Checking Inevitability and Invariance
Using Description Logic Technology

Shoham Ben-David Richard Trefler, Dmitry Tsarkov
and Grant Weddéll

1. David R. Cheriton School of Computing Science
University of Waterloo
2. Department of Computer Science
University of Manchester, UK

Technical Report CS-2008-28

November 17, 2008



Checking Inevitability and Invariance Using
Description Logic Technology

Shoham Ben-David Richard Trefler, Dmitry Tsarko¥ and Grant
Weddell

1. David R. Cheriton School of Computer Science, University of Waterloo
2. Department of Computer Science, University of Manchester, UK

Abstract. Description Logic is a family of knowledge representation formalisms,
mainly used to specify ontologies for information systems. We show how De-
scription Logic can serve as a natural setting for representing and solving sym-
bolic model checking problems. We concentrate on inevitabilkl (¢)) spec-
ification and invarianceAG(p)) formulas. Experimental results, using the De-
scription Logic reasoner FaCT++, outperform existing methods for inevitability
formulas. For invariance formulas we give new encodings that significantly im-
prove on previous implementations using DL technology.

1 Introduction

Symbolic model checking of hardware models is performed using two
main methods. The first is based on BDDs and is known as SMV [10],
and the second is based on Satisfiability solving technology [4]. We con-
sider a different approach for symbolic model checking, one that makes
use of Description Logic (DL) technology. In [3] it was shown how DL
can provide a natural setting for Bounded Model Checking (BMC) prob-
lems. In this paper we extend the results of [3] in two directions. First, we
show how unboundeigievitability questions (such as “does evepitoc-

cur at least once along all computations?”) can be naturally phrased and
solved, outperforming existing methods. Second, we present two new
encodings for BMC safety problems that significantly improve over the
results of [3], although still fall behind the performance of SAT solvers
for the same task.

Description Logic (c.f. [1]), which can be viewed as a notational vari-
ant of modal logic, is a family of knowledge representation formalisms
mainly used for specifying ontologies in information systems. Statements
in DL are interpreted as decidable fragments of first order logic. The ba-
sic elements in DL areonceptgsets of individuals) andoles (binary
relations between individuals).



An ontology7 is called aterminologyor a TBox, and corresponds
to a set of concept inclusions. Each inclusion has the fGnic C,,
and asserts containment properties of relevant concepts in an underlying
domain. For example, we can say that the seta¥sis included in the
set ofanimals

COW C ANIMAL

and, given a roleats we can assert that the setajwsis included in
those things that do not eat animals

COW L Veats—ANIMAL

In addition to concept inclusions, DLs allow for assertions about in-
dividuals in the domain. For example, we can say thata is a cow
“COW(Dina)” and thatDina eats the foodGrass “eatgDina,Grass)”. A

set of assertions is called an ABox.

Checkingknowledge base consistenisythe main reasoning service
provided by DL reasoners. For a given terminologyand set of as-
sertions.A the DL reasoner determines if there exists an interpretation
satisfying both the inclusions i and the set of assertions . Some
DL reasoners optimize consistency checking by providing services for
answeringconcept satisfiabilityquestions. For a given terminology
and a concept, a concept consistency check determines if there exists
a non-empty interpretation of the concepthat also satisfies each in-
clusion dependency ifi. We use7 |=; C to denote this faét Most DL
systems implement these services by employing some form of tableaux
or model building technique. In recent years several DL reasoners have
been developed [8, 7, 13], demonstrating growing ability to solve knowl-
edge base consistency problems.

We cast a model checking problem as a consistency question in DL.
Let M be a model defined by a sEtof Boolean state variables and their
next-state transition®. We represent each variahlee V' as a concept
V;, and the transition relation as a single r&leéWe build a TBoxZ by
introducing concept inclusions of the type

C CVRG

! We write “=4," to distinguish the use of the double turnstyle symbol by both description logic
and model checking communities.



stating that if the current state satisfies the condition represent&ql, by
then all the next-states that can be reached in one step thiRugst
satisfy the conditiorC,. Note that interpretations for this set of concept
inclusions correspond to sub-models of the given maddeFinally, we
add to7 a concept inclusion representingaggypath though the model.
Verification is then done by checking consistency of the TBo)XSince
interpretations off” correspond to sub-models &f containing a buggy
path, if an interpretation is found/(is consistent) it means that a bug
exists, and the interpretation can serve as a counterexample.

The definition of a buggy path depends on the type of specification
given. For an inevitability property of the fordF(p) we define a path
along which—p always holds, therefore verifying the formut& (—p).

To achieve this we introduce the conceptandEGnotP and the inclu-
sion

EGnotP C -Pm 3dREGnotP

If this inclusion is satisfied, anHGnotP is not empty, it means that an
infinite path (a loop) exists in the model, on whigmever holds. For a
safety property of the formAG(p) we define a bounded path on which

—p appears at least once. We describe two ways to achieve this that are
different from the one given in [3].

We present experimental results using the Description Logic reasoner
FaCT++ [14]. For inevitability formulas, our results significantly outper-
form those of BDD based model checking, and are compatible with runs
using a SAT solver. It should be noted however, that while SAT solvers
perform boundedmodel checking, our method is unbounded, and per-
forms well whether the specification holds in the model or not. For in-
variance formulas we give new encodings that significantly improve on
previous implementations using DL technology, although cannot com-
pete with SAT based BMC.

The rest of the paper is organized as follows. In the next section we
give the necessary definitions. Sections 3 and 4 are the main sections of
the paper, where we present our encodings for unbounded inevitability
specifications (3) and bounded safety specifications (4), prove their cor-
rectness and present experimental results. Section 5 concludes the paper.



2 Background and Definitions

We introduce Description Logic in Section 2.1. In section 2.2 we give
model checking definitions. Section 2.3 summarizes the results of [3]
that we base upon in this paper.

2.1 Description Logic

Description logics usually correspond to decidable fragments of first or-
der logic based on a variable free syntax. The basic elementdarec
conceptswhich can be understood as unary predicates denoting sets of
individuals, andatomic roles which can be understood as binary predi-
cates denoting arbitrary binary relations over individuals. More compli-
cated concepts are constructed from simpler concepts by using so-called
concept constructors

A particular description logic is determined by a selection of concept
constructors. There is also a naming convention based on this selection,
starting with the namel L, short forattributive languagewhich denotes
a fragment shared by virtually all description logics. In the following,
we define the syntax and semantics for the diae€tC OZF which, by
virtue of the appended sequence of lett€rg0, 7 and F, adds con-
cept constructors telL to expresoncept complimenhominals role
inverseandrole functionality respectively.

In the remainder of the paper, we refer to various special cases of this
dialect by simply omitting any letters for concept constructors that are
not used in particular reductions. For exampd&CF refers to a dialect
which adds concept compliment and functional roles to the basic attribu-
tive language.

Definition 1 (Description Logic ALCOZF) LetNC, NR andNI be dis-
joint sets ofatomic conceptd A, As, ...}, atomic roles{ Ry, Rs, ...}
andindividual namegq sy, so, .. .} respectively. Also IeflIFR C NR de-
note a distinguished subset of roles that &wactional The set oton-
ceptsC is the smallest set includingC that satisfies the following.

— (the basicAL fragment) IfC, C; € Cand R € NR — NFR, then so
areC; N Cyand3R.C.
— (concept complimerd) If C' € C, then so is-C'.



— (nominalsO) Any finite sefs;, , ..., s;, } of individual names is il€.
— (role inverseZ) If R € NR — NFR, thendR~.C € C.

— (functional rolesF) If R € NFR, thendR.C € C.

— (role inverse and functional role&F) If R € NFR, thendR~.C' € C.

Individual names appearing in concept expressions are caltedinals
A general concept inclusigi@Cl) is an expression of the for@y C (s,
whereC and C, are arbitrary concepts. Aerminology(or TBox) 7
consists of a finite set of concept inclusions a&gertions an expression
of the formC'(s), or of the formR(sy, s2). Anassertion boxor ABox) A
consists of a finite set of assertionskAowledge baseés a pair (7, .A)
consisting of a TBox and an ABox.

The semanticof expressions is defined with respect to a structure
T = (A%, 1), called aninterpretation where A is a non-empty set of
individuals, and(-)? is an interpretation function that maps atomic con-
ceptsA to a subset ofA, atomic rolesR to a subset ofA” x AZ, and in-
dividual names to an element of\Z. If R € NFR, thenRZ must also be
functional, that is, for any, e;, e, € A%, {(e,e1), (e,e2)} € R* implies
e1 = eg. The interpretation function is extended to arbitrary concepts in
a way that satisfies each of the following:

— (C1NCo)* = (C1)F N (Co)F,

— (BR.C) ={e € AT : J(e,€) € RT s.t.e/ € C?},

- (2O)F = AT\ 7,

— ({siyy -8, P ={(s1)%, ..., (sx)*}, and

— (GR.C)F ={e€ AT :3(¢/,e) € Rt s.t.¢' € C7}.
An interpretationZ satisfies a GCI(C; C () if (C1)* C (Cy)*, and
a TBox 7 if it satisfies each concept inclusion ™. The interpretation
satisfies an assertiofi(s) if s € C%, an assertionR(sy, s2) if (s1, 52) €
R? and anABox A if it satisfies each assertion id.

Theknowledge base consistency probleso determine, for a given
knowledge baséT , A), if there exists an interpretatiofi that satisfies
bothTBox 7 and ABox A. A variation of this problem is to determine
concept consistency relative to a knowledge bé#sat is, to determine,
for a givenTBox 7, ABox .4 and conceptC, if (7, AU {C(s)}) is
consistent, where is an individual that does not occur id. This latter
problem is written7 ", A) |=; C, or justT |=; C' if Ais empty.

Additional concepts are defined as syntactic sugaring of those above:



HERBIVORE C Veats.—ANIMAL

OMNIVORE C (Jeats. ANIMAL) 1
(Jeats.~ANIMAL)

COW C ANIMAL NHERBIVORE

HUMAN C ANIMAL N
(HERBIVORE U OMNIVORE)

(a) TheTBox (general terminology)

COW (Dina)
HUMAN (Mary)
likes(Dina, Mary)

(b) TheABox (specific assertions)

Fig. 1. A KNOWLEDGE BASE ABOUT EATING HABITS.

— T = AU —A for some atomic concept,
— VR.C = —-3R.~C and
— Cl L 02 = _'<_'Cl M _|CQ)

An example knowledge base expresseddiBCOZF that captures
a terminology about animals and their eating habits together with some
assertions about specific individuals is given in Figure 1. Our notational
convention in this example is to use upper case only for atomic concepts,
italic font for atomic roles and a mixed case for individual names. Ob-
serve that the TBox introduces, e.g., the concept of an OMNIVORE as
those things that must eat something that is an animal and something else
that is not an animalAlso, the ABox asserts thaere is a cow called
Dina that likes Mary, who is a human

In this paper, we employ a standard service provided by a tableau-
based description logic reasoner, such as FaCT++ [14] for determining
knowledge base satisfiability. Such a service will find a compact descrip-
tion of a (possibly infinite) interpretation that satisfies both the TBox and
ABox for a given knowledge base if any such interpretation can exist.

2.2 Model Checking

Definition 2 (Kripke Structure) LetV be a set of Boolean variables. A
Kripke structurelM overV is a four tupleM = (S, 1, R, L) where



S'is a finite set of states.

I C Sis the set of initial states.

3. R C S x S'is atransition relation that must be total, that is, for every
states € S there is a state’ € S such thatR(s, s').

4. L : S — 2V is afunction that labels each state with the set of vari-

ables true in that state.

N =

We view each stateas a truth assignment to the variable¥inwe view
a set of states as a Boolean function oercharacterizing the set. For
example, the set of initial states, is considered as a Boolean function
over V. Thus, if a states belongs tol, we write s = I. Similarly, if
v; € L(s) we writes = v;, and ifv; € L(s) we write s = —w;.

In practice, the full Kripke structure of a system is not explicitly
given. Rather, a model is described by a set of Boolean varidbles
{v1, ..., v, }, their initial values and their next-state assignments. The def-
inition we give below is an abstraction of the input languag8ii/[10].

Definition 3 (Model Description) LetV = {vy, ..., v, } be aset of Boolean
variables. A tupleMD = (Iyp,[{c1,c}), ..., {cn,c,)]) IS @ Model De-

n

scriptionoverV wherel,p, ¢;, ¢; are Boolean expressions over

The semantics of a model description defines a Kripke strudtiyfg =
(S, Iy, R, L), whereS = 2V, L(s) = s, Iy = {s|s & Iup}, and
R ={(s,s): V1 <i<mn, sk c¢impliess | —wv; ands = ¢, A —¢;
impliess’ = v;}.

Intuitively, a pair(c;, ¢;) defines the next-state assignment of variable
v; in terms of the current values éf, ..., v, }. That s,

0 if C;
neXt(UZ‘) =<1 if C{L- N —¢;
{0,1} otherwise

where the assignmedd, 1} indicates that for every possible next-state
value of variables, ...v;_1, v;;1, ..., v, there must exist a next-state with
v; = 1, and a next-state with, = 0.

Computation Tree Logic (CTL) [6] Given a finite set AP of atomic
propositions, formulas of CTL are recursively defined as follows:

— Every atomic proposition is a CTL formula.



— If p andvy are CTL formulas then so are:
e e p N\ e AXp
e EX¢p o AlpU] o ElpU]

Additional operators are defined as syntactic sugaring of those above:
o AFp = Altrue Uy)] e EFyp = Eftrue Uy)]
e AGp = —E[true U—g] o EGp = —Altrue U-y]

The formal semantics of a CTL formula are defined with respect
to a Kripke structureM = (S,1, R, L) over a set of variabley” =
{v1,...,ux}. A path inM is an infinite sequence of states, s;, ...) such
that each successive pair of states s; 1) is an element of?. The no-
tation M, s = ¢, means that the formulais true in states of the model
M.

- M,sEpiff sEp

— M,s = —oiff M,s

- M, sEeNYiff M,slE=q@andM, s =1

— M, sy = AXpiff for all paths(sg, s1,...), M,s1 Ep

- M, sy = EXpiff exists a path(so, s1,...), M, sy = p

— M, sy = AlpU] iff for all paths (s, s1, ...), there exists such that
M,s; =+ andforally <i,M,s; = ¢

— M, sy = E[eUq] iff there exists a patlisy, s1, ...), and there exists
such thatV, s; =+ and forallj <i,M,s; = ¢

We say that a Kripke structute = (5, I, R, L) satisfies a CTL formula
o (M = o) if there exists a statg such thats; = [ andM, s; = ¢.

Bounded Model Checking Given a Kripke structuréd/ = (S, I, R, L),

a formulay, and a bound:, Bounded Model Checking (BMC) tries to
refute M = ¢ by proving the existence of a witness to the negatiop of
of lengthk or less. Forp = AG(p), we say thatV/* (£ ¢ if and only if
there exists a patly = s, ..., s; in M such tha < k ands; = —p.

2.3 Model description as a DL terminology

We show how a model description can be written as a TBox over the
Description Logic dialectALC. This translation is taken from [3]. Using
this translation for model checking is the main contribution of this paper,
and will be shown in Sections 3 and 4.



Let MD = (I,[{c1,c}), ..., {cn, c))]) be a model description for the
modelMyp = (S, 1, R, L), overV = {vq, ..., v, }.

We generate a TBo¥X,,p, linear in the size of/D. For each variable
v; € V we introduce one primitive concept, whereV; denotes; = 1
and—V; denotes; = 0. We introduce one primitive rolR correspond-
ing to the transition relation of the model. We define the con&pb
represent, by replacing each; in I with the concepV;, and the connec-
tivesA, v, — with 1M, LI, = respectively. The concep®, C, correspond to
the Boolean conditions, ¢, in the same way. We then introduce concept
inclusions describing the model: for each péir, ¢;) we introduce the

inclusions
C C VRV,

(=G C) T VRV,

For a model descriptiof/D overn variables { = {vy,...,v,}), Tup
will consists of 2n concept inclusions. Interpretations @5, corre-
spond to sub-models af/yp. Let Z = (AZ,-) be an interpretation
for 7,;p. The correlation between individuals frott’ and states irf
can be seen by defining a functiégh: AZ — S such thatF’(0) = s if
V1 <i<n,o € V,;ifandonlyifs = v;. Note thatF' is well defined,
since a state is determined by the value of the variabltgs..., v,,.

The following Lemma (taken from [3]) extends the correlation to
Boolean expressions ovey, ..., v,,.

Lemma4. LetZ = (A%,-T) be an interpretation fof7,,p. Letc be a
Boolean expression overx, ..., v, and Cits corresponding concept de-
rived by replacing each variable; by the concepV;, and the Boolean
connectives/, A, - by LI, 11, —. Leto € AT be an element in the inter-
pretationZ, and lets = F(o). Theno € C* if and only ifs = c.

Proof. By induction on the structure of the Boolean expresgion 0O

Corollary 5. Let Myp, Typ, Z and F' be as above. Let (o) = s; and
F(03) = s5. Then(sy, so) € Rifand only if (0, 05) € RE.

Proof. (sketch).

(s1,s2) € Rifand onlyifs;, s, obey the definition regarding the Boolean
expression pairse;, ¢;) for 0 < i < n. By Lemma 4, this happens if and
only if o1, o9 behave similarly regarding the conce@sC,, which hap-
pens if and only if(o, 03) € RE. O



(000)
@

Fig. 2. A Kripke structure for Counter

We demonstrate the construction@f, with the following example.

Example 6 Consider a model of a buggy three-bit counter, for which
the least and most significant bits behave as expected, but the middle bit
has a bug: when its current value is 0O, it may assume any value in the
next state, and when its current value is 1 it keeps its value in the next
state. This behavior can be described as a model description (dsing
for v; V —wy and F for v; A —wy) in the following way.

Counter =

(I, [<’Ul, T>, <F7 UQ), <(U1 A SWAN U3) vV (_|U3 VAN (_|U1 V _|U2)),T>])

with I = —w; A =9 A —ws. Figure 2 describes the Kripke structure for
Counter .

The description of the model asT@8ox 7counter over.ALC has
three conceptd/;, V,, V3 and one roleR. The concept inclusions for
TCounter are given in Figure 2.1. For convenience we broke the con-
cept inclusions describing the behavior\¢f into two parts. Note that
there is only one concept inclusion describing the behavior,p8ince
it is free to change when its value is 0.

3 Inevitability Formulas using DL

In this section we consider formulas of the typE(p) with p being a
Boolean expression. For our method we need to define a buggy path, that



Sy C (—\V1 M =Vs M —\V3)

Vi C VRV,
-Vi C VRV;
Vo C VRV,

(V1 M Vo M V3) C VR—V3

(ﬁVg [ (ﬁV1 [ ﬁVQ)) C VR—V3
(V1 MVy ﬂVg) C VRV;3
(V3 M (—‘V1 L —‘Vz)) C VRV3

Fig. 3. The TBoxZcounter

is, a path on whichp never holds. We thus look for a representation of
EG(—p).

A CTL formula can be identified with the set of states in which it
holds [6]. Looking at it this way, we get the following equation.

EG(—p) = —p A EX(EG(—p)) (1)

We use this equation for our translation into DL. BétD = (I, [{c1,¢}), .., (Cn, €)])
be a model description for the mod&l,,, = (S,1, R, L) overV =
{v1,...,u,}, and let7y,p be the terminology built for it as describe in
Section 2.3. Letp = AF(p) be the formula to be verified, with being
a Boolean expression over the variablgs..., v,,. Let P be the concept
representing the Boolean expressigiy replacing every state variable
v; with the concepV;, andA, Vv, — with 11, LI, - respectively.

We introduce a new concept call&notP, and add the following
concept inclusion t@y,p:

EGnotP = —P 1 JREGnotP @)

Note that the expressiafR. C can be seen as taking one step throRgh
and thus corresponds, in a sense, to the CTL expre&300).

Let 7,,, be the terminology we get by adding Equation (2)/i@,.
We define the concefl, = S, M EGnotP. In order to verifyp, we
now check whetheC, is consistent with respect to our terminology:
Typ Fa G, ?
A positive answer from the DL reasoning tool will be accompanied by
an interpretation fofZ;,, in which C, is not empty. This interpretation
can serve an a witness 6 (—p), or as a counterexample Ad-(p).
The following proposition states our result formally.



Proposition 7. Myp = ¢ if and only if 7}, =u C,.

Proof. (=). Assume thatM;, ~ . Since My is a finite kripke
structure, this means there exists a loop, that is, a sequence of states
S0, 81, --- Sm SUCh thatsy = 1, s; £ pfor0 < i < m, (s;,841) € R
for 0 < ¢ < m, ands,, = s; for some0 < j < m. We use this se-
quence to build an interpretatich = (A%, %) for 7;,,. We definem
individualsoy, o1, ..., 0,1 in A%, that correspond tsy, s1, ... ;Sp_1. We
mapo; € EGnotPZ for 0 < i < m. We then map each; to the prim-
itive conceptsVZ according tos; as expecteds; € VZ if and only if
s; E vi,. Note that since, = I we get by Lemma 4 that, € S, and
alsoo; ¢ P* for 0 < i < m, sinces; [~ p. We define(o;,0,,1) € RE
for0 <i <m —1, and also(o,,_1,0;) € RE. Itis easy to see that the
interpretatioriZ satisfies all inclusions iff,,:

— Inclusions from7,,,: We need to show that inclusions of the type
C C VR-V;and—C, N C, C VRV, for 1 < i < n, hold under the
interpretatiorZ. We know thatv0 < [ < j, (s;_1, s;) € R. According
to the definition of a model description, it means that< i < n,
si-1 | ¢ impliess; | —w; ands;_; = —¢; A ¢ impliess; = ;.
By Lemma 4 we get that; ; € C implieso; ¢ Vf ando,_; €
(AT \ CF) N CF implieso; € VZ. Since no pairs other thdm;,_;, 0;)
and (o,,_1,0;) belong toR” in the interpretatiorZ, the inclusions
hold.

— The inclusionEGnotP C —P 1 JREGNotP. By the construction of
Z, all individualso; belong toEGnotPZ. We know also that; ¢ P~.
Since each individual has an outgoing edge that is aléGnotP*
the inclusion holds.

— C, is not empty since, € S} N EGnotP~.

(<=). Assume thatZ};, = C,. Then there exists an interpretation for
7T.4p», Such thaCf, is not empty. Sinced LC enjoys thdinite model prop-
erty[1], there must exist a finite interpretati@n= (AZ, -7) for 7, such
thatC is not empty. Thus there exists an individagle SfNEGnotP”.

Sinceo, € EGnotP? andEGnotP? C (AT \ P)n{e € A :
J(e,¢’) € REsit.e’ € EGnotP?} we know thato, ¢ P%, and there
must existo; € EGnotPZ such that(oy, o) € RE. For similar consid-
erations, there exists a sequence of individualsg, o9, ..., such that
o; € EGnotPZ, o; ¢ P, and(o;,0;11) € R for all 5. SinceZ is finite



there must existz, j such that,, = o;. We show thai\/,,p F~ ¢ by pre-
senting an infinite sequence of states (a loop)/in, that do not satisfy
p. We map eachr; to a states; as usualz; € VZ if and only if s; = vy.
By Lemma 4,s; [~ p, sinceo; ¢ PZ. Also, by Corollary 570 < i < m,
(Si, 8i+1) €ER and(Sm,Sj) € R.

O

It is tempting to try and use the same reasoning to verify a formula
1 = AG(p): instead of the concept inclusion in (2), add the conéepp
and the following concept inclusion:

AGpC PN VYRAGp (3)

DefineC, = Sy MAGp Let7,}, be the terminology we get by replacing
Equation (2) with Equation (3) iff},,. Note that checkindg;, =4 C,
does not give us what we want. To see this, recall #jgs |=; C, asks
whetherthere existsan interpretatior?, that satisfies all concept inclu-
sions in7;;,, and for whichC,, is not empty. Such interpretation does
not necessarily include all possible transitions in the given mofdg).
In fact, an interpretation that satisfies inclusion (2) would be enough for
inclusion (3) as well. ThuS};,, =4 C, verifiesEG(p) and notAG(p).

For AG(p) formulas, we can only achieve bounded model checking.
Before we show this (Section 4), we discuss experimental results for in-
evitability formulas.

3.1 Experimental results

We demonstrate the usefulness of this method\fefp) formulas in Ta-

ble I. We ran our encoding using the description logic reasBAET++ [14].
We used a model derived from the NuSMV example “dmel-16", taken
from [12]. We parameterized this example, to be able to run models with
different number of variables. We give results for three model sizes, con-
sisting of 85, 170 and 272 state variables, and for two formula types: one
that holds in the modep@ssesand one thatails to hold in the model.

We compare our method both to BDD based models checking and to
SAT based method that performs bounded model checking. We note that
while translation of safety properties into a CNF formula for SAT is sup-
ported by publicly available model checking tools, such as NuSMV [5]
and Cadence-SMV [9], it is not the case for liveness formulasAike).



Model SizeFormulgd| DL | BDD |SAT
85 Fail ||0.05 52 ]0.48
85 Pass ||0.05 124 |
170 Fail 0.1(>1200f 1
170 Pass || 0.1 |> 1200| oo
272 Fail 0.2|>1200| 1.5
272 Pass |[|0.17/> 1200| co
Table 1. AF(p) formulas runtime

In fact, the only model checker we found to suppbFtp) formulas in
BMC mode was RuleBase [2].

The time in Table | is given in seconds. We have set a limit of 20
minutes for each run. Note that while results using SAT solving are close
to those using DL for formulas théil in the model, there is no guaran-
teed termination for formulas thpass

4 BMC of safety formulas using DL

Bounded model checking of invariance formulas using Description Logic
was first presented in [3]. The method in [3] used the DL dial&€tZ
(that allows forinverse Roles and was based on taking backward steps
throughR from concepts representing states of certain distance from the
initial state (also known adoughnuts We present here two alternative
encodings, using ABoxes, that significantly improve over the one given
in [3]. While these encodings still fail to compete with SAT based BMC,
we find the improvement demonstrated by the new methods to be encour-
aging evidence supporting further research in this direction.

Let MD be a model description; = AG(p) an invariance formula
to be verified, and: the bound. Our encodings consist of three parts.
The first translated/D into a TBox7,,p. This part is described in Sec-
tion 2.3, and is not repeated here. The second part encodes a symbolic
path of lengthk as an ABoxA4,. This part is given in Section 4.1 below.
The third part of our encodings deals with the verification of the given
formula . We present two different encodings. The first makes use of
nominalswhile the second requirdanctional roles Both encodings are
described in section 4.2. In section 4.3 we demonstrate these translations
with an example, and experimental results comparing the two methods



to the one of [3] and to SAT based BMC are given in Section 4.4. We
discuss the methods and results in Section 4.5.

4.1 Constructing.Ay.

For a bound:, we introducet + 1 individuals,sg, S1, ..., S,. We then in-
troduce one concept asserti@(s,) andk role assertions?0 < i < k,

R(Si, Si—i—l)-

Note that the assertions 4, form a symbolic path of lengthh + 1
through the model, starting from an initial state. Note also that this syn-
tactic definition of a path does not depend on the model described in the
TBox 7,;p and would be the same for any model and formula.

4.2 Encoding the formula

Let o = AG(p) be the specification to be verified, wittbeing a Boolean
formula over the variables, ..., v,,. Note that for any model/, M =
AG(p) if and only if M [~ EF(—p). We use this fact in our encodings.
We translate the Boolean formufainto a concep® in the usual way,
and then encode a possililegin the model, thus verifyingF(—p). We
present two ways to achieve this.

Using Nominals Define the concept, = —-P 1 {sy,...,s;}. If C, is
consistent with respect t67,,p, Ax), it means that-p holds in some
state, with distancé or less from the initial state. Verification is there-
fore reduced to the query7yp, A;) = C,.

Using Functional Roles This encoding is based on Clarke and Emer-
son’s [6] fixpoint representation &F(p):

EF(p) = p VvV EX(EF(p))

In order to encode this in DL, we need to enhance both the TBgx
and the ABoxA,,.

We first defineRto be afunctional role to ensure that each individual
in the interpretation has at most one outgoing edge thréughle then
add an assertion td,,:

(=3IRT)(Sk).



Note that individuals belonging to the conceptR. T have no outgoing

edges. The assertion above thus forgto be the last state in the path.
We then build the TBoXZ;,,, by adding one concept inclusion to

Tup. We introduce a new conceFnotP , and define it as follows:

EFnotP C —-P U JdR.EFnotP

The intuition behind this concept inclusion is the following. We first
check whether-P holds in the current state; if it does, then a bug was
found and we are done. If not, we try to perform the same check on the
following states, that are accessible via the RI8inceRis a functional,
we have thaBR.EFnotP is the same agR.EFnotP , and it is propa-
gated to the next state. HP does not hold in the last statéiR.EFnotP
is not applicable anymore, and the search stops Afs¢éeps.

Finally, we add another assertion #,, stating thats,, the initial
state, belongs also to the new concepnotP :

EFnotP (sy).

Let A, = A, U{EFnotP (sy), -3R T (sx)}, and7},, as defined above.
If (7,,p,A,) is consistent, it means thap holds on one of the states of
distancek or less from the initial state.

The following proposition states that both our encodings are correct.

Proposition 8.

1. M¥,, = e ifand only if (Zyp, Ar) Ea C,.
2. M}, [~ ¢ ifand only if (7}, Aj,) is consistent.

We show only one direction of the proof. The other direction follows
easily by similar arguments.

Proof. (=) Assume thaf\/¥,, I~ ¢. Then there exists a path M%),
w = S, ..., s;, wherej < k,suchthas, = 1,V0 < i < j,(s;_1,5;) € R,
ands; b~ p. We build a finite interpretatiof = (A*,-7) based onw.
The setA? will include £ + 1 elementsoy, ..., 0. The firstj + 1 of
them, oy, ..., o;, will correspond tos, ..., s; in a way thatv0 < [ < n,
V0 < i < j,o0; € VFifand only if s; = v;. We define(o;,0,11) € RE
for 0 < i < k, and interpret the individuaks, ..., s of A, asoy, ..., 0.



Sinces; [~ p, we get by Lemma 4 that; ¢ P”. Also, the concept
inclusions of7;,p hold (see proof of Proposition 7).
We have to show that satisfies both translations.

1. (Tup, Ar) Eau C,. By the construction df, it satisfies botl¥;,, and
Ay. It remains to be shown thﬁfg is not empty. Since; is inter-
preted asr; ando; ¢ P, we get that; € (AT \ PY)n{s{,....,st}
=CL.

2. (TA’;;,A;C) is consistent. To show this, we map 0 < i < j, to be-
long to EFnotP . The assertions itd, therefore hold(s?,s%,,) €
Rf, st € EFnotP 7 ands? € (AT \ {e € AT : J(e, ') € RE}) since
there is no outgoing edge frosy. It remains to be shown that the
inclusionEFnotP C —P L JdR.EFnotP holds under the interpreta-
tion Z. We know thato, o1, ...,0; € EFnotP Z, and only them. We
have to show that these individuals belong also to the right hand side
of the inclusion.oy, o1, ..., ;1 belong there sincéo;, 0,,1) € R,
011 € EFnotP % for 0 < i < j. Sinces; ¢ P? it also belongs there.

O

4.3 Example

Consider the Kripke structure in Example 6, Section 2.3. Let the formula
to be verified bep = AG—(v; A —vy A —w3), asserting that the state
(1,0,0) is not reachable. Let the bound be set to 4. Tepunter be as

in Example 6. The ABox4, representing a path of length 4 in the model,
consists of the following assertions:

"44 = {SO<SO)7 R(SU7 81)7 R<817 82)7 R(527 33>7 R(S37 84)}
We now have two ways to verify the formula.
1. Using nominals, we define
C, = (ViM Vol =Vs) M {S¢,S1,S2,S3,S4}.

Verification is then carried out by checking the satisfiabilityCof

(7counter »A4) Fa C,?
2. Using functional roles, we defirfeto be a functional role, and add

the following inclusion to creaté: g nter -

EFNOtP T (V; M-V, M—V;) LU 3R.EFnotP



We then add two assertions #:
A, = Ay U{EFnotP (sg), -3R T (s4)}

Verification is now carried out by asking wheth&it g nter Al
is consistent.

Note that in both cases we expect the DL reasoner to give an “unsatisfi-
able” or “inconsistent” result, since the formuteholds inCounter .

4.4 Experimental Results

We implemented the methods and ran experiments using the description
logic reasoneFACT++ [14]. We used the same model as described in
Section 3.1, but ran different model sizes, consisting of 85, 272 and 425
state variables. We present results of running several different bounds for
each model. Table 2 presents results comparing the runtime (in seconds)
of four methods. We set a time limit of 1200 seconds. We useto
denote runs exceeding this limit. The column titlddCZ represents the
method of [3], using inverse roles, and the columns titkdCO and
ALCF give results of running the methods presented in this paper. The
last column gives results of running similar models with a SAT solver.
We used the BMC mode of Cadence-SMV [9], that invoké&xhaff[11]

as a SAT solver for bounded model checking.

As can be seen in Table 2, both the methods described in this paper
outperform the results of [3], with the method based on a functional role
performing significantly better than the one using nominals. As the bound
increases, however, the SAT solver performs much better than all DL
methods.

4.5 Discussion

The improvement in performance achieved when revising the encod-

ing to use ABox assertions instead of inverse roles, is not surprising. In

the inverse roles encoding, individuals were dynamically created. Since

this process is highly non-deterministic, the reasoner had to recreate the
nodes again and again, affecting the performance negatively. When the
nodes of the model are fixed, as in the case of a path described by ABox
assertions, the reasoner needs only to find a valuation of the boolean vari-
ables in each node.



Model SizeBound | ALCZ|ALCO|ALCF|SAT
85 5 1.77 | 0.01 0 |0.5]
85 6 287 | 0.02 0 |0.63
85 7 —— | 0.02 | 0.01 |0.68
85 9 —— | 0.04 | 0.03 (0.9
85 11 —— —— 0.19 |1.04
85 13 —— —— 1.44 |1.23
85 15 —— —— 5.29 (1.37|
85 17 —— —— 180.37|1.52
85 20 —— —— —— |2.1]
272 5 14 0.16 | 0.12 (1.23
272 6 —— | 0.19 | 0.13 |1.68
272 7 —— | 0.22 | 0.14 |2.36
272 9 —— | 0.35| 0.23 (3.45
272 11 —— —— 1.17 (3.6]]
272 13 — | —— | 7.32 ]|4.50
272 15 - —— 126.21|4.78
272 17 —— —— —— 15.34
272 20 - | — | —— |6.03
425 5 32.48| 0.75 | 0.67 |0.71
425 6 —— | 0.80 | 0.65 |0.72
425 7 —— | 0.82 | 0.69 |0.78
425 9 —— | 3.43 | 0.86 |2.36
425 11 —— —— 3.03 |3.44
425 13 — | —— 113.99|3.80
425 15 —— —— 1 41.75|4.24
425 17 —— —— —— 15.67
425 20 —_— | —= —— 16.72

Table 2.BMC runtime using DL and SAT

Using the nominal approach, we again cause the reasoner to perform
redundant work. In this method, the reasoner has to guess a “violation
point” (that is, choose a nominal for which the bug should be found),
then build an interpretation and try to satisfy all the restrictions given
in the TBox. In this process, some values may need to be propagated
through the whole interpretation, requiring a significant amount of effort
from the reasoner. When a clash is found, all of this work is thrown away,
and needs to be repeated when a new nominal is guessed as a “violation
point”. In contrast, when using functionals, we let the reasoner work “lin-
early”, fixing the value in a point before all other branching decisions are
made. This allows the system to find a clash earlier in the process, and
move to the next step without doing as much redundant work.



5 Conclusion

We have presented several new approaches for using DL reasoning tech-
nology to solve model checking problems. DL allows for natural encod-
ings of model descriptions that are significantly more concise than en-
coding used in SAT- solvers to solve bounded model checking problems.

For specifications of unbounded inevitability properties our method
uses a DL reasoner to check for restrictions of the model that satisfy
formulas of the fornrEG(p). We have shown experimental evidence that
this method outperforms BDD based tools, has a performance cost that
is in line with SAT-based reasoning tools, and yet, in contrast with SAT-
techniques, is not restricted to answering bounded model checking ques-
tions.

When the specifications are invariance properties, we have provided
two new bounded model checking methods, that significantly outperform
earlier approaches using DL reasoners. In particular, the method that uses
a logic with functional roles offers significant improvement.

For the future, we plan to perform more case studies on a variety
of models and specifications to better understand when the use of DL
reasoning technology can provide a significant advantage.

Acknowledgements

This work was partially supported by the SEALIFE project (IST-2006-
027269), by NSERC of Canada and by the Cheriton Scholarship Fund of
the Cheriton School of Computer Science.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schididddescription
Logic Handbook Cambridge University Press, 2003.

2. |. Beer, S. Ben-David, C. Eisner, and A. Landver. RuleBase: An industry-oriented formal
verification tool. Inin Proc. 34" Design Automation Conference (DAC9pxges 655—660,
1996.

3. S. Ben-David, R. Trefler, and G. Weddell. Bounded model checking with description logic
reasoning. InPAutomated Reasoning with Analytic Tableaux and Related Methdds!
4548-0060, pages 60—72, July 2007.

4. A.Biere, A. Cimatti, E. Clarke, and Yunshan Zhu. Symbolic model checking without BDDs.
In In Proc. fifth international TOOLS AND ALGORITHMS FOR THE CONSTRUCTION
AND ANALYSIS OF SYSTEMS (TACAISP9.



10.
11.

12.
13.

14.

A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model
verifier. InComputer Aided Verificatigrpages 495-499, July 1999.

E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. Iroc. Workshop on Logics of ProgramiNCS 131, pages
52-71. Springer-Verlag, 1981.

GmbH and Co. KG.Racer SystemsRacerPro Software, http://www.racer-systems.com,
2005.

I. Horrocks. The FaCT systerhecture Notes in Computer Sciend897:307-312, 1998.

K. McMillan. Cadence-smv. http://www.kenmcmil.com/smv.html.

K. McMillan. Symbolic model checking, 1993.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an effi-
cient sat solver. 1139th Design Automation Conferen@901.

NuSMV examples collection. http://nusmv.irst.itc.it/examples/examples.html.

E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Yarden Katz. Pellet: A practical
owl-dl reasonerJournal of Web Semantics(2), 2007.

Dmitry Tsarkov and lan Horrocks. FaCT++ description logic reasoner: System description.
In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 20@8)me 4130 of
Lecture Notes in Artificial Intelligenc@ages 292-297. Springer, 2006.



