
Cauchy’s theorem for orthogonal polyhedra of genus 0

Therese Biedl� Burkay Genc�

Technical report CS-2008-26

Abstract

A famous theorem by Cauchy states that a convex
polyhedron is determined by its incidence structure
and face-polygons alone. In this paper, we prove the
same for orthogonal polyhedra of genus 0 as long as
no face has a hole. Our proof yields a linear-time
algorithm to find the dihedral angles.

1 Introduction

A famous theorem by Cauchy states that for a con-
vex polyhedron, the incidence structure and the face-
polygons determine the polyhedron uniquely. Put
differently, if we are given a graph with a fixed order
of edges around each vertex, and we are given the an-
gles at every vertex-face incidence and edge lengths,
then there can be at most one set of dihedral angles
such that graph, facial angles, edge lengths and di-
hedral angles are those of a convex polyhedron. See
for example the book by Aigner and Ziegler [1] for a
proof.

Cauchy’s theorem fails for polyhedra that are not
convex. An easy example is a polyhedron where one
face has a rectangular “hole” where a small box can
be popped to the “inside” or “outside”. But in fact,
there are even so-called flexible polyhedra where the
dihedral angles change continuously, though it has
been shown that their volume must stay the same [5].

We show in this paper that Cauchy’s theorem does
hold for orthogonal polyhedra of genus 0, as long as
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we exclude these holes in faces. (Rather than defin-
ing holes, we will express this by saying that the
graph of the polyhedron must be connected; see Sec-
tion 2 for precise definitions.) Thus, while a big cube
with a small cube attached on one face has two pos-
sible realizations, this is in essence the only way in
which multiple realizations are possible.

Cauchy’s theorem for convex polyhedra is proved
by contradiction and does not lead to an algorithm;
only very recently have exponential algorithms been
found for this problem (see [11, 8, 4] and also the re-
view paper by O’Rourke [10]), and no polynomial-
time algorithm is known. In contrast to this, our
proof of Cauchy’s theorem for orthogonal polyhedra
of genus 0 is algorithmic, and yields a simple linear-
time algorithm to find the dihedral angles.

1.1 Roadmap

We first briefly outline the approach of this paper.
Rather than proving uniqueness and then deriving an
algorithm from the proof, we provide an algorithm
that reconstructs an orthogonal polyhedron. There
will never be any choice in the assignment of di-
hedral angles, except at one moment when we can
choose one dihedral angle. Hence we obtain two sets
of dihedral angles, and can argue that only one of
them could possibly do; this then proves uniqueness.

Our algorithm proceeds in three steps. In the first
step in Section 3, we only identify which dihedral an-
gles must be flat, i.e., have value 180Æ. We do this by
determining for each face whether it is perpendicular
to the �-axis, �-axis or �-axis; the algorithm to do
so is simple, but proving its correctness is not. 1 Two
adjacent faces that are perpendicular to the same axis

1A preliminary version of this algorithm appeared in 2004
[2], but its correctness was shown only for orthogonally convex
polyhedra for which all faces are rectangles.
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necessarily must have a flat dihedral angle between
them, so this determines all flat dihedral angles.

The problem hence reduces to reconstructing an
orthogonal polyhedron where all dihedral angles are
non-flat. In Section 3, we show that there are only
7 possible configurations of vertices for such a poly-
hedron. Moreover, if we fix one dihedral angle and
know all the facial angles, this determines all other
dihedral angles at a vertex, and hence with a simple
propagation scheme, all dihedral angles can be com-
puted as long as the graph is connected.

Finally, we study in Section 5 which of the two
sets of dihedral angles obtained with the above can
possibly be the correct set of dihedral angles. This
is the only part of the algorithm that makes use of
edge lengths. We conclude with remarks in Sec-
tion 6, where we also study an “inverse” problem of
reconstructing facial angles, given dihedral angles.

2 Definitions

A polygonal curve is a simple closed curve in the
plane that consists of a finite number of line seg-
ments. A polygon is a set in a plane whose boundary
is a polygonal curve. A polygonal set is an interior
connected set in a plane that is the finite union of
polygons. A polyhedral surface is a 2-manifold that
is a finite union of polygonal sets. A polyhedron is
a set in 3D whose boundary is a polyhedral surface.
The polyhedron has genus � if its boundary is a sur-
face of genus �.

A face of a polyhedron is a maximal polygonal
set on the boundary of the polyhedron. A vertex is a
point that belongs to at least three faces. An edge is a
maximal line segment that belongs to two faces and
contains no vertex other than its endpoints. A facial
angle is the interior angle of a face at a vertex. A di-
hedral angle is the interior angle at an edge between
two adjacent faces.

The incidences between vertices and edges of a
polyhedron determine a graph called the graph of the
polyhedron. Looking at the polyhedron from the out-
side fixes a cyclic order of edges around each vertex;
this is called the induced embedding of the graph.

For a polyhedral surface, we can also define a
graph by using as faces the polygonal sets that de-
fined the polyhedral surface, and then carry over all

other definitions (vertex, edge, graph, facial angles,
dihedral angles). The main difference is that in a
polyhedral surface, some dihedral angles may be flat,
i.e., have value ���Æ, while this is not possible in a
polyhedron.

We will usually assume that we are given an em-
bedded graph, i.e. a graph with a fixed cyclic order
of edges around each vertex. From this order we can
determine the faces of the graph, which are the cy-
cles obtained by always taking the next edge in cyclic
order. We will also assume that we are given facial
angles of the graph, which are values at each inci-
dence between a vertex and a face of the graph.

Given an embedded graph and facial angles (and
sometimes also the lengths of the edges), we say that
a polyhedral surface � realizes the input if its graph
(with the induced embedding) is the given embed-
ded graph, and its facial angles (and edge lengths, if
given) are as prescribed in the input.

We will almost only study orthogonal polyhedra of
genus 0 in this paper. A polyhedral surface/polygon
is orthogonal if all its faces are perpendicular to a co-
ordinate axis. This implies that all facial angles and
all dihedral angles are multiples of ��Æ. The poly-
hedral surface has genus 0 if and only if its graph
is planar, i.e. it can be drawn in the plane without
crossing.

3 Flat dihedral angles

In this section, we present an algorithm that, given an
embedded planar graph and facial angles, determines
which of the edges of the graph must have a flat di-
hedral angle in any realizing orthogonal polyhedral
surface.

3.1 Algorithm

For each face of the input graph, the facial angles
determine relative orientations of edges within the
face. We write � � �� if � and �� are edges on one
face and have the same orientation within that face.
We can extend � into an equivalence relationship �
by defining that � � �� if there exists a set of edges
� � ��� � � � � �� � �� with �� � ���� for � � 	 
 �.
We define a band to be an equivalence class under
this equivalence relationship�. Note that the bands
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can easily be computed in linear time from the em-
bedded graph and the facial angles. Directly from the
definition of � and �, the following is obvious:

Observation 1 All edges in a band must be parallel
in any realizing orthogonal polyhedral surface.

In any orthogonal polyhedral surface all edges are
parallel to one coordinate axis. In such a realization,
it hence makes sense to say that band � has orien-
tation � if all its edges are parallel to the �-axis, and
similarly for the other two orientations.

Two bands �� �� �� cross if there exists a face
in the graph that contains edges from both. Since
�� and �� were equivalence classes, this means that
their edges are not parallel to each other. In par-
ticular, if �� had orientation 
 in some realization,

 � ��� �� ��, then �� cannot have orientation 
.

We are now ready to describe the algorithm. Dur-
ing the algorithm, we store a set � ���� of possible
orientations of band ��. We fix orientations arbi-
trarily for two bands that cross, and then propagate
along bands that cross them to eliminate orientations
that cannot be correct for these bands. It is not clear
why this should identify all orientations, but we will
that it does. The precise algorithm is as follows:

Algorithm BANDORIENTATION

for all bands �

set � ��� � ��� �� ��
mark � as “unidentified”.

Let �� and �� be two bands that cross
and set � ���� � ��� and � ���� � ���.

while there are unidentified bands
find an unidentified band � with �� ���� � �.
if there is none, output an error message.
else mark � as identified

for each band �� that crosses �

set � ����	 � ����
 � ���.
if � ���� is now empty

output an error message.

This algorithm can be implemented in linear time
if we pre-compute an auxiliary graph � of bands,
which has a vertex for every band and an edge be-
tween two bands if and only if the bands cross. By
storing bands in buckets by the size of �� ����, we

can then in ���� time find the next band � to be
identified, and in ���	
����� time update all the
bands that � crosses; this is ��� � �� time overall
since � has size ���� ��.

We will show the following result in the next sub-
section:

Lemma 1 Assume that an embedded planar graph
with facial angles can be realized by an orthogonal
polyhedral surface �. Then Algorithm BANDORI-
ENTATION terminates without error message. More-
over, after applying a suitable rotation of �, for all
bands � the unique value left in � ��� at termination
of the algorithm is the orientation of � in �.

The band orientations then tell us all edge ori-
entations (i.e., axis to which each edge is parallel),
which in turn determines to which axis each face is
perpendicular. We cannot determine dihedral angles
directly from this (because there are still two possi-
ble directions for each face normal), but we can de-
termine flat dihedral angles, since for any two adja-
cent co-planar faces, the dihedral angles at the edges
shared by them must be 180Æ.

Theorem 1 Given an embedded planar graph with
facial angles, we can in ���� �� time
� report that no orthogonal polyhedral surface

can realize this graph and facial angles, OR

� report all edges of the graph for which the di-
hedral angle must be 180Æ in any orthogonal
polyhedral surface that realizes this graph and
facial angles.

3.2 Correctness

In this section, we prove correctness of Algorithm
BANDORIENTATION, i.e., we prove Lemma 1. We
assume throughout this section that some orthogo-
nal polyhedral surface � exists that realizes the given
graph and facial angles. We furthermore assume that
� has been rotated such that all edges in band ��

(the first band picked by Algorithm BANDORIEN-
TATION) are parallel to the �-axis, and all edges in
band �� are parallel to the �-axis. The following ob-
servation is then quite straightforward:

Lemma 2 At any time during algorithm BANDORI-
ENTATION, for any band � the orientation of � is in
� ���.
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Proof: This holds initially by the rotation of � and
since � ��� � ��� �� �� for all bands � �� ��� ��.
We only change a set if we update � �� ��	 � ����

� ���, for some band � with �� ���� � � and some
band �� that crosses �. By induction � ��� con-
tains the orientation of �, and since �� ���� � �, the
unique value in � ��� is the orientation of �. Since
�� crosses �, its edges are not parallel to the edges in
�, so removing � ��� from � ���� does not remove
the orientation of � �. �

So, if Algorithm BANDORIENTATION ends with-
out error message, then all band orientations have in-
deed been determined as desired. It cannot ever ter-
minate when � ��� becomes empty for some band
�, because by the above the orientation of � remains
in � ��� if � exists.

The remaining possibility for Algorithm BAN-
DORIENTATION to terminate is when there are no
unidentified bands with �� ���� � � left. We claim
that this cannot happen if the realizing polyhedral
surface � has genus 0.

It will be easier to assume that � is quadrangu-
lated, i.e., every face is a rectangle. This is not a
restriction: If � is not quadrangulated, we can add
vertices and edges to obtain a quadrangulated or-
thogonal polyhedral surface � �. Any band of � cor-
responds to the union of bands of � �, so if Algo-
rithm BANDORIENTATION identifies all bands of � �,
it also identifies all bands of �.

Since � is quadrangulated, bands (which were de-
fined as a set of edges) actually can be interpreted
naturally as a sequence of faces instead, see Figure 1.
Let �� be an edge in a band �, and let �� be an inci-
dent face of ��. Since �� is a rectangle, there exists
only one other edge �� on �� that is parallel to ��. let
�� be the other face incident to ��. Continue in this
manner until we return to edge ��.

Any two consecutive edges of the band have the
same edge length and span the same range of co-
ordinates since they are on a face that is a rectan-
gle; therefore all edges of a band have the same edge
length and span the same range of coordinates. (A set
of faces which are connected and bounded by two
planes has been called a band elsewhere [6], hence
our name for the set of edges.)

Assume Algorithm BANDORIENTATION stops
with some bands not identified. Then there are three

Figure 1: A band of a quadrangulated orthogo-
nal polyhedral surface (gray) and one of its chords
(lined).

types of faces: those where 0, 1 or 2 of the two bands
containing the face have been identified. No two ad-
jacent faces can be of type 0 and 2, because other-
wise the band that contains them both is both identi-
fied and unidentified. Since the surface is connected,
there must exist faces of type 1, i.e., there is a face
for which one band �� containing the face is iden-
tified, and the other band (which crosses � �) is not
identified. We will show that this is impossible.

Lemma 3 Let �� be a band that has been identified.
Then all bands crossing � � also will be identified by
Algorithm BANDORIENTATION.

Proof: We first give an outline of the proof, which
is by contradiction. Assume there exists a maximal
sequence of faces of �� where the crossing bands
have not been identified. Using genus 0, we can ar-
gue that some band must cross �� once within this
sequence and once not within this sequence. Then
we argue that this band must “interleave” with an-
other band that has been identified. We also argue
that interleaving bands must cross, which means that
there are three bands (one of them is ��) that pair-
wise cross and two have been identified. This means
that Algorithm BANDORIENTATION will also iden-
tify the third, a contradiction.

The precise proof will not work with bands di-
rectly, but instead will only consider subsequences
of bands that stay “on one side” of � �. Define the
cycle ����� of band �� to be the cycle on surface �

obtained by connecting the midpoints of consecutive
edges in ��. Because � has genus 0, ����� splits �

into two pieces; arbitrarily pick one of them and call
it the interior of ��� ��.
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A chord is a set ��� � � � � �� of faces such that
��� � � � � �� are consecutive faces of a band � that
crosses ��, �� and �� are on �� and ��� � � � � ����
are not on �� and in the interior of �����. See also
Figure 1. Every band that crosses �� defines at least
one chord. We will use all terminology defined for a
band � (such as “orientation” and “identified”) also
for chords defined by �.

The first and last face of a chord is called a chord-
pair. From the definition, a chord-pair of a chord de-
fined by band � is a pair of faces that belong to both
�� and �. Since all faces of a band span the same
range in one of the coordinate axis, the two faces of
a chord-pair span the same range in two of the coor-
dinate axes.

We now consider a restricted version of Algorithm
BANDORIENTATION, where we only propagate ori-
entations along chords whose chord-pairs alternate
along ��. More precisely, two chord-pairs ���� ���,
� � �� � are said to interleave if their order along
�� is ��� ��� ��� �� or ��� ��� ��� ��. We say that two
chords interleave if their chord-pairs interleave.

Claim 1 Chords that interleave cross each other in
a face in the interior of ��� ��.

Proof: Let ����� be the cycle of band ��. Let
�� and �� be two chords that interleave, and for
� � �� � let �� be the path obtained by connecting
the midpoints of the faces of �� in order. By def-
inition of chord, �� is a curve on the surface of �

that connects two points on ��� �� and is otherwise
in the interior of �����. Since �� and �� interleave,
the curves ������ �� and �� form ��, the complete
graph on four vertices. If �� and �� do not cross, then
we have a planar drawing of �� (on �, which has
genus 0) such that all vertices are drawn on one face
(namely, �����). Since �� is not an outer-planar
graph, this is not possible. See Figure 2. So �� and
�� do cross, and the face that contains that crossing
point is common to �� and ��. �

There exists at least one other band that crosses
�� and whose orientation has been identified. (This
holds if �� is one of the initial two bands, because
they cross each other, and also holds if � � was iden-
tified later, because then �� ����� became 1 due to
some crossing identified band.) Fix an arbitrary
chord �� of this identified band.

�� ��

��

��

��
��

�����
��

Figure 2: Chord-pair ���� ��� interleaves chord-pair
���� ���.

Starting from ��, we now mark all chords that can
be reached via interleaving chords. More precisely,
mark all chords �� that interleave ��, then in turn
mark all chords that interleave � �, and so on until no
more chords can be marked.

Claim 2 All marked chords are identified by Algo-
rithm BANDORIENTATION.

Proof: This holds for � � by choice of �� as a chord
defined by an identified band. Assume chord ��

was marked because it interleaves some previously
marked chord ��. By induction �� has been identi-
fied. By Claim 1, �� and �� cross. So there are three
bands (�� and the two bands for � � and ��) that mu-
tually cross, and two of them are identified. This will
also identify the third, because the orientations of the
first two (which are different since they cross) are
both removed from the list of possible orientations
for the third by Algorithm BANDORIENTATION. �

We use the term “marked” also for a chord-pair
(which is marked if and only if the chord of it is
marked), and even for faces of ��. Note that ev-
ery face � of �� belongs to a chord, since there is
a band crossing �� at this face, and the part of the
band that enters the interior of ��� �� forms a chord.
On the other hand, every face of �� belongs to only
one chord, since no three bands meet in a face. So
we call a face of �� marked if and only if the unique
chord that contains it is marked.

If all faces of �� are marked, then by Claim 2 all
chords, and hence all bands that cross � � are identi-
fied and we are done. So assume not all faces of ��
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are marked, and let � be a maximal contiguous set
of faces of �� that is not marked.

Claim 3 There is a chord-pair ��� � �� with � � �

and � � �� � .

Proof: Note that cycle ����� lies within one plane;
we will now consider ����� as a 2D polygonal curve
within that plane. Let � be the intersection of � with
�����. Then ����� 
 � forms an open curve in a
plane. By considering the region between the two
endpoints of that open curve, we can find a horizontal
or vertical line � that intersects ��� �� 
 � an odd
number of times. See Figure 3(a).

(a)

could be marked or unmarked �

markedmarked

unmarked�

�����

marked

unmarked

marked

unmarked

� �

�(b)

�� ��

Figure 3: (a) There must be a horizontal or vertical
line � that intersects ����� 
 � an odd number of
times. (b) Along this line, we can find an unmarked
chord-pair that interleaves a marked chord-pair.

Consider all edges of ����� that are intersected
by �; this corresponds to a set � of faces of � � that
are intersected by � (when considering � as a line in
3D.) Any chord-pair that contains one face in � must
also contain another face in �, because as observed
earlier, the two faces of a chord-pair have the same
range along two coordinate axes. By definition of �,

�����
�� contains an odd number of faces, so by
parity one of the chord-pairs that have faces in � can
have only one of its faces in �� 
 � , and the other
face must be in � . �

By definition of � , � � � means that � was not
marked. The chord-pair ��� � �� splits �� into two
subsequences ��� �� of faces, and both of them must
contain at least one marked face, since � � �� � and
� was chosen as a maximal sequence of unmarked
faces. See Figure 3(b). During the iterative process
of marking chords, there must have been a first time
when we had marked faces on both �� and ��. The
chord-pair that caused this to happen hence had one
face in �� and the other in ��. But then this chord-
pair interleaves with ��� � ��, which means ��� � ��
should have been marked as well, a contradiction.

This finishes the proof of Lemma 3, and hence the
proof of Lemma 1. �

4 Non-flat dihedral angles

If we know all flat dihedral angles, we can delete the
corresponding edges in the graph, and then delete the
resulting isolated vertices and contract the resulting
vertices of degree 2 into their neighbours. Doing this
merges all faces of a polyhedral surface � until they
become faces of the polyhedron bounded by �, and
the resulting graph is the graph of the polyhedron.
In this section, we are interested in determining the
remaining dihedral angles, and we can thus assume
that we are given the graph of the polyhedron.

Let � be a vertex of an orthogonal polyhedron. The
incident � octants of � may or may not be occupied
by the polyhedron within a small neighbourhood of
�, yielding �� possible configurations at vertex �. Of
those, many cannot occur in an orthogonal polyhe-
dron, since the resulting surface is not a 2-manifold.
Some more have a flat dihedral angle. Eliminating
all these cases and omitting rotational symmetries,
we are left with only 7 vertex configurations, which
are given in Figure 4.

In particular, each vertex of an orthogonal polyhe-
dron can have three, four or six incident edges (so
it has degree 3, 4 or 6 in the graph.) In Figure 5, we
give the vertex configurations together with the facial
angles and dihedral angles in the graph. The reader
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Figure 4: All vertex configurations of an orthogonal
polyhedron.

should at this point start to forget the geometry and
view this as an embedded graph with facial angles
and labels on all edges.

We group the 7 configurations into four groups;
configurations in different groups have different de-
grees or different facial angles. Within each group,
any mapping from one configuration to the other that
preserves order and facial angles maps every dihedral
angle 
 to its opposite 
��Æ 
 
. Since 
 �� ���Æ,
this implies the following:

Observation 2 All dihedral angles at a vertex � are
determined by the degree of �, the facial angles at �,
and one dihedral angle of an edge incident to �.

all dihedral angles can hence be computed if one
initial dihedral angle is fixed, as follows:

Algorithm DIHEDRALANGLES

let �� be an arbitrary edge of the graph �

set ������ � ��Æ, ������ � ���Æ

compute a traversal of �, starting at one endpoint of ��

for all vertices �, in order of traversal
let �� be an incident edge of � for which ������

and ������ have been determined.

9090

90
90 90

90

90 90

90
90

90
90

180

180

180

180

270

270270

270 90

90

90

90
909090 90

270

90 90
90270

27090

270
90 90

270

90

90
90

90

90

9090

270

270

270

90 90

90

Figure 5: The vertex configurations with facial and
dihedral angles.

(�� � �� for the first vertex, and the edge
along which � was reached otherwise.)

for all edges � �� �� incident to �

set ����� to be the unique dihedral angle
determined by the degree of �, the facial
angles of �, and ������.

if none of the configurations matches, or if
this changes a previously assigned value
of �����, output an error message.

Similarly set ����� using ������.

The computation of ����� and ����� can be integrated
into the traversal, and the running time is hence
���� �� time.

5 Selecting among two sets

At this point, we have computed two possible sets
of dihedral angles, and we now need to determine
which of them is the correct one.

These two sets are in fact opposite to each other,
i.e., ����� � 
��Æ 
 ����� for all edges �. This
clearly holds for the initial edge, and by induction
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also for the other edges, since the two configurations
within a group in Figure 5 have opposite dihedral an-
gles. So if the set ������� is realized by an orthog-
onal polyhedron � , then ����� is the outside angle
between the faces adjacent to � in � ; we could thus
call ������� the outside dihedral angles.

To determine which of the two sets are the inside
and which the outside dihedral angles, we use edge
lengths and reconstruct the coordinates of all ver-
tices. To be precise, pick some vertex of degree 3,
assign it to be located at the origin, and arbitrarily
assign its three incident edge to be directed along the
�-axis, �-axis and �-axis. Using the facial angles,
edge lengths, and the dihedral angles from �������,
we can then easily compute all coordinates of all ver-
tices in ������ time. (If this assigns two different
coordinates to the same vertex, output an error mes-
sage; the edge lengths cannot have been correct.)

Now find a vertex � with maximal �-coordinate
(breaking ties arbitrarily), and let � be a face adjacent
to � and perpendicular to the �-axis. Since there are
no flat dihedral angles, the edges incident to � must
have dihedral angle ��Æ, otherwise there would be a
vertex with even larger �-coordinate. This decides
which of ������� and ������� was correct, and only
one of them can be correct.

Putting all three algorithms together, we hence ob-
tain the following:

Theorem 2 Given an embedded planar graph with
facial angles and edge lengths, we can in ���� ��
time

� find the dihedral angles of any orthogonal poly-
hedral surface that has this graph, facial angles
and edge lengths, OR

� report that this graph and facial angles can only
belong to an orthogonal polyhedral surface for
which the polyhedron bounded by it has a dis-
connected graph, OR

� report that no orthogonal polyhedral surface
can realize this graph, facial angles and edge
lengths.

Moreover, if a realizing orthogonal polyhedral sur-
face exists, then it is unique.

6 Remarks

We assumed that we are given a graph, facial angles
and edge lengths, and that the reconstructed orthog-
onal polyhedron has a connected graph and genus 0.
We now briefly discuss these assumptions.
� Inspection of the proof of Cauchy’s theorem

shows that it does not use edge lengths, so for a
convex polyhedron the graph and facial angles
determine the dihedral angles. Our proof also
does not use edge lengths, except at the very last
step where we determine which of two possible
sets of dihedral angles is the correct one.

It seems exceedingly likely that this step could
be done without using edge lengths. In partic-
ular, in the corresponding 2D problem (given a
set of angles, can this be the set of angles of
an orthogonal polygon?) there is a simple solu-
tion: the set of � angles can be realized if and
only if it adds up to ���Æ�� � ��. If any band
happens to have only rectangular faces, then the
cycle of the band (as defined in Section 3) lies
within a plane, and studying the dihedral angles
of this band will tell us which set is correct. But
for arbitrary bands the incidence structure of the
faces on it is more complicated. Can we use it
somehow to determine the correct set of dihe-
dral angles without using edge lengths?

� We demanded that the graph of the polyhedron
is connected, i.e., no face has holes. If this con-
dition is dropped, then testing whether a realiz-
ing polyhedral surface exists becomes NP-hard
even for genus-1 orthogonal polyhedra [2], and
the proof can easily be modified to genus-0 or-
thogonal polyhedra [9]. We show in the ap-
pendix that the problem is in fact NP-hard in
the strong sense, and in particular also holds
for polyhedral surface where every face is a unit
rectangle.

� We demanded that the orthogonal polyhedral
surface has genus 0. This was used fre-
quently throughout the proof of correctness of
Algorithm BANDORIENTATION. Already for
genus 1, Algorithm BANDORIENTATION may
not identify all bands (depending on how the
initial bands are chosen); see Figure 6 for an
example.

8



��

��

Figure 6: An orthogonal polyhedral surface of
genus 1 where Algorithm BANDORIENTATION can-
not identify any bands after the initial two.

The other algorithms work without modifica-
tion for surfaces of higher genus, so Cauchy’s
theorem holds for higher genus orthogonal
polyhedra (not polyhedral surfaces, i.e., no flat
dihedral angles are allowed), as long as they
have a connected graph.

� Our algorithm computes the set of dihedral an-
gles, and as a by-product also vertex coordi-
nates, but it does not check whether the result-
ing surface is indeed a 2-manifold. This can be
done in polynomial time (see [3]).

6.1 An inverse problem

One could also ask an inverse question to Cauchy’s
theorem: Can we reconstruct facial angles, given di-
hedral angles (as well as embedded graph and edge
lengths)? To our knowledge, this problem has not
been studied before, and in particular, it is open
whether the set of facial angles is unique for a convex
polyhedron. We study here orthogonal polyhedra.

Assume first that none of the (given) dihedral an-
gles is flat. We show that in this case we can recon-
struct facial angles in ���� time, with an approach
quite similar to the one in Section 4. Again the cru-
cial idea is that there are a constant number of config-
urations at a vertex of an orthogonal polyhedron, see
Figure 5. If a vertex has degree 3 or degree 6, then
the dihedral angles determine all facial angles. To
resolve degree-4 vertices, we need an observation:

Lemma 4 Let � be a face with at most three un-
known facial angles. Then there is a unique set of
facial angles that can realize � , and it can be found
in ���	
�� �� time.

Proof: Let ��� ��� �� be three vertices of � where
the facial angle is not necessarily known. These di-
vide the boundary of � into three polygonal chains
��� ��� �� such that all facial angles in the interior of
the chains are known. Since we know edge lengths as
well, each chain �� is determined up to rotation and
translation. In particular, chain �� gives the distance
between its endpoints, and hence we know the trian-
gle formed by ��� ��� ��. The angles of this triangle
determine the relative rotations of the three chains to
each other, and hence the facial angles. 2

�

The algorithm to determine facial angles is now
very simple: First determine all facial angles at ver-
tices of degree 3 or 6. Then, for as long as there is a
face � with at most three undetermined facial angles,
determine its facial angles. For any vertex � incident
to � for which now one facial angle is determined,
update all other facial angles.

We claim that for a planar graph this determines
all facial angles, and prove this as follows. Define
an auxiliary graph � by using a node in � for every
vertex and face of the graph of the polyhedron, and
an edge from vertex � to face � if � is adjacent to
�. Clearly � is bipartite and planar. Delete from �

all nodes where the corresponding vertex/face has all
facial angles identified during the algorithm, and let
� � be the remaining graph.

Any node in � � that corresponds to a face � must
have degree at least 4, otherwise the algorithm would
have identified the facial angles of � . Any node in
� � that corresponds to a vertex � must have degree 4,
because � had degree 4 in �, and for a vertex either
all or none of its facial angles are identified. So � �

has minimum degree 4, contradicting that any planar
bipartite graph has a vertex of degree at most 3.

Theorem 3 Given an embedded planar graph with
non-flat dihedral angles and edge lengths, we can in
������ time find the facial angles of any realizing
orthogonal polyhedron, or report that no such poly-
hedron exists. Moreover, if a realizing polyhedron
exists, then it is unique.

This theorem involves edge lengths due to
Lemma 4. A possible direction for future research is

2Computing the facial angles from the distances requires in-
finite precision arithmetic. This can be avoided by trying instead
all possible orthogonal rotations of the chains.
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to improve this lemma and avoid using edge lengths.
We conjecture that the facial angles are determined
solely by the graph and the dihedral angles.

Also, we assumed that the given dihedral angles
are non-flat. If we allow flat dihedral angles, we can
still easily reconstruct the facial angles at vertices
that are vertices of the polyhedron (eliminate all flat
dihedral angles by merging faces, and then apply the
above algorithm.) On the other hand, reconstruct-
ing the facial angles at vertices in the interior of a
face of the polyhedron is NP-hard, by reduction from
the problem of reconstructing an orthogonal polygon
from its edge lengths, which is NP-hard [3].
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A Disconnected graphs

In this appendix, we show that reconstructing the
dihedral angles, given an embedded planar graph
with edge lengths and facial angles, is NP-hard if
the graph of the polyhedron is not connected. This
was already shown earlier [2], but the proof there
was from Partition, and hence left the possibility
that the problem may be pseudo-polynomial in the
edge lengths. We here use a reduction from NAE-
3SAT, and hence establishes that the problem is in
fact strongly NP-hard.

We use an approach called the logic engine
[7], with a reduction from NAE-3SAT, which is
the following problem: Given � boolean variables
��� � � � � �� and � clauses ��� � � � � �� of three literals
each, test whether there exists an assignment of val-
ues to variables such that each clause contains at least
one true and at least one false literal. This problem
is well-known to be NP-hard [12].

We explain how to construct the graph of the poly-
hedron (given an instance of NAE-3SAT) by show-
ing parts of the polyhedron for which the graph is
connected; by Theorem 2 there is no realization of
this graph other than the one provided in the con-
struction.

The first part of the polyhedron is the frame. This
consists of a box that is �� � � units wide, �� �

 units high and 5 units deep. At the leftmost and
rightmost end of the top face, we place towers that
are �� � � units high, 1 unit wide and 5 units deep.
The top face of the box also contains � pairs of holes
(one for each variable), which are 3 units wide, 1 unit
deep and 1 unit apart. They are spaced 1 unit away
from the towers and 3 units away from each other.
See also Figure 7 (which is to scale for � � � � �.)

The next part of the polyhedron is an armature.
There are two types of armature, a positive armature
and the negative armature. An armature is a block of
height �� � �, width 3 and depth 1, with an small

 
 � 
 �-box added at the bottom that connects it
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Figure 7: The frame. Thick lines mark a hole.

to the hole on the top of the box. This small box is
placed at the front for the positive armature and at
the back for the negative armature. See Figure 8.

For the 	th pair of holes on top of the block, we
attach a positive armature at the hole in the front, and
a negative armature at the hole in the back; we call
these the armatures of literal �� and ��, respectively.

There are up to � holes each on the left and the
right side of an armature. Each hole has height 1 and
depth 1, and is spaced 1 unit away from all neigh-
bouring edges or holes. We will discuss in a moment
which holes actually exist. Figure 8, which is to scale
for � � �, shows an armature that has all possible
holes.

Figure 8: A positive armature, a negative armature,
and an armature with flags attached. Thick lines
mark a hole.

Label the possible position of holes from bottom
to top as �� �� � � � � �. (Each such position is actually
a pair of holes, one on the left and one on the right
of the armature; either both or none will exist.) The
holes at the  th position of the armature of literal � �

exists if and only if �� does not occur in clause �� .
Finally, into each hole of an armature, we place a

flag, which is simply a �
 �
 �-cube.
We will now show that if the polyhedron can be

realized without overlap, then the instance of NAE-
3SAT is satisfiable. The other direction also holds
and is proved similarly.

So assume the polyhedron can be realized without
overlap. Set each literal �� to be true if and only if
the armature of �� is up, i.e., the dihedral angles at
the hole connecting the armature to the box are ���Æ.
Note that the armatures of �� and �� cannot both be
up or both be down (otherwise they would intersect),
so this is well-defined.

Consider clause �� , and all flags in the  th possible
position at the armatures that are up. The left tower
so close to the leftmost armature that no flag can be
between them. Likewise no flag can be between the
rightmost armature and the right tower. Finally, the
two flags of an armature cannot be both inside the ar-
mature, since they would overlap. This leaves space
for only �� 
 � flags: there are � 
 � gaps between
armatures, and � armatures. So if there is no over-
lap, then at least one armature has no flags in the  th
position, so this literal occurs in � � and has been as-
signed a true value, so �� contains a true literal. By
similarly arguing about the armatures that are down,
we see that �� contains at least one false literal, which
proves the reduction.

In our reduction all edges have integer edge
lengths, and hence by subdividing faces we can cre-
ate an instance where all faces are unit squares; we
hence establish NP-hardness of reconstructing so-
called polycubes from their graph, a question raised
by Craig Gotsman (private communication.)

Theorem 4 Given a planar graph for which all
faces are unit-length quadrangles, it is NP-hard to
decide whether this graph is the graph of an orthog-
onal polyhedral surface.
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