying hyperplane rounding.

Lemma 1.For y ∈ [−1, 1], (1 − arccos(y)/π) > 0.945y.

Proof. We can rewrite the above inequality as(1−θ/π) ≥ α cos θ for θ ∈ [0, π]. Define
f(θ) = (1 − (θ/π))/ cos θ and note thatf(θ) is convex and minimized at a unique
valuexmin ∈ [0, π/2] such thattan xmin = 1/(π−xmin). The root ofπ tan (xmin)−
(xmin) tan (xmin) − 1 = 0 is xmin > 0.3432. Choosex = 0.3432 < xmin. Now,
f(0.3432) < 0.9459 and becausef is concave,f(0.3432) − α = ǫ > 0 where we
considerǫ to be an error term. By obtaining a tight boundǫ ≤ β, we can get an accurate
estimate ofα sinceα = f(0.3432) − ǫ ≥ f(0.3432) − β. Let f ′ be the derivative
of f . Evaluatingf ′(0.3432) < −6.2 × 10−6 = m gives the slope of the tangent line
tangent atx = 0.3432. We also have that(0.3432 − xmin) < −6.6 × 10−6. Finally,
let ymin be the actual value off at its minimum. Thereforeǫ = f(0.3432) − ymin =
(0.3432− xmin)m < 10−10 and we haveα ≥ 0.9459− 1.0 × 10−10 > 0.945.

Lemma 2.Hyperplane rounding of the SDP provides aW such thatE[W ] ≥ 0.945W ∗.

Proof. Note thatvivj = 1 iff vi andvj are on the same side of the hyperplane. There-
fore, by Lemma 5, we have:

E[W ] =
∑

i<j

(1 − θij/π)wij ≥ 0.945
∑

i<j

vivj wij = 0.945W ∗

noindentLetS∗ denote the value of Equation (5) given by the solution to the semidefi-
nite program and letS denote the value of this quantity after hyperplane rounding. The
next lemma follows from previous work in [10]:

Lemma 3. Hyperplane rounding of the SDP provides anS such thatE[w(S)] ≥
0.878 w(S∗).

We now establish the following critical result:
Lemma 4.Letǫ be a small positive constant. With probability at least1− 1

n , hyperplane
rounding need only be applied⌈2 lnn/ǫ⌉ times before a rounded solution to the SDP is
obtained such thatW ≥ (1.823− λ)W ∗ andw(S) ≥ β′w(S∗) where1 ≥ λ ≥ 0.823.

Proof. We argue along similar lines as [21]. By Lemma 5 and Lemma 5, hyperplane
rounding of the SDP program on lines 5-9 gives the following:

E[W ] ≥ αW ∗ andE[w(S)] ≥ βw(S∗)
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Define a random variableZ such thatZ = W
W∗

+ w(S)
w(S∗) . Note that:

E[Z] =
E[W ]

W ∗
+

E[w(S)]

w(S∗)
≥ α + β > 1.823

There must exist a rounding triali whereZ achieves at least its expected value, that
is Zi ≥ α + β. On this trial, the rounded solutions to the contraints 5 and7 of the
SDP,Wi andSi respectively, will satisfyWi ≥ αi(W

∗) andw(Si) ≥ βiw(S∗) where
αi + βi = α + β > 1.823. Therefore, we are guaranteed thatmin {αi, βi} > 0.823
and, more precisely, we have:

Wi ≥ (1.823− β′)W ∗ andw(Si) ≥ β′w(S∗)

where1 ≥ β′ ≥ 0.823. We now show that, with high probability,⌈2 lnn/ǫ⌉ rounding
attempts are sufficient to obtain aZ that is arbitrarily close to its expectation. Letp =
Pr[Z ≥ (1 − ǫ)E(Z)] whereǫ > 0 is some small constant. Then,E(Z) ≤ (1 −

ǫ)E(Z) + 2p which implies thatp ≥ ǫE(Z)
2 = ǫ(α+β)

2 . We then have:

(1 − p)c ln n ≤ (1 − ǫ(α + β)/2)2 ln n/ǫ ≤ e−(α+β) ln n < n−1

The next lemma concerns the cut found by our heuristic:

Lemma 5.Let λ ∈ (0, 1] andw(E) =
∑

ei∈E c(ei) = σ + τ + δ(S). If W ≥ λW ∗,

thenδ(S) ≤ w(E)−λM
2 .

Proof. Note thatW = σ + τ − δ(S). Then, by assumptionW = σ + τ − δ(S) ≥ λW ∗

and we have:
δ(S) ≤ σ + τ − λW ∗

= σ + τ + δ(S) − δ(S) − λW ∗

≤ (w(E) − λM)/2 sinceW ∗ ≥ M

Finally, we address the quality of our solution:

Theorem 1.With probability at least1 − 1
n , for λ ∈ [0.823, 1], the above algorithm

achieves a cut(S, T ) such that:

δ(S) ≤ λ +

(

1 − λ

2

)

w(E)

B

w(S) ≥ (1.823 − λ) · w(S∗)

Proof. Given a budgetB, we want to set up our SDP by havingM = (w(E) −
2B)/λactual. We know thatz will meet its expectation before too long and when that
happensλactual ∈ [0.823, 1]. However, we do not know the exact value ofλactual

prior to solving the SDP. Therefore, we can only guarantee that δ(S) ≤ (w(E) −
λpredictM)/2 = Bactual whereλpredict is our guess at the actual valueλactual. As
a result,Bactual may not be the initially desiredB we were handed. One way of ad-
dressing this issue is to setλpredict = 1 and then setM = (w(E) − 2B)/λpredict

accordingly. For example, ifw(E) = 400 and the desired bound is100, one could set
up the SDP withM = 200. Then, in the worst case, all executions of our algorithm
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might set the actual value toλactual = 0.823. In this case, the SDP solved the problem
using a boundBactual = (400 − 0.823 · 200)/2 ≈ 117. Therefore, the approximation
ratio of the cut we obtain isδ(S)/B which is at mostBactual/B. In this concrete ex-
ample, we haveBactual/B = 117/100 and so we have set our input bound too high.
We adopt this procedure and forλactual = λ ∈ [0.823, 1] the ratio by which our cut
can exceed the bound is:

δ(S)

B
≤

w(E) − λM

w(E) − M
= λ +

(

1 − λ

2

)

w(E)

B

M AX SBCC SOLVER Pseudocode

The pseudocode for MAX SBCC SOLVER is given below:

MAX SBCC SOLVER(G,B0, r)

1: B ← B0, j ← 0, S ← {}
2: for (i = 1 to r) do
3: M ← W (E)− 2B
4: (v, S, T, Bactual)← ALG(M)
5: if (v == false)then
6: B ← 2 · B
7: if ( v == true∧ Bactual > B0) then
8: B ← B − ⌈B/2j⌉
9: j ← j + 1

10: else if (v == true∧ Bactual < B0 ) then
11: B ← B + ⌈B/2j⌉
12: j ← j + 1
13: else
14: ReturnS
15: ReturnS


