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Abstract. The segment minimization problem consists of finding thelkesiset
of integer matrices that sum to a given intensity matrix hstiat each summand
has only one non-zero value, and the non-zeroes in each mwaasecutive.
This has direct applications in intensity-modulated radiatherapy, an effective

form of cancer treatment.

We show here that for a single row, this problem is fixed-pat@mtractable
in the largest value of the intensity matrix. We use this teetiep approximation
algorithms for the full problem. One of these improves thpragimation factor
from the previous best dbg, h + 1t03/2 - (log, h + 1), whereh is the largest
entry in the intensity matrix; another improves the appmedion factor from
2-(log D+1)t024/13- (log D + 1), whereD is the largest difference between
consecutive elements of a row of the intensity matrix.

Experimentation with these algorithms show that they atitpen other ap-
proximation algorithms on 75% of the 172 test cases we censit] which in-
clude both real world and synthetic data.

1 Introduction

Intensity-modulated radiation therapy (IMRT) is an effeeform of cancer treatment,
in which the region to be treated is discretized into a gritj a treatment plan speci-
fies the amount of radiation to be delivered to the area of soniface corresponding
to each grid cell. A device called a multileaf collimator (/@) is used to administer
the treatment plan in a series of steps. In each step, twoshainketal leaves in the
MLC are positioned to cover certain portions of the body acef while leaving others
exposed, and the latter are then subjected to a specific drabradiation.
A treatment plan can be represented asar n intensity matrixl” of non-negative

integer values, whose entries represent the amount oftiawlieo be delivered to the

* Research partially supported by NSERC. We also thank BaBatlieber for his helpful cor-
respondence.
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corresponding grid cells. The leaves of the MLC can be seg@admlly covering rows

of T'; for each rowi of T' there are two leaves, one of which may slide inwards from the
left to cover the elements in columms! of that row, while the other may slide inwards
from the right to cover the elements in columns:. After each step of the treatment,
the amount of radiation applied in that step (this can difer step) is subtracted from
each entry of” that has not been covered. The treatment is completed whentdés

of T" have reached.

Setting leaf positions in each step of the treatment planireg time. Minimizing
the number of steps reduces treatment time and can resultri@ased patient through-
put, reduced machine wear and tear, and overall reduced€ttis¢ procedure. Mini-
mizing the number of steps for a given treatment plan is theative of this paper.

Formally, asegmenis a matrixS such that non-zeroes in each rowére consecu-
tive, and all non-zero entries 6fare the same integer, which we call fegment-value
A segmentatioonf 7' is a set of segment matrices that sum up't@and we call the cardi-
nality of such a set theizeof that segmentation. Trsgmentation probleis, given an
intensity matrix7’, to find a minimum-size segmentation’tf We will often consider
the special case of a matrfixwith one row, which we call theingle-row segmentation
problemas opposed to thieill-matrix segmentation problerfor ease of notation, we
assume that’ begins and ends with an all-0 colurthis does not affect the size of an
optimal segmentation and simplifies the definitiondgiven in [14].

The segmentation problem is known to be NP-complete in tltemgtsense, even
for a single row [6,1, 2], as well as APX-complete [3,4]. Numgs heuristics are
known [13, 8, 11,12]. Bansait al.[3, 4] provide a24/13-approximation algorithm for
the single-row problem and give some better approximationsiore constrained ver-
sions. Work by Collinset al.[7] shows that the singleolumnversion of the problem
is NP-complete and provides some non-trivial lower bouridsrgcertain constraints.
Recent work by Luaet al.[14] gives two approximation algorithms for the full x n
segmentation problem; however, they do not consider thioeance of their algo-
rithms in practice.

Our Contributions

Luan et al. [14] used two insights to obtain approximatiagoaithms. First, the seg-
mentation problem is easy for 0/1-matrices. Second, setatiens for the single-row
problem with small segment-values can be used to obtain geguhentations for the
full-matrix problem. They exploited both and gave two apineation algorithms with
approximation factors of (roughl\ipg h and2 log D whereh is the largest value iff’,
andD is the largest difference between consecutive elementsdw af 7.4

We use the same ideas, but add further insights. First, we #hett the single-row
segmentation problem fisxed-parameter tractabla the largest valué (i.e., the run-
time is O(f(h)p(n)) for some functionf(.) and some polynomial(.)). Hence, the
single-row problem is easy to solvetifis small. Unfortunately, this does not immedi-
ately imply that the full-matrix problem is easy to solveiifs small, but we can solve
it optimally in polynomial time forh = 2. With some further insight, we can show that
such solutions can be combined to give an approximatiorrighgo for the full-matrix

* Throughout this work, we usleg(z) to mean|log z|. Unless specified otherwise, we assume
the logarithm base.
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segmentation problem with approximation factor (roug@lyl)gg?,(h), which is smaller
thanlog h.

We also provide another approximation algorithm with fadi@ughly) o log D,
whereq is the best approximation factor for the single-row probldine current best
known« is « = 24/13 [3,4]; any improved approximation result for the singlevro
problem would lead directly to an improved approximatiosule for the full problem.
This second approximation algorithm expands on the secppobaimation algorithm
by Luan et al.; they used one specific 2-approximation aflgorifor the single-row
problem, whereas we show that in fact amapproximation algorithm can be used.

Finally, we give an empirical evaluation of known approxtioa algorithms, using
both synthetic and real-world clinical data. To the best of knowledge, this is the
first such evaluation of these approximation algorithmsgpear in the literature. Our
experiments demonstrate that the constant factor imprenésmimade by our algorithms
yield significant performance gains in practice. Therefameboth theO(log k) and
O(log D) scenarios, our new algorithms improve on previous apprakion algorithms
theoretically and experimentally

2 FPT algorithms for single-row segmentation

In this section, we prove that the single-row segmentatioblem is fixed parameter
tractable (FPT) im, the largest value in the intensity matfix Note that7" is has a
single-row, hence it is a string[1..n]. We call a segmentation &f[1..n] compactf
any two segments in degin(i.e., have their first non-zero entry) at a different indaxd
end(i.e., have their last non-zero entry) at a different indexe following observation
is straightforward; we give a proof in the appendix.

Lemma 1. For any segmentatiof of a single row, there exists a compact segmentation
S" with |§’| < |S].

Our algorithm uses a dynamic programming approach that céespan optimal
segmentation of any prefik[1..i] of . We say that a segmentationBfl..i] is almost-
compactif any two segments in it either begin at different indicesboth begin at
index 1, and they either end at different indices or both eniddexi. We will only
compute almost-compact segmentations; this is sufficigritdmma 1. We compute
the segmentation conditional on the values of the last setpeit.

Let S be a segmentation of strifg[1..i]; eachS € S is hence a stringd[1..4].
Define thesignatureof S to be the multi-set obtained by taking the last inte§éf
of each segment € S and deleting all 0s. Note that the signature of a segmentatio
of T[1..7] is apartition of T'[4], i.e., a multi-set of positive integers that sumTQ].

For any partitionp;, use||#;|| to denote its size, i.e., the number of elements, counting
multiple elements repeatedly.

Now define a functiory as follows: given an integerand a partitiony; of T'[4],
setf(i, ¢;) to be the minimum number of segments in an almost-compactesetation
of T'[1..i] for which the signature i®;. One can easily see th#tl, ¢,) = ||¢1]]. We
will show that f (i, ¢;) can be computed recursively. Given a partitionof 7°[i], let
®,_1(¢;) be the set of those partitions @f[i — 1] that can be obtained from); by
deleting at most one element, and then adding at most oneetem
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Lemma2. Fori>1, f(i,¢;)) =  min  {f(i —1,¢i—1) + || — diall}
Pi—1€Pi—1(pi)
Proof. We only prove ©" here; the other inequality is proved similarly (see append
Consider an almost-compact segmentafipof 7'[1..:] that achieves the left-hand side,
i.e., its signature ig); and|S;| = f(i, ¢;). We have four kinds of segments di: (1)
Those that end at index— 2 or earlier, (2) those that end at- 1 (there can be at most
one, sinceS; is almost-compact), (3) those that end and start at — 1 or earlier, and
(4) those that end dtand begin at (there can be at most one).

LetS;_1 be the segmentation @f1...: — 1] obtained fromS; by taking all segments
of type 1-3, and deleting the last integer (at indpxNote thatS;_; is also almost-
compact. The signatueg_; of S;_; is the same ag;, except all values of segments of
type (4) are removed and all values of segments of type (2a@ded. This shows that
Gi—1isinD;_1(¢;).

If both a segment of type (4) and a segment of type (2) exist jthen they neces-
sarily have different non-zero value (otherwise they cdagddcombined, contradicting
the minimality ofS;). Hencel|¢; — ¢;_1]| is exactly the number of segments of type
(4). So|S;-1] = |Si| — ||¢i — ¢i—1]|, which proves . O

By evaluating functiory with standard dynamic programming approaches, we can
show the following:

Theorem 1. The single-row segmentation problem can be solved(in'-> - p(h) - n)
time andO(h-p(h)) space if all values in the intensity matrix are at mbstvherep(h)
is the number of partitions of integér

Proof. (Sketch) For each, there are at mosi(h) partitions ofT'[i] < h; computing
and storing them can be donedGH - p(h)) time and space. Any partition @f[i] < h
has at most/h many distinct integers; hend®; 1 (¢;)| < vh. So we can compute
f(i,¢;) in O(h'? - p(h)) time if f(i — 1,.) is known. Doing this for alli, we can
computef (n, ¢,,) for all partitionse,, of T'[n] in time O(h'-5-p(h)-n), and the optimal
segmentation-size is found by taking the minimum. a

It is known thatp(h) < eV [10], so this algorithm is polynomial as long as
h € O(log® n). In the present form it only returns the size of the smallegnhsentation,
but standard dynamic programming techniques can be usetti®ve the segmentation
in the same running time with ad(log n) space overhead.

2.1 The special case di = 2

For h = 2, we can find the optimal solution with the above dynamic paogming
algorithm. However, we can do more: we can control how magynets have value
2 (we call thes@-segmenjsand how many have value 1 (we call thelssegment$
These results will be needed later when we combine soluiio@ach row to a solution
of the whole matrix.

We can use regular expressions to describe subsequente®daf.,2" stands for
‘a subsequence of onBs, containing at least ori. Let a stepbe a subsequence 6f
of the form02™1 or 1270 and atower be a subsequence @f of the form0210. See
also Fig. 1. Amarkeris an index for whichT'[i — 1] # T'[i] ([14]; this was calledick
in [3].) We uses, t andp for the number of steps, towers, and markers, respectively.
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Fig. 1. Two kinds of steps, and a tower.

Lemma 3. Defineg(d) as follows:

(p+s)—d ift<d<t+s
(p+s)—(t+s)ift+s<d
(p+s)+t—2d ifd<t

g(d) =

DO [ o] =

Then for anyd > 0, any segmentation with at moét2-segments has at leagtd)
1-segments. Moreover a segmentation that has at thassegments and exactiyd)
1-segments can be foundd@nn) time.

Proof. Any occurrence of a 2 is at a tower, at a step, or at a substfitteedorm12+1.
Applying dynamic programming, one verifies the following:

— Towers must use a 2-segment in any optimal solution. For eaeér that does not
use a 2-segment, the size of the solution increases by 1.

— Steps may use a 2-segmentin an optimal solution, but theglsamuise a 1-segment
instead without affecting the size of the solution.

— Substrings of the form2*1 cannot use a 2-segment in an optimal solution.

Hence, if we are allowed a 2-segment for each tower (l.e,t), then the best segmen-
tation will have the optimum siz& PT (one can easily show th&PT = (p + s)/2
by evaluating all possible cases with dynamic programmidgmostt + s 2-segments
can be used in an optimal segmentation. So the number ofrhesgg isOPT — d if
d<t+sandOPT — (t+s)ifd >t +s.

Now assume that < ¢. In this case, we are not even allowed a 2-segment for each
tower, andt — d of them must use two 1-segments instead. So the best solugis
OPT + (t — d) segments, of whicll are 2-segments and the rest are 1-segments. To
find such a segmentation, use a 2-segmentifior{ d, ¢} towers, then fomin{d — ¢, s}
steps ifd > ¢, and use 1-segments for everything else. a

The second result is that we can always find a segmentatiosemhember of-
segmentsy = 1,2) is bounded in terms of the number of markers alone. This seg-
mentation is not necessarily optimal, but knowing thesenldlswill allow us to show
approximation bounds later.

Lemma 4. There exists a segmentation such that the number of 1-ségmet most
1 - p, and the number of 2-segments is at mpsp + 1.

Proof. (Sketch) Use a 2-segment for half of the towers (rounded og)telf of the
steps (rounded down), and use 1-segments for everythiegEie proof then follows
by counting markers carefully. Details are given in the ajjbe. a
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3 Improved Approximations Using A Larger Base

The first approximation given by Luan et al. [14] worked addafs. Split the given
intensity matrix7" into matricesP, ..., P, such thatl’ = 2521(25 - Pp) (by taking
the bits of the base-2 representation of entrieg pfA segmentation fof" can then be
obtained by taking segmentations of ed@hmultiplying their values by¢, and taking
their union. Since each, is a 0/1-matrix, an optimal segmentation of it can be found
easily, and an approximation boundlo§ i + 1 holds.

We use exactly the same approach, but change the baseg\ﬂ?itmzzczl(b" -P)
for some integeb > 3. (This can be done with any, but we obtained good approx-
imation bounds only fob = 3,4.) This raises two questions: (1) How can we solve
the segmentation problem in a matrix that has valuefin, ..., b — 1}? (2) Is the
resulting segmentation a good approximation of the optgegimentation? Neither of
these questions is anywhere near as simple as it wasfo?.

3.1 Splitting P into rows and combining

We now address the first question, i.e., how to find a good setatien of a matrix
P with values in{0,...,b — 1}. A simple heuristic consists of splitting into its
rows, solving the segmentation problem for each row, andinimg those segmenta-
tions into one segmentatiaf Since each row also has values{ih...,b — 1}, we
can find the optimum segmentation of each row in polynomiaétias long as is a
constant.) To combine the rows, one can use a greedy appi©hebk for each value
v € {0,...,b— 1} whether any segment in any row has this value. If there is thes,
remove a segment of valuefrom each row that has one. Combine all these segments
into one segment-matrix (also with valug and add it taS. We refer to this algorithm
as (REEDYROWPACKING.

Using an optimal segmentation of each row seems a natura) e somewhat
counter-intuitively, it sometimes isn’t the best we can @onsider an example where
the optimal segmentation of row 1 uses 10 1-segments and semyr&ents, and the
optimal segmentation of row 2 uses no 1-segments and 5 2esegnGREEDYROW-
PACKING would then use 15 segments f&r But if instead we had used a different
segmentation of row 2, which splits each 2-segment into tveedments, then both
rows used 10 1-segments, an&&EDYROWPACKING would use 10 segments fat.
So it is sometimes advantageous to use segmentationséhabtzoptimal. This will be
exploited forb = 3 below.

3.2 Thecaseh =3

If b = 3, thenP is a 0/1/2-matrix, i.e., all entries i®? are 0,1 or 2. For each row of
P, we know not only how to compute the optimal segmentatiobhfdiuany d we can
compute the best segmentation that has at mi@ssegments (Lemma 3). Let(.) be
the functiong(.) as in Lemma 3 for row. Thus we know that any segmentation of row
i with at mostd 2-segments has at leag{d) 1-segments, and a segmentation with at
mostd 2-segments and exactly(d) 1-segments can be computedin) time.

Lemma 5. Any optimal segmentatia$i* of P satisfie§S*| = ming{d+max;{g;(d)}}.
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Proof. We first prove <'. Let d* be the value that achieves the minimum. For each
row 7, find a segmentation with at mogt 2-segments ang; (d*) 1-segments. Apply
GREEDYROWPACKING to obtain a segmentatiafi of P. The number of 1-segments
in S is max; g;(d*), and the number of 2-segments is at méistso|S| < ming{d +
max;{g;(d)}}, and|S*| can only be smaller.

For the other direction, lef* be an optimal segmentation &%, and letd* be the
number of 2-segments in it. For eaghthe induced segmentation of rawhence has
at mostd* 2-segments and by Lemma 3 at leggtd*) 1-segments. The row that
maximizesy; (d*) has at leasthax;{g;(d)} 1-segments, s6* has at leastax; {g;(d) }
1-segments. Sincg* hasdx 2-segments, this proves the claim. ad

We can hence find the optimal segmentationfoés follows. Compute function
gi(.) for each row, then compute functionmax;{g;(.)}, and then find the valué* that
minimizesd + max;{g;(d)}. This can all be done i®(m - n) time, since the functions
g; are very simple. Compute for each row the best segmentatitnat mostd* 2-
segments, and combine these segmentations VREEBYROWPACKING; by Lemma5
this gives the optimal segmentation fBr

Theorem 2. The minimal segmentation of an intensity matrix with valwe80, 1,2}
can be found irO(m - n) time.

3.3 Combining segmentations of matrices

Now we address the second question posed earlier. AsTumerZl(bf - Py) for
matricesP, . .., Py, wherek = log, h+1. Assume further that we haveapproximate
segmentationfor eachP, i.e., for eaclf we have a segmentatidi of P, that is within

a factora of the optimum, for some > 1. Wecombinghese segmentations as follows:
For each segmertt of Sy, addb’ - S to S. One easily verifies thaf is a segmentation
of T'. Forb = 3, we can show that this is a good approximation.

Lemma 6. Assume eacl?, is a 0/1/2-matrix. Combining optimal segmentatiays
...,S; for matricesP,, . .., P, gives a segmentatio§ for 7' of size at most% -k -
OPT + % - k, whereO PT is the size of a minimal segmentatiori/af

Proof. Rather than arguing this directly, we argue via another sgation of each
P, which has some desirable properties. pgbe the number of markers of roiof
matrix ;. Recall that each row of P, has a segmentatiafj, for which the number
of 1-segments is at mo%t- p, and the number of 2-segments is at méstpé + %
(Lemma 4.) Letp, = max; p, be the maximum number of markers within any row of
P,. Combining the segmentatio% of the rows ofP, with algorithm GREEDYPACK-
ING gives a segmentatiasy of P, for which the number of 1-segments is at méstog
and the number of 2-segments is at mﬁ)sbg + % The optimal segmentatio$} of P,
can only be smaller, so

SH < IS <5 et 5
Consider the optimal segmentatiSii of 7'. Let i be the row ofl” which has the maxi-
mal numbep of markers. Every segment & can remove at most two markers in row
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i, which prove2|S*| > p. Matrix P, can have a marker only if matrik has a marker
in the same location, s@ < p < 2|S§*| [14]. Putting it all together, we have

k

k
81= 1511 < 36 pet 5) < (G284 3)
=1

(=1 =1

Ead

which proves the result. a0

The above result showed the approximation bound alreadyhfvisegmentation
obtained by packing the segmentations of the rows of Lemmégodmnatrices. We know
that these segmentations aren’t optimal if there are mangng so using the optimal
segmentation of each, should given even better bounds in practice. We conclude by
restating the result as a theorem.

Theorem 3. There exists a polynomial-time algorithm that for any irsi&nmatrix7’
with maximum valugé finds a segmentatiofi of 7' size at mosé - (logs h+1)- OPT +
1 - (logg h + 1), whereOPT is the size of a minimal segmentatioriaf

For largeO PT' andh values, the new approximation factor approac%m(s},og3 h+
1); therefore, the ratio between this approximation and(thg » + 1)-approximation
of [14] approacheg%g?) ~ 0.946. Hence, for sufficiently larg& PT andh, the new
algorithm is superior.

3.4 Higher values of the base

One could consider a similar approach using larger basespgrarticularb = 4. Two
complications arise. First, we do not know how to computeapgmum segmentation
of a matrix with values i{0, 1, 2, 3}, unless it is a single row. Fér= 3, this was done
in Lemma 3, which expressed the number of needed 1-segnngetsis of the number
of allowed 2-segments. It is not clear whether this lemmalmageneralized to some
(b — 1)-dimensional function for largér.

It is also not straightforward that even an optimal solufieneachP, would yields
an approximate solution fdf. This was argued fob = 2 andb = 3 using markers.
With an extensive case analysis, we can generalize Lemmab4=tod as well (the
number of 3-segments is at mgst6), which gives ant! - (log,(h) + 1)-approximate
segmentation. Preliminary experimental results indddbat using basé = 4 is no
better than using bage= 3 in practice, and we did not pursue this approach further.

4 Approximation by modifying row-segmentations

Our previous approximation algorithm can be summarizedbas: split the intensity
matrix by bits, split each resulting matrix into rows, segreach row and then put
the segments together. The second approximation algofihiruan et al. [14] uses
another approach that is in some sense reverse: split thasity matrix into rows,
segment each row, split each resulting segment into melspgments by bits, and then
put the segments together. The quality of this second appaiion depends on two
factors: the approximation guarantee and the largest wedad by a segment in any of
the row-segmentations. Without formally stating it in thésrms, Luan et al. proved
the following result:
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Lemma 7. [14] Assume that for any single-row problem we can findhaapproximate
solution where all segments have value at mdstThen we can compute in polynomial
time ana(log M + 1)-approximate segmentation ot

Luan et al. used this by showing that any single-row problas  2-approximate
solution where any segment has value at most the maximurarelifteD between
consecutive elements in a row.

We can slightly improve on this with two insights. Firat)y segmentation can be
converted into a segmentation with values at nigstvithout adding any new segments.
Secondly, valuea < 2 can be found, both based on existing results and because of ou
first approximation algorithm.

Lemma 8. LetS be any segmentation of a single-row intensity maitibLet D be the
maximum difference between consecutive elemefitsTinen there exists a segmenta-
tion S’ with |S’| < |S| for which all segments have value at maxst

Proof. Modify S as done in [2] such that no two segments meet, i.e., if somaeeg
ends at index, then no segment startsiat 1. Any segments must have value < D,
forif S ends at, thenT'[i + 1] = T'[;] — v since no segment startsiat 1. O

It now follows immediately from Lemma 7 and Lemma 8, usiig= D:

Theorem 4. There exists a polynomial-time algorithm that, for any irgiéy matrix7’
with maximum differenc® between consecutive elements in a row, finds a segmenta-
tion S of T'size at mosty - (log D 4+ 1)OPT. Herear < 23 ~ 1.846 in the general case

by [3,4] anda = 1if h € O(log® n) by Theorem 1.

For the general case, this improves uponzh@og D + 1) approximation result for

2\ 1/16
the full-matrix problemin [14]. In particular, far = %, if D< (%g ,thento the
best of our knowledge, this is the tightest approximatioth®s segmentation problem

with no restriction on the intensity matrix values.

5 Experimental Results

In this section, we give experimental results for the follogvfive algorithms:

— XV: The heuristic algorithm of Xia and Verhey [13] extendedthe fullm x n
case. This algorithm has commonly been used as a benchmas&rfgarison of
new segmentation algorithms [9, 2, 11].

— ALG 1: The(log h + 1) approximation algorithm of [14].

— ALG 2: The2 - (logs h + 1) approximation algorithm of Section 3.2.

— ALG 3: The2(log D + 1) approximation algorithm of [14].

— ALG 4: The% - (log D + 1) approximation algorithm of Section 4, which utilizes
our implementations of algorithms from [3-5].

All algorithms were implemented using the Java programnanguage, using ap-
proximately 3600 lines of codes overall.
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5.1 Data Sets
We used five data sets:

— Data Set l:a real-world data set comprised@f clinical intensity matrices obtained
from the Department of Radiation Oncology at the UniversitLalifornia at the
San Francisco School of Medicine. The type of cancer is uwknand levels are
specified in terms of percentages in increment&08 of some maximum value.
For each intensity matrix, we choseat random from{25, ..., 100}. This range of
values was selected since it is large enough to preverdltseiutions. Therefore,
each matrix contains values froff, [0.2 - v], [0.4 - v], [0.6 - v], [0.8 - v], v}.

— Data Set Il:a real-world data set containing a prostate case, a bragnecaba head-
neck case obtained from the Department of Radiation Ongadbghe University
of Maryland School of Medicine. This data set consist2®fclinical intensity
matrices with values specified absolutely.

— Data Set lll:a synthetic data set @0 intensity matrices with values sampled uni-
formly at random from betweetl and 10, 000; random matrices have been used
previously for performance testing [13].

— Data Set IV:a synthetic data set @0 intensity matrices. Each matrix is obtained
as follows: compute the sum of the pdfs of four bivariate Gaurss generated from
two independent standard univariate Gaussian distribstibhese are then scaled
by A -2 - # where the amplitudel and the centers of the distributions are sampled
uniformly at random.Determine the smallest x n-grid so that the function is
less than 1 outside this grid. Discretize the function, aed as value in they x
n-grid the integer part of the corresponding function valtlee choice of “four”
Gaussians and the range of the amplitude (we chose 1-80) adstmensure some
peaks and valleys in the intensity matrix, while keeping rthetrices reasonably
small. We would expect these matrices to have a smalhlue, since the Gaussian
distributions do not rapidly change value.

— Data Set Va synthetic data set 80 intensity matrices. For fixed inpi?, 7'[r][1] =
D and fori = 2,..,n/2, T[r][i] = max{T[r][i — 1] + ¢, 0} wherec is randomly
selected from{—D,...,—1,0,1,...,D}. Fori = & + 1,...,n, we setT[r][i] =
T[r][n — i + 1]. Note that these matrices can never have-galue larger than the
prescribed bound.

Data Sets IV & V were engineered to possess smallalues relative tav. Test-
ing on matrices with smalD values is pertinent assuming improvements in treatment
technology; higher precision MLCs may facilitate treatrngans for more fine-grained
intensity matrices. All of our test cases have sizes: varying between 20 and 171.

The experiments conducted on Data Sets I, Il & Ill were exeddn a machine
with a1 GHz Pentium CPU antiGB of RAM,; this was also the case for Data Sets IV
& V using XV, ALG 1 and ALG 2. For ALG 3 and ALG 4, the experiments involving
Data Sets IV & V required more memory and were conducted orlieo8iGraphics
Altix 3700 system with64 1.3 GHz Intel Itanium2 CPUs andl92 GB of memory.

We did not use any of the advanced resources of this machicepexhe increased
memory and never utilized more tharGB of RAM in any particular execution. All of
the algorithms ran very fast (usually a few seconds) on iallstrthe slowest seemed to
be ALG 4 and ALG 5, which took up to 45 seconds on some trials in Data Set IV and
V. However, evaluating the running time was not the focuswfexperiments, and our
code was not optimized for it.
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| [# trialg| XV[ALG 1[ALG 3|
DataSetl| 70 |[41| 38 9
Data Setll| 22 |[22| O 0
Data Setlll 30 |[30| O 0
DataSetly 20 |0] O 20
DataSetV] 30 J[14] 0 | 18 e e Vi oy

(A) (B)
Fig. 2. (A): The number of trials where XV, ALG 1 and ALG 3 gave the slasi segmentations,
respectively. (B): The size of the segmentations of ¥3/ALG 1 on Data Set Ill. Each point
(z,y) corresponds to a trial where XV usadsegments and ALG 1 usegdsegments. Points

above the main diagonal indicate trials where XV outperfedmM LG 1. More than one trial may
correspond to anyz, y) in the plot; see Tables 2—7 of the appendix for more details.
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Number of Segments for ALG 1

=
&

| [# trials[ XV]ALG 1[ALG 2JALG 3[ALG 4
Data Set | 70 12| 17 44 4 4
Data Setll| 22 6 0 16 0 0
Data Setll| 30 3 0 27 0 0
Data Set I\ 20 0 0 0 3 19
Data SetV| 30 7 0 1 5 24

Table 1. The number of trials where each of the 5 algorithms achidvesinallest segmentation.

5.2 Results

The full tables of results can be found in the appendix. Tduata them, we focused
on two questions: (1) Do the approximation algorithms in][di#e an improvement in
practice, i.e., in comparison to the standard benchmadcigfgn, XV? (No experimen-
tal results were given in that paper.) (2) How do our improgpgdroximation algorithms
perform compared to existing algorithms?

With regards to the first question, our experiments show wiate ALG 1 comes
with approximation guarantees, it shows mediocre perfoiceaompared to XV. Fig-
ure 2(A) summarizes the number of trials in which each atharigave the best seg-
mentations (ties are double counted). XV often producesfggntly smaller segmen-
tations, as clearly illustrated in Figure 2(B) for Data Skt ALG 3 performs better
than XV on Data Set IV, which was tailored to suit it well, bitosvs only a minor
performance advantage on Data Set V.

Regarding the second question, our experimental reswits grat our new approx-
imation algorithms perform considerably better than éxgsalgorithms. Table 1 shows
how often each of the five algorithms we considerd achievesihallest segmentation
(ties are double counted.) ALG 2 found the best segmentati@i/122 trials on Data
Sets I-1ll, whereas ALG 4 found the best segmentation in @&fals on Data Sets
IV and V; as seen in Figure 3, these segmentations are ofjeifisantly smaller than
those produced by XV.
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Fig. 3. (A) The size of the segmentation of X¥s ALG 2 on Data Set IIl. (B) The size of the
segmentation of XWsALG 4 on Data Set IV.

6 Conclusion

We provided new approximation algorithms for the full-nbagegmentation problem.
We first showed that the single-row segmentation problenxédfparameter tractable
in the largest value of the intensity matrix. Using this gprovably good approximate
segmentations for the full matrix, after suitably spligieither the intensity matrix or
approximate segmentations of its rows according to some-bapresentation. Finally,
our experimental results demonstrate that our theoratigalovements yield new algo-
rithms that, in both th€®(log k) andO(log D) cases, significantly outperform previous
approximation algorithms in practice.

It may be of interest to explore the casebof 4 as a base further. Can we solve
the matrix segmentation problem optimally if all values ar€g0,1,2,3}? And does
this lead to better approximation algorithms? Are furtheufistic improvements pos-
sible, such that empirical performance in practically valg cases is increased, while
maintaining desirable theoretical approximation guaras?
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A Proofs

Lemma 1. Every single-row problem has an optimal segmentafidihat is compact,
i.e., any two segments 8fbegin at different indices and end at different indices.

Proof. Start with an arbitrary optimal segmentatiSnwe can argue how to modif§

to obtain a compact segmentation of the same sizei hethe smallest index such that
two segments’, S’ of S begin atindex. SayS andS’ have non-zero valuganda’ and
end at index andj’, respectively. Ifj = j’, then the two segments could be combined
into one to give a smaller segmentation, a contradiction;. 80j’, say;j < j'.

Define two new segments’ andS’” as follows. Segmert” begins at, ends af
and has value + a’. Segments”’ begins atj + 1, ends atj’, and has value’. Clearly
S+8 =8"+8",s508=8—-{5,5}1u{S"”, 5"} is also an optimal segmentation,
and has fewer segments that stari.dterate until only one segment startsiathen
iterate with all larger values where multiple segments s(hiote that all new segments
in &’ start at; or later, so this eliminates all coinciding start-indigeBhen similarly

eliminate coinciding end-indices, starting at the largest where they occur. a
Lemma2Fori>1, f(i,¢;)) =  min  {f(i —1,¢i-1) + || — diall}
Di—1€P;i_1(¢i)

Proof. To prove <", let ¢;—1 € ®;_1(¢;) be a partition ofT'[:] that achieves the
minimum on the right-hand side. Lef;_; be an almost-compact segmentation that
achievesf (i — 1, ¢;_1, i.e., itis a partition of'[1..; — 1] with signaturep;_; and size
fli—1,¢;-1). Define a segmentatiaf; of T'[1..i] as follows. Every segment &;_;
that ends before index- 1 is added taS; as is. For each value ity_, — ¢;, there must
be a segment ity;_; that ends at index— 1; add this segment t§; and let it end at
1—1(i.e., setitgth entry to be 0). For each valuedn_; N ¢;, there must be a segment
in S;_; that ends at index — 1; add this segment t§; and extend it ta (i.e., set its
ith entry to be the same as its— 1)st entry.) For each value i, — ¢;—1, define a
new segment i¥; that starts ai and has that value at indéxOne easily verifies that
S; has signature;, and therefore is a segmentationZdfl ..i|, since¢; is a partition of
T[i]. We can convert it to an almost-compact segmentation a®ipribof of Lemma 1.
Also, |S;| = |Si—1] + ||¢: — ¢i—1]|, which proves the result. O

Lemma 4 Any single row with values if0, 1,2} has a segmentation such that the
number of 1-segments is at m@sﬁémarkers, and the number of 2-segments is at most

1 1
g#Fmarkerst3.

Proof. We prove this by repeatedly identifying a subsequence ofdtvefor which we

can add a few segments and remove many markers, where “rémeans that if we
subtracted the segments from the target row, we would haverfemarkers. To identify
subsequences of the row, we again use regular expressiatiomst

1. As long as there exists a subsequence of the i, apply a 1-segment at the
subsequence @k. This removes 2 markers, adds one 1-segment, and no 243egme
2. As long as there exists a subsequence of the forhd), apply a 1-segment at the
subsequence dk. This removes 2 markers, adds one 1-segment, and no 243egme
3. As long as there exists a subsequence of the fid 270, apply a 2-segment
at the first subsequence 24, then two 1-segments to remove the remairihg™.
This removes 4 markers, adds two 1-segments, and one 2-segme
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4. As long as there exist two subsequences of the fii 70 or 017270, apply one

1-segmentto one subsequencesnfand one 2-segmentto the other subsequence of

2s, then apply two 1-segments to the two remaining sequerides Bhis removes
6 markers, adds three 1-segments and one 2-segment.

5. As long as there exist two subsequences of the fixhi), apply one 2-segment to
one of them, and two 1-segments to the other. This removesrkensaadds two
1-segments and one 2-segment.

6. If there exists one subsequence of the f@2ri 170 or 017270, and one subse-
quence of the fornd270, apply one 2-segment to the subsequditd), and two
one l-segments to the other subsequence. This removes &maakids two 1-
segments and one 2-segment.

In all the above cases, we have removed at least 2 markersgegment and at least
4 markers per 2-segment. Thus, counting only segmentsecreaid markers removed
thus far, we have at mo%t#markers 1-segments arid#markers 2-segments. All that
remains to do is to consider any markers that are remaining.

We argue that in fact at most three markers are leftOet-2)*0 be a subsequence
that has markers in it. Assume first the leftmost non-zerolis Ehen the subsequence
must contain a 2 somewhere (otherwise we're in case (2)) hesithe fornd1 72+ (1 +
2)%0. But after the 2s, no 1 can follow (otherwise we're in casg, & this subsequence
has the forn01+27%0. Likewise, if the last non-zero is 1, then the subsequenseiea
form 02717%0. If the first and last non-zero are 2, then the subsequencthbasrm
0210 (otherwise we're in case (1) or (3)).

If we had two subsequenceél + 2)*0, then each would have the foi 270 or
027170 or 02%0, and we would be in case (4),(5) or (6). So there is only onbeift,
and it has at most three markers.

We can now eliminate either three remaining markers withssedment and a 2-
segment, or two remaining markers with a 2-segment; eitlagrte bound holds. O

121 0110 02+t1%2%0
02t1t0 01t2%0 02t0 0270 0210 01t2%0

Fig. 4. A segmentation where the number of segments is bounded tyersar

B Experimental results

Below are Tables 2-7 from Section 5 which contain the redoltseach trial of our
experimental evaluation.
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Triallm| n |[# markersh | D|XV |ALG 1|ALG 2|ALG 3|ALG 4
1 (27|21 133 |45/45 17| 20 8 24 24
2 |27(121] 132 (62|62 21| 22 21 23 23
3 |27|]21] 121 8080} 19| 11 25 15 15
4 |27|121] 128 93|93/ 25| 26 22 31 35
5 127|121 143 |74{74] 25| 24 21 35 35
6
7
8
9

27\21] 134 |41)41/16| 14 | 18 | 15 | 22
27\21] 145 [9494/29| 29 | 24 | 33 | 34
27|21] 151 [9292/25| 27 | 20 | 30 | 31
27\21] 127 |4242/18| 15 | 15 | 19 | 20
10 [27|21] 224 (9090 35| 35 | 29 | 46 | 46
11 [27|21] 209 [36|3626| 24 | 25 | 26 | 26
12 [27|21] 180 (82|82 27| 27 | 14 | 32 | 32
13 27|21 163 |61l61/ 20| 17 | 19 | 19 | 19
14 [27|21] 187 |2828/19| 22 | 13 | 24 | 24
15 [27|21) 177 |7575/27| 24 | 20 | 25 | 25
16 [27|21) 147 |45/45 17| 18 | 17 | 19 | 19
17 [27|21] 191 [94/94 27| 27 | 24 | 30 | 30
18 [27|21] 200 |47|47/22| 23 | 20 | 22 | 22
19 [27|21) 192 |4242/25| 24 | 24 | 20 | 24
20 [27]21] 156 |85(85/19| 18 | 24 | 24 | 24
21 27121 136 |53(53/20| 21 | 19 | 27 | 28
22 27121 175 |e8l68/26| 28 | 22 | 37 | 36
23 27121 169 |(84[84/27| 22 | 28 | 24 | 25
24 27121 129 |69(69/ 22| 20 | 16 | 23 | 23
25 27121 175 |38(38/19| 21 | 23 | 27 | 27
26 [27]21) 193 |84{84/28| 26 | 31 | 25 | 25
27 [27]21] 181 |51[51/26| 21 | 24 | 24 | 25
28 [27]21] 188 |71(71/32| 36 | 29 | 33 | 33
29 27121 146 |43}43/21| 21 | 18 | 27 | 27
30 [27]21] 92 [31/31/13| 13 | 12 | 15 | 15
31 [27]21] 157 |6969/ 34| 35 | 28 | 37 | 37
32 27121 174 [31[31/22| 22 | 20 | 28 | 28
33 27|21 142 |5555/17| 19 | 14 | 21 | 21
34 27121 171 |70{70/33| 33 | 29 | 38 | 38
35 27|21 121 |[3838/18| 21 | 21 | 23 | 23

Table 2. The experimental trial$-35 using Data Set | with the best result underscored.
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Trialfm| n [# markersh | DXV |ALG 1|ALG 2|ALG 3|ALG 4
36 |27|21] 136 [87|87|24| 25 19 33 33
37 |27|121] 181 [86|86| 24| 22 22 22 21
38 27|21 224 60|60 34| 22 24 25 24
39 (27|21 178 |50/50/ 22| 19 20 25 23
40 |27|21) 244 |9090/ 29| 24 20 40 28
41 |27|21) 255 (8383 36| 26 38 30 28
42 |27|21) 226 |65/65/ 25| 28 26 34 34
43 |27|21) 174 (82|82 21| 16 26 18 17
44 \127|121) 173 |67/67| 25| 27 20 29 29
45 |2721) 207 |3535/26| 29 26 36 36
46 |2721) 32 |29/29 12| 10 11 13 13
47 |27\121) 31 |3535/ 10| 12 11 18 16
48 |27|21) 40 |54{54| 15| 17 14 16 16
49 |127|21) 32 |73/73/ 12| 12 14 22 22
50 (27|21 44 (31|31 11| 11 12 14 14
51 (27|21 42 |84|84| 18| 17 19 21 21
52 127|121 39 |57|57| 14| 15 14 17 16
53 (27|21 30 (3838 10| 11 13 17 16
54 127|121 41 |71{71/ 19| 18 15 24 26
55 (27|21 137 |55|55/17| 19 15 23 23
56 |27|21] 109 [45|45/ 21| 20 16 20 20
57 |27|121] 94 |70|70| 18| 17 14 17 17
58 |27|21] 105 63|63/ 19| 19 16 21 21
59 |27|21] 96 (80|80 20| 19 11 23 23
60 |27|21] 58 |65|65/ 10| 7 10 6 6
61 |27|21] 122 |53|53|24| 17 14 17 17
62 |27|21] 130 (89|89 24| 25 19 33 33
63 [27|21] 118 (9898 18| 14 22 14 14
64 27|21 195 [28]28/21| 22 25 27 28
65 (27|21 136 [21|21| 14| 15 15 16 16
66 (27|21 77 7471 11| 12 10 13 13
67 |27|21 167 [74|74| 26| 29 20 41 37
68 |27|21] 130 (90|90 21| 22 14 22 22
69 |27|121] 99 [24|24| 12| 12 8 13 11
70 |27|21] 133 [54|54{ 21| 21 14 25 25

Total 12| 17 44 4 4

Table 3. The experimental trial86-70 using Data Set | with the best result underscored.
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Triallm[n[#markers h | D [XV]ALG 1JALG 2[ALG 3[ALG 4
1 20{20 209 |10000000880558¢114 124 | 108 | 203 | 203

20/21) 219 |100000008399071117| 129 | 108 | 216 | 215

3 |2020f 210 |1000000(934025%114 123 | 108 | 212 | 193

4 |20119 198 |100000009909173100 106 | 97 | 178 | 178

5 |20[21] 229 |100000009722947121 127 | 113 | 211 | 209

6

7

8

20[21] 231 |100000008504569119 129 | 118 | 214 | 218
2019 193 |1000000(9262494100 108 | 102 | 184 | 188
2831 502 |1000000(9275133182 192 | 185 | 338 | 337
9 [2829] 475 1000000%856985 163| 176 | 164 | 307 | 304
10 |28|37| 568 |1000000(09056646211] 221 | 206 | 368 | 388
11 |27|28] 449 |100000008102019162 171 | 159 | 306 | 303
12 |27|31] 493 |100000007928634180 189 | 171 | 322 | 310
13 |27|38 610 |100000006831687220 234 | 219 | 414 | 408
14 |28/42| 635 |100000009998558$234f 247 | 231 | 425 | 428
15 126|128 379 |100000009959856147| 156 | 154 | 276 | 273
16 2524/ 313 |100000008218883134 140 | 123 | 233 | 233
17 |2527] 340 |100000009996029138 149 | 143 | 253 | 268
18 |24|28] 366 |100000008915037151 158 | 145 | 287 | 296
19 |24|25] 352 |100000006870038142 153 | 138 | 266 | 273
20 |25(24| 330 1000000%226761&3 141 | 135 | 243 | 236

21 |26(28) 385 [10000000969859%160 173 | 154 | 302 | 292
22 (26|25 345 |10000000889310%141] 143 | 137 | 248 | 253
Total 6 0 16 0 0

Table 4. Experimental trials using Data Set Il with the best resutfenscored.
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Triallm| n |# markers h D [XV|ALG 1|ALG 2|ALG 3|ALG 4
1 |40[40] 1640 |9992|9860(|174{ 186 | 170 | 301 | 323
2 |40[40 1640 |9998|9866(179 186 | 171 | 304 | 321
3 (40/40 1640 1000C1000q176 184 | 171 | 302 | 309
4 140/40] 1639 |9991|9969|181 193 | 175 | 310 | 308
5 |40[40 1640 |9997|9953(177| 188 | 172 | 303 | 303
6 |40[40 1640 |9982|9804(177| 185 | 172 | 313 | 311
7 14040 1640 |9980|9921|175 183 | 172 | 300 | 307
8 [40/40| 1639 |9996|9855(177] 186 | 174 | 303 | 312
9 |40[40 1640 |9993|9798(175 180 | 171 | 313 | 320
10 |40/40] 1639 |9986|9844|176 187 | 171 | 302 | 302
11 |40/40, 1640 |9995|9946|177| 186 | 179 | 315 | 310
12 |40/40 1640 |1000Q 9898|180 186 | 171 | 304 | 313
13 |40/40 1640 |9999|9769|177| 184 | 174 | 299 | 310
14 140140, 1640 |9987|9898|175 186 | 174 | 303 | 308
15 140{40, 1640 |9997|9943|178 185 | 172 | 304 | 314
16 |40/40 1640 |9997|9979(182 189 | 169 | 300 | 315
17 |40/40 1640 |9998|9971|177| 185 | 174 | 308 | 318
18 140140 1640 |9995|9977|177 185 | 169 | 308 | 312
19 140140, 1640 |9999|9940|180 187 | 166 | 297 | 310
20 |40/40] 1640 |9994|9912(173 183 | 166 | 301 | 311
21 |40/40] 1640 |9996|9996(182 191 | 175 | 312 | 307
22 |40/40, 1640 |9999|9893(178 188 | 170 | 307 | 309
23 |40[40, 1640 |9996|9969(178 185 | 181 | 301 | 311
24 (40|40, 1640 |9986|9898|175 185 | 171 | 294 | 311
25 40|40, 1640 |9975(9929|181] 191 | 174 | 305 | 316
26 (40[40, 1640 {10000 9983|178 184 | 169 | 306 | 315
27 |40/40, 1640 |9995|9907(173 188 | 174 | 298 | 311
28 (40|40, 1640 |9976|9921|174 188 | 172 | 300 | 316
29 (40|40, 1640 |9989|9928|177| 190 | 171 | 301 | 309
30 (40[40, 1640 |9998|9988(179 189 | 170 | 309 | 308

Total 3 0 27 0 0

Table 5. Experimental trials using Data Set 1l with the best resullerscored.
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XV |ALG 1|ALG 2|ALG 3|ALG 4
119 125 | 118 | 79 69
137 142 | 137 | 100 | 88
89| 94 88 70 64
106 112 | 113 | 84 76
97| 101 | 99 77 70
82| 86 84 61 56
1200 129 | 128 | 97 75
100 104 | 100 | 75 77
144 150 | 140 | 108 | 98
81| 84 81 66 54
96| 101 | 90 65 55
80| 86 83 55 47
89| 93 86 62 62
125 128 | 122 | 103 | 92
85| 88 87 67 57
104 108 | 106 | 77 77
73| 76 72 53 44
81| 85 84 70 52
19 131127 5023 |77|5|106 110 | 106 | 73 71
20 |119153 5164 |58 84| 86 81 63 55
Total 0 0 0 3 19

Triall m | n [# markers h
1 |151j146 9115 |50
129171 8825 |73
3 (149106 6740 |76
4 (117123 6540 |87
5 1165148 8946 |77
6
7
8

170136 6746 |73
135158 8826 |75
113108 6106 |84
9 109148 6715 |84
10 |16211Q 7213 |66
11 |109135 4412 |60
12 |115125 3452 |46
13 |125134 5597 |66
14 |105132 5287 |150
15 |15211 7322 |74
16 |121)140 5701 |85
17 |165125 7457 |46
18 131114 5146 |72

DOobDwobhobhwwbhoabdhabdhoadsowow

Table 6. Experimental trials using Data Set IV with the best resuttenscored.
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Triallm| n |[# markersh | DXV |ALG 1|ALG 2|ALG 3|ALG 4
1 60|60 3052 [17/1|50| 76 55 29 29
2 |60/60| 2976 |12|1|46| 66 55 29 29
3 |60[60] 3026 |12/1|47| 69 57 29 29
4 16060 3132 |18/ 2|54| 74 71 53 51
5 |60[60| 3120 |22|2|61| 80 66 51 48
6 |60/60 3190 |20/2|62| 74 71 52 48
7 |60/60] 3202 |32/3|69| 93 67 58 55
8 |60/60] 3232 |28/3|75| 94 80 60 57
9 |60[60| 3220 |29/3|69| 91 69 62 55
10 |60|60] 3214 (41/4|68| 87 79 80 69
11 |60|60] 3212 (43/4| 72| 83 74 77 72
12 |60/60] 3262 |34/4|73| 93 77 69 68
13 |60/60] 3230 |51/5|77| 98 86 76 67
14 |60/60, 3288 |45/5|80| 94 94 78 70
15 |60/60] 3292 |46/5|84| 96 87 74 73
16 |60/60] 3342 |51/6|83| 102 | 90 88 80
17 |60/60] 3270 |44/6|84| 102 | 86 84 84
18 |60/60] 3122 |54/6|81| 92 91 81 74
19 |60/60] 3278 |63/ 7|87| 107 91 91 84
20 |60/60] 3348 |66/ 7|86| 103 | 91 89 85
21 (60|60, 3280 (53 7|87| 101 | 90 85 78
22 |60/60 3210 (73/8|89| 104 92 85 90
23 |60/60] 3292 (82/8|91| 104 91 95 82
24 (6060, 3322 |(71/8|93| 110 | 93 89 85
25 |60/60] 3262 |(88/9|89| 105 | 95 97 98
26 |60/60] 3284 |76/9|94| 113 | 87 105 | 87
27 |60/60] 3314 |839|92| 118 93 98 95
28 |60/60] 3336 (86|10 94| 119 | 108 | 103 | 99
29 |60(60] 3386 (9310 97| 117 | 104 | 107 | 93
30 |60[60] 3288 |90/10, 89| 103 93 99 101

Total 7 0 1 5 24

Table 7. Experimental trials using Data Set V with the best resultaradored.
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