Capacity Provisioning a Valiant
LLoad-Balanced Network

Andrew R. Curtis and Alejandro Lopez-Ortiz
Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
Email: {a2curtis, alopez-0} @uwaterloo.ca

University of Waterloo Technical Report CS-2009-02

Abstract—Valiant load balancing (VLB), also called two-stage
load balancing, is gaining popularity as a routing scheme that
can serve arbitrary traffic matrices. To date, VLB network design
is well understood on a logical full-mesh topology, where VLB
is optimal even when nodes or links can fail. In this paper,
we address the design and capacity provisioning of arbitrary
VLB network topologies. First, we introduce an algorithm to
determine if VLB can serve all traffic matrices when a fixed
number of arbitrary links fail, and we show how to find a min-
cost expansion of the network—via link upgrades or installs or
both—so that it is resilient to these failures. Additionally, we
propose a method to design a new VLB network under the
fixed-charge network design cost model. Finally, we prove that
VLB is no longer optimal on unrestricted topologies, and can
require more capacity than shortest path routing to serve all
traffic matrices on some topologies. These results rely on a novel
theorem that characterizes the capacity VLB requires of links
crossing each cut, i.e., a partition, of the network’s nodes.

I. INTRODUCTION

New applications, such as VoIP, video on demand, and peer-
to-peer, have helped create a wider range of traffic patterns
on the internet. At the same time, higher quality-of-service
demands are being placed on network traffic, due to the rise
in importance of the internet. As a result, ISPs have started to
deploy mechanisms to monitor network traffic and adapt routes
to network traffic patterns if necessary. Dynamic optimization
of routing is a difficult problem to solve, so interest has
grown in oblivious routing schemes [25], which pre-provision
forwarding circuits between each pair of nodes and do not
update forwarding tables as a result of changing traffic patterns
in the network. The traffic model adopted by this research
is the hose traffic model [8], which requires that any traffic
matrix possible under the nodes’ ingress/egress rates, can be
served, i.e., the traffic can be delivered without overloading
the capacity of any link.

Recent work on oblivious routing has suggested Valiant load
balancing (VLB) as an alternative to direct routing [15], [27].
VLB is also commonly known as two-stage load balancing,
because it modifies routing to consist of two stages. In stage 1
of routing, a node splits a predetermined fraction of its ingress
traffic to each node in the network. This load-balanced node
is chosen randomly for each packet and does not depend on
the packet’s final destination. In stage 2, nodes forward all

load-balanced packets they’ve received on to the packets’ final
destination.

Provisioning a logical full-mesh to serve all traffic matrices
with VLB has been extensively studied. VLB is optimal in
terms of the required link capacity to serve all traffic matrices
on a homogeneous full-mesh topology [27], and this optimal-
ity remains when nodes can fail [4]. At the logical layer,
VLB is always the best routing scheme for a homogeneous
network. This optimality does not necessarily transfer well
to the physical layer, however. We prove that a path is the
worst-case topology for VLB and can require ©(n) times the
capacity of the lower bound for any routing scheme, a sharp
contrast to VLB’s optimal capacity requirement on a full-
mesh. More generally, we show that VLB performs poorly
on sparse topologies, where the ratio of links to nodes is
low; however, we show that VLB’s capacity requirements
approach the theoretical optimum as the density of the topol-
ogy increases. We view this as a step towards proving the
viability of VLB. We emphasize that this is a worst-case
analysis, VLB is an oblivious routing scheme, and it compares
well to the theoretical lower bound for required capacity.
In practice, evidence suggests that VLB performs very well,
for instance, Kodialam et al.’s experiments [16] have shown
VLB’s throughput, the maximum utilization of any link, to
be within 6% of optimal on ISP topologies, when VLB is
optimized for that topology (which is not allowed in our worst-
case analysis).

In this paper, we address the design and capacity provi-
sioning of physical VLB networks as well. Network design
is a difficult optimization problem; one would like to design
a minimal cost network that meets several quality-of-service
constraints. This problem is complicated by a number of
factors, including difficulties in obtaining traffic estimates,
node and link failures, and protocols that were not designed
for efficient traffic load balancing. In practice, network design
is an ad-hoc practice and is dependent on best practices passed
down through the years. Unlike current routing practices, VLB
routes traffic in a predictable fashion; VLB routing nodes
are not required to update their routes due to congestion or
failures. Instead, the goal of VLB network design is to design a
minimal cost network with enough capacity to serve all traffic

matrices even under failures.

We show how to design an optimal VLB network under the
fixed-charge cost model, which allows the network operator
to estimate the expense of installing a link between each
pair of nodes. We give an integer program (IP) that designs
a minimum-cost VLB network under the fixed-charge cost
model. We show that this IP formulation can also be used to
find a min-cost upgrade—via link upgrades and/or installs—to
an existing network that does not have enough link capacity
to serve all traffic matrices with VLB.

The results we have described thus far rely on a theorem
we give in Section III that characterizes the capacity of links
crossing each cut, a partition of the network’s nodes, in order
to serve all traffic matrices with VLB. This theorem is the
theoretical power behind the other results presented here.

II. PROBLEMS, MODEL, AND OUR APPROACH

Previous work has left open important questions regarding
VLB’s behavior, including the following.

o Can a network serve all traffic matrices with VLB when
k arbitrary links fail? Previous work has answered this
question for the case when no failures occur by finding
the maximum throughput of a network using VLB [16]. If
the throughput is at least 1, then VLB can serve all traffic
matrices. We give an algorithm to resolve the question
when links can fail in Section III. The power behind
this algorithm is a theorem we give that characterizes
the required capacity of all links crossing each cut of a
networks’s nodes.

o How much capacity does VLB require on arbitrary
topologies? An implication of a theorem of Babaioff
and Chuang is that a homogeneous full-mesh is the only
topology on which VLB is the optimal routing scheme
when VLB load balances traffic evenly to all nodes in
stage 1 [4]. Our work sets to determine what’s the worst-
case capacity requirements of VLB and what topologies
VLB performs poorly on. We show that the topology
which elicits worst-case VLB behavior is a path on n
nodes. We show that as links are added to a VLB network,
its worst-case required capacity decreases linearly with
the number of additional links. These results are given in
Section IV.

e How to design a VLB network at the physical layer?
As mentioned, previous VLB network design work only
applies to the logical layer, e.g., [4], [27]-[29], and
there is no clear method to translate these results to the
design of arbitrary topologies. We propose an approach
to physical layer VLB network design in Section V.

Before giving the details of our results, we present the models
and notation used throughout the remainder of this paper.

A. Traffic model

We assume that the amount of traffic entering and exiting
the network from each node is fixed and that the two values
are equal. We say that the amount of ingress/egress traffic at
node ¢ is the rate of ¢ and we denote this value by r;. We

assume that the rate of a node is bounded by the sum of the
ingress/egress links to that node; this is known as the hose
model [8], which was originally used to specify the bandwidth
requirements of a Virtual Private Network (VPN).

We wish to consider traffic matrices that respect the rates
of each node, i.e., no node initiates or receives more than r;
traffic. A traffic matrix is an n X n matrix where the ¢, j entry
indicates the amount of traffic node ¢ is currently sending node
7. For a traffic matrix D, we require

Z Dijg’/‘i and Z Djig’l“i VieV
jeV,j#i JEV,j#i

where D is a traffic matrix of a network G = (V, E) with
node rates 7,...,7,. As observed in [15], it is enough to
consider only the traffic matrices where each node sends and
receives at its maximum rate, i.e., ZjeV, i D;; = r; and
Zjevd.#i Dj; = r;, and we say that such a traffic matrix is a
valid traffic matrix (VTM). We are interested in being able to
serve any VIM, so we do not require that the traffic matrix
of a network is static, only that it always remains valid.

B. Modeling VLB at the physical layer

Valiant load balancing (VLB) is also known as two-stage
routing, because packet routing is done in two stages. Stage 1
is a load balancing step which sends packets to an intermediate
nodes, and stage 2 forwards packets to their final destination.
In detail, the two stages behave as follows.

o Stage 1 Each node forwards a predetermined fraction
of its ingress traffic to each node in the network; this
forwarding is done without regard for each packet’s final
destination. The fraction of each node’s traffic node j
receives during stage 1 is specified by «;.

o Stage 2 Packets received during stage 1 are forwarded
on to their final destination.

We call ay,...,q, the load balancing parameters of the
network, and we require Z;;l a; = 1. We also consider a
VLB variant where we require oy = --- = «,, which we
call strict Valiant load balancing (SVLB). In practice it only
makes sense to use SVLB on a homogeneous network with
a full-mesh topology; however, we use it here for theoretical
analysis.

We assume that if node ¢ is sending traffic to node j at rate
D;;, where D;; is 4,7 entry in the current traffic matrix D,
then node z receives exactly o, D;;/n packets destined for j
during stage 1 of routing. In practice, it’s unlikely that traffic
for each destination would be load-balanced exactly evenly as
in this assumption; however, if each packet is sent to a random
node during stage 1 according to the distribution a, ..., ay,
then our results hold in expectation. Since we are dealing with
traffic matrices where » jev D;; = r;, node j receives exactly
ajry traffic from ¢ during stage 1 and o;7; traffic from ¢ during
stage 2, so we have that 4 is sending a total of o;r; + oyr;
traffic to j.

The logical layer view of VLB is a full-mesh and each
packet is forwarded along two-hop paths. First to an inter-
mediate node, and then on to its final destination. However,

at the physical layer, this two-hop logical path may be much
longer, so we must specify the paths that packets follow when
sent from ¢ to j. At the logical layer, specifying the load
balancing parameters is enough to specify a solution to the
VLB routing problem since all nodes are connected by a
logical link; however, since we work with arbitrary topologies,
we must specify the path P;; packets sent from 4 to j follow.

In multi-path VLB, a node 7 can forward to 5 along multiple
paths, which we define in terms of a flow. For a pair of nodes
s,t, an s-t flow with rate |f| assigns a value f(P) to each
path from s to ¢ in G such that >, f(P) = |f|. We denote
the amount of traffic flow f places on a link e by f(e).

The following are the VLB routing variants we consider.

o A solution to the single-path VLB routing problem con-
sists of the set of traffic split ratios a, ..., a, together
with a path P;; for all 4,5 € V that indicates the path
traffic forwarded from ¢ to j follows.

o In the multi-path VLB routing problem, a solution consists
of a set of traffic split ratios o, . .., o, along with a flow
fi; for each pair ¢, j € V such that |f;;| = a;r; + a;rj,
where r; is the rate of node 7; the set of all flows is
denoted by P = {f;; :i,j € V}.

We say that a solution to either VLB routing problem is a
feasible solution if no link carries more traffic than its capacity.

C. Definitions and Notation

Let G = (V, E) be a network with node set V' and links
E. We denote a link by e or by specifying its endpoints, so
a link from 4 to j is denoted (i, 7). We assume that links are
bidirected, i.e., whenever (i,j) € E we also have (j,i) € E.
We use n to denote the number of nodes in a network, i.e.,
let n = |V|, and m = |E| denotes the number of links in
a network. The nodes connected to ¢ by a link are called ’s
neighbors. We assume that all links in £ have a capacity,
which indicates the maximum number of bits they can carry
at once. We denote the capacity of an link e by c(e). We
say that the utilization of a link is the amount of traffic it is
carrying divided by its capacity. When studying link failures in
this paper, we assume that no failure disconnects the network,
that is, we assume there is always at least 1 path between all
node pairs.

III. DOES A NETWORK HAVE ENOUGH CAPACITY?

In this section, we give a combinatorial algorithm to find a
feasible solution to the multi-path VLB routing problem. Our
algorithm relies on a characterization of the capacity links
crossing each of a network’s cuts require, which we describe
in Section III-A. This theorem is easily used to determine if
a feasible multi-path VLB routing solution exists when up
to k arbitrary links fail, which we describe in Section III-B.
Before presenting either of these results, however, we describe
the VLB routing problem as a multicommodity flow problem,
which we use throughout the rest of this paper.

As mentioned, the case when no failures occur has been
solved by Kodialam et al.. They have described a linear

program (LP) which finds the maximum throughput multi-
path VLB can obtain on a given network [16]. By finding
the max throughput, they also determine if a feasible solution
to the multi-path VLB routing problem exists, since any
feasible solution must have a throughput that is at least 1.
The single-path VLB routing problem is NP-hard; however,
Kodialam et al. gave a fully polynomial-time approximation
algorithm for the problem in [13], so it is possible to find an
approximate single-path VLB routing that is arbitrarily close
to the optimal single-path VLB routing in polynomial-time.

VLB as a multicommodity flow The VLB routing problem
can be described as a multicommodity flow, which generalizes
the well-known maximum flow problem to have multiple
source and destination pairs. A commodity is an s-t flow
where node s sends traffic to node ¢ at a specified rate r,
and is denoted by (s, t,r). The multicommodity flow problem
takes as input a set of commodities W = {(s;,t;,r;)}, and
a solution to the multicommodity flow problem is a set of
flows P = {fs,1; : (si,ti,75) € W and |fs, +,| = 7 }; finally,
a solution to multicommodity flow problem V' on network
G = (V,E) is feasible if for all e € E,), 5, fr(e) < c(e),
where fi(e) is the amount of traffic sent on e by commodity
k.

Viewed as a multicommodity flow problem, the VLB rout-
ing problem is a set of 2(%) = n(n—1) commodities, specified
as follows.

Wyis = {((s,4),aur5)} Vs,i €V Stage 1
U {((4,t),)} Vi,t €V Stage 2

Since we have captured all flows between nodes, it’s clear
that the VLB routing problem with load balancing parameters
a1, ...,0, admits a solution if and only if the multicommod-
ity flow Wy1p has a feasible solution.

Thus far, we have not precisely described the commodities
in Wyp since we have not specified values for aq, ..., ay.
There are many ways could find values for these load balanc-
ing parameters, for instance, values for each «; that maximizes
the network’s throughput, the maximum utilization of a link
in the network, can be found in polynomial-time using an LP
[16]. With values for ay, .. ., a,, found by this LP, G can serve
all VTMs with VLB if and only if the multicommodity flow
Wy, has a solution.

A. Characterizing the cuts of a VLB network

Finding a solution to the multicommodity flow problem
W1, ensures that a network can use VLB to serve all VTMs;
however, we do not gain any insight into the structure of
networks with a feasible solution to Wy exists. We now
give a combinatorial algorithm to find a solution to the multi-
path VLB routing problem. It is based on a theorem we will
give next that describes the necessary and sufficient capacity
that each cut of a network must have in order to serve all
VTMs with VLB.

The theorem is stated in terms of cuts. A cut is a partition
of V into two disjoint sets, S and V' — S, such that all pairs

of nodes ¢, j € S have a path between them that contains only
nodes in S. We denote a cut by (S,V — 5). We say that an
link (4,7) with ¢ € S and j € V — S crosses the cut, and we
denote the set of all links crossing the cut (S, V —5) by §(5).
The capacity of a cut (S,V — S) is the sum of capacities of
link in 0(S), and we denote the capacity of (S,V — S) by
c(S) = X cess) cle)-

For convenience, we denote the rate of a set of nodes S C V'
as Rg = ZieS r;. Similarly, we denote the sum of «;’s in a
set of nodes as Ag =), g ;.

The following theorem gives a necessary and sufficient
condition for routing all VTMs regardless of the network’s

topology.

Theorem 1 (Necessary and sufficient capacity of a cut). A
heterogeneous network G with node rates r1, . . ., r, and load
balancing parameters o, ...,o, can serve all valid traffic
matrices using multi-path VLB routing if and only if, for all
cuts (S,V = S) of G,

c(S) > Ay_sRs + AsRy_g = g(9)

where Rg = ZiES r; Is the sum of node rates in S CV and
AS = Zz €s (678

Proof: Necessity is not difficult to show by way of
contradiction. We omit the details here; see, e.g., [19] for a
proof that necessity holds in any multicommodity flow.

Assume that all cuts (S,V —S) of G have capacity at least
g(5). To see that G can serve all VIMs, we will show that
there exists a feasible solution to the multicommodity flow
problem Wy 1,5. We need to specify the rate of a commodity,
so let r(k) = r for a commodity k& = (s,¢,r). And we denote
the set of i’s incoming links by N~ () and 4 outgoing links
by N*(4).

A directed graph is called capacity balanced if, for all
i € V, N*(i) + demand(i) = N~(4) + supply(i), where
demand(3) is the sum of commodity rates with ¢ as the target
and supply (i) is the sum of commodity rates where i is the
source. Nagamochi and Ibaraki [20], [21] have shown that a
feasible solution to a multicommodity flow problem W exists
on a capacity balanced network if, for all its cuts (S,V — 5),
c(S) > Y pews T(k), where Ws = {(s,t,7) € W : s €
SandteV — S}

We assume),y 7(k) = Av_sRs + AsRy_g for the
multicommodity flow Wy B, since necessity holds, so if G is
a capacity balanced network, then a feasible solution to W15
exists. Consider an arbitrary i € V. we have N* (i) = N~ (i)
by definition, since G is bidirectional. In a VTM D, we have
djeviziDij =mriand 37y ., Dji = 1y, so supply(i) =
demand(i). Therefore, G is a capacity balanced network, and
so a feasible solution to Wy g exists. [|

In the proof of Theorem 1, we show that the demands
Wi are capacity balanced, so a combinatorial polynomial-
time algorithm exists for the multi-path VLB routing problem
[20]. However, this algorithm does not find optimal values
for ay,...,qa,, so this algorithm is still dependent on the
LP of [16] to find optimal settings for these load balancing

parameters. We note that if one solves the LP of [16], it returns
a solution to the multi-path VLB routing problem, so solving
the VLB routing problem with this combinatorial algorithm is
redundant.

The statement of Theorem 1 gives an easy algorithm to
determine if a feasible solution to WWy,g exists on a network
G’; however, the runtime of this algorithm is exponential. We
present it here to show the usefulness of Theorem 1 and
because we will modify it to account for link failures shortly.
The algorithm follows.

1) Find values for aq, ..., «, using the linear program to
maximize throughput described in [16].
2) Enumerate all cuts of GG. Let the set of all cuts be C.
3) For each cut (S,V —S) € C, if ¢(S) < ¢(S) then G
cannot serve all VITMs.
Unlike the LP described earlier for determining if a network
can serve all VTMs with VLB, the runtime of this algorithm is
exponential in n, as a network may have exponentially many
cuts. Many algorithms exist to enumerate all cuts [1], [11],
[23] and they are able to find all cuts in time proportional to
the number of cuts in the graph; however, this number may
be exponential in n.

B. Serving all valid traffic matrices with link failures

We now show how Theorem 1 can be used to determine if
a network can withstand link failures. We say that a network
is k link resilient if it can serve all VTMs after k arbitrary
links are removed.

We show that a slight modification of our combinatorial
algorithm to check if a network can use VLB to serve all
VTMs can also be used to check if a network is k link resilient.
The observation behind the algorithm is that Theorem 1 holds
regardless of the number of links crossing a cut, so it gives a
necessary and sufficient condition for a network to serve all
VTMs under link failures: if a set of links fail, the capacity of
all cuts (S,V —S) of the network must remain at least g(5).
Therefore, the following algorithm can be used to determine
whether or not a network is k£ link resilient. As before, the
algorithm’s input is a network G = (V, E) with link capacities,
rates 1, ..., 7, for each node, and load balancing parameters
A1y...,0p.

1) For all cuts (S,V — S) of G, let ey,...,¢e55) be the

links in §(.5) ordered such that e; > --- > e|5(g)).

2) If ¢(5) — Zle c(e;) < g(85), then G cannot serve all

VTMs under £ link failures.
The worst-case runtime of this algorithm is again exponential
since a network can have exponentially many cuts. Even so, it
is practical to compute it for small networks. We enumerated
the cuts of networks with size n = 20 in a less than a minute
with a naive Python script; more sophisticated techniques exist
for larger networks [1], [11], [23].

A weakness with this algorithm as specified above is that
we do not update the load balancing parameters after links
fail; changing these parameters may modify routes enough
that the network could serve all VTMs after the link failures.

This can be resolved, at additional computational expense, by
modifying step 2 above so that after removing the & highest
capacity links, ej,...,eg, from a cut, the load balancing
parameters «q,...,q, are updated using the LP of [16].
Allowing the load balancing parameters to be updated after
a failures raises questions about how to update the load
balancing parameters online. In one approach, taken by [14],
[17], a solution to the VLB routing problem is precomputed
for a set of node or link failure scenarios. Then, in the event
of a failure, nodes switch to these precomputed routes and
settings for o, ..., qn.

IV. WORST-CASE CAPACITY REQUIREMENTS OF VLB

In this section, we study the necessary and sufficient ca-
pacity VLB needs to serve all VTMs on a topology G; we
denote this capacity requirement by Lsy p(G). We begin by
proving that VLB requires the most capacity when G is a path
in Section IV-A. We next give an example of how Lgyig(G)
decreases linearly as additional links are added to G in Section
IV-B. Finally, we conclude this section with a brief comparison
of SVLB and shortest path (SP) routing in Section IV-C.

For our analysis, we consider only homogeneous networks,
where each node has rate ». We primarily analyze strict Valiant
load balancing (SVLB), where a; = --- = a,, no matter
the topology since it is easier to analyze than VLB. Similarly
to the definition of Lsyip(G), given a network G using SP
routing to serve all VTMs, we denote the minimum necessary
and sufficient sum of its link capacities by Lgsp(G).

A. Worst-case topology for SVLB is a path

We seek to find the topology which requires the most
capacity to serve all VTMs with SVLB. We begin by showing
that adding additional links to a network using VLB does not
ever increase the network’s necessary capacity.

Lemma 2. Let G = (V, E) be a network that can serve all
valid traffic matrices using single- or multi-path VLB and let
G' = (V,E UF) be a network that is obtained by adding a
set of links F to G. Then Lyip(G’) < Lyrp(G).

Proof: We can set ¢(e) = 0 for all e € F and G’ can serve
all VTMs using the links in £ with their original capacities
since G can serve all VTMs.]

This lemma implies that the worst-case topology for VLB,
and consequently SVLB, must be a tree, a topology with
exactly one path between each pair of nodes. This result
contrasts a recent advance on direct routing, which shows that
a tree is the optimal topology for single-path direct routing
[10]. We will give an example of how adding additional links
to a network can decrease its necessary capacity momentarily
(Section IV-B); first, we show that a path is the worst-case
topology for SVLB.

A path is a tree, denoted by P, = (V,E) where V =
{0,1,...,n— 1} and each node ¢ is neighbors with ¢ — 1 and
i+ 1, except for when ¢ = 0, n — 1, then ¢ has one neighbor, 1
and n — 1 respectively. The following shows that a path is the

worst-case topology in terms of necessary total link capacity
when using SVLB.

Theorem 3. For any homogeneous network G, Lgsyip(G) is
maximized when G is a path.

Proof: We present a sketch for space reasons. By Lemma
2, we only have to show that Lgyi g (G) is maximized when G
is a tree. Suppose that the claim holds for trees with up to n—1
nodes; let G,,—1 = (V;,—1, E,—1) be a path on n — 1 nodes,
and let n > 3. Consider adding a node = to GG,_1 such that
the resulting graph G,, = (V,,_1U{z}, E,,—1U{(x,), (4,2)})
is not a path, that is, j # 1,n — 1. Using Theorem 1, we have
that

Lsvig(Gr) = %(iz(n—z) —jn—j)+ - 1))
i=1

To compare this to the necessary capacity of a path, let P,
be a path on n nodes. We have that

2 n—1
Lsvip(P,) = %2 3 itn i) (1)
i=1

This gives

Lsvis(Grn) = Lsvis(Pp) — % (J(n —Jj)—(n— 1))

Since 1 < j < (n—1) and n > 4, we have j(n—j) > (n—1),
giving Lsvip(Gr) > Lsvis(Py) as desired.
|
We can now compute the worst-case capacity for SVLB
using Eqn. 1.

o 2 =1)r

LSVLB(PTL) =2 ; " Z(TL Z) = 3
We now have that 2(n? — 1)r/3 is an upper bound on the
capacity required to serve all VIMs with SVLB; previous
work [27] has shown that 2r(n — 1) is a lower bound on
the amount of capacity required by SVLB on a homogeneous
full-mesh. We will discuss how these bounds compare with SP
and optimal routing in Section IV-C. First, we give an example
of how increasing the number of links in an SVLB network
lowers its capacity requirements.

B. How Lgyi5(G) is affected by additional links

Lemma 2 implies that adding links to a network reduces the
capacity required by for the network to serve all VTMs with
VLB, but it does not specify how much Lgy;p(G) decreases
(if any) when a new link is added to G. To get an idea for how
additional links affect the necessary and sufficient capacity of
an SVLB network, we’ll show how Lgyip(G) changes as we
add additional links to a cycle. Let C),, denote a network that
is a cycle, i.e., if V.= {0,...,n — 1}, then each node 7 has
two neighbors ¢ +1 mod n and i —1 mod n.

Because of a cycle’s structure, it’'s easy to compute
Lsvig(C,,). For each link, we need to find the cut it crosses
that maximizes 2r/n - |S| - |V — S|. Since (S,V — S) must

SP on full
mesh

SVIB C

n3

o

o b o

Required capacity (in units of r)
3

O DD P DD DD

0
[l
3

Lower bound —

]

0O 20 3 40 50 60 V0 80 90 100 110 120 130 140 150

E
I

Fig. 1. Comparison of Lgp(G) and Lgyig(G) for various topologies. From
top to bottom, the curves represent the capacity requirements of SP routing
on a full-mesh topology, SVLB on a path (the worst-case behavior of SVLB),
SVLB on Cp,1, SVLB on Cp 3, SVLB on C), ¢, and the lower bound for
any routing scheme.

partition V', we have c(S) < 2r/n - |n/2] - [n/2]. For
simplicity of presentation, we assume that n is even. In an
even cycle, each link crosses a cut (S, V —S) where |S| = n/2
and |V — S| = n/2. Here, we have [0(S)| = 2, and the
optimal routing strategy is to place 1/2 of the flow from S
to V — S on each link in 0(S). Then, Theorem 1 implies
cle)=1/2-2r/n-n/2-n/2 = rn/4 for all e € E. Therefore,

we have)
rn

Lsvip(Cr) = -
when n is even since there are 2n links in C,,.

We’d like to be able to add more links around this cycle,
so we define C,, ; be a network where V = {0,...,n — 1}
and node 7 has neighbors {j =% modn:k € {1,...1}} and
[< n/2, so therefore C), ; has 2n links, C), 2 has 4n links,
C)p,3 has 6n links, and so forth. We omit the details here, but
we can compute the required capacity for (), ;, determining

that
n2r

Lsvrp(Cny) = P

when n is even and k < n/2.

In Figure 1, we show the required capacity to route all traffic
matrices with SVLB on C,, 1, C,, 3, and C), . As can be seen
in the figure, SVLB behaves very well while n is small on
Chp,3, and C), 6. As n increases, however, C, 3, and C, ¢ pull
away from the lower bound as their growth rate is ©(n?)r.
The required capacity to serve all VIMs with multi-path SP
routing is also shown in the figure. As shown, Lsp(G) when
G is a full-mesh requires more capacity than the worst-case
Lsvis(G) for any topology.

C. Comparison of SVLB, SP, and optimal routing

Finally, the following table summarizes our findings about
the capacity requirements of SVLB and SP routing.

Routing scheme Worst-case Best-case
SVLB 2(n? —1)r/3 2r(n—1) [27]
topology path full-mesh
Shortest path >rn(n—1) 2r(n—1)
topology full-mesh star

In the table, we give the best- and worst-case values for
Lsvig(G) and Lgp(G) on any topology G. For each routing
scheme considered, we list the topology that brings about the
best- or worst-case behavior.

V. VLB NETWORK DESIGN

In this section we show how the theoretical tools developed
thus far can be applied to the design of VLB networks. We
are interested in designing VLB networks at the physical
layer so as to find a minimum-cost network that can serve
all valid traffic matrices. We begin by showing that existing
VLB provisioning tools can be adapted to account for the
cost of sending traffic on each link, as is done in the VPN
design literature; however, we argue that this is ineffective
for physical layer network design due to its unrealistic cost
model. We instead use the fixed-charge cost model, where
each link has a maximum capacity c(e), which upper bounds
the amount of traffic that may be placed on the link, and a cost
cost(e) which is the expense required for installing e. This cost
function can be the exact cost of installing e, allowing it to
consider the physical geography between the endpoints of e.
After we present the fixed-charge cost model, we describe the
VLB network design problem in Section V-A, and then go on
to develop an integer program (IP) that designs a minimum-
cost VLB network. In Section V-B, we show how this IP can
be modified to find the min-cost expansion of a network—
via upgrading links, installing new links, or a combination
of both—so that the upgraded network can serve all VTMs.
Finally, we give an IP for constructing a VLB network that can
serve all VTMs with up to k arbitrary link failures in Section
V-C.

Most previous VLB network design results would have one
build a full-mesh topology. This strategy is certainly simple,
and the resulting network is optimal in terms of link capacity,
but it’s hardly a practical design for a network that covers a
large geographic region. On the other extreme, constructing
a network with as few links as possible does not necessarily
minimize cost either—each link may need an excessively
high amount of bandwidth; additionally, a single link failure
might partition such a network. Our aim here is to design
the best network with regards to resiliency requirements, the
distance between nodes, and available link technology.

Designing a VLB network with the VPN cost model Kodi-
alam et al. described an LP that can find a minimal assignment
of link capacities so that a network can use VLB [15]. This
LP modifies a standard LP for solving multicommodity flow
[2] to include the load balancing parameters ag,...,q, as
variables. Their LP can easily be modified to include a cost,
denoted cost(e), to send a unit of traffic on link e. Given a
topology G = (V, E), their LP finds a solution to the multi-
path VLB routing problem that minimizes the necessary total
link capacity used. Their LP does not give a cost to routing
flow on a link; however, can be made to do so simply by

modifying their objective function to minimize the following.

Minimize Z(cost(e)- Z fk(e)>

ecE kEWvLB

This objective function now charges a fixed-cost per link
e to send a unit of traffic on e. This is primarily the cost
model used by the literature on provisioning a VPN [8];
this cost model is appropriate in the VPN provisioning
setting because the physical network already exists and so
the only cost associated with sending traffic on a link is
increased congestion on that link. When designing a new
VLB network, however, we assume that we are only given
the set of nodes, so the VPN cost model is inadequate
for our purposes. The VPN cost model does not take into
account the distance between nodes, nor does it take into
account economies of scale that occur because of different
cable types. For instance, the cost per Megabit (Mb) of
bandwidth used on a cable that can handle 100 Mb/s is the
same, whether it carries 1 Mb or 100 Mb; however, the
cost of sending 101 Mb/s of traffic on this link is infinite
because of the physical limitations of the cable. As such,
we eschew this cost model and instead use the fixed-charge
cost model, which is suitable for designing a physical network.

The fixed-charge network design cost model =~ We require a
cost model that is flexible and provides accurate cost estimates.
In the fixed-charge cost model, we are given a set of cable
types, each with a maximum capacity, that can be used to
connect nodes. For each pair of nodes ¢ and j, the network
planner estimates the cost of installing the link (4, j) with each
cable type. This estimate could be as simple as multiplying
the cost per unit length of a cable with the distance between @
and j, or could be more sophisticated, e.g., one’s cost estimate
could take into account the type of terrain the link will traverse
(installing a link across rugged mountains is more costly than
across a flat plain). Anytime we describe a network design
problem using the fixed-charge cost model, let F' =V x V be
the set of all candidate links such that each e € F' has a cost
of installation cost(e) and a maximum capacity c(e).

A. Designing a new VLB network

We now show how to design a new VLB network under the
fixed-charge cost model, that is, we give an integer program
(IP) formulation of the VLB network design problem, which
takes as input a set of nodes V, each with a rate r;, and a set
of candidate links F' where each link has a maximum capacity
c(e) and a fixed cost cost(e). A solution to the VLB network
design problem is a network G = (V, E) where), cost(e)
is minimal among all possible networks whose link set is a
subset of F' that can serve all VTMs.

The VLB network design problem is easily seen to be NP-
hard. It can be reduced to the generalized Steiner tree problem
and the knapsack problem, see, e.g., [S].

The following IP solves the VLB network design problem.
This IP is an adaption of [15]’s LP to find the minimal
assignment of link capacities for a VLB network. We use

N7 (i) to denote 4’s outgoing links and N~ (i) to denote its
incoming links. For a commodity k, we denote its source
node by s(k) and it’s destination node by d(k). Here, cost(e)
is the cost of routing a unit of traffic on link e. Recall that
Wyrs is the multicommodity flow that expresses VLB’s
routing demands and that fy(e) is the amount of traffic placed
on link e by commodity k.

VLB Network Design IP

Minimize Z cost(e)z(e)
ecF
subject to
S ofle) = D fule)
cENT(3) cEN—(3)
Vi # s(k),d(k),Vk € WyLs (2)
S fle) = agmram + Cam s
eENH (i)
1= S(k),Vk‘ € WyLB 3)
doai =1)
eV
z(e) € {0,1} VeeF (5)

The objective function here minimizes the cost of links that
are selected for use. The indicator variable z(e) for each link
indicates whether or not e is selected for use, i.e., if z(e) = 1,
then e € E. These integer constraints are expressed in (5).
Inequalities (2-3) solve the multicommodity flow problem,
taking into account g, ..., .

As this is an IP, its runtime is exponential in the worst-
case. This is a particularly difficult IP, so we will now discuss
methods of computing a solution to it.

Computing the VLB network design IP

The VLB network design IP (NDIP) a computationally
intense problem. A useful heuristic to speed the computa-
tion is to find an approximate solution and seed the VLB
NDIP with this solution. For the approximate problem, we
suggest the fixed-charge network design problem (FCDP). The
FCDP returns a minimal cost solution to a candidate network
G = (V,F), labeled as described by the fixed-charge cost
model.

The VLB network design problem is a slight generalization
of the FCDP. The FCDP does not take into account the
balancing parameters og,...,a,, however. To transform a
VLB NDIP input G = (V, F) into an instance of the FCDP,
one must specify fractional values for a, ..., a,,. We suggest
setting a; = r; /Ry for all i € V. Choosing o, . . ., «, in this
way is guaranteed to result in a network with a max throughput
that is at least 1/2 the throughput of the optimal routing scheme
(see the proof of Theorem 1 in [16]).

The advantage of using the fixed charge network design
problem to approximate VLB network design is that tech-
niques exist for solving the fixed charge network design prob-
lem exactly. Fixed-charge network design has been the subject

of much work, see surveys [6], [7] for instance. Increased
computational power has allowed for larger instances of the
FCDP to be solved. As far back as 1999, fixed charge network
design problems on networks with 200 nodes and over 10,000
links could be solved near-optimally by heuristics [12]. More
recently, the authors of [24] considered a generalization of
the fixed charge network design problem, and used a branch-
cut-and-price algorithm to obtain optimum solutions to the
generalized problem on networks with over 300 nodes.

B. Upgrading an existing network

We now show how to find a min-cost upgrade to an existing
network so that it can serve all VTMs with VLB—a problem
we call the VLB upgrade problem. The VLB upgrade problem
takes as input a network G = (V, E) with link capacities ¢(e)
for all e € F and rates for each node ry,...,r, and a set F'
of candidate links, each e € F' with a max capacity c(e) and
cost cost(e) to install. Presumably G is an existing network
that does not have enough capacity to serve all VIMs with
VLB.

The VLB upgrade problem can be solved by reformulating
it as a VLB network design problem. The idea is to, for each
link e € E, add e to the set of candidate links F' with c(e)
set to e’s existing capacity and cost(e) = 0 so that e is free
to use. This way, all existing link capacity is free to use.

This approach allows one to upgrade an existing link by
increasing its capacity. For instance, if a trunk has several
strands of dark fiber, lighting that fiber may be considerably
less expensive than installing a new trunk between its end-
points.

C. Designing a fault-tolerant VLB network

We now show how to design a k link resilient VLB network.
Ideally, we would like to be able to specify the necessary
capacity of each link in the network so that the network
can serve all VTMs with up to k link failures; unfortunately,
Theorem 1 cannot be used to find such a bound for individual
links—only cuts, which typically contain many links. We can,
however, use it to find a sufficient capacity of each link.

Theorem 4 (Sufficient link capacity under link failures). Let
G = (V,E) be a heterogeneous network with node rates
T1,...,Tn that uses VLB with multi-path routing and load
balancing parameters o, . ..,ay. If each link e € E has

g(5)

cle) > ———"—
0(S)| — &
for all S C V where e € 6(S) and g(S) = Av_sRs +
AsRy_g, then G can serve all valid traffic matrices with up
to k link failures that do not disconnect G.

Proof: Assume that, for each link e € FE, c(e) >
g(9)/(]6(S)|—k) forall S C V containing e. Let (S, V—S5) be
a cut of G and let [= |§(S)|. We have ¢(S) > 22:1 cle;) =
1-g(S)/(l — k). Suppose that k links in §(S) fail. After this
failure, we have ¢(S) > (I — k) - g(5)/(l — k) = g(S). Since
¢(S) > g(S), by Theorem 1 G can serve all VI Ms. [|

An immediate consequence of this lemma is that adding
following set of constraints to the VLB network design IP
ensures that the resulting network is k link resilient.

9(5)

c(e) > 5(S)—F for all (S,V — S) where e € §(S) (6)

While Theorem 4 implies that constraints (6) are enough to
guarantee that the network found by the VLB network design
IP with constraints (6) added is k link resilient; however, there
is no guarantee that the resulting network will be optimal in
terms of link capacity.

There is exponentially many constraints in (6), making the
IP with these constraints impractical to compute except on
very small problem instances. As an alternative approach, we
could find a minimum capacity k link resilient network by
adding additional constraints to the VLB network design IP
to ensure that the capacity of all cuts remains at least g(.5)
when any set of k links are removed from the network. This
approach finds an optimal network in terms of link capacity;
however, it’s complexity grows exponentially in k, as the
number of subsets of k links grows exponentially in k.

VI. RELATED WORK

We have already discussed closely related work in Sections
I and II. Our work here continues the line of research which
aims to design networks that can serve any traffic matrix,
an area of study that rose to importance after Duffield et al.
introduced the hose model for provisioning a VPN [8]. Much
work has followed on provisioning a VPN, including optimal
multi-path direct routing [9] and optimal single-path direct
routing [10].

Theoretical work on oblivious routing was initiated by
Valiant and Brebner who described how to efficiently serve
packets on a hypercube [26]. Their scheme maximizes
throughput, and is O(logn)-competitive with respect to the
offline routing, i.e., the best possible throughput that can be
obtained by an offline algorithm is at most a logarithmic
factor higher than their oblivious algorithm. Oblivious routing
on arbitrary undirected graphs was studied by Récke who
described an oblivious routing scheme with a polylogarithmic
competitive ratio [22]. His algorithm to find such a routing
took exponential time; later work has found a polynomial-time
algorithm to construct the optimal oblivious routing [3].

Previous work has found VLB to have the following advan-
tages over direct routing.

« VLB uses network resources efficiently—on a full-mesh
topology, VLB is optimal in terms of the total link
capacity needed to serve all VIMs [27]; on an arbitrary
topology, the throughput of multi-path VLB is at least
1/2 the throughput of the optimal routing scheme, which
can adapt to the current traffic matrix [16]

« VLB is optimal in terms of required capacity to serve all
VTMs when nodes and/or links can fail [4], [29]

o Optimal multi-path VLB routing can be precomputed for
a set of router [14] or link [17] failure scenarios

o VLB packets can be touched by exactly 1 router and then
remain in the optical layer for the remainder of transit
(13]
« Can be used to efficiently load-balance traffic over peer-
ing links [30]
We do not expound on these strengths of VLB. More details
can be found in [18].

We view our work as complementary to Kodialam et al.’s
striking result that VLB has throughput at least 1/2 that of
the optimal scheme [16]. Here, however, we study the total
capacity VLB needs to serve all traffic matrices, rather than
VLB’s throughput, and in the worst-case at least, VLB’s
required capacity is not within a constant factor of optimal.

VII. CONCLUSIONS

The optimal load balancing realization has yet to be discov-
ered. VLB doubles the round trip time of packets in the worst-
case and, as we’ve shown here, can require more capacity than
shortest path routing. VLB is especially ineffective on sparse
topologies, i.e., topologies with a low ratio of links to nodes.
However, we’ve shown that as the density of a topology in-
creases, VLB’s worst-case required capacity decreases linearly
with the number of links beyond the first n — 1 links required
to connect all nodes. Our future work includes determining
classes of topologies where VLB requires less capacity than
shortest path routing.

Theorem 1, which characterizes the capacity of cuts in a
VLB network, is the power behind these VLB provisioning
results. We view this theorem as a step towards understanding
the structure of VLB networks. Unfortunately, Theorem 1 is
not extendable to case where the ingress rate is not equal to
the egress rate at each node. Theorem 1 is also not extendible
to generalized load balancing parameters [15], which allow
ingress traffic to be load-balanced based on both its source and
destination nodes, i.e., there is a «;; for each pair of nodes
1,7 € V which specifies the fraction of 7’s ingress traffic that
it load-balances to j. Further, no similar theorem exists for
direct routing because we cannot guarantee that nodes in S
always send traffic to nodes in V' — § at a certain rate.

We have also shown that the predictable nature of traffic in a
VLB network allows for VLB network design problems to be
accurately stated and computed. VLB is a powerful network
design framework, and we’ve shown it can facilitate network
design so that operators have rigorous tools, rather than best
practices, available for designing and extending their networks.

REFERENCES
[

—

A.R. Abdelaziz. A new approach for enumerating minimal cut-sets in a
network. The 7th IEEE International Conference on Electronics, Circuits
and Systems (ICECS ’00), 2000.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Ricke. Optimal oblivious
routing in polynomial time. In Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing (STOC ’03), pages 383-388,
2003.

M. Babaioff and J. Chuang. On the optimality and interconnection of
valiant load-balanced networks. In IEEE Infocom, 2007.

[3

[t}

[4

=

[5]
[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

(25]

[26]

[27]

(28]

[29]

[30]

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction
to Algorithms. McGraw Hill, Boston, 2001.

Alysson M. Costa. A survey on benders decomposition applied to fixed-
charge network design problems. Computers & Operations Research,
32(6):1429-1450, 2005.

T. G. Crainic, A. Frangioni, and B. Gendron. Bundle-based relaxation
methods for multicommodity capacitated fixed charge network design.
Discrete Applied Mathematics, 112(1-3):73-99, 2001.

N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan,
and J. E. van der Merive. A flexible model for resource management in
virtual private networks. In ACM SIGCOMM, 1999.

Thomas Erlebach and Maurice Riiegg. Optimal bandwidth reservation in
hose-model VPNs with multi-path routing. In JEEE INFOCOM, 2004.
N. Goyal, N. Olver, and F. B. Shepherd. The VPN conjecture is true. In
Proceedings of the 40th annual ACM symposium on Theory of computing
(STOC °08), 2008.

L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, and K. Makino. Enu-
merating disjunctions and conjunctions of paths and cuts in reliability
theory. Discrete Appl. Math., 155(2):137-149, 2007.

Dukwon Kim and Panos M. Pardalos. A solution approach to the fixed
charge network flow problem using a dynamic slope scaling procedure.
Operations Research Letters, 24(4):195-203, 1999.

M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta. A versatile
scheme for routing highly variable traffic in service overlays and IP
backbones. In IEEE Infocom, 2006.

M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta. Pre-
configuring IP-over-optical networks to handle router failures and un-
predictable traffic. IEEE J. on Sel. Areas in Comm. (JSAC), 2007. An
earlier version appeard in IEEE Infocom, 2006.

M. Kodialam, T. V. Lakshman, and S. Sengupta. Efficient and robust
routing of highly variable traffic. In Third Workshop on Hot Topics in
Networks (HotNets-I1I), 2004.

M. Kodialam, T. V. Lakshman, and S. Sengupta. Maximum throughput
routing of traffic in the hose model. In IEEE Infocom, 2006.

M. Kodialam, T. V. Lakshman, and S. Sengupta. Throughput guaranteed
restorable routing without traffic prediction. In /EEE ICNP, 2006.

M. Kodialam, T. V. Lakshman, and S. Sengupta. Advances in oblivious
routing of internet traffic. In Performance Modeling and Engineering.
Spring, 2008.

H. Nagamochi. Studies on Multicommodity Flows in Directed Networks.
PhD thesis, Department of Applied Mathematics and Physics, Kyoto
University,, 1988.

Hiroshi Nagamochi and Toshihide Ibaraki. Max-flow min-cut theorem
for the multicommodity flows in certain planar directed networks.
Electronics and Communications in Japan, Part 3, 72(3):58-71, 1989.
Hiroshi Nagamochi and Toshihide Ibaraki. On max-flow min-cut and
integral flow properties for multicommodity flows in directed networks.
Information Processing Letters, 31:279-285, 1989.

Harald Ricke. Minimizing congestion in general networks. In Pro-
ceedings of the 43rd Symposium on Foundations of Computer Science
(FOCS °02), 2002.

Y. Shen. A new simple algorithm for enumerating all minimal paths
and cuts of a graph. Microelectronics and Reliability, 35(6):973-976,
1995.

T. Thomadsen and T. Stidsen. The generalized fixed-charge network
design problem. Computers and Operations Research, 34(4):997-1007,
2007.

L. G. Valiant. A scheme for fast parallel communication.
Comput., 11(2):350-361, 1982.

L. G. Valiant and G. J. Brebner. Universal schemes for parallel com-
munication. In Proceedings of the thirteenth annual ACM symposium
on Theory of computing (STOC '81), 1981.

R. Zhang-Shen and N. McKeown. Designing a predictable internet
backbone network. In Third Workshop on Hot Topics in Networks
(HotNets-I1I), 2004.

R. Zhang-Shen and N. McKeown. Designing a predictable internet
backbone with Valiant load-balancing. In Thirteenth International
Workshop on Quality of Service (IWQoS '05), 2005.

R. Zhang-Shen and N. McKeown. Designing a fault-tolerant network
with Valiant load-balancing. In IEEE Infocom Mini-Conference, 2008.
R. Zhang-Shen and N. McKeown. Guaranteeing quality of service to
peering traffic. In IEEE Infocom, 2008.

SIAM J.

