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Abstract. The segment minimization problem consists of finding the smallest set
of integer matrices that sum to a given intensity matrix, such that each summand
has only one non-zero value, and the non-zeroes in each row are consecutive.
This has direct applications in intensity-modulated radiation therapy, an effective
form of cancer treatment.

We show here that for a single row, this problem is fixed-parameter tractable
in the largest value of the intensity matrix. We use this to develop approximation
algorithms for the full problem. One of these improves the approximation factor
from the previous best oflog

2
h + 1 to 3/2 · (log

3
h + 1), whereh is the largest

entry in the intensity matrix; another improves the approximation factor from
2 · (log D +1) to 24/13 · (log D +1), whereD is the largest difference between
consecutive elements of a row of the intensity matrix.

Experimentation with these algorithms show that they outperform other ap-
proximation algorithms on 75% of the 172 test cases we considered, which in-
clude both real world and synthetic data.

1 Introduction

Intensity-modulated radiation therapy (IMRT) is an effective form of cancer treatment,
in which the region to be treated is discretized into a grid, and a treatment plan speci-
fies the amount of radiation to be delivered to the area of bodysurface corresponding
to each grid cell. A device called a multileaf collimator (MLC) is used to administer
the treatment plan in a series of steps. In each step, two banks of metal leaves in the
MLC are positioned to cover certain portions of the body surface, while leaving others
exposed, and the latter are then subjected to a specific amount of radiation.

A treatment plan can be represented as anm×n intensity matrixT of non-negative
integer values, whose entries represent the amount of radiation to be delivered to the

⋆ Research partially supported by NSERC. We also thank BaruchSchieber for his helpful cor-
respondence.
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corresponding grid cells. The leaves of the MLC can be seen aspartially covering rows
of T ; for each rowi of T there are two leaves, one of which may slide inwards from the
left to cover the elements in columns1..l of that row, while the other may slide inwards
from the right to cover the elements in columnsr..n. After each step of the treatment,
the amount of radiation applied in that step (this can differper step) is subtracted from
each entry ofT that has not been covered. The treatment is completed when all entries
of T have reached0.

Setting leaf positions in each step of the treatment plan requires time. Minimizing
the number of steps reduces treatment time and can result in increased patient through-
put, reduced machine wear and tear, and overall reduced costof the procedure. Mini-
mizing the number of steps for a given treatment plan is the objective of this paper.

Formally, asegmentis a matrixS such that non-zeroes in each row ofS are consecu-
tive, and all non-zero entries ofS are the same integer, which we call thesegment-value.
A segmentationof T is a set of segment matrices that sum up toT , and we call the cardi-
nality of such a set thesizeof that segmentation. Thesegmentation problemis, given an
intensity matrixT , to find a minimum-size segmentation ofT . We will often consider
the special case of a matrixT with one row, which we call thesingle-row segmentation
problemas opposed to thefull-matrix segmentation problem.For ease of notation, we
assume thatT begins and ends with an all-0 column; this does not affect the size of an
optimal segmentation and simplifies the definition ofD given in [14].

The segmentation problem is known to be NP-complete in the strong sense, even
for a single row [6, 1, 2], as well as APX-complete [3, 4]. Numerous heuristics are
known [13, 8, 11, 12]. Bansalet al. [3, 4] provide a24/13-approximation algorithm for
the single-row problem and give some better approximationsfor more constrained ver-
sions. Work by Collinset al. [7] shows that the singlecolumnversion of the problem
is NP-complete and provides some non-trivial lower bounds given certain constraints.
Recent work by Luanet al. [14] gives two approximation algorithms for the fullm× n
segmentation problem; however, they do not consider the performance of their algo-
rithms in practice.

Our Contributions

Luan et al. [14] used two insights to obtain approximation algorithms. First, the seg-
mentation problem is easy for 0/1-matrices. Second, segmentations for the single-row
problem with small segment-values can be used to obtain goodsegmentations for the
full-matrix problem. They exploited both and gave two approximation algorithms with
approximation factors of (roughly)log h and2 logD whereh is the largest value inT ,
andD is the largest difference between consecutive elements in arow of T .4

We use the same ideas, but add further insights. First, we show that the single-row
segmentation problem isfixed-parameter tractablein the largest valueh (i.e., the run-
time is O(f(h)p(n)) for some functionf(.) and some polynomialp(.)). Hence, the
single-row problem is easy to solve ifh is small. Unfortunately, this does not immedi-
ately imply that the full-matrix problem is easy to solve ifh is small, but we can solve
it optimally in polynomial time forh = 2. With some further insight, we can show that
such solutions can be combined to give an approximation algorithm for the full-matrix

4 Throughout this work, we uselog(x) to mean⌊log x⌋. Unless specified otherwise, we assume
the logarithm base2.
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segmentation problem with approximation factor (roughly)3
2 ·log3(h), which is smaller

thanlog h.
We also provide another approximation algorithm with factor (roughly) α log D,

whereα is the best approximation factor for the single-row problem. The current best
knownα is α = 24/13 [3, 4]; any improved approximation result for the single-row
problem would lead directly to an improved approximation result for the full problem.
This second approximation algorithm expands on the second approximation algorithm
by Luan et al.; they used one specific 2-approximation algorithm for the single-row
problem, whereas we show that in fact anyα-approximation algorithm can be used.

Finally, we give an empirical evaluation of known approximation algorithms, using
both synthetic and real-world clinical data. To the best of our knowledge, this is the
first such evaluation of these approximation algorithms to appear in the literature. Our
experiments demonstrate that the constant factor improvements made by our algorithms
yield significant performance gains in practice. Therefore, in both theO(log h) and
O(log D) scenarios, our new algorithms improve on previous approximation algorithms
theoretically and experimentally.

2 FPT algorithms for single-row segmentation

In this section, we prove that the single-row segmentation problem is fixed parameter
tractable (FPT) inh, the largest value in the intensity matrixT . Note thatT is has a
single-row, hence it is a stringT [1..n]. We call a segmentation ofT [1..n] compactif
any two segments in itbegin(i.e., have their first non-zero entry) at a different index,and
end(i.e., have their last non-zero entry) at a different index.The following observation
is straightforward; we give a proof in the appendix.

Lemma 1. For any segmentationS of a single row, there exists a compact segmentation
S′ with |S′| ≤ |S|.

Our algorithm uses a dynamic programming approach that computes an optimal
segmentation of any prefixT [1..i] of T . We say that a segmentation ofT [1..i] is almost-
compactif any two segments in it either begin at different indices orboth begin at
index 1, and they either end at different indices or both end at index i. We will only
compute almost-compact segmentations; this is sufficient by Lemma 1. We compute
the segmentation conditional on the values of the last segments in it.

Let S be a segmentation of stringT [1..i]; eachS ∈ S is hence a stringS[1..i].
Define thesignatureof S to be the multi-set obtained by taking the last integerS[i]
of each segmentS ∈ S and deleting all 0s. Note that the signature of a segmentation
of T [1..i] is a partition of T [i], i.e., a multi-set of positive integers that sum toT [i].
For any partitionφi, use||φi|| to denote its size, i.e., the number of elements, counting
multiple elements repeatedly.

Now define a functionf as follows: given an integeri and a partitionφi of T [i],
setf(i, φi) to be the minimum number of segments in an almost-compact segmentation
of T [1..i] for which the signature isφi. One can easily see thatf(1, φ1) = ||φ1||. We
will show thatf(i, φi) can be computed recursively. Given a partitionφi of T [i], let
Φi−1(φi) be the set of those partitions ofT [i − 1] that can be obtained fromφi by
deleting at most one element, and then adding at most one element.
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Lemma 2. For i > 1, f(i, φi) = min
φi−1∈Φi−1(φi)

{f(i − 1, φi−1) + ||φi − φi−1||}

Proof. We only prove “≥” here; the other inequality is proved similarly (see appendix.)
Consider an almost-compact segmentationSi of T [1..i] that achieves the left-hand side,
i.e., its signature isφi and|Si| = f(i, φi). We have four kinds of segments inSi: (1)
Those that end at indexi − 2 or earlier, (2) those that end ati − 1 (there can be at most
one, sinceSi is almost-compact), (3) those that end ati and start ati− 1 or earlier, and
(4) those that end ati and begin ati (there can be at most one).

LetSi−1 be the segmentation ofT [1...i−1] obtained fromSi by taking all segments
of type 1–3, and deleting the last integer (at indexi). Note thatSi−1 is also almost-
compact. The signatureφi−1 of Si−1 is the same asφi, except all values of segments of
type (4) are removed and all values of segments of type (2) areadded. This shows that
φi−1 is in Φi−1(φi).

If both a segment of type (4) and a segment of type (2) exist inSi, then they neces-
sarily have different non-zero value (otherwise they couldbe combined, contradicting
the minimality ofSi). Hence||φi − φi−1|| is exactly the number of segments of type
(4). So|Si−1| = |Si| − ||φi − φi−1||, which proves “≥”. ⊓⊔

By evaluating functionf with standard dynamic programming approaches, we can
show the following:

Theorem 1. The single-row segmentation problem can be solved inO(h1.5 · p(h) · n)
time andO(h ·p(h)) space if all values in the intensity matrix are at mosth, wherep(h)
is the number of partitions of integerh.

Proof. (Sketch) For eachi, there are at mostp(h) partitions ofT [i] ≤ h; computing
and storing them can be done inO(h · p(h)) time and space. Any partition ofT [i] ≤ h

has at most
√

h many distinct integers; hence|Φi−1(φi)| ≤
√

h. So we can compute
f(i, φi) in O(h1.5 · p(h)) time if f(i − 1, .) is known. Doing this for alli, we can
computef(n, φn) for all partitionsφn of T [n] in timeO(h1.5 ·p(h)·n), and the optimal
segmentation-size is found by taking the minimum. ⊓⊔

It is known thatp(h) ≤ eπ·
√

2·h

3 [10], so this algorithm is polynomial as long as
h ∈ O(log2 n). In the present form it only returns the size of the smallest segmentation,
but standard dynamic programming techniques can be used to retrieve the segmentation
in the same running time with anO(log n) space overhead.

2.1 The special case ofh = 2

For h = 2, we can find the optimal solution with the above dynamic programming
algorithm. However, we can do more: we can control how many segments have value
2 (we call these2-segments) and how many have value 1 (we call these1-segments.)
These results will be needed later when we combine solutionsin each row to a solution
of the whole matrix.

We can use regular expressions to describe subsequences ofT , e.g.,2+ stands for
‘a subsequence of only2s, containing at least one2’. Let a stepbe a subsequence ofT
of the form02+1 or 12+0 and atower be a subsequence ofT of the form02+0. See
also Fig. 1. Amarkeris an indexi for whichT [i − 1] 6= T [i] ([14]; this was calledtick
in [3].) We uses, t andρ for the number of steps, towers, and markers, respectively.
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Fig. 1. Two kinds of steps, and a tower.

Lemma 3. Defineg(d) as follows:

g(d) =







1
2 · (ρ + s) − d if t ≤ d ≤ t + s
1
2 · (ρ + s) − (t + s) if t + s < d
1
2 · (ρ + s) + t − 2d if d < t

Then for anyd ≥ 0, any segmentation with at mostd 2-segments has at leastg(d)
1-segments. Moreover a segmentation that has at mostd 2-segments and exactlyg(d)
1-segments can be found inO(n) time.

Proof. Any occurrence of a 2 is at a tower, at a step, or at a substring of the form12+1.
Applying dynamic programming, one verifies the following:

– Towers must use a 2-segment in any optimal solution. For eachtower that does not
use a 2-segment, the size of the solution increases by 1.

– Steps may use a 2-segment in an optimal solution, but they canalso use a 1-segment
instead without affecting the size of the solution.

– Substrings of the form12+1 cannot use a 2-segment in an optimal solution.

Hence, if we are allowed a 2-segment for each tower (i.e.,d ≥ t), then the best segmen-
tation will have the optimum sizeOPT (one can easily show thatOPT = (ρ + s)/2
by evaluating all possible cases with dynamic programming.) At mostt+ s 2-segments
can be used in an optimal segmentation. So the number of 1-segments isOPT − d if
d ≤ t + s andOPT − (t + s) if d > t + s.

Now assume thatd < t. In this case, we are not even allowed a 2-segment for each
tower, andt − d of them must use two 1-segments instead. So the best solutionuses
OPT + (t − d) segments, of whichd are 2-segments and the rest are 1-segments. To
find such a segmentation, use a 2-segment formin{d, t} towers, then formin{d− t, s}
steps ifd ≥ t, and use 1-segments for everything else. ⊓⊔

The second result is that we can always find a segmentation whose number ofv-
segments (v = 1, 2) is bounded in terms of the number of markers alone. This seg-
mentation is not necessarily optimal, but knowing these bounds will allow us to show
approximation bounds later.

Lemma 4. There exists a segmentation such that the number of 1-segments is at most
1
2 · ρ, and the number of 2-segments is at most1

4 · ρ + 1
2 .

Proof. (Sketch) Use a 2-segment for half of the towers (rounded up) and half of the
steps (rounded down), and use 1-segments for everything else. The proof then follows
by counting markers carefully. Details are given in the appendix. ⊓⊔
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3 Improved Approximations Using A Larger Base

The first approximation given by Luan et al. [14] worked as follows. Split the given
intensity matrixT into matricesP1, . . . , Pk such thatT =

∑k
ℓ=1(2

ℓ · Pℓ) (by taking
the bits of the base-2 representation of entries ofT ). A segmentation forT can then be
obtained by taking segmentations of eachPℓ, multiplying their values by2ℓ, and taking
their union. Since eachPℓ is a 0/1-matrix, an optimal segmentation of it can be found
easily, and an approximation bound oflog h + 1 holds.

We use exactly the same approach, but change the base, writing T =
∑k

ℓ=1(b
ℓ ·Pi)

for some integerb ≥ 3. (This can be done with anyb, but we obtained good approx-
imation bounds only forb = 3, 4.) This raises two questions: (1) How can we solve
the segmentation problem in a matrix that has values in{0, 1, . . . , b − 1}? (2) Is the
resulting segmentation a good approximation of the optimalsegmentation? Neither of
these questions is anywhere near as simple as it was forb = 2.

3.1 Splitting P into rows and combining

We now address the first question, i.e., how to find a good segmentation of a matrix
P with values in{0, . . . , b − 1}. A simple heuristic consists of splittingP into its
rows, solving the segmentation problem for each row, and combining those segmenta-
tions into one segmentationS. Since each row also has values in{0, . . . , b − 1}, we
can find the optimum segmentation of each row in polynomial time (as long asb is a
constant.) To combine the rows, one can use a greedy approach. Check for each value
v ∈ {0, . . . , b − 1} whether any segment in any row has this value. If there is one,then
remove a segment of valuev from each row that has one. Combine all these segments
into one segment-matrix (also with valuev), and add it toS. We refer to this algorithm
as GREEDYROWPACKING.

Using an optimal segmentation of each row seems a natural idea, but somewhat
counter-intuitively, it sometimes isn’t the best we can do.Consider an example where
the optimal segmentation of row 1 uses 10 1-segments and no 2-segments, and the
optimal segmentation of row 2 uses no 1-segments and 5 2-segments. GREEDYROW-
PACKING would then use 15 segments forP . But if instead we had used a different
segmentation of row 2, which splits each 2-segment into two 1-segments, then both
rows used 10 1-segments, and GREEDYROWPACKING would use 10 segments forP .
So it is sometimes advantageous to use segmentations that are not optimal. This will be
exploited forb = 3 below.

3.2 The caseb = 3

If b = 3, thenP is a 0/1/2-matrix, i.e., all entries inP are 0,1 or 2. For each row of
P , we know not only how to compute the optimal segmentation, but for anyd we can
compute the best segmentation that has at mostd 2-segments (Lemma 3). Letgi(.) be
the functiong(.) as in Lemma 3 for rowi. Thus we know that any segmentation of row
i with at mostd 2-segments has at leastgi(d) 1-segments, and a segmentation with at
mostd 2-segments and exactlygi(d) 1-segments can be computed inO(n) time.

Lemma 5. Any optimal segmentationS∗ ofP satisfies|S∗| = mind{d+maxi{gi(d)}}.
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Proof. We first prove ‘≤’. Let d∗ be the value that achieves the minimum. For each
row i, find a segmentation with at mostd∗ 2-segments andgi(d

∗) 1-segments. Apply
GREEDYROWPACKING to obtain a segmentationS of P . The number of 1-segments
in S is maxi gi(d

∗), and the number of 2-segments is at mostd∗, so |S| ≤ mind{d +
maxi{gi(d)}}, and|S∗| can only be smaller.

For the other direction, letS∗ be an optimal segmentation ofP , and letd∗ be the
number of 2-segments in it. For eachi, the induced segmentation of rowi hence has
at mostd∗ 2-segments and by Lemma 3 at leastgi(d

∗) 1-segments. The rowi that
maximizesgi(d

∗) has at leastmaxi{gi(d)} 1-segments, soS∗ has at leastmaxi{gi(d)}
1-segments. SinceS∗ hasd∗ 2-segments, this proves the claim. ⊓⊔

We can hence find the optimal segmentation ofP as follows. Compute function
gi(.) for each row, then compute functionmaxi{gi(.)}, and then find the valued∗ that
minimizesd + maxi{gi(d)}. This can all be done inO(m ·n) time, since the functions
gi are very simple. Compute for each row the best segmentation with at mostd∗ 2-
segments, and combine these segmentations with GREEDYROWPACKING; by Lemma 5
this gives the optimal segmentation forP .

Theorem 2. The minimal segmentation of an intensity matrix with valuesin {0, 1, 2}
can be found inO(m · n) time.

3.3 Combining segmentations of matrices

Now we address the second question posed earlier. AssumeT =
∑k

i=1(b
ℓ · Pℓ) for

matricesP1, . . . , Pk, wherek = logb h+1. Assume further that we haveα-approximate
segmentationsfor eachPℓ, i.e., for eachℓ we have a segmentationSℓ of Pℓ that is within
a factorα of the optimum, for someα ≥ 1. Wecombinethese segmentations as follows:
For each segmentS of Sℓ, addbℓ · S to S. One easily verifies thatS is a segmentation
of T . Forb = 3, we can show that this is a good approximation.

Lemma 6. Assume eachPℓ is a 0/1/2-matrix. Combining optimal segmentationsS∗

1 ,
. . . ,S∗

k for matricesP1, . . . , Pk gives a segmentationS for T of size at most32 · k ·
OPT + 1

2 · k, whereOPT is the size of a minimal segmentation ofT .

Proof. Rather than arguing this directly, we argue via another segmentation of each
Pℓ which has some desirable properties. Letρi

ℓ be the number of markers of rowi of
matrix Pℓ. Recall that each rowi of Pℓ has a segmentationSi

ℓ for which the number
of 1-segments is at most12 · ρi

ℓ and the number of 2-segments is at most1
4 · ρi

ℓ + 1
2

(Lemma 4.) Letρℓ = maxi ρi
ℓ be the maximum number of markers within any row of

Pℓ. Combining the segmentationsSi
ℓ of the rows ofPℓ with algorithm GREEDYPACK-

ING gives a segmentationSℓ of Pℓ for which the number of 1-segments is at most1
2 · ρℓ

and the number of 2-segments is at most1
4 · ρℓ + 1

2 . The optimal segmentationS∗

ℓ of Pℓ

can only be smaller, so

|S∗

ℓ | ≤ |Sℓ| ≤
3

4
· ρℓ +

1

2
.

Consider the optimal segmentationS∗ of T . Let i be the row ofT which has the maxi-
mal numberρ of markers. Every segment inS∗ can remove at most two markers in row
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i, which proves2|S∗| ≥ ρ. Matrix Pℓ can have a marker only if matrixT has a marker
in the same location, soρℓ ≤ ρ ≤ 2|S∗| [14]. Putting it all together, we have

|S| =

k
∑

ℓ=1

|S∗

ℓ | ≤
k

∑

ℓ=1

(
3

4
· ρℓ +

1

2
) ≤

k
∑

ℓ=1

(
3

4
2|S∗| + 1

2
)

which proves the result. ⊓⊔
The above result showed the approximation bound already forthe segmentation

obtained by packing the segmentations of the rows of Lemma 4 into matrices. We know
that these segmentations aren’t optimal if there are many towers, so using the optimal
segmentation of eachPℓ should given even better bounds in practice. We conclude by
restating the result as a theorem.

Theorem 3. There exists a polynomial-time algorithm that for any intensity matrixT
with maximum valueh finds a segmentationS of T size at most32 ·(log3 h+1) ·OPT +
1
2 · (log3 h + 1), whereOPT is the size of a minimal segmentation ofT .

For largeOPT andh values, the new approximation factor approaches3
2 ·(log3 h+

1); therefore, the ratio between this approximation and the(log h + 1)-approximation
of [14] approaches 3

2 log 3 ≈ 0.946. Hence, for sufficiently largeOPT andh, the new
algorithm is superior.

3.4 Higher values of the base

One could consider a similar approach using larger bases, and in particularb = 4. Two
complications arise. First, we do not know how to compute theoptimum segmentation
of a matrix with values in{0, 1, 2, 3}, unless it is a single row. Forb = 3, this was done
in Lemma 3, which expressed the number of needed 1-segments in terms of the number
of allowed 2-segments. It is not clear whether this lemma canbe generalized to some
(b − 1)-dimensional function for largerb.

It is also not straightforward that even an optimal solutionfor eachPℓ would yields
an approximate solution forT . This was argued forb = 2 andb = 3 using markers.
With an extensive case analysis, we can generalize Lemma 4 tob = 4 as well (the
number of 3-segments is at mostρ/6), which gives an11

6 · (log4(h) + 1)-approximate
segmentation. Preliminary experimental results indicated that using baseb = 4 is no
better than using baseb = 3 in practice, and we did not pursue this approach further.

4 Approximation by modifying row-segmentations

Our previous approximation algorithm can be summarized as follows: split the intensity
matrix by bits, split each resulting matrix into rows, segment each row and then put
the segments together. The second approximation algorithmby Luan et al. [14] uses
another approach that is in some sense reverse: split the intensity matrix into rows,
segment each row, split each resulting segment into multiple segments by bits, and then
put the segments together. The quality of this second approximation depends on two
factors: the approximation guarantee and the largest valueused by a segment in any of
the row-segmentations. Without formally stating it in these terms, Luan et al. proved
the following result:
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Lemma 7. [14] Assume that for any single-row problem we can find anα-approximate
solution where all segments have value at mostM . Then we can compute in polynomial
time anα(log M + 1)-approximate segmentation ofT .

Luan et al. used this by showing that any single-row problem has a 2-approximate
solution where any segment has value at most the maximum differenceD between
consecutive elements in a row.

We can slightly improve on this with two insights. First,anysegmentation can be
converted into a segmentation with values at mostD, without adding any new segments.
Secondly, valuesα < 2 can be found, both based on existing results and because of our
first approximation algorithm.

Lemma 8. LetS be any segmentation of a single-row intensity matrixT . LetD be the
maximum difference between consecutive elements inT . Then there exists a segmenta-
tion S′ with |S′| ≤ |S| for which all segments have value at mostD.

Proof. Modify S as done in [2] such that no two segments meet, i.e., if some segment
ends at indexi, then no segment starts ati+1. Any segmentS must have valuev ≤ D,
for if S ends ati, thenT [i + 1] = T [i] − v since no segment starts ati + 1. ⊓⊔

It now follows immediately from Lemma 7 and Lemma 8, usingM = D:

Theorem 4. There exists a polynomial-time algorithm that, for any intensity matrixT
with maximum differenceD between consecutive elements in a row, finds a segmenta-
tionS of T size at mostα · (log D +1)OPT . Hereα ≤ 24

13 ≈ 1.846 in the general case
by [3, 4] andα = 1 if h ∈ O(log2 n) by Theorem 1.

For the general case, this improves upon the2 · (logD+1) approximation result for

the full-matrix problem in [14]. In particular, forα = 24
13 , if D ≤

(

h13

8

)1/16

, then to the

best of our knowledge, this is the tightest approximation tothe segmentation problem
with no restriction on the intensity matrix values.

5 Experimental Results

In this section, we give experimental results for the following five algorithms:

– XV: The heuristic algorithm of Xia and Verhey [13] extended to the full m × n
case. This algorithm has commonly been used as a benchmark for comparison of
new segmentation algorithms [9, 2, 11].

– ALG 1: The(log h + 1) approximation algorithm of [14].
– ALG 2: The 3

2 · (log3 h + 1) approximation algorithm of Section 3.2.
– ALG 3: The2(log D + 1) approximation algorithm of [14].
– ALG 4: The 24

13 · (log D + 1) approximation algorithm of Section 4, which utilizes
our implementations of algorithms from [3–5].

All algorithms were implemented using the Java programminglanguage, using ap-
proximately 3600 lines of codes overall.
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5.1 Data Sets

We used five data sets:

– Data Set I:a real-world data set comprised of70 clinical intensity matrices obtained
from the Department of Radiation Oncology at the Universityof California at the
San Francisco School of Medicine. The type of cancer is unknown and levels are
specified in terms of percentages in increments of20% of some maximum valuev.
For each intensity matrix, we chosev at random from{25, ..., 100}. This range of
values was selected since it is large enough to prevent trivial solutions. Therefore,
each matrix contains values from{0, ⌈0.2 · v⌉, ⌈0.4 · v⌉, ⌈0.6 · v⌉, ⌈0.8 · v⌉, v}.

– Data Set II:a real-world data set containing a prostate case, a brain case and a head-
neck case obtained from the Department of Radiation Oncology at the University
of Maryland School of Medicine. This data set consists of22 clinical intensity
matrices with values specified absolutely.

– Data Set III:a synthetic data set of30 intensity matrices with values sampled uni-
formly at random from between0 and10, 000; random matrices have been used
previously for performance testing [13].

– Data Set IV:a synthetic data set of20 intensity matrices. Each matrix is obtained
as follows: compute the sum of the pdfs of four bivariate Gaussians generated from
two independent standard univariate Gaussian distributions. These are then scaled
by A · 2 · π where the amplitudeA and the centers of the distributions are sampled
uniformly at random.Determine the smallestm × n-grid so that the function is
less than 1 outside this grid. Discretize the function, i.e., add as value in them ×
n-grid the integer part of the corresponding function value.The choice of “four”
Gaussians and the range of the amplitude (we chose 1-80) was made to ensure some
peaks and valleys in the intensity matrix, while keeping thematrices reasonably
small. We would expect these matrices to have a smallD-value, since the Gaussian
distributions do not rapidly change value.

– Data Set V:a synthetic data set of30 intensity matrices. For fixed inputD, T [r][1] =
D and fori = 2, .., n/2, T [r][i] = max{T [r][i − 1] + c, 0} wherec is randomly
selected from{−D, ...,−1, 0, 1, ..., D}. For i = n

2 + 1, ..., n, we setT [r][i] =
T [r][n − i + 1]. Note that these matrices can never have aD-value larger than the
prescribed bound.

Data Sets IV & V were engineered to possess smallD values relative toh. Test-
ing on matrices with smallD values is pertinent assuming improvements in treatment
technology; higher precision MLCs may facilitate treatment plans for more fine-grained
intensity matrices. All of our test cases have sizesm, n varying between 20 and 171.

The experiments conducted on Data Sets I, II & III were executed on a machine
with a 1 GHz Pentium CPU and1GB of RAM; this was also the case for Data Sets IV
& V using XV, A LG 1 and ALG 2. For ALG 3 and ALG 4, the experiments involving
Data Sets IV & V required more memory and were conducted on a Silicon Graphics
Altix 3700 system with64 1.3 GHz Intel Itanium2 CPUs and192 GB of memory.
We did not use any of the advanced resources of this machine except the increased
memory and never utilized more than2 GB of RAM in any particular execution. All of
the algorithms ran very fast (usually a few seconds) on all trials; the slowest seemed to
be ALG 4 and ALG 5, which took up to 45 seconds on some trials in Data Set IV and
V. However, evaluating the running time was not the focus of our experiments, and our
code was not optimized for it.
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# trials XV ALG 1 ALG 3

Data Set I 70 41 38 9
Data Set II 22 22 0 0
Data Set III 30 30 0 0
Data Set IV 20 0 0 20
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Fig. 2. (A): The number of trials where XV, ALG 1 and ALG 3 gave the smallest segmentations,
respectively. (B): The size of the segmentations of XVvs ALG 1 on Data Set III. Each point
(x, y) corresponds to a trial where XV usedx segments and ALG 1 usedy segments. Points
above the main diagonal indicate trials where XV outperformed ALG 1. More than one trial may
correspond to any(x, y) in the plot; see Tables 2–7 of the appendix for more details.

# trials XV ALG 1 ALG 2 ALG 3 ALG 4

Data Set I 70 12 17 44 4 4
Data Set II 22 6 0 16 0 0
Data Set III 30 3 0 27 0 0
Data Set IV 20 0 0 0 3 19
Data Set V 30 7 0 1 5 24

Table 1.The number of trials where each of the 5 algorithms achieves the smallest segmentation.

5.2 Results

The full tables of results can be found in the appendix. To evaluate them, we focused
on two questions: (1) Do the approximation algorithms in [14] give an improvement in
practice, i.e., in comparison to the standard benchmark algorithm, XV? (No experimen-
tal results were given in that paper.) (2) How do our improvedapproximation algorithms
perform compared to existing algorithms?

With regards to the first question, our experiments show thatwhile ALG 1 comes
with approximation guarantees, it shows mediocre performance compared to XV. Fig-
ure 2(A) summarizes the number of trials in which each algorithm gave the best seg-
mentations (ties are double counted). XV often produces significantly smaller segmen-
tations, as clearly illustrated in Figure 2(B) for Data Set III. A LG 3 performs better
than XV on Data Set IV, which was tailored to suit it well, but shows only a minor
performance advantage on Data Set V.

Regarding the second question, our experimental results show that our new approx-
imation algorithms perform considerably better than existing algorithms. Table 1 shows
how often each of the five algorithms we considerd achieves the smallest segmentation
(ties are double counted.) ALG 2 found the best segmentationin 77/122 trials on Data
Sets I–III, whereas ALG 4 found the best segmentation in 43/50 trials on Data Sets
IV and V; as seen in Figure 3, these segmentations are often significantly smaller than
those produced by XV.
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Fig. 3. (A) The size of the segmentation of XVvs ALG 2 on Data Set III. (B) The size of the
segmentation of XVvsALG 4 on Data Set IV.

6 Conclusion

We provided new approximation algorithms for the full-matrix segmentation problem.
We first showed that the single-row segmentation problem is fixed-parameter tractable
in the largest value of the intensity matrix. Using this yields provably good approximate
segmentations for the full matrix, after suitably splitting either the intensity matrix or
approximate segmentations of its rows according to some base-b representation. Finally,
our experimental results demonstrate that our theoreticalimprovements yield new algo-
rithms that, in both theO(log h) andO(log D) cases, significantly outperform previous
approximation algorithms in practice.

It may be of interest to explore the case ofb ≥ 4 as a base further. Can we solve
the matrix segmentation problem optimally if all values arein {0, 1, 2, 3}? And does
this lead to better approximation algorithms? Are further heuristic improvements pos-
sible, such that empirical performance in practically relevant cases is increased, while
maintaining desirable theoretical approximation guarantees?
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A Proofs

Lemma 1. Every single-row problem has an optimal segmentationS that is compact,
i.e., any two segments ofS begin at different indices and end at different indices.

Proof. Start with an arbitrary optimal segmentationS; we can argue how to modifyS
to obtain a compact segmentation of the same size. Leti be the smallest index such that
two segmentsS, S′ of S begin at indexi. SayS andS′ have non-zero valuea anda′ and
end at indexj andj′, respectively. Ifj = j′, then the two segments could be combined
into one to give a smaller segmentation, a contradiction. Soj 6= j′, sayj < j′.

Define two new segmentsS′′ andS′′′ as follows. SegmentS′′ begins ati, ends atj
and has valuea + a′. SegmentS′′′ begins atj + 1, ends atj′, and has valuea′. Clearly
S + S′ = S′′ + S′′′, soS′ = S − {S, S′} ∪ {S′′, S′′′} is also an optimal segmentation,
and has fewer segments that start ati. Iterate until only one segment starts ati, then
iterate with all larger values where multiple segments start. (Note that all new segments
in S′ start ati or later, so this eliminates all coinciding start-indices.) Then similarly
eliminate coinciding end-indices, starting at the largestone where they occur. ⊓⊔
Lemma 2For i > 1, f(i, φi) = min

φi−1∈Φi−1(φi)
{f(i − 1, φi−1) + ||φi − φi−1||}

Proof. To prove “≤”, let φi−1 ∈ Φi−1(φi) be a partition ofT [i] that achieves the
minimum on the right-hand side. LetSi−1 be an almost-compact segmentation that
achievesf(i − 1, φi−1, i.e., it is a partition ofT [1..i − 1] with signatureφi−1 and size
f(i − 1, φi−1). Define a segmentationSi of T [1..i] as follows. Every segment ofSi−1

that ends before indexi−1 is added toSi as is. For each value inφi−1 −φi, there must
be a segment inSi−1 that ends at indexi − 1; add this segment toSi and let it end at
i−1 (i.e., set itsith entry to be 0). For each value inφi−1 ∩φi, there must be a segment
in Si−1 that ends at indexi − 1; add this segment toSi and extend it toi (i.e., set its
ith entry to be the same as its(i − 1)st entry.) For each value inφi − φi−1, define a
new segment inSi that starts ati and has that value at indexi. One easily verifies that
Si has signatureφi, and therefore is a segmentation ofT [1..i], sinceφi is a partition of
T [i]. We can convert it to an almost-compact segmentation as in the proof of Lemma 1.
Also, |Si| = |Si−1| + ||φi − φi−1||, which proves the result. ⊓⊔

Lemma 4 Any single row with values in{0, 1, 2} has a segmentation such that the
number of 1-segments is at most1

2#markers, and the number of 2-segments is at most
1
4#markers+ 1

2 .

Proof. We prove this by repeatedly identifying a subsequence of therow for which we
can add a few segments and remove many markers, where “remove” means that if we
subtracted the segments from the target row, we would have fewer markers. To identify
subsequences of the row, we again use regular expression notations.

1. As long as there exists a subsequence of the form12+1, apply a 1-segment at the
subsequence of2s. This removes 2 markers, adds one 1-segment, and no 2-segment.

2. As long as there exists a subsequence of the form01+0, apply a 1-segment at the
subsequence of1s. This removes 2 markers, adds one 1-segment, and no 2-segment.

3. As long as there exists a subsequence of the form02+1+2+0, apply a 2-segment
at the first subsequence of2s, then two 1-segments to remove the remaining1+2+.
This removes 4 markers, adds two 1-segments, and one 2-segment.
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4. As long as there exist two subsequences of the form02+1+0 or 01+2+0, apply one
1-segment to one subsequence of2s, and one 2-segment to the other subsequence of
2s, then apply two 1-segments to the two remaining sequences of 1s. This removes
6 markers, adds three 1-segments and one 2-segment.

5. As long as there exist two subsequences of the form02+0, apply one 2-segment to
one of them, and two 1-segments to the other. This removes 4 markers, adds two
1-segments and one 2-segment.

6. If there exists one subsequence of the form02+1+0 or 01+2+0, and one subse-
quence of the form02+0, apply one 2-segment to the subsequence02+0, and two
one 1-segments to the other subsequence. This removes 5 markers, adds two 1-
segments and one 2-segment.

In all the above cases, we have removed at least 2 markers per 1-segment and at least
4 markers per 2-segment. Thus, counting only segments created and markers removed
thus far, we have at most12#markers 1-segments and14#markers 2-segments. All that
remains to do is to consider any markers that are remaining.

We argue that in fact at most three markers are left. Let0(1+2)+0 be a subsequence
that has markers in it. Assume first the leftmost non-zero is a1. Then the subsequence
must contain a 2 somewhere (otherwise we’re in case (2)), so it has the form01+2+(1+
2)+0. But after the 2s, no 1 can follow (otherwise we’re in case (1)), so this subsequence
has the form01+2+0. Likewise, if the last non-zero is 1, then the subsequence has the
form 02+1+0. If the first and last non-zero are 2, then the subsequence hasthe form
02+0 (otherwise we’re in case (1) or (3)).

If we had two subsequences0(1+2)+0, then each would have the form01+2+0 or
02+1+0 or 02+0, and we would be in case (4),(5) or (6). So there is only one of them,
and it has at most three markers.

We can now eliminate either three remaining markers with a 1-segment and a 2-
segment, or two remaining markers with a 2-segment; either way the bound holds. ⊓⊔

02+1+2+012+1 01+0

02+0 01+2+002+1+0 02+0 02+001+2+0

Fig. 4.A segmentation where the number of segments is bounded by markers.

B Experimental results

Below are Tables 2-7 from Section 5 which contain the resultsfor each trial of our
experimental evaluation.
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Trial m n # markersh D XV ALG 1 ALG 2 ALG 3 ALG 4
1 27 21 133 45 45 17 20 8 24 24
2 27 21 132 62 62 21 22 21 23 23
3 27 21 121 80 80 19 11 25 15 15
4 27 21 128 93 93 25 26 22 31 35
5 27 21 143 74 74 25 24 21 35 35
6 27 21 134 41 41 16 14 18 15 22
7 27 21 145 94 94 29 29 24 33 34
8 27 21 151 92 92 25 27 20 30 31
9 27 21 127 42 42 18 15 15 19 20
10 27 21 224 90 90 35 35 29 46 46
11 27 21 209 36 36 26 24 25 26 26
12 27 21 180 82 82 27 27 14 32 32
13 27 21 163 61 61 20 17 19 19 19
14 27 21 187 28 28 19 22 13 24 24
15 27 21 177 75 75 27 24 20 25 25
16 27 21 147 45 45 17 18 17 19 19
17 27 21 191 94 94 27 27 24 30 30
18 27 21 200 47 47 22 23 20 22 22
19 27 21 192 42 42 25 24 24 20 24
20 27 21 156 85 85 19 18 24 24 24
21 27 21 136 53 53 20 21 19 27 28
22 27 21 175 68 68 26 28 22 37 36
23 27 21 169 84 84 27 22 28 24 25
24 27 21 129 69 69 22 20 16 23 23
25 27 21 175 38 38 19 21 23 27 27
26 27 21 193 84 84 28 26 31 25 25
27 27 21 181 51 51 26 21 24 24 25
28 27 21 188 71 71 32 36 29 33 33
29 27 21 146 43 43 21 21 18 27 27
30 27 21 92 31 31 13 13 12 15 15
31 27 21 157 69 69 34 35 28 37 37
32 27 21 174 31 31 22 22 20 28 28
33 27 21 142 55 55 17 19 14 21 21
34 27 21 171 70 70 33 33 29 38 38
35 27 21 121 38 38 18 21 21 23 23

Table 2.The experimental trials1-35 using Data Set I with the best result underscored.
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Trial m n # markersh D XV ALG 1 ALG 2 ALG 3 ALG 4
36 27 21 136 87 87 24 25 19 33 33
37 27 21 181 86 86 24 22 22 22 21
38 27 21 224 60 60 34 22 24 25 24
39 27 21 178 50 50 22 19 20 25 23
40 27 21 244 90 90 29 24 20 40 28
41 27 21 255 83 83 36 26 38 30 28
42 27 21 226 65 65 25 28 26 34 34
43 27 21 174 82 82 21 16 26 18 17
44 27 21 173 67 67 25 27 20 29 29
45 27 21 207 35 35 26 29 26 36 36
46 27 21 32 29 29 12 10 11 13 13
47 27 21 31 35 35 10 12 11 18 16
48 27 21 40 54 54 15 17 14 16 16
49 27 21 32 73 73 12 12 14 22 22
50 27 21 44 31 31 11 11 12 14 14
51 27 21 42 84 84 18 17 19 21 21
52 27 21 39 57 57 14 15 14 17 16
53 27 21 30 38 38 10 11 13 17 16
54 27 21 41 71 71 19 18 15 24 26
55 27 21 137 55 55 17 19 15 23 23
56 27 21 109 45 45 21 20 16 20 20
57 27 21 94 70 70 18 17 14 17 17
58 27 21 105 63 63 19 19 16 21 21
59 27 21 96 80 80 20 19 11 23 23
60 27 21 58 65 65 10 7 10 6 6
61 27 21 122 53 53 24 17 14 17 17
62 27 21 130 89 89 24 25 19 33 33
63 27 21 118 98 98 18 14 22 14 14
64 27 21 195 28 28 21 22 25 27 28
65 27 21 136 21 21 14 15 15 16 16
66 27 21 77 71 71 11 12 10 13 13
67 27 21 167 74 74 26 29 20 41 37
68 27 21 130 90 90 21 22 14 22 22
69 27 21 99 24 24 12 12 8 13 11
70 27 21 133 54 54 21 21 14 25 25

Total 12 17 44 4 4

Table 3.The experimental trials36-70 using Data Set I with the best result underscored.
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Trial m n # markers h D XV ALG 1 ALG 2 ALG 3 ALG 4
1 20 20 209 100000008805586114 124 108 203 203
2 20 21 219 100000008399071117 129 108 216 215
3 20 20 210 100000009340255114 123 108 212 193
4 20 19 198 100000009909173100 106 97 178 178
5 20 21 229 100000009722947121 127 113 211 209
6 20 21 231 100000008504569119 129 118 214 218
7 20 19 193 100000009262494100 108 102 184 188
8 28 31 502 100000009275133182 192 185 338 337
9 28 29 475 100000007856988163 176 164 307 304
10 28 37 568 100000009056646211 221 206 368 388
11 27 28 449 100000008102019162 171 159 306 303
12 27 31 493 100000007928634180 189 171 322 310
13 27 38 610 100000006831687220 234 219 414 408
14 28 42 635 100000009998558234 247 231 425 428
15 26 28 379 100000009959856147 156 154 276 273
16 25 24 313 100000008218883134 140 123 233 233
17 25 27 340 100000009996029138 149 143 253 268
18 24 28 366 100000008915037151 158 145 287 296
19 24 25 352 100000006870038142 153 138 266 273
20 25 24 330 100000006226761133 141 135 243 236
21 26 28 385 100000009698595160 173 154 302 292
22 26 25 345 100000008893105141 143 137 248 253

Total 6 0 16 0 0

Table 4.Experimental trials using Data Set II with the best result underscored.
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Trial m n # markers h D XV ALG 1 ALG 2 ALG 3 ALG 4
1 40 40 1640 9992 9860 174 186 170 301 323
2 40 40 1640 9998 9866 179 186 171 304 321
3 40 40 1640 1000010000176 184 171 302 309
4 40 40 1639 9991 9969 181 193 175 310 308
5 40 40 1640 9997 9953 177 188 172 303 303
6 40 40 1640 9982 9804 177 185 172 313 311
7 40 40 1640 9980 9921 175 183 172 300 307
8 40 40 1639 9996 9855 177 186 174 303 312
9 40 40 1640 9993 9798 175 180 171 313 320
10 40 40 1639 9986 9844 176 187 171 302 302
11 40 40 1640 9995 9946 177 186 179 315 310
12 40 40 1640 10000 9898 180 186 171 304 313
13 40 40 1640 9999 9769 177 184 174 299 310
14 40 40 1640 9987 9898 175 186 174 303 308
15 40 40 1640 9997 9943 178 185 172 304 314
16 40 40 1640 9997 9979 182 189 169 300 315
17 40 40 1640 9998 9971 177 185 174 308 318
18 40 40 1640 9995 9977 177 185 169 308 312
19 40 40 1640 9999 9940 180 187 166 297 310
20 40 40 1640 9994 9912 173 183 166 301 311
21 40 40 1640 9996 9996 182 191 175 312 307
22 40 40 1640 9999 9893 178 188 170 307 309
23 40 40 1640 9996 9969 178 185 181 301 311
24 40 40 1640 9986 9898 175 185 171 294 311
25 40 40 1640 9975 9929 181 191 174 305 316
26 40 40 1640 10000 9983 178 184 169 306 315
27 40 40 1640 9995 9907 173 188 174 298 311
28 40 40 1640 9976 9921 174 188 172 300 316
29 40 40 1640 9989 9928 177 190 171 301 309
30 40 40 1640 9998 9988 179 189 170 309 308

Total 3 0 27 0 0

Table 5.Experimental trials using Data Set III with the best result underscored.
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Trial m n # markers h D XV ALG 1 ALG 2 ALG 3 ALG 4
1 151 146 9115 50 3 119 125 118 79 69
2 129 171 8825 73 3 137 142 137 100 88
3 149 106 6740 76 4 89 94 88 70 64
4 117 123 6540 87 5 106 112 113 84 76
5 165 148 8946 77 4 97 101 99 77 70
6 170 136 6746 73 5 82 86 84 61 56
7 135 158 8826 75 4 120 129 128 97 75
8 113 108 6106 84 5 100 104 100 75 77
9 109 148 6715 84 5 144 150 140 108 98
10 162 110 7213 66 4 81 84 81 66 54
11 109 135 4412 60 3 96 101 90 65 55
12 115 125 3452 46 3 80 86 83 55 47
13 125 134 5597 66 4 89 93 86 62 62
14 105 132 5287 150 8 125 128 122 103 92
15 152 116 7322 74 4 85 88 87 67 57
16 121 140 5701 85 5 104 108 106 77 77
17 165 125 7457 46 3 73 76 72 53 44
18 131 114 5146 72 4 81 85 84 70 52
19 131 127 5023 77 5 106 110 106 73 71
20 119 153 5164 58 4 84 86 81 63 55

Total 0 0 0 3 19

Table 6.Experimental trials using Data Set IV with the best result underscored.
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Trial m n # markersh D XV ALG 1 ALG 2 ALG 3 ALG 4
1 60 60 3052 17 1 50 76 55 29 29
2 60 60 2976 12 1 46 66 55 29 29
3 60 60 3026 12 1 47 69 57 29 29
4 60 60 3132 18 2 54 74 71 53 51
5 60 60 3120 22 2 61 80 66 51 48
6 60 60 3190 20 2 62 74 71 52 48
7 60 60 3202 32 3 69 93 67 58 55
8 60 60 3232 28 3 75 94 80 60 57
9 60 60 3220 29 3 69 91 69 62 55
10 60 60 3214 41 4 68 87 79 80 69
11 60 60 3212 43 4 72 83 74 77 72
12 60 60 3262 34 4 73 93 77 69 68
13 60 60 3230 51 5 77 98 86 76 67
14 60 60 3288 45 5 80 94 94 78 70
15 60 60 3292 46 5 84 96 87 74 73
16 60 60 3342 51 6 83 102 90 88 80
17 60 60 3270 44 6 84 102 86 84 84
18 60 60 3122 54 6 81 92 91 81 74
19 60 60 3278 63 7 87 107 91 91 84
20 60 60 3348 66 7 86 103 91 89 85
21 60 60 3280 53 7 87 101 90 85 78
22 60 60 3210 73 8 89 104 92 85 90
23 60 60 3292 82 8 91 104 91 95 82
24 60 60 3322 71 8 93 110 93 89 85
25 60 60 3262 88 9 89 105 95 97 98
26 60 60 3284 76 9 94 113 87 105 87
27 60 60 3314 83 9 92 118 93 98 95
28 60 60 3336 86 10 94 119 108 103 99
29 60 60 3386 93 10 97 117 104 107 93
30 60 60 3288 90 10 89 103 93 99 101

Total 7 0 1 5 24

Table 7.Experimental trials using Data Set V with the best result underscored.


