
Checking Inevitability and Invariance
Using Description Logic Technology

Shoham Ben-David1, Richard Trefler1, Dmitry Tsarkov2

and Grant Weddell1

1. David R. Cheriton School of Computing Science
University of Waterloo

2. Department of Computer Science
University of Manchester, UK

Technical Report CS-2008-28

November 17, 2008

Checking Inevitability and Invariance Using
Description Logic Technology

Shoham Ben-David1, Richard Trefler1, Dmitry Tsarkov2 and Grant
Weddell1

1. David R. Cheriton School of Computer Science, University of Waterloo
2. Department of Computer Science, University of Manchester, UK

Abstract. Description Logic is a family of knowledge representation formalisms,
mainly used to specify ontologies for information systems. We show how De-
scription Logic can serve as a natural setting for representing and solving sym-
bolic model checking problems. We concentrate on inevitability (AF(p)) spec-
ification and invariance (AG(p)) formulas. Experimental results, using the De-
scription Logic reasoner FaCT++, outperform existing methods for inevitability
formulas. For invariance formulas we give new encodings that significantly im-
prove on previous implementations using DL technology.

1 Introduction

Symbolic model checking of hardware models is performed using two
main methods. The first is based on BDDs and is known as SMV [10],
and the second is based on Satisfiability solving technology [4]. We con-
sider a different approach for symbolic model checking, one that makes
use of Description Logic (DL) technology. In [3] it was shown how DL
can provide a natural setting for Bounded Model Checking (BMC) prob-
lems. In this paper we extend the results of [3] in two directions. First, we
show how unboundedinevitabilityquestions (such as “does event ‘p’ oc-
cur at least once along all computations?”) can be naturally phrased and
solved, outperforming existing methods. Second, we present two new
encodings for BMC safety problems that significantly improve over the
results of [3], although still fall behind the performance of SAT solvers
for the same task.

Description Logic (c.f. [1]), which can be viewed as a notational vari-
ant of modal logic, is a family of knowledge representation formalisms
mainly used for specifying ontologies in information systems. Statements
in DL are interpreted as decidable fragments of first order logic. The ba-
sic elements in DL areconcepts(sets of individuals) androles (binary
relations between individuals).

An ontologyT is called aterminologyor a TBox, and corresponds
to a set of concept inclusions. Each inclusion has the formC1 v C2,
and asserts containment properties of relevant concepts in an underlying
domain. For example, we can say that the set ofcowsis included in the
set ofanimals

COWv ANIMAL

and, given a roleeats, we can assert that the set ofcowsis included in
those things that do not eat animals

COW v ∀eats.¬ANIMAL

In addition to concept inclusions, DLs allow for assertions about in-
dividuals in the domain. For example, we can say thatDina is a cow
“COW(Dina)” and thatDina eats the foodGrass “eats(Dina,Grass)”. A
set of assertions is called an ABox.

Checkingknowledge base consistencyis the main reasoning service
provided by DL reasoners. For a given terminologyT and set of as-
sertionsA the DL reasoner determines if there exists an interpretation
satisfying both the inclusions inT and the set of assertions inA. Some
DL reasoners optimize consistency checking by providing services for
answeringconcept satisfiabilityquestions. For a given terminologyT
and a conceptC, a concept consistency check determines if there exists
a non-empty interpretation of the conceptC that also satisfies each in-
clusion dependency inT . We useT |=dl C to denote this fact1. Most DL
systems implement these services by employing some form of tableaux
or model building technique. In recent years several DL reasoners have
been developed [8, 7, 13], demonstrating growing ability to solve knowl-
edge base consistency problems.

We cast a model checking problem as a consistency question in DL.
LetM be a model defined by a setV of Boolean state variables and their
next-state transitionsR. We represent each variablevi ∈ V as a concept
Vi, and the transition relation as a single roleR. We build a TBoxT by
introducing concept inclusions of the type

C1 v ∀R.C2

1 We write “|=dl” to distinguish the use of the double turnstyle symbol by both description logic
and model checking communities.

stating that if the current state satisfies the condition represented byC1,
then all the next-states that can be reached in one step throughR must
satisfy the conditionC2. Note that interpretations for this set of concept
inclusions correspond to sub-models of the given modelM . Finally, we
add toT a concept inclusion representing abuggypath though the model.
Verification is then done by checking consistency of the TBoxT . Since
interpretations ofT correspond to sub-models ofM containing a buggy
path, if an interpretation is found (T is consistent) it means that a bug
exists, and the interpretation can serve as a counterexample.

The definition of a buggy path depends on the type of specification
given. For an inevitability property of the formAF(p) we define a path
along which¬p always holds, therefore verifying the formulaEG(¬p).
To achieve this we introduce the conceptsP andEGnotP and the inclu-
sion

EGnotP v ¬Pu ∃R.EGnotP

If this inclusion is satisfied, andEGnotP is not empty, it means that an
infinite path (a loop) exists in the model, on whichp never holds. For a
safety property of the formAG(p) we define a bounded path on which
¬p appears at least once. We describe two ways to achieve this that are
different from the one given in [3].

We present experimental results using the Description Logic reasoner
FaCT++ [14]. For inevitability formulas, our results significantly outper-
form those of BDD based model checking, and are compatible with runs
using a SAT solver. It should be noted however, that while SAT solvers
performboundedmodel checking, our method is unbounded, and per-
forms well whether the specification holds in the model or not. For in-
variance formulas we give new encodings that significantly improve on
previous implementations using DL technology, although cannot com-
pete with SAT based BMC.

The rest of the paper is organized as follows. In the next section we
give the necessary definitions. Sections 3 and 4 are the main sections of
the paper, where we present our encodings for unbounded inevitability
specifications (3) and bounded safety specifications (4), prove their cor-
rectness and present experimental results. Section 5 concludes the paper.

2 Background and Definitions

We introduce Description Logic in Section 2.1. In section 2.2 we give
model checking definitions. Section 2.3 summarizes the results of [3]
that we base upon in this paper.

2.1 Description Logic

Description logics usually correspond to decidable fragments of first or-
der logic based on a variable free syntax. The basic elements areatomic
concepts, which can be understood as unary predicates denoting sets of
individuals, andatomic roles, which can be understood as binary predi-
cates denoting arbitrary binary relations over individuals. More compli-
cated concepts are constructed from simpler concepts by using so-called
concept constructors.

A particular description logic is determined by a selection of concept
constructors. There is also a naming convention based on this selection,
starting with the nameAL, short forattributive language, which denotes
a fragment shared by virtually all description logics. In the following,
we define the syntax and semantics for the dialectALCOIF which, by
virtue of the appended sequence of lettersC, O, I andF , adds con-
cept constructors toAL to expressconcept compliment, nominals, role
inverseandrole functionality, respectively.

In the remainder of the paper, we refer to various special cases of this
dialect by simply omitting any letters for concept constructors that are
not used in particular reductions. For example,ALCF refers to a dialect
which adds concept compliment and functional roles to the basic attribu-
tive language.

Definition 1 (Description LogicALCOIF) LetNC , NR andNI be dis-
joint sets ofatomic concepts{A1, A2, . . .}, atomic roles{R1, R2, . . .}
and individual names{s1, s2, . . .} respectively. Also letNFR ⊂ NR de-
note a distinguished subset of roles that arefunctional. The set ofcon-
ceptsC is the smallest set includingNC that satisfies the following.

– (the basicAL fragment) IfC1, C2 ∈ C andR ∈ NR − NFR, then so
areC1 u C2 and∃R.C.

– (concept complimentC) If C ∈ C, then so is¬C.

– (nominalsO) Any finite set{si1 , ..., sik} of individual names is inC.
– (role inverseI) If R ∈ NR− NFR, then∃R−.C ∈ C.
– (functional rolesF) If R ∈ NFR, then∃R.C ∈ C.
– (role inverse and functional rolesIF) If R ∈ NFR, then∃R−.C ∈ C.

Individual names appearing in concept expressions are callednominals.
A general concept inclusion(GCI) is an expression of the formC1 v C2,
whereC1 andC2 are arbitrary concepts. Aterminology(or TBox) T
consists of a finite set of concept inclusions. Anassertionis an expression
of the formC(s), or of the formR(s1, s2). Anassertion box(or ABox)A
consists of a finite set of assertions. Aknowledge baseis a pair (T ,A)
consisting of a TBox and an ABox.

The semanticsof expressions is defined with respect to a structure
I = (∆I , ·I), called aninterpretation, where∆I is a non-empty set of
individuals, and(·)I is an interpretation function that maps atomic con-
ceptsA to a subset of∆I , atomic rolesR to a subset of∆I×∆I , and in-
dividual namess to an element of∆I . If R ∈ NFR, thenRI must also be
functional, that is, for anye, e1, e2 ∈ ∆I , {(e, e1), (e, e2)} ⊆ RI implies
e1 = e2. The interpretation function is extended to arbitrary concepts in
a way that satisfies each of the following:

– (C1 u C2)
I = (C1)

I ∩ (C2)
I ,

– (∃R.C)I = {e ∈ ∆I : ∃(e, e′) ∈ RI s.t.e′ ∈ CI},
– (¬C)I = ∆I \ CI ,
– ({si1 , ..., sik})I = {(s1)

I , ..., (sk)
I}, and

– (∃R−.C)I = {e ∈ ∆I : ∃(e′, e) ∈ RI s.t.e′ ∈ CI}.
An interpretationI satisfies a GCI(C1 v C2) if (C1)

I ⊆ (C2)
I , and

a TBox T if it satisfies each concept inclusion inT . The interpretation
satisfies an assertionC(s) if sI ∈ CI , an assertionR(s1, s2) if (s1, s2) ∈
RI and anABox A if it satisfies each assertion inA.

Theknowledge base consistency problemis to determine, for a given
knowledge base(T ,A), if there exists an interpretationI that satisfies
bothTBox T andABox A. A variation of this problem is to determine
concept consistency relative to a knowledge base; that is, to determine,
for a givenTBox T , ABox A and conceptC, if (T ,A ∪ {C(s)}) is
consistent, wheres is an individual that does not occur inA. This latter
problem is written(T ,A) |=dl C, or justT |=dl C if A is empty.

Additional concepts are defined as syntactic sugaring of those above:

HERBIVORE v ∀eats.¬ANIMAL

OMNIVORE v (∃eats.ANIMAL) u
(∃eats.¬ANIMAL)

COW v ANIMAL uHERBIVORE

HUMAN v ANIMAL u
(HERBIVORE tOMNIVORE)

(a)TheTBox (general terminology)

COW(Dina)

HUMAN(Mary)

likes(Dina, Mary)

(b) TheABox (specific assertions)

Fig. 1. A KNOWLEDGE BASE ABOUT EATING HABITS.

– > = A t ¬A for some atomic conceptA,
– ∀R.C = ¬∃R.¬C and
– C1 t C2 = ¬(¬C1 u ¬C2).

An example knowledge base expressed inALCOIF that captures
a terminology about animals and their eating habits together with some
assertions about specific individuals is given in Figure 1. Our notational
convention in this example is to use upper case only for atomic concepts,
italic font for atomic roles and a mixed case for individual names. Ob-
serve that the TBox introduces, e.g., the concept of an OMNIVORE as
those things that must eat something that is an animal and something else
that is not an animal. Also, the ABox asserts thatthere is a cow called
Dina that likes Mary, who is a human.

In this paper, we employ a standard service provided by a tableau-
based description logic reasoner, such as FaCT++ [14] for determining
knowledge base satisfiability. Such a service will find a compact descrip-
tion of a (possibly infinite) interpretation that satisfies both the TBox and
ABox for a given knowledge base if any such interpretation can exist.

2.2 Model Checking

Definition 2 (Kripke Structure) LetV be a set of Boolean variables. A
Kripke structureM overV is a four tupleM = (S, I, R, L) where

1. S is a finite set of states.
2. I ⊆ S is the set of initial states.
3. R ⊆ S×S is a transition relation that must be total, that is, for every

states ∈ S there is a states′ ∈ S such thatR(s, s′).
4. L : S → 2V is a function that labels each state with the set of vari-

ables true in that state.

We view each states as a truth assignment to the variables inV . We view
a set of states as a Boolean function overV , characterizing the set. For
example, the set of initial states,I, is considered as a Boolean function
over V . Thus, if a states belongs toI, we write s |= I. Similarly, if
vi ∈ L(s) we writes |= vi, and ifvi 6∈ L(s) we writes |= ¬vi.

In practice, the full Kripke structure of a system is not explicitly
given. Rather, a model is described by a set of Boolean variablesV =
{v1, ..., vn}, their initial values and their next-state assignments. The def-
inition we give below is an abstraction of the input language ofSMV[10].

Definition 3 (Model Description) LetV = {v1, ..., vn} be a set of Boolean
variables. A tupleMD = (IMD , [〈c1, c′1〉, ..., 〈cn, c′n〉]) is a Model De-
scriptionoverV whereIMD, ci, c′i are Boolean expressions overV .

The semantics of a model description defines a Kripke structureMMD =
(S, IM , R, L), whereS = 2V , L(s) = s, IM = {s|s |= IMD}, and
R = {(s, s′) : ∀1 ≤ i ≤ n, s |= ci impliess′ |= ¬vi ands |= c′i ∧ ¬ci
impliess′ |= vi}.

Intuitively, a pair〈ci, c′i〉 defines the next-state assignment of variable
vi in terms of the current values of{v1, ..., vn}. That is,

next(vi) =


0 if ci
1 if c′i ∧ ¬ci
{0, 1} otherwise

where the assignment{0, 1} indicates that for every possible next-state
value of variablesv1, ...vi−1, vi+1, ..., vn there must exist a next-state with
vi = 1, and a next-state withvi = 0.

Computation Tree Logic (CTL) [6] Given a finite set AP of atomic
propositions, formulas of CTL are recursively defined as follows:

– Every atomic proposition is a CTL formula.

– If ϕ andψ are CTL formulas then so are:
• ¬ϕ • ϕ ∧ ψ • AXϕ
• EXϕ • A[ϕUψ] • E[ϕUψ]

Additional operators are defined as syntactic sugaring of those above:
• AFϕ = A[true Uϕ] • EFϕ = E[true Uϕ]
• AGϕ = ¬E[true U¬ϕ] • EGϕ = ¬A[true U¬ϕ]

The formal semantics of a CTL formula are defined with respect
to a Kripke structureM = (S, I, R, L) over a set of variablesV =
{v1, ..., vk}. A path inM is an infinite sequence of states(s0, s1, ...) such
that each successive pair of states(si, si+1) is an element ofR. The no-
tationM, s |= ϕ, means that the formulaϕ is true in states of the model
M .

– M, s |= p iff s |= p
– M, s |= ¬ϕ iff M, s 6|= ϕ
– M, s |= ϕ ∧ ψ iff M, s |= ϕ andM, s |= ψ
– M, s0 |= AXp iff for all paths(s0, s1, ...),M, s1 |= p
– M, s0 |= EXp iff exists a path(s0, s1, ...),M, s1 |= p
– M, s0 |= A[ϕUψ] iff for all paths(s0, s1, ...), there existsi such that
M, si |= ψ and for allj < i,M, sj |= ϕ

– M, s0 |= E[ϕUψ] iff there exists a path(s0, s1, ...), and there existsi
such thatM, si |= ψ and for allj < i,M, sj |= ϕ

We say that a Kripke structureM = (S, I, R, L) satisfies a CTL formula
ϕ (M |= ϕ) if there exists a statesi such thatsi |= I andM, si |= ϕ.

Bounded Model Checking Given a Kripke structureM = (S, I, R, L),
a formulaϕ, and a boundk, Bounded Model Checking (BMC) tries to
refuteM |= ϕ by proving the existence of a witness to the negation ofϕ
of lengthk or less. Forϕ = AG(p), we say thatMk 6|= ϕ if and only if
there exists a pathw = s0, ..., sj in M such thatj ≤ k andsj |= ¬p.

2.3 Model description as a DL terminology

We show how a model description can be written as a TBox over the
Description Logic dialectALC. This translation is taken from [3]. Using
this translation for model checking is the main contribution of this paper,
and will be shown in Sections 3 and 4.

Let MD = (I, [〈c1, c′1〉, ..., 〈cn, c′n〉]) be a model description for the
modelMMD = (S, I, R, L), overV = {v1, ..., vn}.

We generate a TBoxTMD , linear in the size ofMD . For each variable
vi ∈ V we introduce one primitive conceptVi, whereVi denotesvi = 1
and¬Vi denotesvi = 0. We introduce one primitive roleR correspond-
ing to the transition relation of the model. We define the conceptS0 to
representI, by replacing eachvi in I with the conceptVi, and the connec-
tives∧,∨,¬ with u,t,¬ respectively. The conceptsCi,C′

i correspond to
the Boolean conditionsci, c′i in the same way. We then introduce concept
inclusions describing the model: for each pair〈ci, c′i〉 we introduce the
inclusions

Ci v ∀R.¬Vi
(¬Ci u C′

i) v ∀R.Vi

For a model descriptionMD overn variables (V = {v1, ..., vn}), TMD

will consists of2n concept inclusions. Interpretations forTMD corre-
spond to sub-models ofMMD . Let I = (∆I , ·I) be an interpretation
for TMD . The correlation between individuals from∆I and states inS
can be seen by defining a functionF : ∆I → S such thatF (σ) = s if
∀1 ≤ i ≤ n, σ ∈ Vi if and only if s |= vi. Note thatF is well defined,
since a states is determined by the value of the variablesv1, ..., vn.

The following Lemma (taken from [3]) extends the correlation to
Boolean expressions overv1, ..., vn.

Lemma 4. Let I = (∆I , ·I) be an interpretation forTMD . Let c be a
Boolean expression overv1, ..., vn, andC its corresponding concept de-
rived by replacing each variablevi by the conceptVi, and the Boolean
connectives∨,∧,¬ by t,u,¬. Let σ ∈ ∆I be an element in the inter-
pretationI, and lets = F (σ). Thenσ ∈ CI if and only ifs |= c.

Proof. By induction on the structure of the Boolean expressionc. ut

Corollary 5 . LetMMD , TMD , I andF be as above. LetF (σ1) = s1 and
F (σ2) = s2. Then(s1, s2) ∈ R if and only if(σ1, σ2) ∈ RI .

Proof. (sketch).
(s1, s2) ∈ R if and only ifs1, s2 obey the definition regarding the Boolean
expression pairs〈ci, c′i〉 for 0 < i ≤ n. By Lemma 4, this happens if and
only if σ1, σ2 behave similarly regarding the conceptsCi,C′

i, which hap-
pens if and only if(σ1, σ2) ∈ RI . ut

Fig. 2.A Kripke structure for Counter

We demonstrate the construction ofTMD with the following example.

Example 6 Consider a model of a buggy three-bit counter, for which
the least and most significant bits behave as expected, but the middle bit
has a bug: when its current value is 0, it may assume any value in the
next state, and when its current value is 1 it keeps its value in the next
state. This behavior can be described as a model description (usingT
for v1 ∨ ¬v1 andF for v1 ∧ ¬v1) in the following way.
Counter =

(I, [〈v1, T 〉, 〈F, v2〉, 〈(v1 ∧ v2 ∧ v3) ∨ (¬v3 ∧ (¬v1 ∨ ¬v2)), T 〉])

with I = ¬v1 ∧ ¬v2 ∧ ¬v3. Figure 2 describes the Kripke structure for
Counter .

The description of the model as aTBox TCounter overALC has
three conceptsV1,V2,V3 and one roleR. The concept inclusions for
TCounter are given in Figure 2.1. For convenience we broke the con-
cept inclusions describing the behavior ofV3 into two parts. Note that
there is only one concept inclusion describing the behavior ofV2, since
it is free to change when its value is 0.

3 Inevitability Formulas using DL

In this section we consider formulas of the typeAF(p) with p being a
Boolean expression. For our method we need to define a buggy path, that

S0 v (¬V1 u ¬V2 u ¬V3)
V1 v ∀R.¬V1

¬V1 v ∀R.V1

V2 v ∀R.V2

(V1 u V2 u V3) v ∀R.¬V3

(¬V3 u (¬V1 t ¬V2)) v ∀R.¬V3

(V1 u V2 u ¬V3) v ∀R.V3

(V3 u (¬V1 t ¬V2)) v ∀R.V3

Fig. 3.The TBoxTCounter

is, a path on whichp never holds. We thus look for a representation of
EG(¬p).

A CTL formula can be identified with the set of states in which it
holds [6]. Looking at it this way, we get the following equation.

EG(¬p) = ¬p ∧ EX(EG(¬p)) (1)

We use this equation for our translation into DL. LetMD = (I, [〈c1, c′1〉, ..., 〈cn, c′n〉])
be a model description for the modelMMD = (S, I, R, L) over V =
{v1, ..., vn}, and letTMD be the terminology built for it as describe in
Section 2.3. Letϕ = AF(p) be the formula to be verified, withp being
a Boolean expression over the variablesv1, ..., vn. Let P be the concept
representing the Boolean expressionp, by replacing every state variable
vi with the conceptVi, and∧,∨,¬ with u,t,¬ respectively.

We introduce a new concept calledEGnotP , and add the following
concept inclusion toTMD :

EGnotP v ¬Pu ∃R.EGnotP (2)

Note that the expression∃R.C can be seen as taking one step throughR,
and thus corresponds, in a sense, to the CTL expressionEX(C).

Let T ′
MD be the terminology we get by adding Equation (2) toTMD .

We define the conceptCϕ ≡ S0 u EGnotP . In order to verifyϕ, we
now check whetherCϕ is consistent with respect to our terminology:
T ′

MD |=dl Cϕ ?
A positive answer from the DL reasoning tool will be accompanied by
an interpretation forT ′

MD in which Cϕ is not empty. This interpretation
can serve an a witness toEG(¬p), or as a counterexample toAF(p).
The following proposition states our result formally.

Proposition 7. MMD 6|= ϕ if and only ifT ′
MD |=dl Cϕ.

Proof. (=⇒). Assume thatMMD 6|= ϕ. SinceMMD is a finite kripke
structure, this means there exists a loop, that is, a sequence of states
s0, s1, ... ,sm such thats0 |= I, si 6|= p for 0 ≤ i ≤ m, (si, si+1) ∈ R
for 0 ≤ i < m, andsm = sj for some0 ≤ j < m. We use this se-
quence to build an interpretationI = (∆I , ·I) for T ′

MD . We definem
individualsσ0, σ1, ..., σm−1 in ∆I , that correspond tos0, s1, ... ,sm−1. We
mapσi ∈ EGnotPI for 0 ≤ i < m. We then map eachσi to the prim-
itive conceptsVI

k according tosi as expected:σi ∈ VI
k if and only if

si |= vk. Note that sinces0 |= I we get by Lemma 4 thatσ0 ∈ SI
0 , and

alsoσi 6∈ PI for 0 ≤ i < m, sincesi 6|= p. We define(σi, σi+1) ∈ RI

for 0 ≤ i < m − 1, and also(σm−1, σj) ∈ RI . It is easy to see that the
interpretationI satisfies all inclusions inT ′

MD :

– Inclusions fromTMD : We need to show that inclusions of the type
Ci v ∀R.¬Vi and¬Ci u C′

i v ∀R.Vi, for 1 ≤ i ≤ n, hold under the
interpretationI. We know that∀0 < l ≤ j, (sl−1, sl) ∈ R. According
to the definition of a model description, it means that∀0 < i ≤ n,
sl−1 |= ci implies sl |= ¬vi andsl−1 |= ¬ci ∧ c′i implies sl |= vi.
By Lemma 4 we get thatσl−1 ∈ CI

i implies σl 6∈ VI
i andσl−1 ∈

(∆I \ CI
i) ∩ C′I

i impliesσl ∈ VI
i . Since no pairs other than(σl−1, σl)

and (σm−1, σj) belong toRI in the interpretationI, the inclusions
hold.

– The inclusionEGnotP v ¬Pu ∃R.EGnotP . By the construction of
I, all individualsσi belong toEGnotPI . We know also thatσi 6∈ PI .
Since each individual has an outgoing edge that is also inEGnotPI

the inclusion holds.
– Cϕ is not empty sinceσ0 ∈ SI

0 ∩ EGnotPI .

(⇐=). Assume thatT ′
MD |=dl Cϕ. Then there exists an interpretation for

T ′
MD , such thatCI

ϕ is not empty. SinceALC enjoys thefinite model prop-
erty [1], there must exist a finite interpretationI = (∆I , ·I) for T ′

MD such
thatCI

ϕ is not empty. Thus there exists an individualσ0 ∈ SI
0∩EGnotPI .

Sinceσ0 ∈ EGnotPI and EGnotPI ⊆ (∆I \ PI) ∩ {e ∈ ∆I :
∃(e, e′) ∈ RI s.t.e′ ∈ EGnotPI} we know thatσ0 6∈ PI , and there
must existσ1 ∈ EGnotPI such that(σ0, σ1) ∈ RI . For similar consid-
erations, there exists a sequence of individuals,σ0, σ1, σ2, ..., such that
σi ∈ EGnotPI , σi 6∈ PI , and(σi, σi+1) ∈ RI for all i. SinceI is finite

there must existm, j such thatσm = σj. We show thatMMD 6|= ϕ by pre-
senting an infinite sequence of states (a loop) inMMD that do not satisfy
p. We map eachσi to a statesi as usual:σi ∈ VI

k if and only if si |= vk.
By Lemma 4,si 6|= p, sinceσi 6∈ PI . Also, by Corollary 5,∀0 ≤ i ≤ m,
(si, si+1) ∈ R and(sm, sj) ∈ R.

ut

It is tempting to try and use the same reasoning to verify a formula
ψ = AG(p): instead of the concept inclusion in (2), add the conceptAGp
and the following concept inclusion:

AGpv Pu ∀R.AGp. (3)

DefineCψ ≡ S0 uAGp. LetT ′′
MD be the terminology we get by replacing

Equation (2) with Equation (3) inT ′
MD . Note that checkingT ′′

MD |=dl Cψ
does not give us what we want. To see this, recall thatT ′′

MD |=dl Cψ asks
whetherthere existsan interpretationI, that satisfies all concept inclu-
sions inT ′′

MD , and for whichCψ is not empty. Such interpretation does
not necessarily include all possible transitions in the given modelMMD .
In fact, an interpretation that satisfies inclusion (2) would be enough for
inclusion (3) as well. ThusT ′′

MD |=dl Cψ verifiesEG(p) and notAG(p).
For AG(p) formulas, we can only achieve bounded model checking.

Before we show this (Section 4), we discuss experimental results for in-
evitability formulas.

3.1 Experimental results

We demonstrate the usefulness of this method forAF(p) formulas in Ta-
ble I. We ran our encoding using the description logic reasonerFACT++ [14].
We used a model derived from the NuSMV example “dme1-16”, taken
from [12]. We parameterized this example, to be able to run models with
different number of variables. We give results for three model sizes, con-
sisting of 85, 170 and 272 state variables, and for two formula types: one
that holds in the model (passes) and one thatfails to hold in the model.

We compare our method both to BDD based models checking and to
SAT based method that performs bounded model checking. We note that
while translation of safety properties into a CNF formula for SAT is sup-
ported by publicly available model checking tools, such as NuSMV [5]
and Cadence-SMV [9], it is not the case for liveness formulas likeAF(p).

Model SizeFormula DL BDD SAT
85 Fail 0.05 52 0.48
85 Pass 0.05 124 ∞
170 Fail 0.1 > 1200 1
170 Pass 0.1 > 1200 ∞
272 Fail 0.2 > 1200 1.5
272 Pass 0.17> 1200 ∞
Table 1.AF(p) formulas runtime

In fact, the only model checker we found to supportAF(p) formulas in
BMC mode was RuleBase [2].

The time in Table I is given in seconds. We have set a limit of 20
minutes for each run. Note that while results using SAT solving are close
to those using DL for formulas thatfail in the model, there is no guaran-
teed termination for formulas thatpass.

4 BMC of safety formulas using DL

Bounded model checking of invariance formulas using Description Logic
was first presented in [3]. The method in [3] used the DL dialectALCI
(that allows forInverse Roles), and was based on taking backward steps
throughR from concepts representing states of certain distance from the
initial state (also known asdoughnuts). We present here two alternative
encodings, using ABoxes, that significantly improve over the one given
in [3]. While these encodings still fail to compete with SAT based BMC,
we find the improvement demonstrated by the new methods to be encour-
aging evidence supporting further research in this direction.

Let MD be a model description,ϕ = AG(p) an invariance formula
to be verified, andk the bound. Our encodings consist of three parts.
The first translatesMD into a TBoxTMD . This part is described in Sec-
tion 2.3, and is not repeated here. The second part encodes a symbolic
path of lengthk as an ABoxAk. This part is given in Section 4.1 below.
The third part of our encodings deals with the verification of the given
formulaϕ. We present two different encodings. The first makes use of
nominalswhile the second requiresfunctional roles. Both encodings are
described in section 4.2. In section 4.3 we demonstrate these translations
with an example, and experimental results comparing the two methods

to the one of [3] and to SAT based BMC are given in Section 4.4. We
discuss the methods and results in Section 4.5.

4.1 ConstructingAk.

For a boundk, we introducek+1 individuals,s0, s1, ..., sk. We then in-
troduce one concept assertion:S0(s0) andk role assertions:∀0 ≤ i < k,
R(s i, s i+1).
Note that the assertions inAk form a symbolic path of lengthk + 1
through the model, starting from an initial state. Note also that this syn-
tactic definition of a path does not depend on the model described in the
TBox TMD and would be the same for any model and formula.

4.2 Encoding the formula

Letϕ = AG(p) be the specification to be verified, withp being a Boolean
formula over the variablesv1, ..., vn. Note that for any modelM , M |=
AG(p) if and only if M 6|= EF(¬p). We use this fact in our encodings.
We translate the Boolean formulap into a conceptP in the usual way,
and then encode a possiblebug in the model, thus verifyingEF(¬p). We
present two ways to achieve this.

Using Nominals Define the conceptCϕ ≡ ¬P u {s0, ..., sk}. If Cϕ is
consistent with respect to(TMD ,Ak), it means that¬p holds in some
state, with distancek or less from the initial state. Verification is there-
fore reduced to the query:(TMD ,Ak) |=dl Cϕ.

Using Functional Roles This encoding is based on Clarke and Emer-
son’s [6] fixpoint representation ofEF(p):

EF(p) = p ∨ EX(EF(p))

In order to encode this in DL, we need to enhance both the TBoxTMD

and the ABoxAk.
We first defineR to be afunctional role, to ensure that each individual

in the interpretation has at most one outgoing edge throughR. We then
add an assertion toAk:

(¬∃R.>)(sk).

Note that individuals belonging to the concept¬∃R.> have no outgoing
edges. The assertion above thus forcessk to be the last state in the path.

We then build the TBoxT ′
MD by adding one concept inclusion to

TMD . We introduce a new conceptEFnotP , and define it as follows:

EFnotP v ¬Pt ∃R.EFnotP

The intuition behind this concept inclusion is the following. We first
check whether¬P holds in the current state; if it does, then a bug was
found and we are done. If not, we try to perform the same check on the
following states, that are accessible via the roleR. SinceR is a functional,
we have that∃R.EFnotP is the same as∀R.EFnotP , and it is propa-
gated to the next state. If¬P does not hold in the last state,∃R.EFnotP
is not applicable anymore, and the search stops afterk steps.

Finally, we add another assertion toAk, stating thats0, the initial
state, belongs also to the new conceptEFnotP :

EFnotP (s0).

LetA′
k = Ak ∪ {EFnotP (s0),¬∃R.>(sk)}, andT ′

MD as defined above.
If (T ′

MD ,A′
k) is consistent, it means that¬p holds on one of the states of

distancek or less from the initial state.
The following proposition states that both our encodings are correct.

Proposition 8.

1. Mk
MD 6|= ϕ if and only if(TMD ,Ak) |=dl Cϕ.

2. Mk
MD 6|= ϕ if and only if(T ′

MD ,A′
k) is consistent.

We show only one direction of the proof. The other direction follows
easily by similar arguments.

Proof. (=⇒) Assume thatMk
MD 6|= ϕ. Then there exists a path inMk

MD ,
w = s0, ..., sj, wherej ≤ k, such thats0 |= I,∀0 < i ≤ j, (si−1, si) ∈ R,
andsj 6|= p. We build a finite interpretationI = (∆I , ·I) based onw.
The set∆I will include k + 1 elementsσ0, ..., σk. The first j + 1 of
them,σ0, ..., σj, will correspond tos0, ..., sj in a way that∀0 < l ≤ n,
∀0 ≤ i ≤ j, σi ∈ VI

l if and only if si |= vl. We define(σi, σi+1) ∈ RI

for 0 ≤ i ≤ k, and interpret the individualss0, ..., sk of Ak asσ0, ..., σk.

Sincesj 6|= p, we get by Lemma 4 thatσj 6∈ PI . Also, the concept
inclusions ofTMD hold (see proof of Proposition 7).

We have to show thatI satisfies both translations.

1. (TMD ,Ak) |=dl Cϕ. By the construction ofI, it satisfies bothTMD and
Ak. It remains to be shown thatCI

ϕ is not empty. Sinces j is inter-
preted asσj andσj 6∈ PI , we get thatσj ∈ (∆I \ PI) ∩ {sI

0 , ..., s
I
k}

= CI
ϕ.

2. (T ′
MD ,A′

k) is consistent. To show this, we mapσi, 0 ≤ i ≤ j, to be-
long to EFnotP . The assertions inA′

k therefore hold:(sI
i , s

I
i+1) ∈

RI , sI
0 ∈ EFnotP I andsI

k ∈ (∆I \ {e ∈ ∆I : ∃(e, e′) ∈ RI}) since
there is no outgoing edge fromsI

k . It remains to be shown that the
inclusionEFnotP v ¬Pt ∃R.EFnotP holds under the interpreta-
tion I. We know thatσ0, σ1, ..., σj ∈ EFnotP I , and only them. We
have to show that these individuals belong also to the right hand side
of the inclusion.σ0, σ1, ..., σj−1 belong there since(σi, σi+1) ∈ RI ,
σi+1 ∈ EFnotP I for 0 ≤ i < j. Sinceσj 6∈ PI it also belongs there.

ut

4.3 Example

Consider the Kripke structure in Example 6, Section 2.3. Let the formula
to be verified beϕ = AG¬(v1 ∧ ¬v2 ∧ ¬v3), asserting that the state
(1, 0, 0) is not reachable. Let the bound be set to 4. LetTCounter be as
in Example 6. The ABoxA4 representing a path of length 4 in the model,
consists of the following assertions:

A4 = {S0(s0),R(s0, s1),R(s1, s2),R(s2, s3),R(s3, s4)}

We now have two ways to verify the formula.

1. Using nominals, we define

Cϕ ≡ (V1 u ¬V2 u ¬V3) u {s0, s1, s2, s3, s4}.

Verification is then carried out by checking the satisfiability ofCϕ:
(TCounter ,A4) |=dl Cϕ?

2. Using functional roles, we defineR to be a functional role, and add
the following inclusion to createT ′

Counter :

EFnotP v (V1 u ¬V2 u ¬V3) t ∃R.EFnotP

We then add two assertions toA4:

A′
4 = A4 ∪ {EFnotP (s0),¬∃R.>(s4)}

Verification is now carried out by asking whether(T ′
Counter ,A′

4)
is consistent.

Note that in both cases we expect the DL reasoner to give an “unsatisfi-
able” or “inconsistent” result, since the formulaϕ holds inCounter .

4.4 Experimental Results

We implemented the methods and ran experiments using the description
logic reasonerFACT++ [14]. We used the same model as described in
Section 3.1, but ran different model sizes, consisting of 85, 272 and 425
state variables. We present results of running several different bounds for
each model. Table 2 presents results comparing the runtime (in seconds)
of four methods. We set a time limit of 1200 seconds. We use−− to
denote runs exceeding this limit. The column titledALCI represents the
method of [3], using inverse roles, and the columns titledALCO and
ALCF give results of running the methods presented in this paper. The
last column gives results of running similar models with a SAT solver.
We used the BMC mode of Cadence-SMV [9], that invokedzChaff [11]
as a SAT solver for bounded model checking.

As can be seen in Table 2, both the methods described in this paper
outperform the results of [3], with the method based on a functional role
performing significantly better than the one using nominals. As the bound
increases, however, the SAT solver performs much better than all DL
methods.

4.5 Discussion

The improvement in performance achieved when revising the encod-
ing to use ABox assertions instead of inverse roles, is not surprising. In
the inverse roles encoding, individuals were dynamically created. Since
this process is highly non-deterministic, the reasoner had to recreate the
nodes again and again, affecting the performance negatively. When the
nodes of the model are fixed, as in the case of a path described by ABox
assertions, the reasoner needs only to find a valuation of the boolean vari-
ables in each node.

Model SizeBound ALCI ALCO ALCF SAT
85 5 1.77 0.01 0 0.51
85 6 287 0.02 0 0.63
85 7 −− 0.02 0.01 0.68
85 9 −− 0.04 0.03 0.9
85 11 −− −− 0.19 1.04
85 13 −− −− 1.44 1.23
85 15 −− −− 5.29 1.37
85 17 −− −− 80.37 1.52
85 20 −− −− −− 2.11
272 5 14 0.16 0.12 1.23
272 6 −− 0.19 0.13 1.68
272 7 −− 0.22 0.14 2.36
272 9 −− 0.35 0.23 3.45
272 11 −− −− 1.17 3.61
272 13 −− −− 7.32 4.50
272 15 −− −− 26.21 4.78
272 17 −− −− −− 5.34
272 20 −− −− −− 6.03
425 5 32.48 0.75 0.67 0.71
425 6 −− 0.80 0.65 0.72
425 7 −− 0.82 0.69 0.78
425 9 −− 3.43 0.86 2.36
425 11 −− −− 3.03 3.44
425 13 −− −− 13.99 3.80
425 15 −− −− 41.75 4.24
425 17 −− −− −− 5.67
425 20 −− −− −− 6.72

Table 2.BMC runtime using DL and SAT

Using the nominal approach, we again cause the reasoner to perform
redundant work. In this method, the reasoner has to guess a “violation
point” (that is, choose a nominal for which the bug should be found),
then build an interpretation and try to satisfy all the restrictions given
in the TBox. In this process, some values may need to be propagated
through the whole interpretation, requiring a significant amount of effort
from the reasoner. When a clash is found, all of this work is thrown away,
and needs to be repeated when a new nominal is guessed as a “violation
point”. In contrast, when using functionals, we let the reasoner work “lin-
early”, fixing the value in a point before all other branching decisions are
made. This allows the system to find a clash earlier in the process, and
move to the next step without doing as much redundant work.

5 Conclusion

We have presented several new approaches for using DL reasoning tech-
nology to solve model checking problems. DL allows for natural encod-
ings of model descriptions that are significantly more concise than en-
coding used in SAT- solvers to solve bounded model checking problems.

For specifications of unbounded inevitability properties our method
uses a DL reasoner to check for restrictions of the model that satisfy
formulas of the formEG(p). We have shown experimental evidence that
this method outperforms BDD based tools, has a performance cost that
is in line with SAT-based reasoning tools, and yet, in contrast with SAT-
techniques, is not restricted to answering bounded model checking ques-
tions.

When the specifications are invariance properties, we have provided
two new bounded model checking methods, that significantly outperform
earlier approaches using DL reasoners. In particular, the method that uses
a logic with functional roles offers significant improvement.

For the future, we plan to perform more case studies on a variety
of models and specifications to better understand when the use of DL
reasoning technology can provide a significant advantage.

Acknowledgements

This work was partially supported by the SEALIFE project (IST-2006-
027269), by NSERC of Canada and by the Cheriton Scholarship Fund of
the Cheriton School of Computer Science.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider.The Description
Logic Handbook. Cambridge University Press, 2003.

2. I. Beer, S. Ben-David, C. Eisner, and A. Landver. RuleBase: An industry-oriented formal
verification tool. InIn Proc.34th Design Automation Conference (DAC96), pages 655–660,
1996.

3. S. Ben-David, R. Trefler, and G. Weddell. Bounded model checking with description logic
reasoning. InAutomated Reasoning with Analytic Tableaux and Related Methods, LNAI
4548-0060, pages 60–72, July 2007.

4. A. Biere, A. Cimatti, E. Clarke, and Yunshan Zhu. Symbolic model checking without BDDs.
In In Proc. fifth international TOOLS AND ALGORITHMS FOR THE CONSTRUCTION
AND ANALYSIS OF SYSTEMS (TACAS), 1999.

5. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model
verifier. InComputer Aided Verification, pages 495–499, July 1999.

6. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. InProc. Workshop on Logics of Programs, LNCS 131, pages
52–71. Springer-Verlag, 1981.

7. GmbH and Co. KG.Racer Systems. RacerPro Software, http://www.racer-systems.com,
2005.

8. I. Horrocks. The FaCT system.Lecture Notes in Computer Science, 1397:307–312, 1998.
9. K. McMillan. Cadence-smv. http://www.kenmcmil.com/smv.html.

10. K. McMillan. Symbolic model checking, 1993.
11. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an effi-

cient sat solver. In39th Design Automation Conference, 2001.
12. NuSMV examples collection. http://nusmv.irst.itc.it/examples/examples.html.
13. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Yarden Katz. Pellet: A practical

owl-dl reasoner.Journal of Web Semantics, 5(2), 2007.
14. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System description.

In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006), volume 4130 of
Lecture Notes in Artificial Intelligence, pages 292–297. Springer, 2006.

