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Abstract. In this paper, we continue the study of edge-intersection
graphs of paths in a grid, which was initiated by Golumbic, Lipshteyn
and Stern. We show that for any k, if the number of bends in each path
is restricted to be at most k, then not all graphs can be represented.
Then we study some graph classes that can be represented with k-bend
paths, for small values of k.

1 Introduction

Presume you have a network and need to route calls in it. Since calls interfere
with each other, you need to route calls such that no two connections share a
link. This transforms into a colouring problem in an edge-intersection graph of
paths. The network is the host graph, and each call becomes a path in the host
graph; calls share a link if and only if the paths share an edge of the host graph.
The edge-intersection graph defined by this has a vertex for every path, and
vertices are adjacent if and only if the paths share an edge; the goal is hence to
colour this edge-intersection graph.

Edge-intersection graphs of paths in a network have been studied almost
exclusively for networks that are trees; this graph class is known as EPT graphs
and was introduced over 20 years ago, though research is still ongoing (see [5]
and the references therein.)

Very recently, Golumbic, Lipshteyn and Stern generalized the framework by
allowing networks that are grids, rather than trees [6]. Thus, they define EPG
graphs to be the edge-intersection graphs of paths in a grid. They showed that
every graph is an EPG graph, and then restricted the graph class by limiting
the number of bends for the paths, i.e., the number of times that the direction
of the path switches from horizontal to vertical. Focusing on the case of single
bends, they proved a number of existence and impossibility results.

In this paper, we continue this work, and study graphs that can be repre-
sented with few (but more than 1) bends in each path. We first show that for
any given k, there exist graphs that are not k-bend EPG graphs. We then study
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some special graph classes and show that these are k-bend EPG graphs for small
values of k.

2 Definitions

We assume familiarity with graph theory notation, see for example Golumbic’s
book [4]. In this paper, grid is used to denote the 2-way infinite orthogonal grid,
i.e., the vertices are all points in 2D with integer coordinates, and grid-points
are adjacent if they have distance 1. A (grid) path is a path in the grid. A bend
is a place where a grid path changes direction. A (grid) segment is a grid path
without any bends. We say that two grid paths intersect if they share at least
one edge, otherwise they are disjoint. (Note that disjoint grid paths may still
share a vertex of the grid, but not an edge.) We will omit “grid” whenever this
does not lead to confusion.

An EPG representation of a graph G = (V, F) is an assignment of grid paths
to vertices of G such that (v, w) is an edge if and only if the paths assigned to v
and w share a grid edge. We call a representation a k-bend FPG representation
if every grid path representing a vertex has at most k bends. A graph is called
a k-bend EPG graph if it has a k-bend EPG representation. (These graphs were
called Bi-EPG graphs in [6].) In what follows, we will often identify the graph-
theoretic concept (such as vertex) with the geometric object that represents it

(the grid path).

3 k-bend EPG-graphs

In this section, we will show that the complete bipartite graph K, x (for suffi-
ciently large £ and N, depending on k) is not a k-bend EPG graph.

Theorem 1. K(;13)/2,n is not a k-bend EPG graph for N sufficiently large.

Proof. Set £ = (k+3)/2 and N = 20%(k + 1)> + 1 = (k4 3)%(k + 1) + 1.
Let V. = A U B be the vertex partition of K, n, with |B| = N. Assume for
contradiction that K, n has a k-bend EPG representation, and let S be the
grid-segments of the paths of vertices in A4; S contains at most £(k 4+ 1) many
segments.

Every path representing a vertex in B must intersect ¢ of the segments in S,
and no two of these paths can intersect such segments at the same place since
the vertices in B are an independent set.

Consider two segments s; and sy in S, and assume that P is a path that
intersects both s; and s; and has at most one bend inbetween. If s; and s»
have the same orientation (horizontal or vertical), then P cannot have a bend
inbetween them, and hence must contain an endpoint of each of s; and s5. If 51
and s; have different orientation, then P must contain a bend between them,
and it necessarily must be on the point where the two lines through s; and s,
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intersect. Either way, we can see that there can be at most two edge-disjoint
paths that go from s; to sy with at most one bend inbetween.

Considering now all £2(k + 1)? possible pairs of grid segments, there are at
most 2¢2(k + 1)? grid paths that can contain two of them consecutively with at
most one bend inbetween. By choice of IV, there is at least one vertex in B for
which the representing path hence contains at least two bends between any two
intersections with grid segments in S. Since the path intersects £ grid segments,
it has at least 2¢ — 2 = k 4+ 1 bends total, a contradiction.

We conjecture that the value of NV in the above theorem is too large, and
that already K, v, for some ¢ € 8(k) and N € 6(k?) is not a k-bend EPG graph.
Now we study when k-bend EPG representations actually exist.

Theorem 2. FEvery bipartite graph (AU B, E) with |A| = a is a (2a — 2)-bend
EPG graph.

Proof. We show first how to construct this for K, ;. Our construction is essen-
tially the same as the one by Golumbic et al. [6], except that one bend can be
saved since the graph is bipartite. Represent each of the a vertices as a horizontal
line, say at y-coordinates 1,2,...,a. Define a “vertical zig-zag” to be the path
(LD=(2,1)=(2,2)—(1,2)—...—(1,2i—1)—(2,2i— 1) — (2, 2¢) — (1, 24) —. .. that
ends with horizontal segment (1, b) — (2, b) or (2,5) — (1, b). Represent each of the
b vertices by such a zig-zag, translated horizontally as to make them disjoint.
See Figure 1. One easily verifies that this is an EPG representation of K, 3, and
that the paths for the b vertices have 2a — 2 bends. For an arbitrary bipartite
graph, we can obtain an EPG representation similarly, by omitting a “zig” or
“zag” at any pair of vertices where no edge exists.
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Fig. 1. The construction for the complete bipartite graph.

Notice in particular that K13)/2,n is not a k-bend EPG graph for suffi-
ciently large N, but it is a (k 4+ 1)-bend EPG graph by the previous theorem.
So the bound on the number of bends for complete bipartite graphs is tight.

4 Planar graphs

A planar graphis a graph that can be drawn without crossing in the 2-dimensional
plane. Much is known about planar graphs (see e.g. [9]). We will study here
bounds on the number of bends needed in EPG representations, both for planar
graphs and for some of their subclasses.
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4.1 Planar graphs are 5-bend EPG-graphs

We show that every planar graph has a 5-bend EPG representation. Moreover,
the layout of the paths for this is such that the paths only touch; they do not
cross (in some sense, this is therefore a planar drawing.) We obtain this result by
constructing a representation of the graph via touching T’s using the canonical
ordering for triangulated planar graphs. We explain the approach and these
terms in detail in the following:

First, fix an arbitrary planar drawing I" of the graph. This fixes the planar
embedding (the clockwise order of edges around each vertex), the faces (the
maximal connected regions of R* — I') and the outer-face (the face which is
unbounded.)

Add vertices (and incident edges) to the graph to make it triangulated, i.e.,
it is planar and every face is a triangle. It is well-known that this can always
be done using O(n) new vertices. It suffices to show that the resulting graph
is a 5-bend EPG graph; deleting the added vertices then gives a 5-bend EPG
representation of the original graph.

For triangulated planar graphs, there exists the canonical ordering intro-
duced by de Fraysseix, Pach and Pollack [3]. This is a vertex order v1,...,v,
such that {v1, va,v,} is the outer-face, and for all i > 3, v; is a vertex in
the outer-face of the graph G;_; induced by v1,...,v;_1, and incident to a
consecutive set of at least two vertices on the outer-face of G;_1.

The canonical ordering can be used to obtain many types of graph drawings
for planar graphs, e.g., straight-line drawings, orthogonal drawings, visibility
representations, and others (see e.g. [7]). We need here one special kind of
drawing that to our knowledge has not been presented before, and may be of
independent interest: Each vertex is represented by an upside-down T and
two vertices are adjacent if and only if the T’s touch. We call such a drawing
a T-drawing.

Lemma 1. FEvery planar graph has a T-drawing, i.e., can be represented by
touching Ts.

Proof. Assume the graph is triangulated and compute a canonical ordering.
To create a T-drawing, we start with vy and v as illustrated in Figure 2.
While adding more vertices, we maintain the invariant that any vertex for
which not all incident edges have been placed still has the upward ray from
the center of the T unobstructed by any other vertex, and these unobstructed
rays are ordered in the same way as the corresponding vertices on the outer-
face of the current graph. Vertex v; can then be added by placing it between
the upward rays of its leftmost predecessor (i.e., the neighbour in G;_; that
comes first in clockwise order around the outer-face) and the rightmost pre-
decessor defined similarly. All other neighbours w of v; in G;_1 are not on
the outer-face after adding v;, and hence have no more incident edges; we let
the ray from w end at the horizontal bar of v;. See Figure 2. The upward ray
for v; can be placed anywhere, but for reasons that will be clear later, we
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will place it somewhere where there is no upward ray from below attaching
at the bar.

Uj

rightmost
predecessor

leftmos
predecessor

ik

T-drawing of G;_1

U1 V2

Fig. 2. A T-drawing of a planar triangulated graph obtained with the canonical order-
ing.

— Now we convert the T-drawing to 5-bend paths by tracing along the T. We
need to add small handles at the ends of the T so that the corresponding
paths intersect in edges, not just points. See Figure 3. Since no two edges
attach at the same point of a vertex-segment, one easily verifies that this is
an EPG representation of the graph. (We omitted the grid in the drawings,
but one can create a grid by sorting the segments and assigning coordinates
in this order.)

We conclude by stating the theorem that we proved:
Theorem 3. Every planar graph is a 5-bend EPG graph.

On the other hand, we can easily see that planar graphs are not 1-bend EPG
graphs, by applying Theorem 1 to the planar graph Kj n, for IV sufficiently
large. We strongly suspect that planar graphs are not 2-bend EPG graphs either
(and possibly not even 4-bend EPG graphs), but this remains open.

4.2 Planar bipartite graphs

Now consider graphs that are both planar and bipartite. We have already seen in
Theorem 1 that these are not always 1-bend EPG graphs, since K, n is planar
and bipartite.

Theorem 4. Every planar bipartite graph is a 2-bend EPG.

Proof. Tt is well-known [2] that every planar bipartite graph can be represented
by touching horizontal and vertical line segments, i.e., for every vertex there
exists a segment and (v, w) is an edge if and only if the corresponding segments
touch. By thickening the segments, and then tracing their boundaries with a
2-bend path (a C for vertical and a U for horizontal), we obtain a 2-bend EPG
representation.
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Fig. 3. Converting a T-drawing to a 5-bend EPG.

4.3 Outer-planar graphs

An outer-planar graph is a planar graph that can be drawn such that all vertices
are on the outer-face. Since K5 n is not an outer-planar graph (for NV > 3), one
could suspect that these are all 1-bend EPG graphs. This is not the case.
Theorem 5. Not all outer-planar graphs are 1-bend EPG-graphs.

Proof. The graph G shown in Figure 4(a) is an outer-planar graph, but as we
will argue now, it is not a 1-EPG graph.

(b) () ¢

Fig. 4. (a) An outer-planar graph that is not a 1-bend EPG graph. (b) The 3-sun. (c)
A claw-clique.

Consider a triangle in a 1-bend EPG representation. The union of three 1-
bend paths cannot form a cycle in a rectangular grid, hence for each triangle the
union of the paths forms a tree. It follows from the analysis of edge-intersection
graphs of paths in trees [5] that these three paths either all intersect in one
grid-edge (we say that they are an edge-clique), or they form a claw-clique, i.e.,
there exists a K; 3 in the grid such that any degree-1 vertex of the claw is used
by exactly two paths. See Figure 4(c).
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Define a 3-sun to be the graph that consists of a central triangle, and for
every edge of the triangle a degree-2 vertex (called the outrigger) connected to
the endpoints of the edge. From the work by Golumbic et al. [6], it follows that
the central triangle of a 3-sun necessarily must be a claw-clique in any 1-bend
EPG representation.

Let the central triangle of G be {a,b,c}. Since it is part of an induced 3-
sun, it is a claw-clique. After possible renaming, assume that a and b have a
bend in common, and let a’ be the outrigger-vertex attached to edge (a,b). If
{a,b,a’} were a claw-clique, then the common bend of a and b would force the
position of a’, which hence would have to share grid-edges with ¢. But ¢ and
a’ are not adjacent. So {a,b,a’} are not a claw-clique. This is a contradiction,
because {a, b,a’} is also the central triangle of a 3-sun.

As for upper bounds, it is well-known that every outer-planar graph has a
vertex ordering vy, ..., v, such that each vertex v; has at most 2 neighbours in
v1, ..., U;—1. We say that it is 2-regular acyclic orientable. We can give a 3-bend
construction for any graph that has such an orientation (which includes more
graphs, for example all series-parallel graphs, and even some non-planar graphs
such as the graph obtained from K, by subdividing all edges.)

Theorem 6. Every 2-regular acyclic orientable graph is a 3-bend EPG graph.

Proof. Let v1,...,v, be a vertex order such that every vertex v; has at most
2 earlier neighbours. We maintain the hypothesis that the graph induced by
v1, - .., v; has a 3-bend EPG representation such that every vertex-path contains
a horizontal grid-segment and a vertical grid-segment that does not intersect any
other vertex-path; we call these the free segments. This is trivial for vy; simply
represent it by an arbitrary vertical and horizontal segment attached to each
other.

To add vertex v; to an existing drawing, find its earlier neighbours, say v;
and vg. (The case of only one earlier neighbour is even easier.) Pick one grid edge
e; from the vertical free segment of v; and one grid edge e; from the horizontal
free segment of vi. Insert a new horizontal grid-line £; such that it splits e;, and
a new vertical grid-line ¢ such that it splits e;.®> Now define a path by using
one part of ¢;, going along £; until the crossing with £, going along ¢;, until e,
and then using one part of eg. See Figure 5.

One easily verifies that this path has three bends, intersects with the paths
of v; and v, and does not intersect any other paths. Moreover, v; and vy still
have free segments (the other parts of e; and ex), and v; also has free segments
(along ¢; and £x), so the induction hypothesis holds with the new vertex.

We strongly suspect that this construction isn’t optimal, especially for outer-
planar graphs.

Conjecture 1. Every outer-planar graph is a 2-bend EPG graph.

3 “Ingerting” a grid-line really means that all coordinates of all endpoints and bends
to the right/above are increased by 1.
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Fig. 5. The construction for 2-regular acyclic orientable graphs.

5 Remarks

We mention here, without proof, a few more results.

— A graph H is a line graph if there exists a graph G such that every vertex
of H corresponds to an edge of GG, and two vertices of H are adjacent if the
two corresponding edges have an endpoint in common. It is easy to see that
every line graph is a 2-bend EPG graph.

— A graph of pathwidth k& has a vertex order vy, ..., v, such that for any 7, at
most k vertices in v1q,...,v; have a neighbour in v;41,...,v,. We can show
that graphs of pathwidth at most k are (2k — 2)-bend EPG graphs.

— We say that a graph has a k-regular acyclic orientation if it has an acyclic
edge orientation with indeg(v) < & for all vertices. Then, as already observed
by the authors, the construction in [6] yields that every s-regular acyclic
orientable graph has a 2x-bend EPG graph.

In Theorem 6, we improved this to 3 bends for k = 2, and suspect that
improvement is possible in general.

Conjecture 2. Every k-regular acyclic orientable graph is a (2k — 1)-bend

EPG graph.

Graphs with a s-regular acyclic orientation include graphs of arboricity at
most & (i.e., the edges can be split into x forests). It is known that the
arboricity of G is maxgca[|E(H)|/(|V(H)| — 1)] [8]. Graphs of arboricity
k includes planar graphs_(ﬁ = 3), planar bipartite graphs (x = 2), graphs of
treewidth &, graphs of pathwidth k, and many others. Of course, for some
of these graphs we already found better constructions earlier.

— We say that a graph G has a k-regular orientation if G has an edge orientation
such that indeg(v) < & for all vertices v. Tt is known that the smallest &
for which G has a k-regular orientation is maxpgca[|F(H)|/|V (H)|] [1]. We
can show that every s-regular orientable graph G is a (26 4+ 1)-bend EPG
graph.
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We leave many open problems. An obvious one is to improve the upper or
lower bounds for the number of bends for all graphs where this isn’t tight yet.
But more pressing are complexity issues. What is a recognition algorithm for
1-bend EPG graphs or k-bend EPG graphs? Is this NP-hard? What are time
complexities of some problems in k-bend EPG graphs for small £7 Since planar
graphs are 5-bend EPG graphs, the 3-Coloring problem is NP-hard in 5-bend
EPG graphs. Is it polynomial for smaller £7
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